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Inferring the 3D pose of a character from a drawing is a complex and under-constrained problem. Solving
it may help automate various parts of an animation production pipeline such as pre-visualisation. In this
paper, a novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method
does not make any external assumptions about the model, allowing it to be used on different types of char-
acters. The inference of the 3D pose is formulated as an optimisation problem and a parallel variation of
the Particle Swarm Optimisation algorithm called PARAC-LOAPSO is utilised for searching the minimum.
Testing in isolation as well as part of a larger scene, the presented method is evaluated by posing a lamp, a
horse and a human character. The results show that this method is robust, highly scalable and is able to be
extended to various types of models.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and
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1. INTRODUCTION
The field of animation has advanced rapidly, offering a plethora of ways to bring char-
acters to life from sketching and joint manipulation to puppet posing and motion cap-
ture.

This variety though, requires users to have different sets of skills and work-flow
styles. The disparity between the knowledge an artist is required to have may create
fragmentation and increase the learning curve for even the most basic creative tasks.

Since animation has its roots in hand drawings, being able to show one’s ideas on
paper is a skill most animators possess. As such, many have argued sketching is an
intuitive interface for artists from both traditional and modern backgrounds, be it for
posing [Mao et al. 2006], animating [Davis et al. 2003], modelling [Yang and Wunsche
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Fig. 1. From initial storyboard to pre-visualisation. The lamp in these three shots is automatically posed
using the storyboard drawing. On the top row, drawings are overlaid on top of the 3D scene with the assets
unposed. On the bottom row, the lamp has been posed automatically using our method.

2010], stylising motion [Li et al. 2003] or simulating secondary movement [Jain et al.
2012] and crowds [Mao et al. 2007]. By providing an intuitive link between the initial
sketching process and the end result, the cognitive load and the necessary training for
the artist may be significantly reduced.

Initial sketching is already part of most animation pipelines, usually in the form
of storyboarding during pre-production. These drawings are then used by animators
or pose artists to set up the initial pose layout before going into the animation stage.
Rather than introducing a new work-flow or step, the aim of the proposed method is
to automate one of the existing steps. Specifically, the focus is on making the initial
posing stage of a production less labour intensive.

Posing 3D models from 2D sketches is a complex, open problem, closely related to
the computer vision problem of inferring a 3D pose from a 2D photograph but with
several differences. Photographs are usually accurate in terms of scale and include
colour information. Sketches may have squashing and stretching, usually lack colour
and contain noise in the form of auxiliary strokes e.g. from shading.

This paper focuses on using sketches to pose 3D characters automatically, for layout
or pre-visualisation. It is general enough to pose any character model, in any stage of
the pre-production phases e.g. storyboard blocks or hand-drawn animation frames.

Either in the field of computer vision [Hua et al. 2005] or in previous attempts at
automatic 3D posing for animation [Jain et al. 2009], successful attempts have used
data-driven approaches. In this case, a data-driven approach is not suitable because
a pose database can be challenging and expensive to build and maintain, given the
variety of fantastic characters in animation productions. As such, the method proposed
in this paper does not use any database.

A hand drawing is processed and split into two descriptors: an edge map and a
silhouette. The user quickly pinpoints the joints over the drawing to form the third
descriptor. A variation of the particle swarm optimisation algorithm (PSO) called
PARAC-LOAPSO (Section 3.2) is used, which works by manipulating the pose of a
pre-existing 3D model. The process iterates, comparing the 3D render with the draw-
ing (Section 3.3) until a suitable 3D pose is found for the character.

2. RELATED WORK
Before proposing a new method for automatically posing 3D models from drawings,
it is important to summarise previous research. Previous work consists of the main-
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stream method, posing interfaces and automatic 3D posing. Automatic 3D posing can
be further spit into the database approach and the explicit shape model approach.

The mainstream method of posing 3D characters is by manipulating controls of
a skeletal structure, usually joints [Burtnyk and Wein 1976]. Even with the invention
of Inverse Kinematics [Zhao and Badler 1994], this remains a time consuming process
which requires the user to be trained in specific suites of software.

A drawing represents an idea or internal model the artist has about a scene and
it contains no depth information. As such, the problem of inferring the depth from a
drawing is under-constrained, creating problems such as the forward-backward ambi-
guity problem (Figure 2).

Fig. 2. An example of the forward-backward ambiguity issue in inferred 3D pose of a lamp when not using
the internal lines for additional information.

Posing Interfaces: Interfaces to replace the mainstream skeleton manipulation
process have been the focus of previous research e.g. tangible devices [Jacobson et al.
2014]. Examples of sketch-based interfaces make use of differential blending [Öztireli
et al. 2013] or the line of action to pose 3D characters [Guay et al. 2013]. These sketch-
based interfaces may offer improvements, but are still operated by artists. The pro-
posed method aims to reduce the process to an automatic method a user with no artis-
tic background would be able to perform.

2.1. Automatic 3D Posing
In general, inferring a 3D pose from a drawing can be broken down into two sub-
problems. Firstly, matching the 3D model projection to the drawing. Secondly, inferring
the missing depth. For 3D productions, the camera represents the position from which
the characters in the drawing are viewed, according to the artist’s internal model.

A comprehensive overview of progress in this computer vision problem [Gavrila
1999] highlights two main types of approach, the database approach and the explicit
shape model approach. In this case the focus is on data from drawings as input, rather
than photographs or video frames.

2.1.1. Database Approach. Previous computer vision research has used database ap-
proaches not only for tracking and posing [Jain et al. 2009] but also for positioning
[Xu et al. 2013] in a scene or simply classifying [Eitz et al. 2012]. In animation, Jain
et al. [Jain et al. 2009] follow a database approach in order to infer the missing depth
and pose humanoid characters. However, it is only able to handle orthogonal camera
projections, while the method proposed in this paper can handle both orthogonal and
perspective projection. Building a database of poses may be expensive, especially since
motion capture cannot be easily used for the non-humanoids that are so common in
3D animation productions. As such, an approach that does not require a database was
preferred.
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2.1.2. Explicit Shape Model Approach. This approach is very effective when multiple
camera views are available, because the problem is no longer under-constrained (no
occlusions). It consists of comparing the 3D render pose to the 2D image in order to
estimate how close it is to a correct pose. One the limitations of this computer vision
approach is that it requires a 3D model that is a good match to the 2D image. In 3D
productions this limitation does not apply, since a 3D model exists anyway.

Favreau et al. successfully pose animals using Radial Basis Functions of 3D pose
examples [Favreau et al. 2006]. Ivekovic et al. [Ivekovic et al. 2008] infer 3D poses
of humans in video sequences using multi-view images. Ivekovic et al. still make
human-specific assumptions, limiting its use to a small subset of characters while
both Favreau et al. and Ivekovic et al., use video data and exploit temporal relations
between frames.

2.2. Proposed Approach
The proposed approach is a method for posing 3D models from 2D drawings, aiming at
pose layout and pre-visualisation. It makes no assumptions about the 3D model in or-
der to deal with many types of characters. Unlike Jain et al. [Jain et al. 2009], it does
not rely on a database. Instead, a particle swarm optimisation (PSO) variant called
Parallel Convergence Local Optima Avoidance PSO (PARAC-LOAPSO) is used. This
allows for posing of both cooperative (e.g. humans) and uncooperative (e.g. animals)
characters. It does not require the model to have a skeleton; any type of controller is
suitable. Unlike Ivekovic et al. [Ivekovic et al. 2008] the input data are monocular,
stand-alone drawings with no temporal relations between them. Minimal user input is
required, in the form of pinpointing the joints on top of the drawing. To avoid forward-
backward ambiguity, the proposed method uses a combination of various descriptors
[Fleischmann et al. 2012]. There are currently no other methods that perform auto-
matic posing for the layout phase of animation, that work irrespective of the character
model and that can be applied without the need for a pre-existing database.

3. METHODOLOGY
3.1. Overview
To propose a general posing method which can automate the initial layout pass or pre-
visualisation of a production, the solution takes into account several requirements:

— That it makes no assumptions about the type of character, in order to be versatile
(e.g. humans, horses, lamps, octopuses).

— That it provides results that are good enough for the initial posing and not the final
animation.

— That it ensures the necessary user input is quick and requires little learning from
the user side.

— That it does not restrict the traditional pipeline structure.
— That it is feasible for both small and big budget productions.

Since the proposed method is focusing on posing and not generating a 3D model from
a 2D sketch, it is assumed that there is already a 3D model that corresponds to the
character in the drawing. Therefore, the explicit shape model approach is utilised for
solving the problem.

The 2D sketch is an artistic drawing e.g. a storyboard panel. It does not need to be
of high quality, but it does need to be accurate in terms of the shape and scale of the
object that will be posed.

To create a search space containing the desired 3D pose, an interface is used which
allows users to overlay drawings on top of a 3D space (Figure 1), moving the camera
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Fig. 3. Joints overlaid by a user
on top of a drawing of a human.

Fig. 4. Edge map of a drawing
of a human, extracted using the
Canny algorithm.

Fig. 5. Silhouette of a drawing
of a human.

and placing unposed 3D models. This reduces the search space so that it consists of
only local poses of a character, not translation in 3D space (Section 3.2). To compare
the 2D to the 3D data in the search space the system extracts information from the
sketch. That is when the only user input required - the pinpointing of the joints - takes
place (Section 3.3). To navigate the search space and find the desired pose, the system
iteratively poses and renders the 3D model of the character to match the drawing
(Section 3.2).

The process is not distruptive or encumbering on pipelines, as it is no different from
a traditional pipeline with a 3D layout pass. Additionally, drawings exist early on in
pre-production in the form of storyboards. The pinpointing of the joints can be done in
a few seconds during the clean-up phase and does not require technical training.

3.2. PARAC-LOAPSO
As previously mentioned, the problem of inferring the 3D pose from 2D data is treated
as a minimisation problem, by navigating a formulated search space using a variation
of PSO called PARAC-LOAPSO.

The original PSO algorithm was inspired by the social behaviour of animals who
work together in order to explore and find desirable positions in a larger area; the
classic example is a flock of birds flying over a landscape looking for food, communi-
cating their findings to each other in order to converge om the position with the most
food.

PSO as an optimisation algorithm performs global search and a reason for choosing
it as the foundation of PARAC-LOAPSO is that it is parallel by nature, which makes
it straight-forward to implement on a GPU [Mussi et al. 2010]. As a meta-heuristic
algorithm, it makes no assumptions about the problem, which means it can be general
enough to be applied on different models or model controls (e.g. joints). This is impor-
tant in order to meet the requirement for a general solution, as explained in Section
3.1.

The algorithm consists of a swarm of particles navigating a multi-dimensional
search space looking for solutions that get a lower value when evaluated through a
fitness function. In the swarm, each particle represents a possible pose. The search
space is therefore defined as the set of all possible poses. For more complex models (i.e.
models with a greater number of joints), the search space becomes larger.

Even for less complex models the search space of possible poses can be large, even
after reducing it by making assumptions. Complicating things further, the problem of
pose estimation does not necessarily have just one perfect solution when formulated
as a minimisation problem. Local search methods would identify one of the many local
minima as the best, but global search methods may be able to perform better given

ACM Computers in Entertainment, Vol. 12, No. 2, Article 0, Publication date: January 2015.

Page 5 of 15

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Workflow 4



For Peer Review

0:6 A. Gouvatsos et al.

the multimodal nature of the problem, meaning they are able to find poses which are
closer to the optimal solution.

The problem is formulated by defining each particle as a possible pose or solution.
Specifically, each solution is a vector X = (j1, ..., jn), where n is the number of joints
to manipulate on the model. Each element j represents a joint and is a three dimen-
sional vector j = (x, y, z) where x, y and z are its Euler angle rotations in local space.
Therefore, the search space contains all the possible poses for that model.

While issues of uncertain convergence, speed and getting stuck at local minima have
been explored [Bratton and Kennedy 2007], it is important to re-examine them for this
particular problem.

Improved Search: To deal with slower convergence, a constriction factor K (equa-
tion 1) [Bratton and Kennedy 2007] is preferred over the inertia weight used by
Ivekovic et al. [Ivekovic et al. 2008] or Salehizadeh et al. [Salehizadeh et al. 2009].
To speed up convergence and overall runtime, the algorithm is implemented to run in
parallel on the GPU. To deal with getting stuck at local minima, the method proposed
by Salehizadeh et al. is used to add variation in the population [Salehizadeh et al.
2009]. Additionally, the optimisation process is faster and more accurate as a result
of navigating a smaller search space. That is achieved by using joints’ rotation limits
from the given 3D model as constraints. Instead of using biological data about human
joint limits, only the joint limit data from the 3D model are acquired. Any hierarchical
assumptions would decrease the method’s versatility.

K =
2

|2− a−
√
a2 − 4a|

(1)

a = φ1 + φ2 (2)

The cognitive (influence by own findings) and social (influence by others’ findings)
weights are defined as φ1 and φ2.

The balance between exploration and exploitation is based on the idea that for each
particle i, larger changes in its position Xi are preferred earlier during the optimisa-
tion process, in order to examine larger areas of the search space. Towards the end of
the optimisation, smaller changes in Xi are preferred in order to refine the solution as
much as possible.

When it comes to improving search and ensuring convergence, another important
parameter is the communication topology or neighbourhood of the swarm. There are
two types of topologies, the global and the local. The global topology means all particles
exchange information with all other particles and can update the global best solution
found at each iteration step. The local topology means any non-global topology. In this
paper, local topology refers to the ring topology, where each particle has two other
particles in its neighbourhood.

The global topology converges faster than the local topology and this is often why it
is preferred by researchers. It is important to ensure convergence of the swarm, but
if the particles are converging towards a local minimum and not the global minimum,
then this quick convergence results in a sub-optimal solution. For specific problem sets
it has been shown that the additional time it takes for the local topology to converge
also results in a solution closer to the global minimum [Bratton and Kennedy 2007].

When the search space is simple, like in unimodal problems, Bratton and Kennedy
[Bratton and Kennedy 2007] found that the global topology is better than any local
topologies. However, when it comes to multimodal problems, they suggest that a local
topology might be better in order to avoid local minima.

Even for problems where the local topology is better, the optimisation needs to run
for more epochs in order for the improved results to show. Depending on how many op-
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erations occur per epoch, this can take its toll on the runtime of the algorithm, depend-
ing on the swarm population. Bratton and Kennedy recommend that both topologies
are always tested and this is the case for PARAC-LOAPSO.

Initialisation: The overall performance of the algorithm is affected by its initialisa-
tion. Since no temporal data is assumed, as would be in the case of a video, a previous
pose cannot be used as an initial point. Therefore, each element jn of position Xi of
each particle i is initialised from a uniform random distribution: jn ∼ U(Xmin, Xmax).
The upper and lower boundaries Xmin, Xmax ∈ [−360, 360] differ for each element of
Xi, since the joint rotation limits are used to set them for each particle element.

Given the link between the drawing and the 3D scene, an alternative initialisation
approach for the particles would be to use inverse kinematics (IK) handles to match
the approximate position of the joints as pinpointed on the sketch. Then the swarm
would be initialised based on a random distribution centred on the IK solution pose.
It was decided to not use this approach because it relies on the assumption that the
pre-existing 3D model contains IK handles, which in turn would make the proposed
method less general in application.

In cases where temporal data exists, like for example in an animation sequence
where each frame follows logically from the previous one (Figure 10), the system
can easily be configured to initialise each particle randomly in a distribution centred
around the previous frame. For example, given a successfully posed model for a frame
at the beginning of the sequence, the frame which follows it will have a comparatively
similar pose. As such, automatically posing models in an animation sequence with fre-
quent key-framing contains more information about the problem and may benefit from
better initialisation. It is also possible to create a second optimisation pass, after the
first, where each estimated pose is further corrected based on the previous and the
subsequent frames.

Fitness evaluation: After the initialisation step a fitness function f allows for the
evaluation of each particle. Based on this, the personal best position Bt

i of each particle
i and the global best position Bt

g from all particles are stored.

f = w1Dj + w2Ds + w3De (3)

whereDj is a distance metric for the joint positions,Ds one for the shape silhouette and
De for the edges (both internal and external), while w1, w2 and w3 are the respective
weights for each component (e.g. 1

3 for equal weighting of all parts).
Update: At the beginning of epoch t, the population of N particles is split into two

subgroups of size γN and (1−γ)N , where γ = r, r ∼ U(0, 1) if t < Tctmax, or 1 otherwise.
Tc is denoted as the threshold of convergence, which controls how many epochs are
dedicated to exploration and how many to exploitation. For example, for Tc = 3

4 only
the last quarter of the epochs will be dedicated to exploitation. tmax is the maximum
number of epochs for a run.

Xt+1
i = Xt

i + V t+1
i (4)

For every particle i, its position Xi is updated (equation 4). If the particle belongs to
the first population subgroup, its velocity component V t+1

i is updated using equation 5.
Otherwise, to attempt and avoid local minima by adding variation, it is updated using
equation 6.

V t+1
i = K[V t

i + c1(B
t
i −Xt+1

i ) + c2(B
t
g −Xt+1

i )] (5)

V t+1
i = K{V t

i − Lt[r1(B
t
i −Xt+1

i ) + r2(B
t
g −Xt+1

i )]} (6)

Lt = 2− 2t

tmax
(7)
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r1, r2 ∼ U(0, 1) (8)
c1 = φ1r1 (9)
c2 = φ2r2 (10)

Algorithm: The above components are combined in the following steps to form the
overall algorithm.

(1) Initialise the swarm population, with global best Bt
g and/or neighbourhood bests

(depending on topology).
(2) For each particle i, with personal best Bt

i (in parallel):
(a) Update particle position (equation 4).
(b) Update descriptors of 3D pose (Section 3.3).
(c) Evaluate fitness of particle (equation 3).
(d) If current fitness ¡ Bt

i , set Bt
i to current fitness.

(e) If current fitness ¡ Bt
g, set Bt

g to current fitness.

3.3. Comparing Drawings to Renders
The main issue when trying to infer a 3D pose from a 2D drawing or image, is that
the problem is under-constrained: there is not enough information in the 2D drawing
to get a perfect estimation of the pose. The results show that a combination of various
descriptors is able to provide enough information to infer the 3D poses.

Three ways to compare the drawing with the 3D render were chosen given their pre-
vious reported advantages and disadvantages. Joints are used by Jain et al. in order to
find close poses from a database. In order to make use of the internal edges, edge maps
are simple, fast and as effective [Tresadern and Reid 2007] as more expensive methods
like Shape Context Histograms [Agarwal and Triggs 2006]. Finally, silhouettes have
been used to find poses generatively [Ivekovic et al. 2008] or to train models [Agarwal
and Triggs 2004].

Joints: The user overlays the positions of the joints on top of the drawing (Figure 3).
The position of the overlaid joints on the drawing is compared to that of the 3D posi-
tions of the joints, transformed into screen space coordinates. This process differs from
the work from Jain et al. in that it is not contextual. This is because the orientation of
the pose has to match the drawing in order for the other two comparison methods to
work.

The metric for comparing joint positions between a drawing and a projection is the
sum of the Euclidean distance between a joint in a drawing and the respective joint in
the render (e.g. the wrist in the drawing and the wrist of the rendered 3D model). The
sum can then be normalised in order to be a value between 0 and 1, where 0 means
the joints are matching perfectly.

Edge map: To use internal lines in the drawing, the Canny algorithm [Canny 1986]
is used to extract a binary map of the external and internal edges (Figure 4). Then the
binary map of the drawing is compared with that of the rendered image.

For a rendered potential pose, a number of points are sampled from its edge map.
Then for each sampled point it is checked whether the same point exists in the edge
map of the drawing. Therefore for a list of sampled points S, the edge map difference
or distance De is calculated:

De = 1− (
1

|S|
∗

|S|∑
i

pi) (11)

where pi is the value of the edge map at the ith pixel. The value of this calculation
is normalised between 0 and 1, where 0 is a perfect match. It is worth noting that this
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metric favours cases where the edges of the projection are as small as possible and can
therefore give inappropriate results if used by itself.

Silhouette: Finally, for the overall shape, the silhouette of the drawing is used as
a binary map (Figure 5). The silhouette distance between the rendered image and the
drawing can be calculated [Fleischmann et al. 2012] (Figure 6).

Fig. 6. Example of silhouette comparison to calculate similarity between two poses X and Y. Green colour
signifies the silhouette of pose X, red colour the silhouette of pose Y and blue colour the overlap between the
two poses.

Similarly to the edge map comparison, it may favour poses where the 3D model
makes itself as small as possible (in order to fit into the silhouette).

4. RESULTS
The system was tested on three problems of different dimensionality and difficulty: a
horse (Figure 7), a human (Figure 8) and a lamp (Figure 9). The subjects were cho-
sen in order to evaluate whether the proposed method is suitable irrespective of the
problem. The lamp and the horse models would be difficult to be posed via methods
such as motion capture, especially the horse. Most motion capture solutions focus on
humanoids, but since they are often not affordable for smaller studios, posing a human
is an important test.

All three 3D models are setup as kinematic hierarchical chains of joints manipulated
through rotation. The lamp has 6 joints, the human 20 joints and the horse over 25
joints. The horse was however manipulated through 10 controllers set in Autodesk
Maya.

Apart from posing models in isolation, the proposed method is evaluated by posing
a lamp within a scene using an existing storyboard drawing (Figure 1), in order to
test the feasibility of the proposed method for posing models within a complex scene.
Moreover, the method is also tested in an animation sequence of a lamp, where tem-
poral coherence between the frames exists. The test was designed to analyse possible
discontinuities created in the sequence if the posing is inaccurate.

In an actual drawing, such as a storyboard, multiple characters may appear and
may even overlap one another. In a complex drawing where multiple characters may
be overlapping, separating their individual lines constitutes an additional problem.
The system needs to calculate metrics as described in Section 3.3 for each character
separately, thus making character segmentation necessary.
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Fig. 7. Side by side comparison of the drawings (top)
and the estimated 3D pose (bottom) for the horse
model.

Fig. 8. Side by side comparison of a drawing (left)
and the estimated 3D pose (right) for the human
model. The estimated 3D pose is close to the draw-
ing.

Fig. 9. Side by side comparison of the drawings (top) and the estimated 3D pose (bottom) for the lamp
model.

In order to do this, two approaches were considered. The first approach was to per-
form the drawing process with layers, where the lines of each character are in a sepa-
rate layer. The second approach was to add an additional ’highlighting’ stage which is
performed together with the pinpointing of joints. This allows the user to quickly trace
the outline of the character to be posed.

With the first approach of drawing in different layers, the artist who performs the
creative task of drawing is encumbered by a different work-flow. This is not the case
with the second approach, as both the pinpointing of joints and tracing of character
outline is performed by a non-skilled user in a separate pass. Since the aim is to reduce
the time skilled artists spend on non-creative tasks, the second approach was preferred
and thus employed for these tests.

For all the tests, the algorithm was ran for tmax = 1000 epochs. The values φ1 and
φ2 as defined in Section 3, were set to a value of 2.05, which is the default value
in the canonical PSO [Bratton and Kennedy 2007] and ensures convergence of the
swarm. The minimum and maximum velocity of each particle were set to -360.0 and
360.0 respectively, since this is the space of possible rotations. This means that in one
epoch, a joint can rotate at most by one complete rotation either clockwise or counter-
clockwise. The minimum and maximum position of each particle was set dynamically
based on the angle rotation limits of each joint of the model, reducing the search space
of possible poses. The exploration phase (Section 3.2), was set to Tc = 3

4 , so the first
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tmaxTc = 750 epochs were dedicated to exploration and the last quarter of epochs was
focused on exploitation.

Fig. 10. Side by side comparison of a sequence of drawings (left) with temporal relationships and a sequence
from the estimated 3D poses (right) for the lamp model. Lighter opacity and colours signify frames earlier
in the sequence while darker opacity and colours signify frames later in the sequence.

A runtime comparison of the algorithm on different hardware can be seen in Table
I. All tests except the ones under the ”Discrete GPU” column were performed on a
system with 8GB of RAM, an Intel HD Graphics 3000 GPU and an Intel Core i5-2520M
2.50GHz CPU, unless stated otherwise. A run of 1000 epochs with a swarm size of 50
particles took approximately 81 seconds on average. The runtime tests used all three
methods of comparing the drawing to the 3D render but with varying population sizes
to examine the scalability of the algorithm. The discrete GPU tests were performed on
a system with 8GB of RAM, an Intel Core i5 2.5GHz CPU and an NVIDIA GeForce
GTX 260 GPU.

5. DISCUSSION
The proposed method has been evaluated by posing a lamp, a horse and a human from
both simple and complex drawings as part of an actual production scene. It has also
been tested on a sequence of drawings. The results show that the proposed method is
a general approach that is able to perform accurately on different problems and is not
constrained to one type of character.

It is important to note that this method does not aim to produce final animated
output. It aims at automating the initial pose layout phase or pre-visualisation, which
is currently performed manually by skilled operators.

A swarm with global topology was preferred for these tests to ensure timely con-
vergence of the swarm, since all tests were limited to 1000 epochs. However, when the
optimisation ran for longer than 1000 epochs, the local topology seemed to produce bet-
ter results. This difference in performance was more pronounced for complex models
like the human.

The simple lamp model was successfully posed in most tests, as was the horse. How-
ever, the estimated human model pose was not always as accurate. It is likely that for
more complex models, better results may be obtained by running the optimisation for
more epochs, with a larger swarm and using a local topology.

The choice of method for comparing drawings to renders may have a notable effect on
the end result. For example, by not using the internal lines of a drawing, the forward-
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backward ambiguity problem can become an issue as seen in Figure 2. On the other
hand, by only using joint locations or the silhouette, run-times are shorter.

Table I. Runtime comparison for various PARAC-LOAPSO swarm sizes, on different hardware as
well as a non-parallel implementation on the CPU.

Particle count CPU GPU Non-parallel CPU Discrete GPU
1 2 min. 13 sec. 20 sec. 2 min. 8 sec. 10 sec.

50 2 hour 30 min. 1 min. 21 sec. > 4 hours 1 min. 3 sec.
100 > 4 hours 2 min. 15 sec. > 4 hours 1 min. 15 sec.
500 > 4 hours 6 min. 44 sec. > 4 hours 3 min. 31 sec.

1000 > 4 hours 12 min 37 sec. > 4 hours 6 min. 18 sec.

The method proposed in this paper easily fits into traditional animation pipelines.
Unlike Jain et al. [Jain et al. 2009], it does not require pre-existing data and can use
perspective and orthographic camera models. The user input involved in pinpointing
the joints can take place as part of the clean up phase. The system is flexible and
applicable to a broad range of models, from objects like lamps, to quadrupeds like
horses. Additionally, while information such as joint limits help improve the results,
it is by no means a necessity for the algorithm to run. This information usually comes
together with the actual 3D model. It is not even necessary to work with skeletons and
joints or any type of hierarchy; any type of control may be used instead, according to
the preferences of the artist who created the model.

However, it is this flexibility which leads to the main disadvantage of this method.
Since the approach is generative, it requires a rendering step in every iteration, which
may mean the time taken to return a result is longer. It is important to note that
the time to return a result is computational only, meaning that this method is still
able to contribute to reducing costs. Furthermore, implementing the method on a GPU
reduces the effects of this disadvantage significantly.

The runtime tests (Table I) show that PARAC-LOAPSO scales very well on better
hardware. It is worth noting that a GPU implementation is much faster compared to a
threaded CPU implementation. Moreover, while a swarm with more than 100 particles
is very impractical to run on the CPU, a GPU can handle it and return results in under
15 minutes, even on onboard GPU hardware. When using a discrete GPU, the runtimes
are approximately halved. These measurements show a trend which suggests that the
algorithm can scale very gracefully and return results faster as hardware with parallel
capabilities improves.

Since the PARAC-LOAPSO algorithm is stochastic, result accuracy may vary be-
tween runs. However, a system with a powerful graphics card can normalise the re-
sults through the use of a large population of particles, which helps both in searching
as well as in having a more varied initialisation.

The canonical PSO recommends a population of 50 particles [Bratton and Kennedy
2007]. Swarms of 5, 15, 25 and 50 particles were used early on during testing and the
best results as presented in this paper were output by the swarm of 50 particles. This
hints that larger populations may perform better on this problem.

Having tested the runtimes of PARAC-LOAPSO on different hardware, the results
are encouraging in terms of running tests for thousands more epochs with swarm pop-
ulations in the thousands and local topologies, while modern GPUs handle the com-
putational downsides that would normally arise from these parameters. In effect, the
scaling nature of the algorithm means that better hardware will always allow for bet-
ter results.
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5.1. Future Work
Future work will primarily focus on formally evaluating the method using more exam-
ples as well as comparing it with other state-of-the-art methods in the field.

It is worth examining more general or accurate descriptors and methods of compar-
ing drawings to renders, such as a context-based approach on joints [Jain et al. 2009].
Completely removing the need for user input may be possible by using medial axis
methods [Abeysinghe et al. 2008] to extract the curve skeleton automatically from the
drawing and then fit the character skeleton to the curve skeleton.

A hybrid between the current optimisation approach and a data-driven approach
such as Jain et al. [Jain et al. 2009] is another area where future work may expand to,
to get results faster while remaining more general than a pure database method. This
would be particularly effective when it comes to humanoids, since extensive databases
can be obtained by using the vast array of cheap motion capture devices, like Microsoft
Kinect [Microsoft 2014]. Moreover, poses that have already been found in previous
attempts can be stored in a database and be used as an initialisation point for the
PARAC-LOAPSO run.

Another interesting research direction is to examine how accurate an initial 3D pose
needs to be in order to be considered helpful by a professional animator. This may lead
to a new benchmark for evaluating automatic 3D posing, not only in terms of accuracy,
but also in terms of usefulness.

Dealing with traditional cartoon exaggeration techniques such as squash and stretch
is another interesting venture for the future. Assuming that a model is rigged to allow
for squash and stretch deformations, then these rig controllers could be directly used
to match the drawing.

6. CONCLUSION
This paper proposes a method to automatically pose 3D models using information from
monocular drawings. This approach is generative and deals with inferring a 3D pose
as an optimisation problem. The results show that it is general enough to deal with
many types of characters. A lamp, a horse and a human model are posed in different
scenarios as evaluation. Moreover, it does not require changes in the pipeline to accom-
modate it. Minimal user input is still required to pinpoint the joints on the drawing,
but this is a task that can be quickly performed by an unskilled operator.

The focus of the proposed method is to pose models for the pose layout phase or
pre-visualisation, not final animated output. It may serve as a direct link between
storyboarding and pose layout phases of a pipeline.
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