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The history of the Fertile Crescent is well documented through archaeology and epigraphy. However, contrary to
adjacent regions in theMediterranean andMiddle East, the reconstruction of diet and foodways through isotope
analysis is limited forMesopotamia and, consequently,matters of subsistence change are notwell understood. To
address this, collagen carbon and nitrogen isotopic ratios of human (N= 84) and animal (N= 8) samples from
Tell Barri, Syria, predominantly ranging from the Early Bronze Age to Roman/Parthian times, were analysed to
ascertain diachronic dietary patterns as well as gender- and age-related differences.
Only in the early occupation periods is there evidence of gender-related diet, while the later phases do not display
significant differences between males and females. In the early phases of occupation, subsistence is based on a ter-
restrial C3 diet, but changes towards the inclusion of more C4 based foodstuffs in later phases. This trend is
unaffected by the clear historic reference to periods when increased pastoralism alternates with settled
agricultural farming.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Analysis of stable carbon and nitrogen isotopes in human and animal
tissues from archaeological contexts has become an established method
for the reconstruction of diet and subsistence in past human populations
(Katzenberg, 2008; Lee-Thorp, 2008). Studies on dietary variation within
and between populations (e.g., Le Huray and Schutkowski, 2005; Knipper
et al., 2013) as well as overarching questions about diachronic change
(e.g., Grupe et al., 2013; Müldner et al., 2014) have produced an increas-
ingly fine-grained appreciation of past subsistence regimes and dietary
behaviour. While this includes the Eastern Mediterranean, Anatolia and
adjacent regions (e.g., Budd et al., 2013; Gregoricka and Sheridan, 2013;
Pearson et al., 2013; Schutkowski and Richards, 2014), there is still little
understanding of subsistence change in Mesopotamia, and sporadic at-
tempts to address this so farwere either confinedormetwith limited suc-
cess (Batey, 2011;Hornig, 2010; Schutkowski, 2012). The site of Tell Barri,
which is representative of the dry farming zone in the central part of the
Fertile Crescent, and which was continuously inhabited from the begin-
ning of the Early Bronze Age until the Roman/Parthian period (Pierobon
Benoit, 2008), offers a rare opportunity to explore this in diachronic detail
(Fig. 1).

After agriculture had been invented in that area in the 9th millenni-
um BCE, the subsistence of local human populationswas based on plant
cultivation and animal husbandry. The two most common cereals were
wheat and barley, and legumes and vegetables supplemented the local
48 22 5522801.
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diet (Riehl, 2009; cf. Ellison, 1978, 1984), all of them belonging to the
C3 pathway. There is only marginal evidence of millet, which is a C4 ce-
real, during the Pre-Pottery Neolithic (Hunt et al., 2008), but it was re-
introduced togetherwith sorghum in the 1stmillenniumBCE; however,
it never became a very important crop (cf. Nesbitt and Summers, 1988).
The most common domestic animals were ovicaprids, cattle, and pigs
(Miller, 2013; Arbuckle, 2014), some of which were kept close to the
human settlements, but especially ovicaprids may have been fed in
more distant pastures on the dry steppe, which could not have been
used for plant cultivation because of insufficient precipitation.

Throughout the history of Mesopotamia farmers interacted with
herders. In most periods these two groups co-operated; for example
the Middle Bronze Age archives from Mari (modern Tell Hariri) in the
middle Euphrates region indicate that both groups not only exchanged
their products, but were also linked with each other by a close network
of social and kinship ties, a constellation termed dimorphic society by
modern scholars (Rowton, 1977). However, any deterioration of envi-
ronmental conditions (as e.g., prolonged drought) disrupted the balance
between the two subsistence strategies and sometimes, when dry
steppes became too dry for feeding ovicaprids, pastoralists invaded
areas suitable for plant cultivation and contributed to the fall of early
states that were economically based on cereal crops (Neumann and
Parpola, 1987). In the history of ancientMesopotamia, twomajor periods
of increased mobility of herders were recorded in historical documents
and there is evidence that this social instability was induced by climatic
change and periods of prolonged drought (e.g., Riehl et al., 2013).

The first period, the transition from the Early Bronze Age (EBA) to
the Middle Bronze Age (MBA), started c. 2250 BCE and ended c. 1950
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Map showing the location of Tell Barri.
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BCE (Cullen et al., 2000; Wossink, 2009). The beginning of this event
was contemporary to the fall of the Akkadian empire and there has
been a vivid discussion among archaeologists and environmentalists
whether a volcanic eruption or a bolide impact triggered this period of
drought and contributed to the abandonment of some settlements in
NorthernMesopotamia (cf. Cullen et al., 2000; Koliński, 2011). Although
the central authority (i.e., the 3rd dynasty from Ur) was recovered in
Southern Mesopotamia at the turn of the 21st century BCE (Van de
Mieroop, 2007), herders known as Amorites kept migrating from the
North to the South, and finally their leaders took control over all Sume-
rian cities c. 2000 BCE (Van de Mieroop, 2007). Amorites quickly
adapted to the urban civilization, and in the early 2nd millennium BCE
the strict co-operation between farmers and herders was restored (cf.
Rowton, 1977).

The second period of social instability, caused by climatic change
that increased mobility of herders, lasted from c. 1200 BCE to c. 850
BCE, the transition from the Late Bronze Age (LBA) to the Early Iron
Age (EIA) (Neumann and Parpola, 1987; Issar and Zohar, 2004;
Langgut et al., 2013). During that time, all LBA states (Egypt, Assyria,
Babylonia, Hatti) collapsed or at least entered into a period of social up-
heaval, and pastoral populations, especially Arameans in Mesopotamia,
dominate the historical record (Sader, 2000). Unlike a millennium ear-
lier, Arameans did not readily adapt to urban civilization and their tribes
in Northern Mesopotamia were gradually conquered by the expanding
Neo-Assyrian empire in the 9th–8th centuries BCE (Liverani, 2014).

The available textual evidence does not refer directly to the area of
Tell Barri, which was the second-ranked town in the Early Bronze Age,
then the capital city of the kingdom of Kahat in the Middle Bronze
Age, and finally, after c. 850 BCE, the garrison city in the time of empires
(Pecorella, 2008; Pierobon Benoit, 2013). However, it is clear that the
periods of instability recorded in Babylonia and Assyria must have af-
fected also the north-western part of Mesopotamia. Using samples of
human and animal calcified tissues representing several millennia of
human settlement at Tell Barri, it should be possible to ascertain
whether and how instability at the transition between EBA and MBA
and between LBA and EIA affected diet and subsistence of human pop-
ulations in this region. We hypothesize that the relative proportion of
animal-derived food is higher in times when mobile herders dominate
and the size of the sedentary agricultural population decreases, and
that during the periods of social and economic instability some alterna-
tive resources must have been occasionally exploited and thus the diet
becamemore variable. Moreover, someC4 grasses and reeds are present
in the dry steppe and in the valleys of permanent rivers and wadis
(Nesbitt, 2006); therefore changes in the exploitation of these areas
by herdersmay influence δ13C values. All of these effects should register
in changes of isotope ratios.

2. Biogeochemistry of dietary reconstruction

The principles underpinning the reconstruction of dietary patterns
and the inference on underlying subsistence activities in past popula-
tions are well-established and have been described in considerable
detail (e.g., Schwarcz and Schoeninger, 1991; Katzenberg, 2008;
Lee-Thorp, 2008; Hedges and Reynard, 2007). The ratios of carbon and
nitrogen isotopes, (δ13C and δ15N) of various food sources are reflected
in the ratios of consumer tissues (Ambrose, 1993; DeNiro and Epstein,
1978, 1981; Schoeninger and DeNiro, 1984, Tieszen and Fagre, 1993).
When measured from bone collagen, carbon and nitrogen stable iso-
topes largely represent protein intake accumulated over about ten
years prior to the death of an individual (Hedges et al., 2007). Fraction-
ation, the systematic alteration of isotopic ratios along the food chain
and in the passage from one tissue to another, is used to infer
trophic position of consumers relative to other individuals and those
organisms that supply the food web.

Fractionation for carbon typically amounts to 1–3‰, relative to the
baseline ratio of marine bicarbonate in the PeeDee Belemnite formation
(Vienna PeeDee Belemnite standard, VPDB), and for nitrogen to 3–5‰,
measured against the ratio for nitrogen in air (Ambient Inhalable
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Reservoir, AIR). In addition to fractionation, origin of foodstuffs and bio-
chemical properties are responsible for further isotopic differentiation
of dietary intake.

Depending on the photosynthetic pathway, the vast majority of
plants divide into C3 (Hatch–Slack cycle) or C4 plants (Calvin–Benson
cycle). C4 plants are more enriched in 13C carbon than C3 plants,
which results in an isotopic separation of these two groups when com-
pared against the reference standard (Smith and Epstein, 1971). Carbon
isotope signatures therefore permit distinction between groups of
plants and the identification of relative amounts of major plant groups
contributing to human diet. C3 plants grow in temperate climates and
comprise common cultivars, including wheat, rye or barley and most
vegetables. C4 plants originate from more arid environments. Maize,
millet and sorghum belong into this group, but also some native grasses
and chenopods.

As a result of fractionation, carbon derived from animal protein is
isotopically different from plants of the same habitat and human δ13C
values will be less negative when domestic or wild animals are contrib-
uting to the diet in measurable quantities (DeNiro and Epstein, 1978).
Nitrogen isotopic ratios of bone collagen essentially reflect intake of an-
imal protein (DeNiro and Epstein, 1981; Hedges and Reynard, 2007),
and thus, for the reconstruction of human food ways, allow the detec-
tion of trophic level effects caused by the consumption of meat or ani-
mal products.

Carbon and nitrogen isotope ratios have also been used to assess the
timing of weaning, as the introduction of solid foods marks the transi-
tion from exclusive breastfeeding to the consumption of an omnivorous
human diet. This process is reflected in trophic level changes of isotope
ratios from younger to older children (e.g., Fogel et al., 1989; Richards
et al., 2002; Fuller et al., 2006; Bourbou et al., 2013). The protein from
breast milk is incorporated into the child's body tissues with elevated
carbon and nitrogen values and therefore the collagen isotope ratios
of infants not yet weaned can be up to 3‰ higher than those of their
mothers, as well as most adults at a site (Schurr, 1997; Herring et al.,
1998). During and afterweaning, children's boneswill have amix of col-
lagen laid down during breastfeeding with high carbon and nitrogen
values, and collagen laid down from consuming a diet similar to that
of adults with lower carbon and nitrogen values (Millard, 2000). Over
time, bone collagen isotope ratios will change to levels typical of adults
at the site.
3. Materials

Tell Barri, with its maximum size of 34 ha and a height of more than
30 m above the surrounding plain, is one of most prominent archaeo-
logical sites in the Khabur drainage. It has been excavated since 1980
by the Italian expedition from the universities of Florence and Naples,
first under the direction of Paolo Emilio Pecorella (Florence), then of
Raffaella Pierobon Benoit (Naples) (Pecorella, 2008; Pierobon Benoit,
2013).
Table 1
Defined chronological subsets with their age-at-death and sex profiles.

Period Abbrev. Dating

Early subsets Early Bronze Age EBA c. 2800–2200 BCE
Early/Middle Bronze Age EMB c. 2200–2000 BCE
Middle Bronze Age MBA c. 2000–1500 BCE

Late subsets Late Bronze Age LBA c. 1500–1200 BCE
Neo-Assyrian period NAS c. 900–800 BCE
Achaemenian period ACH c. 500–300 BCE
Parthian period PAR c. 100–300 CE
Modern cemetery MOD c. 1850–1950 CE
Total
In the course of more than 30 seasons of excavations, the stratigra-
phy of the site has been well recognised, particularly due to the large
trench G at the south-eastern slope of the site, where the Early Bronze
Age I settlement (c. 2900 BCE) was found on virgin soil. The site was oc-
cupied continuously from the Bronze Age through the Iron Age to the
Parthian/Roman period, with some traces of settlement also dated to
later times (Pierobon Benoit, 2013). No regular cemetery has been
found, but several human skeletons and a few isolated human bones
were retrieved from domestic contexts. The total number of individuals
in primary and secondary burials amounts to 117 (Sołtysiak, 2008,
2010). The state of preservation is variable, but skeletons found in the
trenches G and J had been usually retrieved from deep strata and there-
fore most of them were only slightly affected by taphonomic factors.

Bone sampleswere taken from all human skeletons excavated at Tell
Barri that were not heavily weathered and could be dated by their ar-
chaeological context and stratigraphy. In total, 84 samples were avail-
able, covering a chronological range from the Early Bronze Age to the
Modern cemetery of the 19th and early 20th century at the top of the
site (Table 1). No systematic archaeozoological study has been conduct-
ed so far, but teeth of ten animals (four pigs, four ovicaprids and two ca-
nids) were collected for analysis and dentin samples were used to
establish a limited isotopic foodweb background. All available animal
tooth samples represent relatively late periods of occupation at Tell
Barri, i.e., Neo-Assyrian and Achaemenian periods. For comparative pur-
poses, the NISP (number of identifiable specimens) frequencies of taxa
in animal bone assemblages at Tell Arbid are used to check the possible
impact of changes in animal husbandry on isotopic data. This site is lo-
cated in the same ecological zone only some 15 km north-west of Tell
Barri (Bieliński, 2013). Especially the proportion of pigs at Tell Arbid
decreased clearly between theMiddle and Late Bronze Age, ranging be-
tween 40% and 45% in the EBA and MBA assemblages and 15–25% dur-
ing the LBA and the Hellenistic period (Piątkowska-Małecka and
Koliński, 2006; Piątkowska-Małecka and Smogorzewska, 2010); this
decrease was accompanied by growth of the ovicaprid proportion.

4. Methods

Duplicate samples were taken from cortical human bone and dentin
from terrestrial animal specimens. Surfaceswere cleaned using air abra-
sionwith an aluminiumoxide powder to remove adhering soil particles,
and then subjected to amodified Longinmethod (Brown et al., 1988) for
collagen extraction: samples are demineralised in 0.5 M HCl at 2–5 °C
and then gelatinised at 72 °C for 48 h in deionised water adjusted to
pH 3, with 0.5 M Hcl. This process typically took as long as 14 days,
but occasionally, extraction times were extended depending on the ac-
tual size of the specimen. The extraction mix was filtered using Ezee fil-
ter separators (Elkay Laboratory Products, Basingstoke) to remove
insoluble materials and then was purified again using Amicon Ultra-4
centrifugal filters (Millipore) to remove contaminants lower than
30,000 nominal molecular weight limit (Brown et al., 1988). The
resulting solutions were lyophilised, a sub-sample of 0.4 ± 0.1 mg
0–2 2.5–7.5 8–15 Adults Total

M ? F

1 1 2 2 4 10
2 2 1 1 2 8
8 2 1 2 1 3 17
2 1 1 2 6
1 1 2 4 1 9
1 2 4 4 4 15

2 2
4 4

14 9 5 14 17 12 71



Table 2
Carbon and nitrogen stable isotopic ratios for human bones.

Id Chronology Age
category

Sex δ13C δ15N C/N
ratio

Coll. yield %

TB122 EBA Young child -19.3 10.3 3.30 1.5
TB1142 EBA Adult F -19.4 9.9 3.28 1.1
TB1267 EBA Adult -19.7 9.2 3.30 2.9
TB1295 EBA Adult -19.8 9.8 3.40 1.6
TB1302 EBA Adult F -19.7 9.1 3.46 2.0
TB1307 EBA Adult M -19.5 10.9 3.37 2.8
TB1515 EBA Adult M -19.9 8.9 3.30 0.6
TB1526 EBA Adult F -20.3 6.5 3.22 3.3
TB1527 EBA Older child -19.9 7.8 3.26 3.5
TB1554 EBA Adult F -20.0 7.5 3.22 5.8
TB763 EMB Young child -18.9 10.7 3.18 5.4
TB813 EMB Older child -20.3 8.6 3.20 5.1
TB1065 EMB Young child -19.7 8.4 3.28 1.1
TB1097 EMB Adult -19.3 8.2 3.21 3.5
TB1148 EMB Adult M -19.5 12.3 3.28 1.4
TB1298 EMB Infant -18.9 9.4 3.22 2.4
TB1422 EMB Infant -19.1 10.9 3.24 3.3
TB1440 EMB Adult -19.2 8.1 3.21 4.3
TB60 MBA Adult F -20.0 8.9 3.24 2.5
TB573 MBA Adult M -18.8 11.3 3.24 1.8
TB574 MBA Adult -19.7 8.7 3.27 1.1
TB575/1 MBA Infant -19.2 12.1 3.19 7.5
TB575/2 MBA Infant -19.1 9.6 3.36 0.9
TB580 MBA Adult F -19.9 9.7 3.19 9.2
TB584 MBA Infant -19.3 11.1 3.21 5.8
TB593 MBA Adult F -19.9 6.1 3.39 6.2
TB637 MBA Young child -19.2 8.3 3.18 4.7
TB640 MBA Older child -19.2 8.3 3.20 8.5
TB779 MBA Infant -19.1 9.2 3.16 6.5
TB891 MBA Adult M -19.3 8.0 3.44 0.1
TB954 MBA Infant -18.8 10.1 3.19 7.6
TB964 MBA Infant -18.5 15.3 3.21 3.6
TB992 MBA Young child -19.8 9.0 3.38 0.8
TB999 MBA Adult M -19.1 9.8 3.25 5.5
TB1043 MBA Infant -18.7 10.3 3.26 1.4
TB1743 MBA Infant -19.3 12.0 3.14 12.1
TB613 LBA Infant -19.1 10.9 3.21 3.4
TB1094 LBA Adult -19.7 8.0 3.18 5.3
TB1134 LBA Adult M -18.4 11.0 3.20 6.0
TB1368 LBA Infant -18.4 11.5 3.23 7.7
TB1424 LBA Adult -18.8 9.7 3.21 7.6
TB1744 LBA Young child -18.9 8.7 3.16 6.5
TB592 NAS Adult M -19.7 13.3 3.20 2.7
TB774 NAS Adult M -19.3 10.8 3.21 12.7
TB835 NAS Older child -17.5 10.5 3.17 8.3
TB836 NAS Adult M -19.5 9.3 3.19 6.4
TB838 NAS Older child -19.0 10.7 3.20 2.2
TB877 NAS Adult M -19.4 8.8 3.28 5.1
TB962 NAS Infant -18.4 13.4 3.19 9.3
TB991 NAS Young child -19.9 9.4 3.22 5.2
TB1037 NAS Adult F -18.3 10.9 3.28 2.4
TB33 ACH Young child -18.9 8.8 3.22 2.0
TB83 ACH Young child -18.9 10.1 3.25 2.6
TB127 ACH Adult -19.3 8.4 3.17 6.1
TB193 ACH Adult -20.0 14.2 3.23 1.2
TB255 ACH Adult F -19.2 9.2 3.19 7.2
TB256 ACH Adult F -19.0 9.3 3.19 5.2
TB266 ACH Adult M -18.2 11.6 3.19 2.3
TB267 ACH Adult F -19.0 9.9 3.18 4.0
TB270 ACH Adult -18.5 9.7 3.18 6.6
TB288 ACH Adult M -19.0 10.1 3.17 3.0
TB296 ACH Adult M -18.9 10.0 3.16 3.8
TB300 ACH Infant -18.3 13.1 3.18 9.6
TB312 ACH Adult F -19.5 8.8 3.28 2.7
TB316 ACH Adult M -20.0 8.7 3.17 9.2
TB678 ACH Adult -19.7 11.1 3.17 7.1
TB103 PAR Adult -19.5 9.3 3.36 0.8
TB1573 PAR Adult -19.1 9.0 3.17 5.8
A MOD Adult -18.8 8.9 3.19
B MOD Adult -18.3 9.5 3.20
C MOD Adult -19.2 8.2 3.21
D MOD Adult -19.3 8.7 3.20

Table 3
Carbon and nitrogen stable isotopic ratios for animal dentin.

Id Chronology Taxon δ13C δ15N C/N ratio Coll. yield %

TB310 ACH Canid -19.2 7.0 3.35 5.1
TB310 ACH Canid -18.9 7.5 3.20 8.1
TB102 NAS Pig -20.6 7.9 3.21 26.5
TB331 ACH Pig -20.1 8.0 3.24 13.6
TB1424 LBA Pig -19.9 5.5 3.32 8.5
TB774 NAS Ovicaprid -18.8 8.7 3.19 10.7
TB835 NAS Ovicaprid -19.4 7.3 3.26 5.5
TB1424 LBA Ovicaprid -19.9 8.5 3.27 10.4
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combusted and analysed by Isotope Ratio Mass Spectrometry (Finnigan
Delta Plus XL).

Methionine standard reference material, with both known 13C
(-26.6‰) and 15N (-3.0‰) values (Elemental Microanalysis, Devon,
UK) was measured at regular intervals in tandem with samples of
bone collagen to examine the accuracy and precision of analytical
methods, together with internal and external certified laboratory stan-
dards (e.g., IAEA standards, bovine liver, and fish gel). Collagen yield,
thepercentages of carbon andnitrogen, and theC/N ratiowere recorded
to control for possible effects of diagenetic processes (Ambrose, 1993).
In conjunction with the sample preparation method employed here
(Brown et al., 1988), collagen yields as low as 0.5% are deemed accept-
able (van Klinken, 1999), however, usually only yields of 1% and higher
are considered sufficient to indicate preservation of authentic collagen.
For this study, samples that yielded between 0.5 and 1% collagen were
considered suspect and any samples with collagen yields below 0.5%
were discarded from the analysis to take account of local sediment con-
ditions that could have potentially impaired collagen preservation.
Samples not having a C/N ratio between 2.9 and 3.6 (the range known
for native bone collagen) (Ambrose, 1993) were omitted.

As the sample size was small in most cases, non-parametric tests
were used, i.e., Kruskal–Wallis ANOVA to compare three andmore sam-
ples, with post-hoc multiple comparison, andMann–Whitney U test for
differences between distributions of two samples. Correlationswere ex-
plored using both Pearson's correlation coefficient and Spearman's rank
order correlation. All statistics were calculated using Statistica 10
software.

5. Results

In total, 71 out of 84 human bone samples (86%) and eight out of ten
animal dentin samples contained acceptable amounts of collagen and
met the established quality standard criteria (van Klinken, 1999) (see
Table 2). Table 3 presents data for the animal samples and Table 4
contains descriptive statistics for all samples analysed.

The spread of isotope ratios for the overall human sample is consid-
erable, amounting to about two trophic levels for carbon (δ13C-20.3‰ to
-17.6‰) and to about three trophic levels for nitrogen values (δ15N
6.1‰ to 15.3‰). Even if adults and sub-adults are taken into account
separately, the picture principally does not change (adults: δ13C
-20.3‰ to -18.3‰, δ15N 6.1‰ to 14.2‰; sub-adults: δ13C-20.3‰ to
-17.5‰, δ15N 7.8‰ to 15.3‰). Overall, the results and their spread sug-
gest a terrestrial diet based largely on C3 plants and varying input from
animal-derived foodstuffs.

In the sub-adult sample, overall, children and adolescents are gener-
ally within the range of adults for both carbon and nitrogen ratios. In-
fants (0–2 years of age) display a much more diverse pattern. About
half of them (eight out of fourteen; see Fig. 2) cluster closely within
the adult range, whereas the smaller subset is clearly separated by ele-
vated nitrogen ratios as well as slightly more positive carbon values.
This suggests that those young children with nitrogen ratios above
11.5‰ to 12‰ represent individuals that died while they were still en-
tirely or largely breast-fed. Among them are one neonate and five in-
fants ranging from 0.75 to 1.75 years of age. Those with nitrogen



Table 4
Basic statistics for δ13C and δ15N in chronological subsets and correlations between δ13C and δ15N (only post-weaning individuals). Correlations with p b 0.05 are in bold face.

Subset Na δ13C δ15N δ13C and δ15N correl.

min max mean sd med min max mean sd med na r rS

EBA 10 -20.4 -19.3 -19.74 0.30 -19.7 6.5 10.9 8.98 1.36 9.1 10 0.89 0.92
EMB 8 -20.3 -18.9 -19.36 0.47 -19.3 8.1 12.3 9.58 1.56 9.0 6 0.24 -0.14
MBA 17 -20.0 -18.5 -19.27 0.44 -19.2 6.1 15.3 9.98 2.02 9.7 9 0.54 0.42
LBA 6 -19.7 -18.4 -18.89 0.48 -18.9 8.0 11.5 9.96 1.38 10.3
NAS 9 -19.9 -17.5 -19.00 0.77 -19.3 8.8 13.4 10.77 1.64 10.7 8 0.02 0.19
ACH 15 -20.0 -18.2 -19.08 0.55 -19.0 8.4 14.2 10.20 1.66 9.9 14 -0.14 0.16
PAR 2 -19.5 -19.1 9.0 9.3
MOD 4 -19.3 -18.3 -18.93 0.45 -19.0 8.2 9.5 8.84 0.54 8.8

Early 35 -20.4 -18.5 -19.43 0.45 -19.3 6.1 15.3 9.61 1.76 9.4 26 0.46 0.39
Late 36 -20.0 -17.5 -19.07 0.51 -19.0 8.0 14.2 10.09 1.56 9.7 31 -0.02 0.22

All humans 71 -20.4 -17.5 -19.22 0.55 -19.2 6.5 15.3 9.85 1.66 9.6 57 0.28 0.34
Pigs 3 -20.6 -19.9 -20.23 0.33 -20.1 5.5 8.0 7.15 1.41 7.9
Ovicaprids 3 -19.9 -18.8 -19.36 0.56 -19.4 7.3 8.7 8.17 0.74 8.5
Canids 2 -19.2 -18.9 7.0 7.5

a N —total number of individuals; n —number of post-weaning individuals.
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values below 11.5‰ were neonates or infants who died a few months
after birth (six individuals) and older infants who had been weaned al-
ready as indicated by their valueswithin the adolescent and adult distri-
bution (two individuals approximately 1.5 and 2 years old). Since all
children between the age of 2.5 and 7 lack these elevated ratios, it can
be assumed that they had been completely weaned.

Due to small sample sizes, the differences in δ13C and δ15N between
four defined age groups (infants 0–2 years old, young children 2.5–
7.5 years old, older children 8–15 years old, adults and adolescents)
were tested for the whole sample, without division into chronological
subsets (Fig. 2). The Kruskal–Wallis test results are statistically signifi-
cant both for δ13C (H = 8.82, p = 0.0318) and for δ15N (H = 14.52,
p = 0.0023) and this significance is related only to differences between
infants and all other age categories. For nitrogen, all multiple compari-
sons between infants and other age groups produced p b 0.05 and for
carbon only the difference between infants and adults has p b 0.05.
Since all pairwise p-values for the three post-weaning age groups
equal 1.0, only infants will be excluded from the subsequent analyses
Fig. 2. Distribution of δ13C and δ15N in
of temporal trends assuming that in 2–2.5 years old children the
weaning process was already completed.

For all individuals older than 2.5 years, the sample size is small in the
case of all temporal subsets, so although the Kruskal–Wallis test is sta-
tistically significant for δ13C (H = 14.52, p = 0.043), for all pairwise
comparisons p N 0.05. However, some difference between early
(i.e., EBA, EMB and MBA) and later (i.e., LBA, NAS, ACH, PAR and
MOD) samples may be observed, with mean δ13C ratios shifting from
-19.7‰ to -19.3‰ towards -19.1‰ to -18.9‰ (Fig. 3). This difference
is very small, but quite clear, so this general division between earlier
and later samples will be used in further analyses. There are no signifi-
cant differences between subsets in the δ15N values (H = 9.10, p =
0.25) and there is no clear temporal pattern (Fig. 4). Apart from some
differences inmean δ13C values between the chronological subsets, var-
iance also seems to be slightly higher in later periods, and especially
NAS and EMB values are more scattered than EBA values (Table 4).

For all subsets with six or more individuals, the correlation between
δ13C and δ15N values was tested using both parametric and non-
four defined age-at-death classes.

Image of Fig. 2


Fig. 3. Temporal trends in δ13C at Tell Barri, only post-weaning individuals.
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parametric methods (Table 4). The correlation is rather weak (although
statistically significant) in the whole sample, but there are striking dif-
ferences between subsets: both values were strongly correlated in the
EBA, moderately correlated in the MBA and weakly or not correlated
in the EMB, NAS and ACH subsets. The correlation for all early subsets
is moderate (N = 26, Pearson r = 0.48, p b 0.05; Spearman rs = 0.39,
p b 0.05) and absent for all late subsets (N = 31, r = -0.02; rs = 0.22,
both values are not significant).

Non-parametric analysis of variance in thewhole dataset of the early
and late subsets of humans together with three animal taxa confirmed
Fig. 4. Temporal trends in δ15N at Tell Ba
significant differences between the early and late subsets, both in the
case of δ13C (Kruskal–Wallis H = 17.35, p b 0.002) and for δ15N (H =
18.13, p b 0.002) (Fig. 5). There are no significant differences between
the early human subset and pigs, but differences between the late
human subset and pigs are significant both for carbon and for nitrogen
(Table 5). This effect is paralleled by the clear decrease in the number
of pigs at Tell Arbid between MBA and LBA.

The pattern of differences between males and females changed be-
tween the early and late phases of occupation. In the early periods,
males exhibit both elevated carbon (Mann–Whitney U test, Z = 2.21,
rri, only post-weaning individuals.

Image of Fig. 3
Image of Fig. 4


Fig. 5. Distribution of δ13C and δ15N in early (EBA to MBA) and late subsets, only post-weaning individuals, and in animal dentin samples.
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p b 0.03) and to some extent also nitrogen values (Z = 1.64, p = 0.10)
compared to females. On the other hand, in the late periods values for
males are more scattered, but there is no statistically significant differ-
ence between the sexes in either δ13C or δ15N (Fig. 6).
6. Discussion

In general, most individuals from all periods at Tell Barri fall into a
relatively narrow range of δ13C values between -20‰ and -18.5‰,
which indicates a diet based almost exclusively on C3 plants. Such a re-
sult was expected taking into account the observation that since the
very beginning of agriculture the main crops in Northern Mesopotamia
were C3 cereals like wheat and barley (Riehl, 2009). In contrast, δ15N
values are more variable, although largely ranging between 8 and
11, which may indicate relatively broad spectrum of omnivorous
diets.

For both carbon and nitrogen several outliers were detected, and
most of them represent individuals that date to the Neo-Assyrian and
Achaemenian periods. Of the three individuals with highest δ15N values
two were males (NAS and EMB) and one individual yielded no reliable
sex assessment (ACH). Relatively more negative δ13C values in all
these individuals suggest a diet abundant in proteins of animals fed al-
most exclusively on C3 plant resources. On the other hand, two female
individuals with lowest δ15N values, even below the level of herbivores,
and also low δ13C values, were dated to the EBA and MBA periods. One
Table 5
Multiple comparison p-values for Kruskal–Wallis test of differences in δ13C (below the di-
agonal) and δ15N values (above the diagonal). Early and late subsets for human bones
compared with three animal taxa. Values below 0.05 are in bold face.

δ15N p-values

Humans
early

Humans
late

Pigs Ovicaprids Canids

δ13C p-values

Humans early 0.408 0.405 1.000 0.649
Humans late 0.022 0.030 0.340 0.092
Pigs 0.697 0.015 1.000 1.000
Ovicaprids 1.000 1.000 0.574 1.000
Canids 1.000 1.000 0.142 1.000
individual with the highest δ13C value in the analysed sample, close to
-17.5‰, was an 8-year old child (NAS).

The most interesting difference between the earlier and later sam-
ples is a small but clear shift towards higher δ13C ratios in later periods,
with a threshold at the transition from theMBA to the LBA.Whilst a de-
tailed analysis of animal remains from Tell Barri is not yet available, a
comparison with nearby Tell Arbid as the closest possible proxy sug-
gests that the observed change in isotopic values may be correlated
with some shift in animal husbandry: pigs were much more important
in the earlier Bronze Age periods than in the LBA and later (Zeder, 1998;
Piątkowska-Małecka and Koliński, 2006). As pigs at Tell Barri, which the
present study shows, were fed exclusively on C3 plants (most likely
from surplus of plant cultivation), a diet based mainly on cereals and
even a greater share of pig meat should be characterised by low and
less variable δ13C values in the early phases of occupation.

Data of the ovicaprids from Tell Barri exhibit clearly higher δ13C
values than thepigs and they are associatedwith later phases of occupa-
tion.Whilst the elevated average human δ13C in later periods can partly
be explained by higher relative consumption of lamb meat or dairy
products, the positive correlation between δ13C and δ15N in the EBA
and – to a lesser extent – in theMBAmay indicate that in the earlier pe-
riod animals other than pigs fed partially on C4 plants. It is possible that
some distant pastures in the dry steppe with several C4 grasses such as
Chloridoideae or Panicoideae (cf. Nesbitt, 2006) or wetlands alongWadi
Jaghjagh and other streams with Phragmites (Al-Jassem et al., 2010)
were used for pasture in these earlier periods in a more systematic
way than in later periods,when at least ovicaprids fed almost exclusive-
ly on C3 plants. Unfortunately, no ovicaprid tooth samples from the early
periodswere available in the present study, so this pattern cannot be di-
rectly corroborated.

Another factor contributing to the temporal change in δ13C values
may be related to climate. It has been observed that water stress in C3
cereals like barley results in higher absorption of 13C and this effect
may be higher than the shift of 0.5‰ observed here (Ferrio et al.,
2005). Indeed, research on barley grains from several Syrian sites
dated to the Bronze Age has shown that δ13C values ranged from
-19‰ to -13.5‰ therewere quite clear temporal trends thatmay be cor-
related with known periods of aridification (Riehl, 2008). However, the
major shift towards higher water stress in barley was noted between

Image of Fig. 5


Fig. 6. Distribution of δ13C and δ15N for males and females in early (a) and late (b) subsets.
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EBA andMBA and it is consistentwith other proxy data suggesting a cli-
matic change during that time. On the other hand, arid conditions con-
tinue fromMBA to LBA and there is nomajor difference at the transition
between these periods (Riehl, 2008). Therefore, it is not likely that
water stress in C3 cereals was a factor in the pattern observed here, al-
though this effect may have contributed to the overall variability of
δ13C values in the human remains.

In general, the higher average δ13C value in later periods seems to be
the consequence of at least two processes: a much smaller share of pigs
in the livestock, and higher variability of subsistence in general, com-
bined with the possible introduction of some C4 cereals, for example
millet, which has been recorded in large quantities in the Neo-
Assyrian stratum at Tille Höyük, a site located on the upper middle Eu-
phrates (Nesbitt and Summers, 1988) and depicted, together with sor-
ghum, another C4 crop, in Sennacherib's palace in Nineveh, dating
back to c. 700 BCE (Vinall et al., 1936). These cereals were absent in ear-
lier periods, so even if their share in cereal production of the later period
was small, they could contribute to the observed shift in δ13C values.

Another difference in the ratios of stable carbon and nitrogen iso-
topes between the earlier and later periods concerns dietary differences
between the sexes. Males and females from the early subset (EBA to
MBA) are relatively well differentiated. Male values suggest a diet
more abundant in animal protein and also more shifted towards the
consumption of C4 food items, which again may be the consequence
of herding some animal taxa in places more abundant in C4 grasses. In
contrast, males from later periods (LBA to MOD) differ from females
mainly because their δ13C and especially δ15N values are more dis-
persed. Some correlation between isotopic ratios of both elements is
noted here (especially when an outlier with a very high δ15N value is
omitted), but the overall pattern is clearly different in the two compared
temporal subsets.

Themost unexpected outcome of the present analysis is the lack of a
clear isotopic signal that would indicate increased pastoralism in the
transitional periods between EBA and MBA and between LBA and
NAS/ACH. It should be expected that mobile herders who, according to
historical sources, dominated the region in both these “dark ages”
(EBA\MBA: Wossink, 2009; LBA\EIA: Younger, 2007) relied more on
animal-related food and, moreover, fed their flocks in areasmore abun-
dant in C4 plants. Therefore, higher average values of both δ13C and δ15N
should be expected. In fact, the only peculiarity of the transitional pe-
riods is a higher dispersion of individual values, with no clear differ-
ences in average values in relation to preceding and following periods.
This is especially well visible in the Neo-Assyrian period, which, in the
case of Tell Barri, means 9th century BCE, the very end of a “dark age”.
Actually, the observed pattern may be much more comprehensible
when interpreted from the perspective of Tell Barri itself and not from
the general regional perspective. For most of its history, Tell Barri was
an urban centre of primary or secondary rank with a population of sev-
eral hundred or thousand people feeding particularly on local resources.
During the “dark ages” it may have been less densely populated, but still
was not the placewheremobile pastoralists lived. So, the dispersal of in-
dividual isotopic signatures may reflect the need of searching for alter-
native food resources in these periods where the city was to some
extent isolated from its hinterland, but throughout all periods individ-
uals buried at Tell Barri represented the local population of farmers.

Surprisingly, the clearest transition in diet and subsistence at Tell
Barri occurred between the Middle and Late Bronze Age, when some
continuity was expected, if we follow the historical sources. In that
time, the areawas under control of theMitanni state,with amost prom-
inent Hurrian ethnic background, but probably Indo-European ruling
elites, as suggested by onomastic evidence (Cancik-Kirschbaum and
Eidem, 2014). In roughly the same time, nomadic pastoralists called
aḫlamû became visible especially at the borders of the Syrian Desert
and after the fall of the Mitanni state they transformed into Arameans
known fromAssyrian sources (Lipiński, 2000; Sader, 2014). It is possible
that an increasing independence of herders was the major factor con-
tributing to the observed shift in diet and subsistence.

During the Early and Middle Bronze Age, Northern Mesopotamia
was likely a place of strict co-operation between plant cultivators and
herders, whether forced by central state administration or out of free
will. The exchange of resources was well organised and the system
was profitable for both sides, as herders led their flocks outside agricul-
tural areas during the winter when dry steppes flourished due to abun-
dant precipitation, and moved to the arable fields after the harvest,
when flocks fed on the stubbles and manured the fields (Wossink,
2009). This so-called dimorphic society is well described in the archives
fromMari on the Euphrates River and dated to theMBA (Rowton, 1974;
Pitard, 1996; Fleming, 2009), but such a system was likely present also
in the earlier period and in the Khabur drainage. Even the “dark age”
during the transition between EBA and MBA temporarily disturbed
but did not change the system, as the herders known as Amorites quick-
ly adapted to Mesopotamian urban civilisation (Liverani, 1973;
Schwartz, 2013). The correlation between δ13C and δ15N in earlier pe-
riods at Tell Barri and the low variability in individual isotopic values
suggests that during that time the site was inhabited by a society with
stable subsistence and diet standardised by efficient administration.

Although archaeological and epigraphical sources for the economy
of later periods are very scarce, it is possible to propose a consistent

Image of Fig. 6


184 A. Sołtysiak, H. Schutkowski / Journal of Archaeological Science: Reports 2 (2015) 176–185
interpretation of observed changes in isotopic values.When herders be-
came more independent during the Late Bronze Age, the subsistence of
the city must have been adapted to this new situation. Pigs became less
popular, as they provided meat, but no secondary products like milk or
wool (cf. Zeder, 1998).When distant pastureswere occupied by aḫlamû
and thus no longer available for the urban population (cf. Hole, 2007),
only local plant resources may have been used for fodder. It is possible,
then, that pigs must have given way for more ubiquitous ovicaprids or
cattle. Also the introduction of new crops in the Neo-Assyrian period
may be related to the cultivation of lands that were too arid for barley
or wheat, but still suitable for drought-resistant millet and sorghum
(Rostamza et al., 2013), which may have become the alternative source
of grain and fodder. All this re-orientation of subsistence appeared to be
permanent and the separation of mobile herders and settled plant culti-
vators remained stable throughout all later periods, as suggested also by
increased δ13C values at Tell Barri.

7. Conclusion

Whilst only a relatively small number of skeletons were found dur-
ing the past 30 years of excavations at Tell Barri, their temporal distribu-
tion enables some insight into changes in diet and subsistence of the
local settled human population through severalmillennia. Themost im-
portant shift happened between the Middle and Late Bronze Age when
the average δ13C values significantly increased, and the correlation be-
tween δ13C and δ15N disappeared. Also the differences between sexes
in isotopic ratios of both elements were no longer present. This shift in
isotopic signatures was paralleled by a clear decrease of pigs among
the livestock and the small-scale introduction of more drought resistant
cereals such as sorghum andmillet. It is possible that this change in sub-
sistencewas the result of increased relative isolation between plant cul-
tivators and herders operating in dry steppes, which forced the settled
population to adapt their economy to higher direct exploitation of
ovicaprids and to wider use of more arid areas for agriculture.

It is interesting that two major episodes of prolonged drought,
which were documented both by paleoenvironmental proxies and by
historical and archaeological evidence, did not change the general sub-
sistence modes, and contributed only to a greater dispersal of food ac-
quisition strategies in the context of already existing practices. On the
other hand, the only observed small but significant and irreversible
shift in subsistence occurred in the period when the climate was rather
stable and it is likely that this was the effect of social and economic and
not environmental factors.
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