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How social comparison influences reference price formation in a service context 

 

ABSTRACT 

What is the influence on reference price when the source of price information is anonymous versus 

social? This article investigates the formation of reference prices given an observed sequence of 

past prices in a service context. An experimental study suggests that, considering the same price 

information, if the source is social (i.e., the prices paid by colleagues), then consumers want to pay 

less. More specifically, social comparison changes the way individuals weigh information, 

attributing more importance to the lowest historical prices and to the range in price variations.  
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1. Introduction 

Imagine you want to book a hotel room. Some weeks in advance, you check prices on the 

Internet. Because of dynamic pricing practices, you are accustomed to seeing variability every time 

you check for a price. To judge whether the offered price is a “fair deal”, you recall past prices you 

might have seen or paid for this or a similar service. Alternately, friends or colleagues may have 

informed you of how much they paid for the same hotel. The amount you or others have 

observed/paid in the past influences your reference price, which can be considered the basis to 

judge the deal you are offered. 

Research over the last 30 years corroborates that reference points dramatically affect people’s 

decisions. According to psychologists (Lewin et al., 1944; Siegel, 1957), reference points are often 

defined as the decision maker’s status quo or as an expectation. Kahneman and Tversky (1979) 

transferred the concept of reference dependence from psychology to behavioral economics, 

explaining that people frame outcomes as gains or losses relative to relevant reference points. The 

relevant literature examines the effect of reference points in the price domain, that is, on reference 

prices (Briesch et al., 1997; Mazumdar et al., 2005), and the topic relates to research on new pricing 

mechanisms, such as bidding behavior (Wolk & Spann, 2008) and pay-what-you want pricing 

(Johnson & Cui, 2013).  

Two main conceptualization models are available on reference price. The most common is that 

reference prices are predictive price expectations. This model, named the expectation-based 

reference price, is derived from adaptation theory (Helson, 1964) and implies that people judge a 

stimulus in relation to the level to which they have adapted (Mazumdar et al., 2005). In a second 

model, reference price is a normative price, that is, the price considered as fair for the seller to 

charge (Bolton et al., 2003; Campbell, 1999). Both economic and social components have been 

shown to affect evaluations of price fairness. The conceptualization used generally depends on the 

market, customer group, and product/service involved. 
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The way people form their reference price becomes particularly relevant in contexts where 

favorable conditions for price discrimination occur, as consumers can easily pay a different price 

for the same product or service. Accordingly, price comparison is a consequence of dynamic pricing 

or price discrimination. Although several studies suggest that time-based pricing strategies tend to 

be accepted by consumers, price discrimination may be perceived as unfair if standard conventions 

are violated (Huang et al., 2005; Wirtz & Kimes, 2007). Social comparison theory (Van den Bos et 

al., 1998) offers a potential underpinning for some of these results and highlights a possible threat 

for the acceptability of these pricing strategies. The awareness that another similar consumer paid a 

lower price appears to be a particularly potent source of perceived unfairness (Haws & Bearden, 

2006), a factor that may reduce the reference price.  

Research has not revealed a direct elicitation of reference prices in a time-based pricing context 

between different sources of information. Thus, our goal is to determine if the source of information 

of past prices, whether social (i.e., prices that friends or colleagues have paid for a similar product 

or service in the past) or anonymous (i.e., market prices the individual has observed in the past), can 

influence the formation of the reference price in its normative conceptualization. This study creates 

several scenarios where different prices for the same service (a hotel room reservation) become 

available, seeking to elicit the impact of past price information on reference prices. More precisely, 

Section 2 discusses the theoretical underpinning of the research hypotheses. Section 3 then uses an 

experimental setting to investigate whether the same price sequence can produce a different 

reference price depending on the source of information (social or anonymous) and how individuals 

attribute weights to past information that can predict the reference price. Finally, Section 4 

discusses the results and their managerial implications. 
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2. Background 

2.1. Reference price and social comparison 

All price evaluations evoke some form of comparative judgments (Xia et al., 2004). This 

perspective relates to the general idea that much of people’s understanding of themselves is not 

context-free but rather is based on similarities within their environment. People compare what 

others from a similar social group paid for the same service or product, especially when prices vary 

across consumers and lack transparency (Mezias et al., 2002). This social comparison process is 

likely to substantially affect reference prices.  

Social comparison is important for evaluating fairness as a means of distributive justice (Van 

den Bos et al., 1998). Because it is difficult to gain an accurate appraisal by comparing dissimilar 

others, social comparison is largely directed towards a referent group (Festinger, 1954). When 

people compare their outcomes with similar peers, shared attributes do not help them to make an 

evaluation. For this reason, people tend often to focus on information that supports the 

dissimilarities. In other words, people experience greater satisfaction from a purchase if they paid 

less than a peer. These concepts of downward social comparison and upward social comparison 

have solid roots. Wills (1981) introduced the concept of downward social comparison to identify 

situations where people look at others who are worse off to increase their own sense of well-being. 

With respect to upward social comparison, people compare themselves with those who are better 

off so as to belong to a superior group (Collins, 1996).  

In contexts where social comparison is strong, the comparison of dissimilarities is amplified, 

thereby increasing sensitivity toward unfairness (Xia et al., 2004) and loss aversion (Kahneman et 

al., 2005). Social justice literature also notes that the fairness of a process affects the way by which 

people self-evaluate (Brockner et al., 2003). Among the three motives of self-evaluation (Sedikides, 

1993), two have been found to be particularly impactful when people look badly by social 

comparison. These two motives are self-enhancement (Wood, 1989) and self-assessment (Oliver & 

Swan, 1989). In particular, Scholl et al. (1987) show how other’s pay can be a relevant part of pay 



5 

 

dissatisfaction, involving appraisals of inequity and injustice. Thus, even when a consumer pays the 

reference price, information that another customer paid less leads to perceptions of unfairness.   

Other consumers’ prices are generally considered an unequivocal standard for what focal 

consumers deserve to pay. Ashworth and McShane (2012) show that paying more than another 

consumer enhances reactions of unfairness by making the violation of what is deserved especially 

salient and disrespectful. In other words, paying more than a peer is interpreted as a personal 

affront. 

Accordingly, comparisons with similar others are expected to produce lower reference prices, 

which leads to the following hypothesis: 

H1. Comparisons with peers produce lower reference prices due to an increased sensitivity 

towards unfairness. 

 

2.2. Reference price formation over time  

In natural environments, purchasing decisions have a temporal dimension, which means 

individuals usually form their reference prices after observing sequences of prices (Bell & Lattin, 

2000). In other words, they collect different pieces of available information (Thaler, 1985), which in 

our case originate from market prices observed in the past (anonymous source) or from prices 

actually paid by others belonging to the same social group (social source). It is then necessary to 

investigate the way the source of the information interacts with other factors that characterize the 

formation and updating of reference prices. Building on the previous literature, this article identifies 

some factors in sequences of past prices that can affect the current reference price. These factors 

include the first, the average and the last price seen; the highest and the lowest price; and the 

variability and trend of the sequence of prices. 

First, average and last price. Dickson and Sawyer (1990) conducted a field study and found 

that the further in the past a certain price is, the less it contributes to the current reference price. 

Therefore, reference prices are often represented as a decaying weighted average of all past prices. 
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The last price, as in Nasiry and Popescu (2011), is assumed to be the most influential. Baucells et al. 

(2011) found that, in a financial setting, the first price has an important weight in the formation of 

reference prices. In their study, however, the first price was also the investor’s purchasing price. 

Highest and lowest price. Kahneman et al. (1993) were the first to introduce the magnitude of 

past peaks in the evaluation of a sequence. In consumer prices, while the lowest price seems to be 

an important cue for reference prices (Ackerman & Perner, 2004; Rajendran & Tellis, 1994), high 

prices are also important because of loss aversion (Novemsky & Kahneman, 2005). Cowley (2008) 

shows that people tend to evaluate past experiences giving a retrospective evaluation from the 

proverbial “rose-colored” glass, thus suggesting good news. In this article, the presence of a low 

price paid for something in the past is given significantly more weight than personally irrelevant 

information.   

The trend. Based on the order of the events in the timeline, the trend also influences the overall 

evaluation. In the financial context, Grant, Xie and Soman (2010) show that investors update 

reference points asymmetrically in that they more quickly adapt their reference points to good news, 

i.e., an increase in the value of a stock, and more slowly adapt to bad news. Baucells et al. (2011), 

while they do not find evidence for asymmetry in the speed of adaptation, find instead an optimistic 

shift in expectations, which may explain why people are more easily disappointed than they are 

elated.  

The variability. Related to the magnitude of prices, variability affects reference price. 

Distributive justice and the principle of loss aversion play a role when differential prices or 

customer treatments are examined from the perspective of the consumer. This is even more relevant 

in the service industry where the use of dynamic pricing is intense. Although there is a smaller 

degree of perceived unfairness when the inequality is to the disadvantage of other consumers 

(Mayser & von Wangenheim, 2012), consumers are hesitant to accept and absorb different prices. 

For this reason, they lower their reference price (Drechsel & Natter, 2011) and then wait until the 

product or the service is found at the lowest price (Suk et al., 2012).  
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More formally, we derive the following hypotheses: 

H2a. When eliciting a reference price from a sequence of past prices, first and last price, as 

well as lowest and highest price, affect reference price formation more than other price 

information. 

H2b. Trend and variability capture the overall impact of both timeline (first and last price) and 

magnitude factors (lowest and highest price). 

The joint consideration of social comparison and factors influencing reference price formation 

over time leads to an additional hypothesis. Several studies highlight that in a social comparison 

context knowing that another consumer paid a lower price immediately adjusts the reference price 

negatively and influences price evaluations more than a variety of other price-equivalent 

comparisons (Mazumdar et al., 2005; Haws & Bearden, 2006). Thus, by sequences of past prices, 

the social source of information should reduce reference prices because comparisons with similar 

others increase the importance of lowest prices from the perspective of the consumer. Indeed, the 

source of information may change the way people weigh past information.  

Many authors have operationalized reference price as a weighted average of past prices (e.g., 

Nasiry & Popescu, 2011; Baucells et al., 2011). This article builds on this literature by highlighting 

that in a social environment people mentally weigh previous information based on order of 

magnitude (from the lowest to the highest price information) rather than on order of time (from the 

first to the last information received). 

H3. The relative importance of factors behind reference price formation differs depending on 

whether the source of information is anonymous or social. 

H3a. In the presence of social comparison, forecasting models framed by magnitude 

rather than by timeline predict reference prices with greater accuracy.  

H3b. In the presence of an anonymous source, forecasting models framed by timeline 

rather than by magnitude predict reference prices with greater accuracy. 
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3. Experimental study 

Consider a consumer who observes a sequence of prices Pi, i = 1, …, n. She observes one unit 

of a product in period 1 at price Pi, thus forming an initial reference price. In the subsequent 

periods, she observes the other pieces of information and therefore has the opportunity to update the 

reference price. 

While the majority of earlier studies infer reference price indirectly by observing choices, there 

is a recent tendency to elicit and measure the reference price directly. Different researchers adopt 

different conceptualizations, different measurement techniques and different interpretations of the 

reference price. Rajendran (2009) proposes a distinct operationalization of the reference price 

depending on whether its conceptualization is based on the notion of the expected price or the fair 

price. While the expected reference price is elicited as the “estimate of the likely price”, the fair 

reference price is elicited as “a price above which it would be too high and below which it would be 

a good deal”.  

This article elicits reference prices within the fairness conceptualization of the reference price 

because, as shown by Rajendran (2009), consumers appear to be increasingly concerned with 

fairness and good value when reference prices are retrieved from past prices. Arkes et al. (2008) and 

Baucells et al. (2011) investigate changes in reference points using a similar fairness-based 

question. For this reason, in the experiments, participants have to state the price “fair for the 

reservation, meaning neither expensive nor cheap”. 

Aside from measuring the average impact of social comparison (H1), the study is designed to 

investigate the joint effect of the discussed explanatory factors in sequences of past prices (H2a and 

H2b). Furthermore, the study sheds light on how people mentally weigh previous prices depending 

on the source of information (H3, H3a and H3b). 

 

3.1. Method  

3.1.1. Participants 
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Participants in the study included 60 undergraduate students, 32 females and 28 males, from a 

course in business administration at Pompeu Fabra University who accepted an invitation to register 

for the experiment via e-mail. The average age of the participants was 21 years, and the range was 

from 20 to 26 years. Participants received a fixed payment of €5 for their participation. 

3.1.2. Instructions and procedure 

To conduct the experiment, the following situation was created. Participants were told that they 

would have to observe a sequence of prices charged by a unique hotel in a village; they were given 

no additional information. There was a four-second delay before each new price was added to the 

sequence from first price to last price. The length of each sequence of prices varied between 3 and 8 

periods. The total number of sequences presented to participants was 120, and the order of the 

sequences presented was randomized. 

Participants were randomly allocated to one of two groups: an anonymous group and a social 

group. In the anonymous condition, participants were asked to imagine that the observed prices 

were prices found while surfing the Internet:  

“You already checked the Internet for the unique three-star hotel of the village and you found a 

different price offer every four days (the reservation cannot be traded)”. 

In the social condition, participants were asked to imagine that the prices shown were the prices 

paid by colleagues in the past: 

“Your close colleagues at work join you. They have already bought their reservation (…). Every 

four days, one colleague told you the price that he or she paid for the reservation”. 

The question for both groups was the same. 

“Only after observing the different prices – you have no other information on how much a 

reservation in that city costs – you ask yourself what price you would think is fair for the 

reservation, meaning you feel it is neither expensive nor cheap”. 
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The predesigned sequences (see Appendix) are plausible samples of the process described and 

were presented to the participants in random order. The variations within series are consistent with 

the use of dynamic pricing in the hoteling industry (Abrate et al., 2012). 

Before receiving the financial compensation, students were asked to indicate on a 1 to 5 scale 

whether the instructions were clear where 1 equals completely unclear and 5 equals completely 

clear. The average score across the 60 participants was 4.0. Thus, it is reasonable to assume that 

participants understood the presented procedure. The average processing time was 40 minutes. 

3.1.3. Experimental Design  

The experiment follows a mixed model design. The source of price information (social or 

anonymous) is investigated as a between-subjects variable, and participants were randomly split 

into one of the two conditions. As within-subjects variables, the experiment accounts for all timeline 

and magnitude factors discussed in Section 2.2; that is, the first, the average, the last, the highest 

and the lowest price as well as the trend and the variability. In principle, to disentangle the impact 

of each single within-subjects variable, one could design pairs of orthogonal sequences, i.e., pairs of 

identical sequences with respect to all studied factors but one. In this situation, however, some 

factors are partially overlapping. Specifically, it is not possible to design a pair of sequences 

perfectly orthogonal to the trend. If we fix the last price, then we must have two distinct first prices 

– see, for example, sequences 1-2 and 3-4 in the Appendix. If we fix the average, we must modify 

both the first and the last price – see sequences 13-14. Furthermore, by changing the lowest (or 

highest) price and maintaining a constant average, the standard deviation of the sequence also 

changes. This requires that we go beyond the strict comparison of pairs of sequences by exploring 

multiple factors simultaneously.  

The final design consists of 120 price sequences, as shown in the Appendix. The sequences are 

divided into three homogeneous blocks of 40 sequences, and each of the 60 participants participates 

in one single block. Therefore, each participant sees 40 sequences presented in random order.  
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3.2. Empirical analysis  

After considering the general difference between the anonymous and social conditions, the 

study estimates weighting regression models by sorting sequences according to timeline and 

magnitude. A Prelec weighting function (1998) then provides an integrated model to predict 

reference prices. This function investigates the effect of each piece of information when a new 

element in a sequence unfolds. Finally, the study investigates the predictive power of these different 

approaches by comparing them with the simple average of the sequence, a naïve method suggested 

as a benchmark in the forecasting literature (Armstrong, 2012). 

 

3.2.1. Weighting regression models 

We explicitly separate the influence of the factors of timeline and magnitude, recognizing two 

alternative ways to sort price information: 

- the first is to sort each sequence of n prices by timeline (T), thus keeping the price 

order as it was shown to participants, from the first to the last period: 𝑃1
𝑇, 𝑃2

𝑇 , … , 𝑃𝑖
𝑇 , … , 𝑃𝑛

𝑇 

- the second is to sort the same sequences by magnitude (M), rearranging the sequence 

of prices from the lowest (𝑃1
𝑀) to the highest (𝑃𝑛

𝑀), thus yielding the following order: 𝑃1
𝑀, 

𝑃2
𝑀 , … , 𝑃𝑖

𝑀 , … , 𝑃𝑛
𝑀 

In both cases – timeline and magnitude – reference price is a weighted average of past 

information, where, by construction, the sum of weights is equal to one and each price in the 

sequence 𝑃𝑖
𝑇 (𝑃𝑖

𝑀 in the case of magnitude) has a non-negative weight π𝑖
𝑇 (π𝑖

𝑀). Such weights can 

be estimated by means of linear regressions after imposing the proper theoretical constraints over 

the parameters, such that ∑ π𝑖
𝑇𝑛

𝑖=1 = 1, with π𝑖
𝑇 >0 ∀ i=1,2,…,n in the case of timeline sorting and 

∑ π𝑖
𝑀𝑛

𝑖=1 = 1, with π𝑖
𝑀 >0 ∀ j=1,2,…,n in the case of magnitude sorting. 
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Regardless of the length of the sequence, the study identified three explanatory variables: the 

first (lowest) price, the average of intermediate values, respectively, for timeline and magnitude, 

INT
T
 = ∑

𝑃𝑖
𝑇 

𝑛−2

𝑛−1
𝑖=2  and INT

M
 = ∑

𝑃𝑖
𝑀 

𝑛−2

𝑛−1
𝑖=2  , and the last (highest) price. This leads to two alternative 

models of reference price formation. 

MODEL 1 (TIMELINE): R = 𝛽0
𝑇

 + π1
𝑇

 𝑃1
𝑇

 + π𝐼𝑛𝑡
𝑇

  INT
T

 + π𝑛
𝑇

 𝑃𝑛
𝑇

    [1] 

MODEL 2 (MAGNITUDE): R = 𝛽0
𝑀

 + π1
𝑀

 𝑃1
𝑀

 + π𝐼𝑛𝑡
𝑀

  INT
M

 + π𝑛
𝑀

 𝑃𝑛
𝑀

   [2] 

In addition, this study proposes a third parsimonious model that allows testing H2b. In model 3, 

the factors explaining reference price are the average (AVG), the price variability, which is 

measured as standard deviation (SD), and the trend (TREND), which is computed as the difference 

between the average of prices in the second half of the sequence and the average of prices in the 

first half of the sequence. Both Models [1] and [2], in the case of equal factor weights, predict the 

same reference price, i.e., the average. Then, consistent with H2b, the trend can capture the 

presence of different weights across timeline factors, while, in parallel, price variability can capture 

the role of magnitude factors. 

MODEL 3 (MIXED):  R = 𝛽0
𝑀𝐼𝑋

 + π𝐴𝑣𝑔
𝑀𝐼𝑋

  AVG +  𝛽𝑇𝑟
𝑀𝐼𝑋TREND +  𝛽𝑆𝑑

𝑀𝐼𝑋
 SD [3] 

 

 

3.2.2. The Prelec Weighting function 

A more comprehensive approach is to rewrite reference prices as a function of all observed 

prices and define a cumulative weighting function, w:[0,1] → [0,1] (strictly increasing and where 

w(0)=0 and w(1)=1). As in Baucells et al. (2011), the model is based on the Prelec function (1998). 

Defining n as the length of the sequence, i as the position of the price in the sequence (i = 1, 2, …, 

n), either sorted by timeline or magnitude, and w as the cumulative weight attributed to all prices 

from 1 to i, the formal analytics are as follows: 

𝑅 = ∑ 𝜋𝑖
𝑡
𝑖=1 ∙ 𝑝𝑖              [4] 

𝑤 (
𝑖

𝑛
) = ∑ 𝜋𝑗

𝑖
𝑗=1     [5] 
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𝑤 (
𝑖

𝑛
) = 𝑒

−(−ln (
𝑖
𝑛

))

𝛿

𝛾

       [6] 

The Prelec function [6] depends on two parameters. The first parameter, γ, controls for the 

curvature of the weights such that the lower the parameter, the greater the weight given to the 

extreme values, first and last in the timeline case and lowest and highest in the magnitude case. The 

second parameter, δ, controls for the elevation such that the lower the parameter, the greater the 

weight given to the first (lowest) price at the expense of the last (highest) price.  

Using a two-step approach, the study first estimates equation [4] to derive the cumulative value 

weights of [5], thus estimating separated regressions for each of the various lengths of the 

sequences (n = 3, 4, 5, 6, 7, 8)
1
. The second step uses the different weights obtained for each 

sequence length to estimate the two-parameter weighting functions. By using a logarithm 

transformation of [6], the estimation of the parameters can be obtained by means of linear 

regression: 

ln (− 𝑙𝑛 (𝑤 (
𝑖

𝑛
))) = −ln (𝛿) + 𝛾 ∗ ln (− 𝑙𝑛 (

𝑖

𝑛
)) [7] 

3.2.3. Results 

A first analysis measures the average impact across sequences of the source of information on 

the reference price (H1). If prices are presented as those paid in the past by colleagues/friends rather 

than as prices asked on an online booking system, then participants, on average, significantly lower 

their reference price, 117.39 versus 137.98, (t (1199) = 25.79, p < .001). As noted in the Appendix, 

this evidence extends to the vast majority of sequences analyzed (104 out of 120). 

                                                 
1
 In some cases, especially for high values of n, unconstrained regressions would have led to negative estimates 

associated to some prices. Our solution was to impose a priori the non-negativity constraint by adapting a specific 
available procedure in the software Stata, named as “regprop”, which uses the maximum likelihood method. 
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Tables 1a and 1b document the correlation matrix of the variables to be used in the regression 

models.   

[Table 1a and Table 1b here] 

In both cases, the dependent variables (i.e., the reference prices in either the anonymous or the 

social condition) correlate with all the independent variables (timeline and magnitude factors). The 

average price highly correlates with both timeline and magnitude factors as well as with the 

intermediate values. First and last price highly correlate with trend (Table 1a), while the magnitude 

factors, high and low prices, highly correlate with variability (Table 1b). On the whole, the 

correlations tend to be consistent with the a priori models.   

Table 2 provides the results of all regressions for the two conditions, anonymous and social. 

[Table 2 here] 

In the timeline model, the results are quite similar with respect to both the anonymous and the 

social conditions as the average of intermediate values is the most influential factor and the first 

price weighs slightly more than the last price. The latter result is coherent with the negative sign 

associated to trend in Model 3. The magnitude model highlights the difference between the 

anonymous and the social case. In the latter, the weight of the lowest price becomes dominant. The 

impact of magnitude factors is captured by the high effect of price variability in the mixed model, 

which lowers the reference price, but only in the social condition. 

To test the predictive accuracy of the different models and, in turn, to highlight the predictive 

power of the different groups of factors the paper shows goodness of fit measures based on the R-

square and the median error (Armstrong, 2012). For each model, Table 2 provides the Median 

Absolute Percentage Error (MdAPE) along with the Median Absolute Deviation (MAD). In the 

anonymous case, a clear preference towards one model does not emerge. Moreover, none of the 
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models proposed improves the performance of the naïve predictor (the average price of the 

sequence), which would produce the best fit of the reference price (MdAPE = 9.091, MAD = 

6.039). On the contrary, the social case presents a vastly different picture. Here, the magnitude and 

the mixed models perform much better than the timeline model and also perform better with respect 

to the naïve predictor, whose results are quite poor (MdAPE = 17.647, MAD = 10.793). 

[Table 3 here] 

Finally, Table 3 reports the estimates of the Prelec model for the four analyzed cases.
2
 It is 

important to highlight that whenever the constant of the linear regression is not significant and the 

slope (which determines the curvature) is equal to 1, then w(x)=x. This implies that each price in 

the sequence has the same proportional weight and the reference price is equivalent to the simple 

arithmetic mean. In the case of the anonymous group, both for the timeline and the magnitude 

model, we could not reject the hypotheses that 𝛿 = 0 and 𝛾 = 1. Therefore, in this case, the 

argument holds that reference price is the average of the price sequences, giving further support for 

the use of the naïve predictor. The same occurs in the social case when prices are sorted by timeline. 

However, the study obtains significant estimates both for the constant (different from zero) and the 

slope (different from one) for the social case with prices sorted by magnitude. Figure 1 provides a 

graphic representation of the weighting function. The curvature indicates a predominant importance 

of extreme values, with the lowest price acting as the clear main driver of the reference point. With 

the same average but more pronounced extreme prices, the reference decreases because of the 

greater weight attributed to the lowest price. This result is coherent with the previous findings, thus 

highlighting the negative impact of variability (see Table 2). The Prelec function, which is based on 

only two parameters, allows for further improvement of the prediction accuracy with respect to 

Models 2 and 3 (MdAPE = 8.914, MAD = 5.658). 

                                                 
2
 Herein we report only the estimated parameters of the Prelec weighting functions, without reporting all the first-

step regressions. Detailed results are available upon request. 
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[Figure 1 here] 

 

3.3. Discussion 

The most striking result is the dissimilarity of the average reference price in sequences that 

share the same elements but differ in the source of information, social versus anonymous. 

Therefore, the main conclusion of the experiment is that when prices are social, reference prices are 

adjusted downward (H1). 

The results regarding the factors guiding reference prices are more contradictory. On one hand, 

H2a receives little support given that models based on timeline factors do not perform better than 

the naïve predictor (the average price), while the magnitude models improve the accuracy of the 

reference prediction, but only in the social case. On the other hand, both trend and variability 

impact the reference price (H2b). However, only in the social case explicitly accounting for these 

factors can improve the predictive power of the model in comparison to the naïve predictor 

represented by the average price. In particular, in the social condition, the effect of past peaks is 

mediated by price variability that determines a strong reduction in the reference price. While Suk et 

al. (2012) highlighted that consumers are generally hesitant to accept variability in prices, this study 

defines the condition under which these results are strongly supported. This result also provides a 

first evidence for H3; that is, the source of information matters not only on the level of reference 

price but also on the level of the importance of the explanatory factors (in this case, the variability). 

The regression findings along with the Prelec weighting function based on the magnitude of 

prices fully support H3a. In a service context with a social source of information, the predominant 

role of the lowest price, as well as the variability, is evident. People, aware of the presence of 

disadvantageous inequalities in their social environment, push for and expect to get something very 

close to the lowest price. Consumers’ perceptions of fairness when forming a reference price in a 

social context are different with respect to the anonymous condition, thus moderating the goodness 
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of models to predict the reference price. In the anonymous case, none of the proposed models 

improve reference prediction with respect to a simple heuristic based on the average price, and 

accordingly, H3b is not supported.  

The Prelec approach allows for predicting reference prices with the lowest percentage error, 

while relying only on two parameters. Thus, results indicate that in a social context people tend to 

mentally order prices by magnitude and are less sensitive to the order in which these prices 

appeared on the timeline. 

  

4. General conclusions 

The experiment presented herein indicates that the source of information, social or anonymous, 

affects the formation of reference prices. This article builds on some studies regarding sequences 

(Ariely and Zauberman, 2000; Baucells et al., 2011), controlling in addition for the presence of 

social influence. The evidence suggests that when a social influence is present, people lower their 

reference price, while if the source of information is anonymous, people are more inclined to 

average past prices. People tend not to place too much emphasis on the order in which prices 

appeared in time, but rather give more attention to the magnitude of these prices. These findings, 

however, seem to be a peculiarity of the service context given that in finance (Baucells et al., 2011), 

people are much more influenced by the order in which prices appeared in time. 

In the social case, a two-parameter weighting function based on magnitude price sorting 

describes the reference price formation process. Our estimates show the importance of extreme 

rather than central values in the price sequence, as well as the predominant weight given to the 

lowest – and thus more favorable – price information.  

Important managerial implications for marketers that charge different prices emerge from this 

study. The awareness of reference dependence may facilitate the understanding of online consumer 

behavior while shaping pricing and discounting policies (Kopalle et al., 1996). If prices are 

maintained at an anonymous level, these findings suggest low prices and variability have limited 
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influence on reference prices, thus somehow suggesting that revenue management and consumers 

now accept time-based pricing practices. Nonetheless boundary conditions apply in markets where 

social comparison is more intense because customers care about what others (from a referent group) 

are paying. The negative effect of social comparison on reference price highlights how preferential 

treatments given to some customers may induce an uneasy feeling, thereby leading to the perception 

of unfairness as well as the relative lowering of the reference price. Limiting the diffusion of such 

information, however, may not be feasible as consumers who are satisfied with their purchases tend 

to talk about the purchases (Brown et al. 2005) and share relevant information (Bickart & Schindler, 

2001). Therefore, differences in prices must be transparent and rational. Marketers should combine 

price variations with customization or personalization as it will reduce comparability between 

transactions. Generally, it is important to separate consumers who pay less from those consumers 

who possess appropriate fencing conditions. 

Observing sequences with extreme prices, people tend to punish for high prices (losses from a 

consumer perspective), giving strong weight to low prices in the determination of the reference 

price. This confirms one of the hypotheses from prospect theory: losses loom larger than gains. If 

the market consists only of loss-averse buyers and if comparisons with similar others are frequent, 

then the optimal strategy for firms would be to limit price variability. 

The experiment involved student participants and service purchase scenarios. We are aware 

that presenting student participants with a hypothetical design in a lab is less than ideal. For this 

reason, we acknowledge that the size of these effects could be biased, and therefore, the results 

should be independently replicated before jumping to conclusions. Nonetheless, methodological 

concerns regarding the hypothetical design would, in principle, only weaken the size of the effects, 

while the impact of dynamic pricing may be even more pronounced when varying prices are 

encountered in realistic shopping online environments under conditions of higher involvement.  

In the presented experiment, the past information was available on the screen. The highly 

weighted results of the first prices could be explained by the fact that “participants may not have 
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clear preferences about the value of a product and rely on past prices to provide an indication of 

what such value is” (Sitzia & Zizzo, 2012). Nonetheless, although new online platforms present a 

chart of previous prices (Drechsel & Natter, 2011), if these prices are not available, memory 

constraints become relevant. Generally, the role of memory in recalling past prices would be an 

interesting research question. Aside from memory, however, reference prices are influenced by 

many other factors, such as decision delays, social comparisons, etc. While the study design 

includes many of the factors that may impact reference prices, it may have excluded others.  

Future research should explore whether different price situations or different sources of social 

information, i.e., people higher or lower in a social rank, generate a divergent effect on reference 

price. The closeness of the relationship with comparison consumers should increase the sensitivity 

of the source of information on the reference price, thus affecting judgment regarding fairness. 
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TABLES AND FIGURES 

 

Table 1a. Correlations between timeline factors  

 Anonymous Social First Last 
Intermediate 

prices 
Variability Trend Average 

Anonymous 1        

Social 0.41
*
 1       

First 0.41
*
 0.38

*
 1      

Last 0.29
*
 0.26

*
 -0.06 1     

Intermediate 

prices 
0.65

*
 0.52

*
 0.23

*
 0.34

*
 1    

Variability 0.24
*
 -0.13

*
 0.03 0.18

*
 0.30

*
 1   

Trend -0.10
*
 -0.19

*
 -0.69

*
 0.46

*
 -0.04 0.10

*
 1  

Average 0.66
*
 0.59

*
 0.49

*
 0.57

*
 0.88

*
 0.30

*
 -0.11

*
 1 

*
 p < 0.01  

 
Table 1b. Correlations between magnitude factors  

 Anonymous Social Low High 
Intermediate 

prices 
Variability Trend Average 

Anonymous 1        

Social 0.41
*
 1       

Low 0.42
*
 0.69

*
 1      

High 0.57
*
 0.39

*
 0.34

*
 1     

Intermediate 

prices 
0.62

*
 0.52

*
 0.55

*
 0.69

*
 1    

Variability 0.24
*
 -0.13

*
 -0.35

*
 0.66

*
 0.27

*
 1   

Trend -0.10
*
 -0.19

*
 -0.15

*
 0.01 -0.15

*
 0.10

*
 1  

Average 0.66
*
 0.60

*
 0.66

*
 0.81

*
 0.96

*
 0.30

*
 -0.11

*
 1 

*
 p < 0.01 
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Table 2. Multiple regression models divided by source of information 

 Anonymous Anonymous Anonymous Social Social Social 

 Timeline Magnitude Mixed Timeline Magnitude Mixed 

 Model [1] Model [2] Model [3] Model [1] Model [2] Model [3] 

First 0.178   0.295    

 (0.015)***   (0.015)***    

INT
T
 0.689   0.521    

 (0.022)***   (0.021)***    

Last 0.133   0.184    

 (0.016)***   (0.015)***    

Low   0.245   0.688   

   (0.027)***   (0.022)***   

INT
M

   0.498   0.236   

   (0.038)***   (0.030)***   

High   0.257   0.076   

   (0.027)***   (0.021)***   

Average    0.807   0.709 

    (0.029)***   (0.023)*** 

Trend    -2.113   -4.252 

    (1.324)   (1.069)*** 

Variability    0.126   -0.676 

    (0.057)**   (0.046)*** 

Constant -0.423 -1.762 22.722 -20.594 2.521 39.723 

 (0.606) (1.664) (3.927)*** (0.578)*** (1.313) (3.169)*** 

Observations 1200 1200 1200 1200 1200 1200 

R
2 

0.45 0.43 0.44 0.36 0.51 0.47 

MdAPE 9.644 9.395 9.747 11.566 9.184 9.228 

MAD(MdAPE) 5.995 6.046 6.199 6.701 5.958 5.456 
*
 p < 0.10  

*
 
*
 p < 0.05  

***
 p < 0.01 

 

 

 

Table 3. Parameter estimates of the Prelec weighting function 

 Group “Anonymous” Group “Social” 

 Timeline Magnitude Timeline Magnitude 

Constant     𝛿 1.105 0.966 0.803 0.274*** 

 (0.094) (0.117) (0.177) (0.129) 

Slope          𝛾 1.118*** 0.971*** 0.915*** 0.618*** 

 (0.104) (0.137) (0.195) (0.142) 

H0: 𝛾 = 1. F-test 1.29 0.04 0.19 7.27** 

(p-values) (0.2665) (0.8362) (0.6653) (0.0123) 

Standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
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Figure 1. Prelec fit 
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APPENDIX 
Sequences used in the experiment 

          Average reference price Prelec’s prediction 

Seq. P1 P2 P3 P4 P5 P6 P7 P8 Average Anonymous Social Social 

1 120 80 100      100 106.6 93.7 87.9 

2 80 120 100      100 105.7 90.9 87.9 

3 80 100 120      100 106.8 97.3 87.9 

4 160 140 120      140 144.1 125.2 127.9 

5 170 100 150      140 110.5 101.1 115.5 

6 170 120 130      140 140.3 129.2 128.3 

7 150 100 150 200     150 143 119.6 120.2 

8 150 200 150 100     150 155.7 135.5 120.2 

9 100 100 250 150     150 188.7 114.9 121.7 

10 100 150 200 150     150 178 115.7 120.2 

11 150 50 150 50     100 102 80.6 69.6 

12 150 100 100 50     100 102.1 79.3 70.2 

13 100 130 160 190 220    160 161.9 125 124.1 

14 220 190 160 130 100    160 149.1 126.4 124.1 

15 100 100 100 200 100    120 119.3 115.3 110.3 

16 100 120 130 150 100    120 124.3 116.3 108.3 

17 100 200 200 200 100    160 142.5 112.7 122.9 

18 100 120 130 130 220    140 127.9 117.3 117.7 

19 220 190 80 210 100    160 166.9 135.2 111.1 

20 140 200 140 140 140 140   150 141.1 144.4 145.5 

21 140 140 140 140 140 200   150 164.1 149.5 145.5 

22 140 160 180 200 200 140   170 170.7 185.8 151.9 

23 170 200 200 200 80 170   170 147.3 113.9 115.1 

24 170 200 160 160 160 170   170 172.5 121.9 164.7 

25 150 200 100 200 100 150   150 158.9 106.6 119.9 

26 150 200 150 100 150 150   150 174.8 119.4 120.8 

27 200 150 150 150 150 150 100  150 163.1 127.4 121.1 

28 150 150 200 150 150 150 100  150 156.1 161.5 121.1 

29 120 200 120 80 90 110 120  120 112.3 102.3 97.6 

30 150 120 200 180 200 100 100  150 165.6 118 119.8 

31 120 160 160 80 90 110 120  120 175.2 104.6 96.2 

32 120 80 80 160 150 130 120  120 142.1 91.3 96.0 

33 150 170 200 160 190 80 100  150 165.1 100.6 107.6 

34 100 150 240 150 200 150 200 250 180 189 120.5 132.8 

35 100 150 240 250 200 150 200 150 180 165.1 111.9 132.8 

36 120 200 180 100 200 180 180 120 160 168.2 129.3 123.6 

37 120 120 180 200 100 100 180 120 140 173.2 135.8 116.7 

38 120 100 100 100 200 100 120 120 120 132.9 121.2 110.0 

39 120 150 170 200 70 120 170 120 140 172.1 104.8 98.8 

40 100 180 210 170 190 170 170 250 180 171.6 119.8 133.4 

41 160 100 160      140 150.6 99.7 115.1 

42 160 160 100      140 149.2 107.1 115.1 

43 140 180 100      140 152.6 110.9 115.9 

44 140 120 100      120 137.9 111.1 107.9 

45 100 120 140      120 120.2 106.2 107.9 

46 160 100 100      120 120.9 110.4 108.7 

47 140 100 60 100     100 124.4 94.1 76.2 

48 60 100 140 100     100 120.1 100.5 76.2 

49 120 210 120 230     170 125.4 122.2 140.0 

50 120 170 160 230     170 142.1 131.4 140.5 

51 180 120 120 180     150 158.5 128.7 131.8 

52 180 160 80 180     150 140.9 141.3 106.7 

53 120 120 160 110 90    120 140.6 104 102.5 

54 120 90 160 110 120    120 121.6 117.8 102.5 

55 120 150 160 150 120    140 133.7 126.4 127.9 

56 120 130 200 130 120    140 134.2 125.6 129.5 

57 160 120 120 110 90    120 123.2 117.9 102.5 

58 180 170 100 180 170    160 128 125 123.2 
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59 180 150 140 160 170    160 137.6 142 148.0 

60 170 90 170 200 180 150   160 156.7 102.5 117.8 

61 170 90 120 200 170 150   150 151.1 102.6 114.0 

62 200 90 120 160 180 150   150 167.7 101.4 114.0 

63 200 180 160 140 120 100   150 159.8 104.7 120.2 

64 100 120 140 160 180 200   150 130 107.6 120.2 

65 170 90 120 200 230 150   160 126.6 103.9 118.3 

66 170 150 160 160 170 150   160 152 139.9 154.0 

67 180 150 140 150 90 120 150  140 136.6 101.4 110.2 

68 90 150 140 150 180 120 150  140 133.1 102 110.2 

69 90 180 110 180 90 180 150  140 158.2 109.2 109.4 

70 90 150 110 180 90 180 180  140 168.8 106.7 109.4 

71 90 110 110 110 90 180 150  120 118.8 96.2 103.1 

72 90 170 170 170 120 180 150  150 156.1 105.6 113.5 

73 90 130 120 120 50 180 150  120 104.3 84.4 78.5 

74 120 120 180 120 60 120 120 120 120 105.9 93.7 85.5 

75 120 70 180 170 60 160 80 120 120 105.7 95.2 84.1 

76 80 110 70 100 80 150 90 120 100 102.3 98.4 84.1 

77 80 90 90 100 100 110 110 120 100 112.3 95 88.2 

78 160 150 150 140 140 130 130 120 140 125.5 114 128.2 

79 120 110 110 100 100 90 90 80 100 110 106.5 88.2 

80 80 110 70 120 80 130 90 120 100 98.9 90.7 82.1 

81 140 150 160      150 144.4 143.1 144.0 

82 160 150 140      150 151.8 139.3 144.0 

83 170 170 140      160 158.4 153.3 147.6 

84 170 140 140      150 150 152 144.4 

85 140 140 170      150 128.1 144.5 144.4 

86 160 180 140      160 158.3 142.5 147.9 

87 180 100 120 160     140 127.2 120.8 115.9 

88 180 100 160 120     140 124.9 111.7 115.9 

89 180 160 100 120     140 130.7 106 115.9 

90 180 180 80 120     140 112.6 116.3 103.2 

91 180 100 180 100     140 117.4 120.5 115.7 

92 180 140 140 100     140 130.6 139.8 116.2 

93 80 80 100 120 120    100 103.2 93.1 87.9 

94 120 80 100 80 120    100 101.6 92.9 87.9 

95 120 100 100 60 120    100 90.2 95.5 75.6 

96 80 80 80 140 120    100 94.2 90.5 88.7 

97 140 100 140 100 120    120 109.2 104.8 107.9 

98 140 100 120 120 120    120 115.6 112.4 108.2 

99 80 120 140 140 120    120 120.8 103.1 95.6 

100 150 200 150 100 150 150   150 148.8 139.9 120.8 

101 150 100 150 100 250 150   150 146.4 124.8 121.7 

102 100 150 150 150 150 200   150 140.1 155.7 120.8 

103 200 150 150 150 150 100   150 147 149.7 120.8 

104 120 140 120 100 120 120   120 120.9 127.1 108.3 

105 120 140 120 80 140 120   120 105.8 99.4 95.9 

106 100 100 100 100 120 200   120 108.8 101.9 110.2 

107 140 160 160 160 160 200 140  160 148.2 142.6 148.7 

108 140 200 140 160 140 200 140  160 158.9 148.8 148.7 

109 140 200 140 190 110 200 140  160 158.7 145 130.2 

110 140 200 140 190 110 140 200  160 142.9 121.2 130.2 

111 160 140 160 160 160 200 140  160 144.5 144.5 148.7 

112 140 140 140 110 110 200 140  140 125.7 117.1 123.1 

113 140 140 140 150 110 160 140  140 130.2 119.3 122.3 

114 200 170 220 170 180 150 180 170 180 165.7 170.8 162.9 

115 200 170 220 170 180 120 210 170 180 182.2 139.4 144.6 

116 200 150 220 150 180 150 220 170 180 169.6 155.3 162.2 

117 140 80 130 100 120 120 150 120 120 106.9 105.9 96.2 

118 80 140 130 100 120 120 150 120 120 105.5 105.6 96.2 

119 80 140 150 80 150 90 150 120 120 118.9 92.1 95.5 

120 80 140 120 80 180 90 150 120 120 114.4 92.7 96.6 
 


