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Please, talk about it! When hotel popularity boosts preferences  

 

ABSTRACT 

Many consumers post on-line reviews, affecting the average evaluation of products and services. 

Yet, little is known about the importance of the number of reviews for consumer decision making. We 

conducted an on-line experiment (n=168) to assess the joint impact of the average evaluation, a 

measure of quality, and the number of reviews, a measure of popularity, on hotel preference. The 

results show that consumers’ preference increases with the number of reviews, independently of the 

average evaluation being high or low. This is not what one would expect from an informational point of 

view, and review websites fail to take this pattern into account. This novel result is mediated by 

demographics: young people, and in particular young males, are less affected by popularity, relying 

more on quality. We suggest the adoption of appropriate ranking mechanisms to fit consumer 

preferences. 

 

1. INTRODUCTION 

The way in which both software developers and consumers use the Internet is continuously 

changing towards an increasing management of user-generated content. This “collaborative” vision of 

the web, promoting a place where users can interact and share information, was coined about a decade 

ago with the term Web 2.0. Examples of Web 2.0 include social networks, video-sharing sites, fora, 

wikis, blogs, and other sites managing user-generated information. In this dynamic world of on-line 

marketing, the traditional influence of word-of-mouth has been fiercely amplified by the impressions 

from consumers posting their experience with products and services in social media websites.  

Since Amazon.com Inc. started posting customer ratings and product reviews in 1995, most on-line 

businesses have realized that allowing customers to post reviews can increase sales and help suppliers 
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identify problems with their products and services. These information tools are being used by 

consumers who increasingly search and read comments and reviews from peers, facilitating choices 

and purchase decisions. In its last Trust Barometer 2013, the public-relations firm Edelman asked 

survey respondents across 20 countries how credible the information about a company was, depending 

on the informer. A total of 61% of respondents attributed high credibility to “a person like yourself”, 

compared to only 49% to “regular employees” and 40% to “the company’s CEO”. A previous survey 

conducted in 2011 by the public-relations firm Weber Shandwick, found that traditional word-of-mouth 

(88%) and on-line reviews (83%) ranked as top factors, being “very” or “somewhat” influential on 

consumer perceptions about companies.  

Within the service sector, travel is one of the fastest growing industries in e-commerce spending. 

ComScore Inc, a global research firm that tracks on-line traffic, reported that the travel category 

attracted 124 million visitors in January 2012, with an increase of 8% with respect to the previous year. 

All the above phenomena combine in the form of travel review websites, revolutionizing the 

manner in which word-of-mouth opinions and recommendations on holiday destinations can be 

discussed and disseminated (Mauri and Minazzi, 2013; Litvin et al., 2008).  

Some review websites have become important obligatory points of passage (Yacouel and 

Fleischer, 2012). An example of the culmination of such on-line commentaries is the creation of 

ranking lists, such as the Trip Advisor Popularity Index. This offers a clear numbering system which 

instantly signals a hotel’s level of quality and service to satisfy consumers (Jeacle and Carter, 2011). In 

this paper we focus our attention on popularity, in terms of the number of reviews written by people, to 

understand how it affects consumer decision making and how it interacts with consumer’s on-line 

evaluation, a widely used measure of quality (Abrate et al., 2011; Hu et al., 2006; Koh et al., 2010). 

 

2. THEORY 
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2.1 The Relevance of Consumer Reviews 

The importance of reviews is rather different in experience and search goods. Experience goods 

are products that require sampling or purchasing in order to evaluate the product quality. In this case  

there is a need to use one’s senses to evaluate quality. Examples of experience goods include music 

(Bhattacharjee et al., 2006; Nelson, 1970) and wine (Klein, 1998). Search goods, by contrast, are those 

where consumers can obtain relevant information on product quality prior to purchase. Examples here 

include cameras (Nelson, 1970) or medication (Weathers et al., 2007). The dominant attributes of an 

experience good are compared or evaluated subjectively and with more difficulty (Huang et al., 2009). 

However, the relevant characteristics of a search good are that it can be evaluated and compared easily 

in a more objective manner, without buying or sampling the product. Because the Internet enables 

consumers to learn from the experiences of others and to gather product information that is often hard 

to obtain in off-line settings (Klein, 1998; Lynch and Ariely, 2000), all attributes tend now to be 

searchable at low cost. This reduces the difference between search and experience goods. This 

“merging process” was initially highlighted by Alba et al. (1997), who suggested that all products 

involve a bundle of search and experience attributes. Hotel rooms fit perfectly in this framework. 

Although traditionally considered as experience goods due to the difficulties in gathering precise 

information, they are now moving toward search goods. Now, for example, travellers can judge if a 

room is suitable beforehand, and look for information on-line through rating sites (Tse, 2003). 

Nonetheless, there are still some differences between search and experience goods. For search 

goods, the content and detail of the review itself is considered crucial (Jimenez and Mendoza, 2013; 

Mudambi and Schuff, 2010). The idea is that an in-depth review with search goods is highly diagnostic. 

Whilst, the social weight provided by the number of comments is also an important factor affecting 

consumer choice for experience goods.  
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When travellers book hotels on-line, they are typically provided with a list of relevant hotels. 

While presenting hotels in a list format seems appropriate in order to organize the information, it 

creates a new (spurious) attribute for them: their positioning. Spoerri (2008) showed that only 

information placed high in the list is considered relevant. Further, the relevance of the information 

decreases exponentially when presented in lower positions. Breese et al. (1998) confirmed this 

exponential decay of attention. One of the first efforts to model ranking by popularity was undertaken 

by Chen (2009), while the importance of ranking was again stressed more recently by Filieri and 

Mcleay (2014).  

It has been shown that positive reviews have an effect in increasing the number of bookings and 

the economic results (Chavaler et al., 2006; Godes and Mayzlin, 2009; Ye et al., 2009). However, the 

actual number of reviews should also be taken into consideration when hotel travel websites present 

their rankings of hotels. Of primary importance, is also the role of negative reviews. While several 

studies have examined the content of negative consumer reviews on the web and their effects on 

perceived company reliability (Chatterjee, 2001; Noort and Willemsen, 2012; Sen and Lerman, 2007), 

only a few studies have to date discussed the controversial effect of negative popularity on preferences 

(Berger et al., 2010; Khare et al., 2011; Vermeulen and Seegers, 2009). The findings of these studies 

suggest that negative reviews decrease consumers’ attitudes towards that alternative but increase 

consumers’ awareness towards the same alternative, leaving for further research the overall effect on 

preference. 

 

2.2 Reducing uncertainty or following the crowd 

According to social comparison theory (Festinger, 1954), individuals possess a drive to compare 

themselves to other people. This can lead them to select popular alternatives in the belief that the 

majority is right (Denrell and Le Mens, 2012). Consumers look to other consumers for social clues as 
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their choices may be seen as a statement about individual values and taste (Mudambi and Schuff, 

2010). In our analysis, we use the number of reviews of a hotel as a proxy for popularity, and we 

consider consumer’s probability to post a review on the travel websites constant across hotels. These 

assumptions are considered reasonable since the majority of travel review websites only allow the 

posting of one review per transaction after the check-out. Other studies have applied a similar approach 

in the literature (Ye et al., 2009)  

There are at least two possible explanations as to why people might prefer to see a number of  

reviews. First, a large number of reviews might lead consumers to feel more sure of their purchase 

decision. When more reviews are present, consumers increase their behavioral intention because they 

perceive them to be more informative (Park et al., 2007; Petty and Cacioppo, 1984). This then reduces 

the uncertainty and the perceived risk (Klein, 1998). Another possible explanation, when people tend to 

go with the crowd, is that the hotel experience is a “conspicuously” consumed service, hence social 

norms could also be at play. Intuitively, an individual who believes a popular alternative to be poor 

might still choose that alternative anyway because it is popular. Sociologists would distinguish between 

the normative and informational facets of social influence. The former compels a person to do as others 

do so as to conform to their expectations. The latter leads individuals to accept the information 

obtained from others as evidence about reality (Deutsch and Gerard, 1955). In this paper, we use the 

term “normative” according to the above definition. Review websites, such as Trip Advisor, generally 

rank their hotels based on informational criteria. This considers the number of reviews as a measure of 

the reliability of the different evaluations. In principle, one can determine whether people endorse 

popular choices just to go with the others or whether to reduce informational uncertainty. In the hotel 

scenario for example, when a high number of reviews is present but the on-line reputation is low, 

popularity would still boost preferences if people simply want to go with the crowd. If, on the contrary, 

people believe that the number of reviews has only an informative effect, then for hotels with a poor 



6 

 

reputation a high number of reviews would have a negative effect on preference. In this instance, the 

high number of reviews being a guarantee that the hotel is bad. These considerations lead to a first 

general hypothesis for this paper: 

  

H1. Popularity, measured through the number of reviews, affects people’s preferences  

 

In addition, based on the theoretical background presented above, we can also derive two 

alternative hypotheses. On the one hand, according to informational social theory and what on-line 

review websites generally do, we can expect that: 

 

H2a. Because of informational social influence, the impact of popularity is expected to be positive 

when quality, measured as the average online rating, is high and negative when quality is low 

 

On the other hand, the normative facets of social influence would lead us to predict that: 

 

H2b. Because of normative social influence, the impact of popularity should be positive, regardless 

the level of quality 

 

If the two effects presented above moderate each other we would expect that: 

 

H2c. A high number of reviews increases the ranking of well reputed alternatives more than of less 

reputed ones 

 

2.3 The cost and value of seeking unbiased reviews and their effects on individual differences 
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Traditional media normally use professional experts to review products or services. While prior 

evidence suggests that expert reviews are more persuasive than non-expert ones (Petty and Cacioppo, 

1984), information delivered by a non-marketer source has been shown to be credible (Herr et al., 

1991; Sparks et al., 2013). On the Internet, many reviews are consumer generated and fellow opinions 

are considered more trustable, favouring the increasing demand for unbiased information (Mauri and 

Minazzi, 2013). 

Reading reviews easily accessible to all Internet users may help consumers in choosing 

(Dellarocas, 2003). However, seeking information is both costly and time consuming and there are 

trade-offs between the perceived cost and the benefit of search (Stigler, 1961) and between the invested 

effort and the accuracy of the decision (Johnson and Payne, 1985). Consumers tend to search for 

information until the marginal cost equals the marginal benefit (Huang et al., 2009). For these reasons, 

they are willing to use numerical content ratings to save cognitive resources and to reduce energy 

expenditure. More formally, Sirakaya and Woodside (2005) contend that since the purchase of a 

tourism service is extensive, complex, and risky, the decision process occurs in stages. This decision is 

described as a funnel-like process in which consumers eliminate options from the “total set” 

(comprised of all available options) to construct a “consideration set”, and then form a smaller “choice 

set” from which they ultimately choose (Jones & Chen, 2011; Sirakaya & Woodside, 2005). Hotel 

search starts by entering the desired destination and dates of travel which results in a list of available 

hotels (i.e., the total set). In rating websites like TripAdvisor.com, the search continues by further 

eliminating irrelevant hotels according to their on-line rating and the number of reviews, resulting in a 

smaller “consideration set”.  Some of the hotels in the consideration set are subjected to further 

examination by clicking on their icon and receiving additional information (such as exact location, 

staff, cleanness, price and detailed reviews of consumers). The outcome of this stage is a smaller 

"choice set" from which the final decision of which hotel to book is then made. This theory has 
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received support from a recent empirical study (Jones & Chen, 2011), which found that hotel 

consideration sets are comprised of 10 hotels on average, whereas choice sets average about 4. This 

funnel-like process helps consumers choose by forming a smaller and more comparable set of 

alternatives at each stage. 

The star rating has been shown to serve as a numeric clue for the review content, especially for 

users familiar with the Internet (Kulkarni et al., 2012; Poston and Speirer, 2005), The reported average 

star ratings are especially useful for experience goods, where review depth has been shown to be less 

relevant (Mudambi and Schuff, 2010). In addition, the use of just one important attribute was shown to 

be positively correlated with the value of saving time and cognitive resources (Payne et al., 1996). In 

consumer research, people were shown to have different invested times when evaluating products or 

services (Okada, 2005). Meyers-Levy (1988) argued that males had a tendency not to process all 

available information as a basis for judgment, taking decisions more quickly than females. In contrast, 

females rely on a broad variety of information and they usually attempt an elaboration of all available 

information unless they are restricted by memory constraints. In the hotel and food industry, decision- 

making processes were shown to be more time consuming among females and high age groups, while 

income seems not to play an effect (Barber et al., 2006; Han et al., 2009). Based on the above 

arguments and on the evolutionary psychology literature on impulsiveness (Cross et al., 2011; Wilska, 

2003), we argue that there is a demographic effect in the trade-off between using multiple pieces of 

information and saving time and cognitive effort. More formally, to highlight how heterogeneous  

people are in these dimensions, we hypothesize that: 

  

H3: People from different ages and gender will use different strategies according to their 

willingness to invest time. This may influence the way people are affected by popularity 
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3. METHOD 

An on-line experiment was conducted to test the above hypotheses. We did not resemble the whole 

consumer decision making process but we just replicated the key step from the total set to the 

consideration set, as discussed in Jones and Chen (2011) and Sirakaya and Woodside (2005). 

Nonetheless, measuring the effect of popularity (number of reviews) for good and bad quality scores is 

important, as the ranking of review websites such as TripAdvisor.com is based on these two variables.  

 

3.1 Participants  

We targeted on-line consumers drawn from an Italian web community with an email invitation. 

The e-mail stated that two researchers were conducting a study on on-line reviews, and that participants 

had a chance of winning a 25 euros mobile phone voucher. The overall response rate was 60%, above 

the usual threshold found in tourism and hospitality studies (Hung and Law, 2011). As in Sparks et al. 

(2013), we elicited the familiarity with hotel bookings and with online reviews. Most participants 

(91%) had experience with booking hotels online, most (87%) also indicated that they relied on reviews 

when making a hotel booking, and a majority (65%) said that they often or always used the Internet to 

actually book their hotel. We reasonably assumed that this sample, well balanced between males and 

females, was suitable to represent the online users of travel websites. 

Participants accessed and took the on-line experiment through a link that was sent to them from 

December 2012 to January 2013. The financial incentive was sent to three randomly extracted 

respondents. 

Of the 168 individuals who participated in the on-line experiment, 161 respondents passed data-

quality checks. The excluded respondents consisted of those who failed to pass the Kendall’s tau test 

for consistency in the conjoint exercise (see section Analysis). Table 1 reports the demographics of the 

respondents included in the analysis. Regarding the variable age, we categorized people in two groups, 
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young and non-young, based on a threshold at age 25. This threshold is in line with what is generally 

used for the adoption of new technologies in tourism marketing by consumers (Pagani, 2004; Wood, 

2004).  

[Table 1 here] 

3.2 Apparatus 

Visual stimuli, as suggested by Holbrook and Moore (1981), were used instead of the more 

traditional method of verbal descriptions of products and their relative attributes. Thus, we created 

illustrations adapted from the website TripAdvisor.com. Figure 1 shows an example of the cards 

presented to a respondent. 

[Figure 1 here] 

3.3 Procedure 

Once participants accessed the website, they were informed that they were going to rank their 

preferences regarding hotels based on two dimensions: the number of reviews and the online reputation 

score which, as mentioned before, represented the constructs of popularity and quality respectively. 

Participants were told that they would evaluate 15 cards with different situations. Before assessing the 

15 cards, the form elicited information on participants’ demographical characteristics (gender and age) 

and on the familiarity with hotel bookings, as explained in detail above. After the whole process, but 

before the ‘thank you’ page, they were invited to provide comments, via an open-ended question, 

specifically on the clarity of the instructions and the strategies used to come up with a decision. 

3.4 Design 

A rank conjoint experiment, which measures the importance of the features of a good or service by 

asking respondents to rank different scenarios within the choice set (Green and Rao, 1971; Gustaffson 
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et al., 2001), was adopted for the framework of this study. The goal was to elicit the weight 

respondents give to quality (score/rating) and popularity (number of reviews) when browsing hotel 

comparison websites with the intention to book a hotel. Through careful consideration and examination 

of hotel comparison websites, we decided to operationalize quality and popularity at 7 levels (Table 2). 

For quality, we included all ratings from 2 to 5 in 0.5 unit increments, as half ratings are quite common 

on hotel comparison websites and the typical range of reviews goes from 2 to 5 (Mazzarol et al., 2007). 

For popularity, we included a very large range of reviews, from 1 to 4096 through a geometric 

progression with common ration 4, to conform to empirical previous results where the effect of 

popularity on sales was shown not to be linear and of a similar range (Chevalier and Mayzlin, 2006; 

Forman and Batia Wiesenfeld, 2008). 

[Table 2 here] 

Using combinations of one level from each of these two attributes to characterize a scenario, there 

are 49 (7 x 7) different hotel profiles that could be generated. However, in order to ensure feasibility of 

the conjoint exercise, to maximize participation, and to avoid respondents’ fatigue, we decided to 

expose respondents to subsets of 15 scenarios only. Therefore based on Dean and Voss (1999), we 

created a D-optimal block design for a full profile experiment: 15 different versions (blocks) of 15 

different hotel profiles were generated from the 49 possible scenarios. Each respondent was randomly 

assigned to one version and was exposed to all 15 hotel profiles within the selected version. We 

considered this design to be appropriate, in relation to the sample size, to allow robust estimation of 

linear, quadratic, and cubic effects for quality, popularity, and their interaction term. Each respondent 

was exposed to all 15 scenarios at the same time, so that he or she could make appropriate comparisons 

and assign the rank to each profile, from 1 (most preferred scenario) to 15 (least preferred scenario). To 
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confirm the feasibility and simplicity of the task, none of the respondents complained about the length, 

complexity, or composition of the questionnaire in the final open-ended question. 

3.5 Analysis 

In the conjoint framework adopted for this project, we assume that a respondent’s ranking of each 

scenario can be decomposed into the sum of contributions from the various attributes. For each 

attribute, the contribution is the part-worth associated to the level describing the scenario. In other 

words, the part-worth is the marginal utility of the attribute in the individual’s ranking of the conjoint 

scenario. Main outcome of conjoint analysis is the estimation of the part-worth associated to each level 

of each attribute considered in the conjoint design. 

We used hierarchical Bayes (HB) regression (for review, see Rossi et al., 2005) to estimate the 

part-worths associated to the levels of the two attributes included in the study. This approach avoids 

potential estimation bias from unobserved preference heterogeneity in rank-conjoint by estimating a 

distribution of preferences for each parameter in the model. HB part-worths are estimated for each 

respondent (individual-level analysis). The coefficients from this regression model were also the basis 

for the estimation of the relative importance of the attributes of the study. HB coefficient estimation 

was conducted using the function estimate.Rank.VaryingTasks available in the package R-sw Conjoint 

(Demia Studio Associato, 2012), the only package we are aware of especially dedicated to the analysis 

of rank conjoint data. 

To select the most appropriate model for the data, we tested a number of alternative formulations. 

While in most conjoint studies interaction levels effects are often disregarded as they add complexity to 

both the design and the analysis, we thought considering and testing them to be essential, as we 

believed that the preference associated to quality depends on popularity. In addition, for each partial 

utility we extended the standard linear specification, proposing a nested structure that allows for 

quadratic and cubic terms. In fact, we believed that preference might not necessarily be linearly 
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associated with quality and/or popularity. Model selection was based on the Akaike information 

criterion (AIC), a popular measure of the relative goodness of fit of a model (for review, see Bozdogan, 

1987). At the core of the AIC there is the sum of squared residuals, where a residual is the difference 

between the observed rank of a conjoint scenario and its estimated rank. The model selection process 

led us to identify the following model as the best one: quality (quadratic), popularity (quadratic), 

interaction quality by popularity (linear).
1
  

Therefore, conjoint preferences were modeled using a utility function that is assumed to be linear 

in the parameters of the form: 
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(1) 

where quality and popularity are the levels of the same attributes, quality*popularity is the 

interaction term, V is considered to be the systematic component of utility and is a function of the 

levels of the two attributes and of their interaction term. The s are the part-worth utilities associated to 

the various function terms and  represents the unobserved error term. Table 3 presents the estimates 

for the part-worth utilities, all statistically significant. 

[Table 3 here] 

Analysis of the observed and the estimated ranks was also used to identify inconsistent respondents 

to be excluded from the subsequent analysis. More precisely, we computed Kendall’s tau rank 

correlation coefficient, a statistic commonly used to measure the similarity of the orderings of two 

measured quantities, between the observed and estimated rank of each of the scenarios respondents 

have been exposed to. By computing a Kendall’s tau coefficient for each participant, we could identify 

                                                 
1
 Detailed information on the model selection exercise is available on request 
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7 respondents with a low score, an evident sign of poor data quality. We decided to exclude them from 

the original sample of 168. Reasons for a low Kendall’s tau coefficient could be lack of understanding 

of the exercise, low motivation or lack of engagement. Fatigue, which is a typical cause of poor data 

quality in conjoint experiments, can be safely excluded from the likely sources of inconsistency for this 

study as the experiment required at most 7 minutes. 

4. RESULTS 

After obtaining the individual-level part-worths for the two attributes and their interaction term, we 

retrieved the total preference in terms of rank for each possible scenario for each respondent and then 

we averaged the results over the whole sample.  

4.1 Quality versus popularity 

We used conjoint analysis to estimate the relative importance of the studied attributes. In 

particular, relative importance of an attribute is a function of the variation in preference associated with 

a variation in the attribute’s levels.   In other words, the bigger the difference between the highest and 

the lowest utility levels of an attribute, the more significant is its partial contribution to preference. This 

can help us to test H1, showing the relative importance of popularity. 

 [Figure 2 here] 

Figure 2 shows the average impact for the two stimuli: quality and popularity. It is apparent that 

quality is the most important stimulus, with an average impact score of 67.4%. However, popularity 

counts quite a lot, 32.6%. 

Figure 3 shows the preferences of the stimulus levels for quality and popularity, letting the reader 

to see the effect of the parameters presented in Table 3. The direction of the arrows represents the 

transition of the underlying dimension from low to high. It is worth recalling here that popularity is 

measured in geometric progression (i.e., from 1 to 4096 reviews), then changes of one level in 
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popularity measure the impact on preference of two consecutive values of that scale. Quality is 

confirmed to be the main driver for preference. As one would expect, low quality is associated with 

low preference and high quality with high preference. This association is clearly non-linear: impact of 

quality on preference is high for low quality levels and it decreases for higher quality levels, showing 

decreasing returns. There is also a clear interaction with popularity. In fact, impact of popularity on 

preference is higher when quality is high, while the impact is considerably lower, but still positive, 

when quality is low. If we take the point where quality is at the minimum level, 1, and popularity at its 

maximum, 7, we can see that this condition is significantly preferred to the one where both quality and 

popularity are at their minimum, 1 (t(160) = 17.18, p < .001).  

[Figure 3 here] 

These results support and go beyond H2c: not only the effect of popularity is not symmetric, being 

different in absolute value when quality is high or low, but it is always positive, giving credit to the 

theory that people tend to go with the crowd. Therefore, H2a, the negative role of popularity when 

quality is low is not supported by the analysis. The role of normative social influence, H2b, is indeed 

more relevant. 

4.2 The impact of heterogeneity of respondents’ preference on the overall ranking of hotels 

In order to investigate to what extent quality and popularity impacted differently depending on the 

type of respondent, participants were categorized in relation to their demographics. Results for the 

demographic segments are presented in Table 3.  

 [Table 4 here] 

Young male respondents tend to consider mostly quality when making a ranking decision. Their 

preferences differ significantly from older males (t(84) = 7.63, p <.001), young females (t(74)=9.46, p 
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<.001) and older females (t(87)=11.24, p <.001). Young females perform similarly to older males, 

while older females differ significantly in their preferences from younger females (t(73)=3.19, p 

<.005), taking more into account the number of reviews when booking a hotel.  

To strengthen the heterogeneity analysis, we identified homogeneous groups through segmentation 

analysis. Based on the individual-level part-worths for the two attributes and their interaction term, we 

run a segmentation analysis to identify groups of respondents with similar preference functions. In 

particular, we used latent class analysis (LCA) which is a statistical method for finding groups or 

subtypes of related cases (latent classes) in multivariate data (for review, see Bartholomew et al., 2011; 

Hagenaars and McCutcheon, 2005). Input variables for the LCA were the part-worth utilities which 

characterize the preference in choosing a hotel based on the number of reviews and average of 

consumers’ reputation. We chose a solution based on the average weight of evidence (AWE) because 

this metric combines information on model fit and information on classification errors (Banfield and 

Raftery, 1993; Celeux et. al., 1997). The chosen solution, the one with the lowest AWE, is 

characterized by three groups. Table 4 shows the size of the groups and their profiling in terms of 

importance scores and demographics. Figure 4 shows the preferences of the stimulus levels for quality 

and popularity for each of the three groups. 

 [Table 5 here] 

[Figure 4 here] 

Group 1 is predominant and is characterized by people who take into account both quality and 

popularity when making a choice, with quality however being around twice as important as popularity. 

Group 2 considers quality as the main driver of choice while popularity clearly plays only a little role. 

For group 3, popularity plays a major role, being almost as important as quality in the decision process. 
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There is a clear interaction effect: popularity gains importance for high levels of quality in group 1 and 

group 3, while in group 2 the effect of popularity remains low across all the levels of quality. We can 

clearly see from Table 4 that the second group is mainly composed by young males while older females 

are predominant in group three. The first group, which is the biggest one, is more heterogeneous and 

primarily composed by young females and older males. These results confirm that the demographical 

profile is a clear driver of choice (H3).  

4.3 Time and decision making 

The third hypothesis suggested that demographics might play a role in the strategy taken to arrive 

at  a decision and this could affect the extent to which people are affected by popularity. In order to test 

this,  we first measured if some groups were focusing only on one attribute in order to arrive at a 

decision. To do so, we artificially created a ranking based on lexicographic preferences. Under this 

ordering structure, consumers strictly prefer a higher quality level, considering popularity to have an 

effect only when quality is equal among hotels. This ranking was then correlated with the actual 

ranking stated by participants. The most used measure of correlation for rank data, Kendall's tau 

coefficient, was higher in the young male group (M = .89, SD = .0733698) than in the other groups (M 

= .79, SD = .12). This difference was significant by means of t test, t (159) = 5.22, p < .001.  

A two-way ANOVA examined the amount of time spent to complete the task across our 

demographic segments. Invested time differed significantly across gender (p < 0.001) and age (p < 

0.001), while there was no significant interaction between gender and age. Tukey post-hoc comparisons 

indicate that the young male group (M = 3.4, 95% CI [3.10 3.69]) invested less time than all the other 

groups. On the opposite, older females invested more time than all the other groups. Figure 5 presents 

graphically the whole set of results.  

[Figure 5 here] 

4.4 Open-ended Remarks and Considerations 
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The open-ended remarks were further examined by the investigators in order to understand the 

basis of the respondents’ decisions. Here we present some of the open-ended remarks of the 

respondents by topic.  

A great majority is arguing that a high stated quality without enough reviews may be a signal of 

unreliability. Interestingly, some respondents identified a threshold of popularity to be trustable.  

Respondent # 114: “4 reviews are not enough to be trustable. A larger number of reviews reduce 

the uncertainty” 

Respondent #130: “with more than 100 reviews I can trust it” 

A considerable number of participants elaborated that price is another key variable, even more 

important among the youngest group, constrained by limited budget. Further, the content of the review 

itself is relevant for some participants, even more than the number of reviews. 

Respondent #55: “I also consider the content of the review” 

Respondent #112: “I would like to see the detailed review” 

Respondent #119: “I also take into consideration the price, and the location of the hotel” 

These comments conform to the theory that reviews are indeed informative (Li and Hitt, 2008) and 

the content of the reviews needs to be properly investigated. 

Concordant to Hypothesis 1, participants’ comments confirmed that hotel consideration 

significantly increases when the number of reviews is high. The finding, supported by the quantitative 

analysis, of a positive effect of popularity even when the on-line reputation is negative was not present 

in respondents’ comments. Based on some respondent comments the opposite would be true. 

Respondent #129: “Many negative reviews are a signal that the hotel is really bad” 
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Respondent #140: “If the hotel has many reviews and low quality average it means it is really 

bad” 

These comments provided by few respondents and to be discussed in the next section, would favor 

H2a, a hypothesis that was not supported by our quantitative analysis. 

 

5. DISCUSSION OF RESULTS AND LIMITATIONS 

The findings of this study show that, whereas average reputation is the most influential stimulus 

when assessing a hotel, popularity, measured as the number of reviews, also has a significant impact on 

preferences. In particular, here we highlight the exact relevance of the number of reviews for different 

levels of on-line reputation, showing that popularity has, on average, a positive effect which becomes 

larger for high levels of on-line reputation. This can help to explain that, although the informative 

effect of something being popular may play a role, the normative social effect, and then popularity per 

se, is relevant. Interestingly, while few participants argued that negative popularity, i.e. many bad 

reviews, has a negative effect on their preferences, there is a large silent majority that does not 

comment on the reasons of their behavior. These show a tendency to consider even negative popularity 

as a signal of quality. This behavior goes against the value of information: more reviews should be 

more informative, therefore more bad reviews should strengthen the idea that the hotel is really bad. 

Also, based on real world evidence, review websites, such as Trip Advisor, are ranking according to 

informational social influence. In this analysis we found that this is not the way people process 

information. 

Heterogeneity across respondents plays a role. Demographics are indeed a moderator of the impact 

of popularity. While young males tend to save time considering just the most relevant attribute, quality, 
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confirming previous literature on impulsiveness, all the other demographic groups and in particular 

older females are weighting popularity much more when they have to state their preference.  

Our study is not without limitations. First, even though we tried to create a sample which  

represents the population of on-line users of travel websites, the composition of our sample is not a 

perfect replication of on-line users of travel websites. Second, participants were responding to a 

scenario and not actually booking and spending their own money. However, the use of a simulated 

consumer experience does not necessarily weaken internal and external validity as previous studies 

have reported (Louviere and Woodworth, 1983; Lynch, J. G., 1982). In addition, by using controlled 

conditions we show how changes in rankings are actually caused by variations in popularity. Third, 

additional consumer information such as the frequency of booking on-line and variables such as hotel 

location and price could have been added to the study. This would have added more detail to the 

general picture, but would have gone beyond the scope of this research. We chose instead to  replicate 

only one step of the consumer decision process. Finally, the scenarios do not show the distribution of 

the hotels ratings. Two similar medium quality hotels in terms of on-line reputation can be the result of 

midpoint ratings or the result of balancing ratings and this could potentially have an impact on 

consumer choice (Eisend, 2006; Purnawirawan et al., 2012). 

 

6. CONCLUSIONS AND IMPLICATIONS 

The wealth of available information on the Internet has increased the need to focus attention across 

the abundance of information sources. This research contributes to knowledge development in 

consumption and in the hospitality industry by examining the impact of popularity (measured as the 

number of reviews), and quality (measured as on-line reputation) provided by former consumers. We 

were particularly interested in testing if consumers tend to prefer popular alternatives even if the crowd 

they are following defines those alternatives as poor and if these effects vary across certain 
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demographics. Our results reveal that the presence of many reviews, despite the on-line evaluation of 

the review itself, creates a positive shift on preference and that something being popular affects 

preferences more among females and older people. A vast majority choose based on the normative 

social influence, while some people go with the informational social influence. We find a silent 

majority that prefers alternatives rated as bad by many other consumers than alternatives which are also 

rated bad but by fewer consumers. This behavior goes against the value of information because the 

judgment of multiple others should provide more certainty about the real quality of a service (Huang 

and Chen, 2006) , as a “talkative minority” argues explaining how it came out with a preference. Other 

studies on silent majorities in consumption often deal with no complainers who experience service 

failure (Chebat et al., 2005; Sheth et al., 2000; Voorhees et al., 2006).  

In order to take into account the preferences of the vast majority, effective ranking mechanism has 

to be applied. If you manage a ranking website showing different hotels, on the one hand our results 

seem to indicate that quality, relative to popularity, is the most efficient stimulus across all the 

segments. On the other hand, ranking mechanisms have to reflect the popularity effect adequately. 

Popularity has a great impact on female and older consumer segments, although still relatively less 

important than quality. So, if you are creating rankings dealing mostly with consumers groups that 

consider popularity as a key variable, focusing on both quality and popularity would be necessary. 

Some psychological extensions of this study can be assessed in future studies. In particular, while 

males and females were already shown to differ in the way they are influenced by others and how this 

effect is moderated by time constraints (Mitchell and Walsh, 2004), it would be important to better 

understand the boundary conditions of such behavior and if other socio-demographic variables, such as 

income and education level, might also play a role. 
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Addressing a gap in research recently highlighted by Serra, Cantallops and Salvi (2014), this study 

has useful implications for hospitality and review website managers. Considering that hotels are facing 

intense competition due to a stagnant economy, managers need to improve their marketing strategies to 

enhance the popularity of their hotels. As in Bennet and Rundle (2004), we find that the rating of on-

line reputation is important but it is not enough. We clearly show that the review being good or bad is 

not the only relevant element; what is also important is having a large volume of reviews. One possible 

explanation is that popularity is more likely to attract the interest of on-line consumers (Zhang et al., 

2010), giving credit to the theory that volume counts more than valence (Liu, 2006). Another 

explanation is that people may infer a high number of reviews as a signal of something valuable to try 

and not as a sum of negative experiences. Perhaps assuming that there are missing attributes not 

detected in the rating. Future research should help to disentangle these alternative explanations and 

extend the study to examine further steps in the consumer decision process. For instance, it would be 

interesting to assess that part of the process where consumers move from the consideration set to the 

choice set, evaluating hotel attributes in more detail.  
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TABLES AND FIGURES 

 

Table 1 - Demographics of the respondents included in the analysis 

Age \ Gender Male Female Total 

<25 yo 45 31 76 

25+ yo 41 44 85 

Total 86 75 161 

 

Table 2 – Attributes and levels included in the conjoint exercise 

Attribute Level 1 

Low 

Level 2 

 

Level 3 

 

Level 4 

 

Level 5 

 

Level 6 

 

Level 7 

High 

Rating 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Number of 
reviews 

1 4 16 64 256 1024 4096 

 

 

 

 

Table 3 – Parameter Estimates of the HB model 

Coeff. Attribute Effect Value 
Standard 

Error 
p-value 

0̂  
intercept - 0.715 0.032 <0.001 

1̂  
quality Linear 1.997 0.046 <0.001 

2̂  
quality Quadratic -0.334 0.027 <0.001 

3̂  
popularity Linear 0.262 0.031 <0.001 

4̂  
popularity Quadratic -0.068 0.031 0.028 

5̂  
quality*popularity Linear 1.713 0.063 <0.001 

 

 

Table 4 – Relative importance scores 

Gender Total Male Female 

Age  <25 yo 25+ yo <25 yo 25+ yo 

Sample size 161 45 41 31 44 

Quality 67.4% 77.7% 64.3% 66.2% 60.5% 

Popularity 32.6% 22.3% 35.7% 33.8% 39.5% 

St. dev. 10.4% 5.1% 10.5% 5.4% 8.9% 
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Table 5 –LCA groups with profiling 

Group n Imp. 

Quality 

Imp. 

Popul. 

Male <25 

yo 

Male 25+ 

yo 

Female 

<25 yo 

Female 

25+ yo 

1 61 66.0% 34.0% 4.4% 53.7% 93.5% 18.2% 

2 51 77.3% 22.7% 95.6% 14.6% 6.5% 0.0% 

3 49 58.8% 41.2% 0.0% 31.7% 0.0% 81.8% 

 

 

Figure 1 – Screenshot of the cards presented to a respondent 
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Figure 2 – Relative importance scores 

 

  

Figure 3 – Rank preference for any combination quality – popularity (n = 161) 
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Figure 4 – Rank preference for any combination quality – popularity for each group 

Group 1 Group 2 

  

Group 3  

 

 

Figure 5 - Invested time across demographic groups 

 


