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Abstract: 

Big Data is a revolutionary phenomenon which is one of the most frequently 

discussed topics in the modern age, and is expected to remain so in the foreseeable 

future. In this paper we present a comprehensive review on the use of Big Data for 

forecasting by identifying and reviewing the problems, potential, challenges and most 

importantly the related applications. Skills, hardware and software, algorithm 

architecture, statistical significance, the signal to noise ratio and the nature of Big 

Data itself are identified as the major challenges which are hindering the process of 

obtaining meaningful forecasts from Big Data. The review finds that at present, the 

fields of Economics, Energy and Population Dynamics have been the major 

exploiters of Big Data forecasting whilst Factor models, Bayesian models and Neural 

Networks are the most common tools adopted for forecasting with Big Data. 
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1 Introduction 

The Big Data phenomenon has revolutionized the modern world, and is now the 

hottest Data Mining topic according to polls conducted by kdnuggets.com, with the 

current trend expected to continue into the foreseeable future. At present there is no 

unified definition of Big Data, however Shi (2014) presented two definitions for Big 

Data. For academics, Big Data is “a collection of data with complexity, diversity, 

heterogeneity, and high potential value that are difficult to process and analyze in 

reasonable time”, whilst for policy makers, Big Data is “a new type of strategic 

resource in the digital era and the key factor to drive innovation, which is changing 

the way of humans’ current production and living” (Shi 2014, p. 6). As Varian (2014, 

p. 24) accurately asserts, “Big data will only get bigger”. This increased availability of 

data, which has been further escalated through the evolution of Big Data is now a 

major concern for a large number of industries (Hassani et al., 2014). It is not entirely 
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surprising that this increasing availability of data is causing anxiety, and this is 

evident through the sound example presented by Smolan and Erwitt (2012) where 

the authors state that in the modern age, we generate 70 times the information 

stored in the library of congress simply within the first 24 hours of a new born baby’s 

life. In another report, it is noted that South Korea is currently upgrading its data 

storage capabilities associated with its national weather information system by 

increasing the capacity to 9.3 petabytes (Hamm, 2013) and these examples provide 

an indication of the rate at which Big Data continues to grow. The times have truly 

‘changed’ and we now live in an age where Big Data is identified as the leading edge 

for innovation, competition and productivity (Manyika et al., 2011). For example, 

digital data was expected to grow from 161 exabytes in 2006 to 2837 extabytes in 

2012 and is now forecasted to reach 40 trillion gigabytes in 2020 (Gantz and 

Reinsel, 2012). Moreover, in the year 2008 alone the world had produced 14.7 

exabytes of new data (Bounie, 2012).  

The emergence of Big Data is now history. What is of importance is how 

organizations develop the tools and means necessary for reacting to, and exploiting 

the increasingly available Big Data for their advantage. In line with this, Varian 

(2014) notes that there is a need for the adoption of powerful tools such as Data 

Mining techniques which can aid in modelling the complex relationships that are 

inherent in Big Data. Moreover, it is noteworthy that the recent financial crisis has 

seen an increase in the prolific importance of risk management in organizations, and 

as Silva (2013) states, companies are now seeking to use risk management as a tool 

for maximising their opportunities whilst minimising the associated threats. Herein 

lays the opportunity, as Big Data forecasting has the ability to improve organizational 

performance whilst enabling better risk management (Brown et al., 2011). As 

Bernstein (2013) states, Big Data and predictive analysis goes hand in hand in the 

modern age with companies focussing on obtaining real time forecasts using the 

increasingly available data.  

However, not all authors agree that Big Data is a revolutionary phenomenon. 

Poynter (2013) states Big Data will be more insightful in simply connecting the dots 

as opposed to painting a whole new picture. For Walker (2014), 2013 was the year 

for getting accustomed to Big Data and 2014 is the year for truly exploiting Big Data 

towards lucrative gains. We share and subscribe to Walker’s (2014) perception on 

Big Data. Accordingly, we present this review paper which aims to: provide an 

informative review of the forecasting techniques utilized for forecasting with Big Data; 

provide a concise summary of the contributions of yesteryear; and identify 

challenges which need be overcome as the world gears to embrace and live in the 

presence of Big Data. In the process, we are successful in reviewing a wide range of 

forecasting models which have been adopted for forecasting with Big Data. In order 

to enable the reader to have a clear understanding of the history, we present the 

review of applications differentiated by the relevant field (i.e., economics, finance, 

and energy among others) and topic where appropriate. Those interested in tools 
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which can be used for manipulating Big Data are referred to Varian (2014, Table 1, 

p. 5) 

The remainder of this paper is organized as follows. In the following section 

we discuss the problems and potential behind Big Data forecasts whilst the 

associated challenges are discussed in Section 3. Section 4 provides a review of 

statistical and data mining techniques that have been evaluated for the purpose of 

forecasting with Big Data and the paper ends with some conclusions in Section 5.  

 

2 The ‘Problem’ and ‘Potential’ of Big Data Forecasting  

There exists a widespread belief that Big Data can aid in improving forecasts 

provided that we can analyse and discover hidden patterns, and Richards and King 

(2013) agree that predictions can be improved through data driven decision making. 

Tucker (2013) believes Big Data will soon be predicting our every move, and 

according to Einav and Levin (2013), Big Data is most commonly sought after for 

building predictive models in a world where forecasting continues to remain a vital 

statistical problem (Hand 2009). We then come to the question, what is the problem 

behind forecasting with Big Data? The simplest explanation is that the traditional 

forecasting tools cannot handle the size, speed and complexity inherent in Big Data 

(Madden 2012). According to Arribas-Bel (2013) this is owing to the lack of a 

structure in these data sets and the size. As a result, traditional techniques are 

seldom preferred for tackling Big Data (Arribas-Bel, 2013). Therefore, forecasting Big 

Data poses a challenge to organizations, and this is further highlighted by the 

European Central Bank which is conducting an entire workshop dedicated to using 

Big Data for forecasting1. Laney (2001) is first to discuss the importance of data 

volume, velocity and variety in the context of Big Data. A decade later, Dumbill 

(2012), Press (2013), and Shi (2014) identifies these ‘3V’s’ as three concepts which 

define the dimensions of Big Data. 

Rey and Wells (2013) believe Data Mining techniques can be exploited to 

help forecasting with Big Data, a view supported by Varian (2014). However, it 

should be noted that in the past, Data Mining techniques have mainly been used on 

static data as opposed to time series (see for example Berry (2000); Pyle (2003); 

Krugan and Musilek (2006); Han et al. (2012)). Interestingly, Cukier (2010) finds fault 

with Big Data for the recent financial crisis as he believes the financial models 

adopted were unable to handle the huge amounts of data that was being inputted 

into the systems, and thereby resulted in inaccurate forecasts.  

The opportunities for gains through forecasting with Big Data are diverse. At 

present, there is increased research into using Big Data for obtaining accurate 

                                                           
1http://www.ecb.europa.eu/events/conferences/html/20140407_call_international_institute_of_forecasters.
en.html 
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weather forecasts and the initial results suggests that Big Data will benefit weather 

forecasts immensely (Knapp 2013; Hamm 2013). In fact, weather forecasting has 

been one of the main beneficiaries of Big Data, but the forecasts are still inaccurate 

beyond a week (Silver 2013). The fashion industry too is exploiting Big Data 

forecasts with companies such as EDITD (http://editd.com/) using Big Data for 

forecasting the fashion future by collecting data from social media (Kansara, 2011). 

According to Bacon (2013), the airline industry is yet another field where Big Data 

forecasting is crucial. An interesting success story behind forecasting with Big Data 

is Netflix and its use of Big Data forecasts for decision making prior to commencing 

production of its own TV show ‘House of Cards’, and this resulted in increased 

revenue for the company (KRWG, 2013). The potential underlying Big Data forecasts 

is truly astonishing and at times ‘scary’ as was evident in the experience of an 

individual in a story narrated by Duhigg (2012) where an irate customer walks into a 

‘Target’ store in Minneapolis to complain about the store sending coupons relating to 

pregnancy products to his high school daughter. A few weeks later the same 

customer apologizes to the manager as following a discussion with his daughter it 

was revealed that she was in fact pregnant (Duhigg, 2012).  

 

3 Challenges for Forecasting with Big Data  

In this section we focus mainly on the challenges which need be overcome when 

forecasting with Big Data. It is imperative to note that the availability of Big Data 

alone does not constitute the end of problems (Bacon, 2013). A good example is the 

existence of a vast amount of data on earthquakes, but the lack of a reliable model 

that can accurately predict earthquakes (Silver, 2013). Some existing challenges are 

related to hypothesis, testing and models utilized for Big Data forecasting (Silver 

(2013); Poynter (2013)) whilst West (2013) identifies as an added concern, the lack 

of theory to complement Big Data. Besides these, we have identified the following 

varied challenges associated with forecasting Big Data that needs to be given due 

consideration.  

3.1 Skills 

The skills required for tackling the problem of forecasting with Big Data, and 

the availability of personnel skilled for this particular task is one of the foremost 

challenges. As Arribas-Bel (2013) states, the advanced skills required to handle Big 

Data is a major challenge whilst Poynter (2013) notes there is a short supply of data 

scientists equipped with the skills required to tackle Big Data. Thornton (2013) also 

agrees that there is a shortage of people who can understand Big Data. In a world 

where academics, researchers and statisticians are highly experienced in using 

traditional statistical techniques for over fifty years to obtain accurate forecasts, the 

availability of Big Data in itself is challenging. Skupin and Agarwal (2007) states that 

the inaptness of traditional statistical techniques which are meant for obtaining 

http://editd.com/
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forecasts from traditional data are hindering the effectiveness and application of 

forecasts from Big Data and Arribas-Bel (2013) shares this same concern. As 

majority of statisticians are experienced in these traditional techniques, Einav and 

Levin (2013) points out that it is a challenge to develop the required skills for Big 

Data forecasting. In order to overcome this issue, it is important that Higher 

Educational Institutes around the globe give due consideration to upgrading the 

educational syllabuses to incorporate the skills necessary for understanding, 

analysing, evaluating and forecasting with Big Data so that the next generation of 

statisticians will be well equipped with the mandatory skills.  

3.2 Signal and Noise 

A more technical, but extremely important challenge in Big Data forecasting is 

identified by Silver (2013). He suggests that noise is distorting the signal in Big Data, 

and that there is an increasing noise to signal ratio visible in Big Data. Silver’s (2013) 

notion is further confirmed via Bańbura and Modugno (2014) who points out that with 

large data sets, extracting the signal is made more complex. A majority of traditional 

forecasting techniques forecast both the noise and signal, and whilst they perform 

relatively well in the case of traditional data sets, the increasing noise to signal ratio 

seen in Big Data is more likely to distort the accuracy of forecasts. This suggests that 

there is a need for employing and evaluating the use of forecasting techniques which 

can filter the noise in Big Data and forecast the signal alone. A sound example of a 

filtering technique is Singular Spectrum Analysis (SSA) which seeks to filter the 

noise from a given time series, reconstruct a new series which is less noisy, and 

then use this newly reconstructed series for forecasting future data points. The 

superiority of the methodology of SSA over traditional techniques has been proven 

recently in a variety of fields where the data sets have comparatively smaller signal 

to noise ratios in relation to the considerably higher signal to noise ratios expected in 

Big Data (see for example, Hassani et al. (2009;2013;2015), Beneki and Silva 

(2013), Silva (2013) and Silva and Hassani (2015)). Future research should 

concentrate on evaluating the applicability of such techniques for filtering the noise in 

Big Data to enable accurate and meaningful forecasts. 

3.3 Hardware and Software  

Arribas-Bel (2013) was of the view that current statistical software is not able 

to tackle Big Data forecasting whilst Needham (2013) notes the possible need for 

supercomputers to handle Big Data forecasts. Recently, Hydman and 

Athanasopoulos (2013) have developed automatic forecasting techniques which can 

provide output within a matter of seconds. However, their reliability in the face of Big 

Data is yet to be tested. Another issue directly related to hardware and software is 

that personally, we have experienced statistical programs crashing in the face of few 

thousand observations owing to deficiencies in random access memory (RAM) or the 

associated software. As such it is prudent to agree that computing capabilities and 
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the structure underlying statistical software will require enhancements in order to be 

able to successfully handle the increased data input.  

3.4 Statistical Significance  

Lohr (2012) suggests there is an increased threat of making false discoveries 

from Big Data. This is because even though obtaining forecasts using an appropriate 

technique appears to be the major challenge, it is not quite so. Given the sheer 

quantity of data that needs to be processed and forecasted, with Big Data there is an 

increased complexity in differentiating between randomness and statistically 

significant outcomes (Efron 2010). As such there is an increased probability of 

reporting a chance occurrence as a statistically significant outcome and misleading 

the stakeholders interested in the forecast. 

3.5 Architecture of Algorithms 

Data Mining techniques are suggested as important methods which could be 

used for forecasting with Big Data. However, these techniques have been designed 

to handle data of comparatively smaller sizes as opposed to the size of Big Data. 

Therefore, Data Mining algorithms are often unable to work with data that is not 

loaded on to its main memory, and thus requires the movement of Big Data between 

locations which can incur increased network communication costs (Jadhav 2013). 

The architecture of the analytics needs to be redesigned so that it could handle both 

historical and real time data (Jadhav 2013), and the Lambda architecture proposed 

in Marz and Warren (2013) is a good example of research currently seeking to 

overcome this issue. A detailed evaluation of challenges associated with the 

application of Data Mining techniques to Big Data (explained in the context of official 

statistics) can be found in Hassani et al. (2014).  

3.6 Big Data 

Big Data itself is a challenge for forecasting as a result of its inherent 

characteristics. Firstly, Big Data evolves and changes in real time, and as such it is 

important that the techniques used to forecast Big Data are able to transform 

unstructured data into structured data (Shi 2014), accurately capture these dynamic 

changes and detect change points in advance. Secondly, there are challenges 

stemming from Big Data’s highly complex structure and as Einav and Levin (2013) 

point out, it is a challenge to build forecasting models that do not result in poor out-

of-sample forecasts owing to the ‘over use’ of potential predictors. Factor modelling 

which is discussed in the following section is a potential cure for this challenge, but 

more devoted research is needed to overcome the issue completely.  

 

4 Applications of Statistical and Data Mining Techniques for Big 

Data Forecasting 
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In this section we identify existing applications of statistical and Data Mining 

techniques for forecasting with Big Data. We have summarized these based on the 

related field and topic (where relevant) in order to provide the reader with a more 

rewarding experience. At the outset, it is noteworthy to mention that Forni et al. 

(2000), and Stock and Watson (2002) are closely associated with the developments 

of econometric techniques for analysis and forecasting with Big Data.  

4.1 Forecasting with Big Data in Economics 

Researchers in the field of Economics have been major exploiters of Big Data for 

forecasting various economic variables. Camacho and Sancho (2003) used a 

Dynamic Factor Model (DFM) based on the methodology presented in Stock and 

Watson (2002) to forecast a large dataset involving Spanish diffusion indexes 

which they describe as an exhaustive description of the Spanish economy. DFM 

models are an extension of Stock and Watson’s (2002) factor models and are 

frequently used for forecasting with Big Data. However, Diebold (2003) asserted 

that the use of DFM for macroeconomic Big Data forecasting is flawed as it is 

based on linear models, and also as Big Data is more likely to be nonlinear. Over 

time through the work of Stock and Watson (2003), Forni et al. (2005) and 

Kapetanios (2009), the DFM technique was improved, thus enabling it to handle 

Big Data more appropriately.  

The application of Maximum Likelihood estimates of Factor Models for Big Data 

forecasting has been evaluated by Doz et al. (2012) via a simulation study where 

the authors find this approach to be effective and efficient. A seasonal AR model 

was used to show how Big Data from the Google search engine can be used to 

predict economic indicators in Choi and Varian (2012). Gupta et al. (2013) used a 

multivariate factor-augmented Bayesian shrinkage model on Big Data comprising 

of 143 monthly time series to forecast employment in eight sectors of the U.S. 

economy. Big Data relating to various exchange rates are used to forecast the 

Euro, British Pound and Japanese Yen in Banerjee et al. (2013) where the 

authors find their proposed Factor-augmented Error Correction Model (FECM) 

outperforming a Factor-augmented VAR (FAVAR) model at accurately predicting 

the three major bilateral exchange rates. Bańbura et al. (2014) proposed an 

algorithm based on Kalman filtering for large VAR and DFM models to enable 

obtaining conditional forecasts, and providing a scenario analysis for the 

European economy using 26 macroeconomic and financial indicators for the Euro 

area.  

In what follows, we further group the applications of Data Mining and 

statistical techniques for forecasting with Big Data in the field of Economics into 

topics based on the use of Big Data to forecast economic variables.   

- Gross Domestic Product (GDP) 



8 
 

Schumacher (2007) evaluated the forecasting performance of Factor models 

using Static and Dynamic Principal Components and Subspace algorithms for 

State Space models. He finds Factor models outperforming AR models at 

forecasting a large panel of quarterly time series relating to German GDP. 

Moreover, the Subspace Factor Model and Dynamic Principal Component model 

is seen outperforming the Static Factor Model, but this ranking depends greatly 

on the correct specification of the model parameters (Schumacher 2007). A large 

factor model which uses an Expectation Maximization (EM) algorithm combined 

with Principal Components is adopted in Schumacher and Breitung (2008) to 

forecast a large dataset comprising of German real-time GDP. They find the 

Mixed Frequency Factor model performing better than simple benchmark models 

but find meagre differences in forecast accuracy between the Factor models 

themselves. Biau and D’Elia (2009) apply the ensemble machine learning 

technique of Random Forests to forecast European Union GDP using large 

survey datasets. They find Random Forests outperforming the AR model and 

forecasts from the ‘Euro zone economic outlook’. Biau and D’Elia (2009) also 

note that Random Forests are popular for its ability of not over-fitting when 

handling a large number of inputs. Altissimo et al. (2010) use monthly 

accumulated Big Data along with a modified DFM to forecast medium-to long run 

GDP growth in the Euro area and finds their model is able to perform better than 

Bandpass Filter in terms of fitting and change point detection. Carriero et al. 

(2012a) adopted a Bayesian Mixed Frequency model in combination with 

stochastic volatility for nowcasting with Big Data to obtain real time GDP 

predictions for the United States. Banerjee et al. (2013) used 90 monthly time 

series for the German economy and showed that a FECM can outperform a 

FAVAR model at forecasting real GDP in Germany. Kopoin et al. (2013) used 

factor models with national and international Big Data for improving the accuracy 

of GDP forecasts for Canadian provinces below the one year ahead mark. 

Beyond the one year ahead horizon they find that relying on the provincial data 

alone optimizes the forecasts. Bańbura and Modugno (2014) use factor models 

with maximum likelihood estimation on over 101 series for nowcasting GDP in the 

Euro area. They find that sectoral information is not mandatory for obtaining 

accurate GDP predictions in the Euro area.  

- Monetary Policy  

In Bernanke et al. (2005), a Factor-augmented Vector Autoregressive (FAVAR) 

model was used for Big Data forecasting and structural analysis in order to 

accurately identify the monetary policy transmission mechanism so that the exact 

impact of monetary policy on the economy could be ascertained. They find the 

proposed FAVAR model outperforming the Structural VAR model by exploiting far 

more informative content for assessing the monetary policy transmission 

mechanism. De Mol et al. (2008) use a Bayesian regression model with 

macroeconomic Big Data which includes real and nominal variables, asset prices, 
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surveys and yield curves for forecasting the industrial production and consumer 

price indices. They find the results from the Bayesian regression are highly 

correlated with forecasts from principal components. Alessi et al. (2009) exploits 

a monthly panel dataset comprising of 130 U.S. macroeconomic time series and 

four price indexes (PCE, PCE core, CPI and CPI core) for forecasting inflation 

and its volatility using a DFM in combination with multivariate GARCH models 

(DF-GARCH). They find the DF-GARCH model outperforming GARCH, AR(p) 

and AR(p)-GARCH(1,1) and other univariate and classical factor  models. The 

work of De Mol et al. (2008) was extended in Bańbura et al. (2010) to show that 

combining VAR with Bayesian Shrinkage can improve forecasts. The authors 

conclude that Bayesian VAR models are appropriate for Big panel Data. Bordoloi 

et al. (2010) developed a DFM to forecast India’s industrial production and price 

level, and cited the DFM model’s ability to handle many variables found in Big 

Data as the reason behind its selection. Here, they find the DFM model 

outperforming an Ordinary Least Squares (OLS) model. Figueiredo (2010) 

exploits 368 monthly time series which include a variety of economic variables 

alongside a Factor model with Targeted Predictors (FTP) for forecasting Brazilian 

inflation. They find the FTP outperforming VAR, Bayesian VAR and a Principal 

Component based Factor model at forecasting Brazilian inflation. Carriero et al. 

(2011) considered Big Data relating to 52 U.S. macroeconomic time series taken 

from Stock and Watson (2006) along with a Bayesian Reduced Rank multivariate 

model for forecasting industrial production and consumer price indices and the 

federal funds rate. Their results are compared against models based on Rank 

Reduction, which include Bayesian VAR models, Multivariate Boosting and the 

Factor model from Stock and Watson (2002). They find that combining Rank 

Reduction with Shrinkage can improve forecasts attained when applied to Big 

Data. Giovanelli (2012) proposes the use of Kernel Principal Component Analysis 

(PCA) (as this enables factors to take a nonlinear relationship to the input 

variables) and an Artificial Neural Networks (ANN) model on Big Data containing 

259 predictors for the Euro area, and 131 predictors for the U.S. economy for 

forecasting the industrial production and consumer prices indices. The author 

finds that using the Kernel PCA approach for predicting nonlinear factors yield 

results of better quality in comparison to the linear method, and that the ANN 

method reports a similar forecast to that obtained via the Factor Augmented 

Linear forecasting equation. In Carriero et al. (2012b) a large BVAR model 

coupled with optimised shrinkage towards univariate AR models are used to 

forecast interest rates. The authors find the BVAR model showing small gains 

over random walk forecasts. Banerjee et al. (2013) used a FECM and showed 

that FECM can outperform a FAVAR model at forecasting; U.S. inflation using a 

large panel of 132 U.S. macroeconomic variables, and German inflation and 

interest rate using 90 monthly series for the German economy. Ouysse (2013) 

compared Bayesian Model Averaging (BMA) and Principal Component 

Regression (PCR) on a large panel data set for forecasting U.S. inflation and 

industrial production. Based on the Root Mean Squared Error the author 
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concludes that in general, PCR can provide more accurate forecasts than BMA. 

Koop (2013) exploits the U.S. macroeconomic data set found in Stock and 

Watson (2008) which includes 168 variables along with BVAR model for 

forecasting inflation and interest rates. They find that BVAR models can provide 

better forecasts than those attainable via Factor methods. Using the U.S. 

Treasury zero coupon yield curve estimates, Banerjee et al. (2013) showed that a 

FECM model can outperform a FAVAR model at forecasting interest rates at 

different maturities. 

 

4.2 Forecasting with Big Data in Finance 

Alessi et al. (2009) use their DF-GARCH model for forecasting financial asset 

returns using Big Data relating to transaction prices of stocks traded on the 

London Stock Exchange after cleaning the data for outliers. They find the DF-

GARCH model outperforming a GARCH (1,1) model and that the full BEKK 

specification (Engle and Kroner 1995) provides better forecasts in comparison to 

the DCC specification (Engle 2002).  

 

4.3 Forecasting with Big Data in Population Dynamics 

An imputation based on Neural Networks model was applied to the Norwegian 

population census data of 1990 in order to perform a population census by 

combining administrative data along with data gathered through sample surveys 

(Nordbotten, 1996). A procedure based on Neural Networks was used by Frutos 

et al. (2003) to predict trends in Spanish economic indexes per household and 

censal section by using the Spanish Population and Housing Census, and Family 

Expenditure Survey. Bayesian regression was used by Paaβ and Kindermann 

(2003) for predicting long term illness in Stockport UK by using statistics from the 

1991 census. Cluster Analysis was used as a method for predicting missing data 

by analysing the 2007 census donor pool screening in McCarthy et al. (2009). 

Unlikely representations of farming operations in the initial Census mail list have 

been predicted using Classification Trees according to Garber (2009). Gilary 

(2011) reports the US Census Bureau exploited the Decision Trees technique by 

combining a Stepwise regression with the Classification and Regression Tree 

(CART) concept for recursive portioning of racial classification cells. Moreover, 

there is evidence of Decision Trees being used to forecast survey non-

respondents through the work of McCarthy et al. (2010).   

 

4.4 Forecasting with Big Data in Crime 
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Wu et al. (2007) rely on a Kohonen Neural Network Clustering algorithm to find 

outliers and then forecast fraudulent behaviour in the data intensive Chinese 

telecom industry after evaluating its performance in comparison to a two-step 

Clustering algorithm and K-means algorithm. 

 

4.5 Forecasting with Big Data in Energy 

Wang (2013) uses Support Vector Machines as an auxiliary method, along with 

Neural Networks, and ‘MapReduce’ technology, for forecasting Big Data 

originating from China’s electricity consumption. He finds the developed 

prediction model is able to provide sound portability and feasibility in terms of 

processing Big Data relating to electricity. Nguyen and Nabney (2010) evaluate 

the use of Wavelet Transform (WT) in combination with a variety of models such 

as GARCH, Linear regressions, Radial Basis functions and Multilayer 

Perceptrons (MLP) to forecast UK gas price and electricity demand by exploiting 

Big Data from the British energy markets. They find that the use of WT and 

adaptive models can provide considerable improvements to forecasting accuracy. 

The conclusion here is that adaptive models combining WT with either MLP or 

GARCH are the optimal models for forecasting gas price and electricity demand 

based on the lowest mean squared error.  Fischer et al. (2013) evaluates the use 

of Exponential Smoothing and ARIMA models in combination with a model 

configuration advisor to forecast energy demand using Big Data from an energy 

domain. 

 

4.6 Forecasting with Big Data in Environment 

Sigrist et al. (2012) utilizes Stochastic Advection Diffusion Partial Differential 

Equations (SPDEs) to improve the precipitation forecasts for northern 

Switzerland using Big Data from a numerical weather prediction model. They find 

that following the application of SPDE, the forecasts are greatly improved in 

comparison to the raw forecasts attained via the numerical model. 

 

4.7 Forecasting with Big Data in Biomedical Science  

Lutz and Buhlmann (2006) provide theoretical evidence for the applicability of 

Multivariate Boosting for forecasting with Big Data. They propose a Multivariate 

L2 Boosting method to be used with multivariate regression and can also be 

applied to a VAR series. An application to 795 Arabidopsis thaliana genes is used 

as an example to show the appropriateness of the proposed method. 
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4.8 Forecasting with Big Data in Media 

Using data on hundreds and thousands of Youtube videos, Gursun et al. (2011) 

show an ARMA model with Singular Value Decomposition can be used for 

analyzing and forecasting video access patterns. They find that for rarely 

accessed videos Hierarchical Clustering can provide the better forecasts whilst 

for daily accessed videos PCA can provide an efficient forecast. 

 

5 Conclusions 

Big Data will continue to grow even bigger in the years to come, and if organizations 

are not inclined and willing to embrace the challenges, develop and employ the 

mandatory skills, they will find themselves in dire straits. In this review which is 

focussed on forecasting with Big Data, we have initially identified several problems 

and outlined the potential that Big Data has to offer and generate lucrative outcomes 

provided that we devote sufficient time and effort to overcome the identified issues. 

Thereafter we note a set of key challenges which at present hinder and impede the 

accuracy and effectiveness of Big Data forecasts.  

 In terms of the applications of statistical and Data Mining techniques for 

forecasting with Big Data, based on past literature it is evident that Factor models 

are the most common and popular tool currently used for Big Data forecasting whilst 

Neural Networks and Bayesian models are two other popular choices. The review 

also finds the field of Economics to be the most popular field in terms of exploitation 

of Big Data for forecasting variables of interest with the topics of GDP and Monetary 

Policy being the recipients of majority of the attention. The fields of Population 

Dynamics and Energy appear to be the second and third most popular based on 

published research. It is evident that there remains vast scope for research into 

forecasting with Big Data and that such work has the potential to yield better 

techniques which can enhance the forecasting accuracy. For example, it would be 

interesting to consider evaluating the use of a noise filtering technique such as 

Multivariate Singular Spectrum Analysis for forecasting with Big Data as this could 

aid in overcoming one of the major challenges at present which is the increased 

noise distorting the signal in Big Data.  

 In conclusion we wish to reinforce the necessity and responsibility of higher 

educational institutes to incorporate modules and courses which develop the skills 

required to be able to understand, analyze and forecast with Big Data using a variety 

of novel techniques. We believe that overcoming the constraints imposed by skills 

should be on top of the list for ensuring the increased application of relevant 

techniques for the exploitation and attainment of accurate and lucrative forecasts 

from Big Data in the future.  
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