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Abstract

Background: Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for
patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor
strengthening or functional motor control programmes have a positive impact of pain, however their effect on
knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip
abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength.

Methods: This prospective, randomised, repeated measures design included 29 asymptomatic volunteers
presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip
abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using
inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric
hip abduction.

Results: There were no significant differences in dynamic knee valgus and internal rotation following the isolated
hip abductor or functional motor control intervention, and no significant differences between the groups for knee
angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control
group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18°
for the functional motor control group and strengthening group respectively. Therefore there was a tendency
towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant
improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008)
and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being
identified (p = 0.475).

Conclusions: Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant
changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus
and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting
either approach could be used to strengthen the hip abductors.
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Table 1 Demographic characteristics of participants
(mean (SD))

Abd Str (n = 15) Mot Con (n =14)

Male/female 11/4 10/5

Age (years) 30.3 (8.8) 29.6 (9.7)

Height (m) 1.8 (0.1) 1.7 (0.1)

Weight (kg) 80.5 (12.7) 69.3 (11.2)

BMI (kg/m2) 30.3 (3.1) 23.3 (3.2)

(Abd Str; abductor strengthening group, Mot Con; functional motor
control group).
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Background
Knee injury is one of the most common musculoskeletal
complaints affecting 20% of military personnel [1]. In
particular the incidence of patellofemoral pain syndrome
(PFPS) has been reported at 8.7% for British Army re-
cruits [2] and 9.7% for anterior cruciate ligament (ACL)
injuries during military training [2,3]. The consequences
of these injuries are significant, therefore the causes and
contributing factors are an important consideration in
the prevention of such injuries. The causes of these knee
injuries are likely to be multifactoral, although abnormal
knee kinematics and specifically dynamic knee valgus
and internal rotation (DKVIR) has been widely postu-
lated as a factor in the etiology of both PFPS and non-
contact ACL injury [4-8].
One explanation for the increase DKVIR is weakness

in the hip abductors, as these muscles work to control
femoral adduction and internal rotation [7,9]. Conse-
quently, it has been suggested that strengthening these
muscles may reduce the DKVIR [10]. However an alter-
native mechanism has been proposed to explain exces-
sive DKVIR. Poor functional motor control (FMC)
where altered recruitment of hip musculature is ob-
served, has also been suggested to contribute to in-
creased DKVIR [11,12]. This aberrant recruitment
suggests that the overall motor strategy and movement
patterns are ‘faulty’ resulting in excessive DKVIR. There-
fore it is logical to suggest that if an aberrant functional
motor control strategy is associated with excessive
DKVIR and risk of PFPS then targeting this with a spe-
cific intervention should result in an alteration of
DKVIR.
Previous studies have demonstrated that improve-

ments in pain and function in PFPS and a reduction of
non-contact ACL risk can be achieved through programs
targeting both hip abductor strengthening and functional
motor control [9,13-16]. There is however conflicting
evidence that such programmes result in a change in
DKVIR, as some demonstrate changes in DKVIR [16]
while others failed to result in change of DKVIR
[9,17,18]. This conflicting evidence could be explained
by differences in baseline DKVIR values, as the presence
of increased DKVIR was often not part of the inclusion
criteria or by the multimodal and non-homogeneous ex-
ercises employed. Additionally, despite these studies sug-
gesting that altering the DKVIR may be possible, such
multimodal programs fail to provide adequate insight
into the mechanism behind any alterations observed.
Furthermore previous studies did not investigate mul-
tiple time points, preferring pre-and post-testing only
which fails to describe changes with respect to time.
The effect of isolated hip strengthening or functional

motor control exercise on DKVIR has not been ad-
equately established. Such insights will be useful for
injury prevention programs and will improve our under-
standing of the mechanisms behind changes in DKVIR.
The aim of this study was to investigate the effect of two
commonly used clinical approaches to alter DKVIR: iso-
lated hip abductor strengthening and a FMC exercise,
on pain free military participants identified as having in-
creased DKVIR at baseline.

Methods
A prospective, randomised, experimental repeated mea-
sures design was used. Forty-two military personnel vol-
unteers were recruited from four military bases to
participate in the study. Volunteers were initially visually
screened by the lead investigator (KP), a Physiotherapist
with extensive post-graduate training, to determine the
presence of increased DKVIR. Two-dimensional frontal
plane analysis has been recommended as a screening
tool for the presence of increased DKVIR and has been
validated compared with three-dimensional motion ana-
lysis during single leg squatting [19]. Exclusion criteria
included a history of knee pain in the proceeding twelve
months, history of surgery, known rheumatologic, neuro-
logical or cardiovascular disorders with raised blood pres-
sure. Participants were assigned to one of two groups
using stratified randomisation ensuring equal distribution
of females among the groups, as gender has been identi-
fied as a confounding variable with females often display-
ing greater DKVIR angles [20,21]. Demographic data
for the two groups are presented in Table 1.
This study sought to determine a change in knee val-

gus for greater than 3° thought to represent a clinically
meaningful change and representative of earlier studies
[9,21]. Along with a standard deviation value determined
from Earl and Hoch [9] and power set at 80% and alpha
at 0.05, the required sample size of 16 per group was de-
termined. Over recruitment of 30% was estimated to
manage drop outs.
Participants gave written informed consent prior to

taking part in the study following explanation of proce-
dures and risks. Additional consent was granted from
one individual to include their photo in this publica-
tion demonstrating the experimental set-up (Figure 1).



Figure 1 Sensor attachment, strength testing and strengthening exercise. a, Single leg squat; b, Single leg landing; c, Hip abductor strength
testing; d, Hip abductor strengthening exercise.
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Ethical approval was granted by the Faculty of Health
and Social Science Research Ethics and Governance
Committee at the University of Brighton and the Min-
istry of Defence Research Ethics Committee (reference
number; 346/GEN/12).

Procedure
All testing was conducted in shorts and barefoot to pre-
vent any potential variations that may have occurred due
to footwear. DKVIR were measured during single leg
squatting and single leg landing using two inertial sensors
with a custom built datalogger and software (ThetaMetrix;
Waterlooville, UK). Data were collected at a sampling rate
of 100Hz. Accuracy of these sensors has been reported by
the company to be 0.5 degrees and reliability measure-
ments (ICC) for human studies reported as 0.71-0.99
[22]. One sensor was placed on the lateral thigh (mid-
way on a line connecting the lateral femoral epicondyle
and greater trochanter) and the other over the lateral
lower limb (midway along a line connecting the lateral
femoral epicondyle and the lateral malleolus) with the
knee straight. Sensors were attached using double-sided
tape and reinforced using elastic wrap to minimize soft
tissue artifact (Figure 1a and b).
Participants performed a single leg squat on their test-

ing leg, squatting until their upper posterior thigh came
into contact with a stool (height 550 mm). The rate of
the single leg squat was controlled to one-second des-
cent and one second ascent to minimize the effect of
velocity on kinematics and participants were instructed
to maintain an upright trunk (Figure 1a). Participants
performed a double leg jump from a step box (200 mm)
with a single leg landing to land on a target 600 mm
from the step box. Upon landing, participants were
asked to ‘stick the landing’ and maintain single leg bal-
ance for one second after each trial (Figure 1b). Failure
to meet these criteria resulted in negation and repetition
of that trial. A short familiarisation period preceded the
testing. Both tasks were completed three times.
Hip abduction strength was measured using maximal

force production (in kg) measured by a load cell (Duronic,
UK). Strength testing was performed with participants’
side lying on a treatment plinth, their back against the
wall. The underneath leg was flexed at the hip and knee
with their top leg (testing leg) straight, in contact with
the wall and resting on a medicine ball (to standardize
the hip abduction angle). Participants were asked to lift
their leg as forcefully as possible maintaining heel con-
tact with the wall for three seconds with maximal force
being measured. Three experimental trials with a 30 sec-
ond rest between trials were performed (Figure 1c).
Testing of both knee kinematics and hip strength was

completed at weekly intervals for five weeks.

Isolated hip abductor strengthening group
The hip abductor strengthening protocol was based on
evidence from the American College of Sports Medicine
[23]. Initial strength was determined and a load of 80%
of this strength was provided in the form of ankle
weights. Side lying hip abduction with ankle weights was
performed until failure with each participant completing
3 sets, every other day. The load was adjusted at each
testing session based on the strength testing results. The
side lying position was used as it has been shown to cre-
ate the greatest activation of the hip abductors, has been
shown to result in strength gains and reflects common
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clinical practice [16,24,25] (Figure 1d). All strengthening
was completed unsupervised, with participants required
to complete training diaries.
Functional motor control group
The FMC exercise specifically aimed to target the cog-
nitive and then automatic control of knee kinematics, a
method common in clinical practice [16,17,26]. This
method sequentially challenges the control of the knee
position during squatting by gradually progressing
from double leg to single leg squatting. Initial assess-
ment determined how much support was required
from the non-exercising leg in order to main the de-
sired knee alignment. The following is a guide to the
progression:

� Opposite foot on low step and hand support
� Opposite foot on low step, no hand support
� Opposite lower leg against the wall
� Opposite foot against the wall
� Just hand support
� No support

Once established, participants were instructed to work
on squatting, maintaining the desired alignment for up
to 25 repetitions providing alignment could be main-
tained. This was practiced daily and progressed weekly
using a diary to record adherence.
Kinematic data were processed in Matlab (Mathworks,

R2008b). Each sensor provides absolute orientation in
the form of Euler angles and from these, relative angles
between the sensors were calculated from the direction
cosine matrices to give flexion/extension, rotation and
valgus/varus angles. Valgus was defined as negative as
was internal rotation. A specific algorithm was devel-
oped to mathematically reorientate the sensors to offset
for the slight differences in initial orientation associated
with mounting the sensors each week.
Figure 2 A single participant’s knee kinematics during single leg squatting
Statistical analysis
The maximum knee angles were identified for each of
the three trials and repeated measures reliability statis-
tics calculated to determine the consistency of the kine-
matic variables (intraclass correlation coefficient (ICC
(consistency), standard error of measurement (SEM) and
minimal detectable change (MDC)). The mean of the
three trials for each dependent variable were calculated
during single leg squat and single leg landing. Mean
maximum force from the three trials were determined
and also explored for repeated measure reliability (ICC
(consistency), SEM, MDC). Mean kinematics and force
were tested for normality using the Shapiro-Wilk test
and all data were normally distributed. The effects of the
exercises were determined using one-way repeated mea-
sures ANOVA, having first checked for sphericity using
Mauchly’s test. The model was created using time as the
within subject factor with 6 levels (week 0 to 5). Between
group comparisons were made using a multivariate
ANOVA with dependent variables of knee kinematics
and strength and the fixed factor group. Post-hoc testing
was completed where appropriate. A comparison be-
tween groups for frequency of responder was completed
using the Chi-squared test, where responder was deter-
mined as an individual who decreased their valgus or in-
ternal rotation by 5 degrees or more. All statistical
analysis was completed using statistical package for so-
cial science (SPSS) software (version 20, IBM). Signifi-
cance levels were p < 0.05.

Results
A single participant’s kinematic data for squatting and
landing are presented in Figures 2 and 3. Reliability of
repeated measurements were excellent for all dependent
variables with small SEM and MDC values (Table 2)
demonstrating good consistency in movement patterns
and strength testing. Single leg squat and single leg land-
ing data across the six time points are presented in
Table 3.
.



Figure 3 A single participant’s knee kinematics during single leg landing.
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The functional motor control exercise group demon-
strated no significant difference in knee valgus or rotation
across time for single leg squat (valgus p = 0.124; rotation
p = 0.096) or single leg landing (valgus p = 0.182; rotation
p = 0.361). The isolated hip abductor strengthening group
demonstrated no significant difference in valgus or rota-
tion across time for single leg squat (valgus p = 0.614;
rotation p = 0.614) or single leg landing (valgus p = 0.546;
rotation p = 0.785).
A significant difference was identified for strength across

time in the strengthening group (p = 0.009) and the func-
tional motor control group (p = 0.008). Differences between
week 0 and 1 were evident along with weeks 4 and 5 for
the strengthening group and between weeks 0, 1, 2 and
week 5 for the functional motor control group (Figure 4).
Multivariate ANOVA testing revealed no significant

difference between groups for knee angles during squatting
(p = 0.551) or single leg landing (p = 0.450). Furthermore
no between group differences were identified for strength-
ening effect (p = 0.475).
There were four responders in the strengthening group,

compared to six for the motor control group for rotation
along with six responders in the strengthening group
compared to nine for the motor control group for valgus.
Chi-squared testing revealed no significant difference in
the number of responders between the two groups for val-
gus (p = 0.247) or rotation (p = 0.397).
Table 2 Repeated measures reliability of measurements

Knee Angle Kinematics

Abd Str Mot Co

Valgus Rotation Valgus

ICC (3,1) 0.98 0.97 0.96

SEM (deg) 3.8 4.2 3.3

MDC (deg) 5.3 5.7 5.0

ICC; intraclass correlation coefficient, SEM; Standard error of measurement, MDC; m
functional motor control group, deg; degrees.
Discussion
The current study investigated the effect of individual
isolated exercises on knee kinematics during single leg
squatting and landing, as well as hip abductor strength,
in those who present with visually abnormal dynamic
knee angles. The results demonstrate that neither group
demonstrated a statistically significant difference in knee
kinematics during the five weeks of exercise. There were
significant differences for both groups in the develop-
ment of strength of the hip abductors demonstrating
both exercises were effective in improving hip abductor
strength. Despite this no between group differences were
established suggesting neither group was more effective
at altering kinematics or muscle strength.
The results of this study show that over a five week

period both isolated hip muscle strengthening or a func-
tional motor control exercise failed to significantly alter
knee kinematics. These findings are in agreement with
the majority of the literature, including in those with
knee pain [9] and healthy individuals [17,18]. Previous
studies employed multimodal exercise programmes con-
sisting of hip strengthening ranging from 3 to more than
10 exercises. Therefore the current study adds to the
knowledge by demonstrating that specific isolated exer-
cise also results in no statistically significant change in
knee kinematics. These findings suggest the alteration of
kinematic profiles during squatting and landing may be
Hip Abductor Strength

n Abd Str Mot Con

Rotation Force/kg Force/kg

0.96 0.97 0.97

3.8 1.4 1.0

5.4 3.3 2.8

inimal detectable change. Abd Str; abductor strengthening group, Mot Con;



Table 3 Mean (SD) knee angle data (degrees)

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5

Flex Rot Val Flex Rot Val Flex Rot Val Flex Rot Val Flex Rot Val Flex Rot Val

SQUAT

AbdStr 58.7
(8.1)

-15.2
(22.5)

-19.4
(19.8)

59.6
(9.0)

3.0
(26.5)

-14.8
(25.4)

61.1
(7.8)

-0.2
(22.0)

-14.4
(21.1)

59.3
(8.8)

5.7
(23.9)

-12.1
(22.0)

61.5
(9.4)

-1.6
(24.8)

-8.1
(25.5)

62.9
(8.8)

2.6
(27.2)

-13.8
(23.9)

MotCon 58.0
(8.1)

-16.2
(17.0)

-16.2
(10.2)

55.0
(7.6)

-15.3
(8.5)

-11.7
(8.2)

57.1
(10.3)

-10.4
(16.9)

-12.3
(11.2)

53.6
(8.1)

-11.9
(17.8)

-12.7
(17.9)

51.7
(7.5)

-13.5
(16.9)

-16.3
(17.3)

57.1
(7.6)

-7.1
(13.4)

-6.2
(19.8)

LAND

AbdStr 51.9
(10.0)

-10.8
(11.8)

-9.8
(11.9)

58.1
(9.4)

-9.8
(10.7)

-9.9
(9.0)

54.7
(10.1)

-13.6
(13.1)

-14.2
(16.0)

58.9
(11.7)

-7.3
(9.3)

-6.3
(9.7)

53.7
(10.4)

-4.5
(17.2)

-9.6
(15.8)

56.6
(11.7)

-6.5
(11.3)

-8.9
(10.6)

MotCon 48.1
(8.5)

-5.2
(9.2)

-5.2
(9.6)

45.7
(9.3)

-5.1
(8.2)

-8.9
(9.8)

49.5
(9.4)

-4.5
(11.1)

-3.8
(11.7)

50.9
(9.0)

-4.2
(8.7)

-3.1
(11.4)

47.8
(8.8)

-5.6
(10.6)

-6.2
(13.8)

48.8
(10.4)

-4.8
(10.2)

-3.6
(12.3)

Flex, Flexion; Rot, Rotation; Val, Valgus; AbdStr, Abductor Strengthening group; MotCon, Functional Motor Control group; Squat, single leg squat; land, single
leg land.
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inherently complex and that the positive benefits attributed
to these exercises in PFPS may be due to mechanisms unre-
lated to the kinematics measured in the current study. In-
deed studies observing clinical benefits seem to report on
changes in moments rather than kinematics [9,27].
Despite the lack of statistical significance there was a

trend towards decreased valgus and internal rotation
over time for both groups. The functional motor control
group demonstrated a mean decrease of 10° and 9° for
valgus and internal rotation respectively along with a 5°
and 18° respective change for valgus and internal rota-
tion in the strengthening group. Previous literature has
attempted to identify a meaningful change in knee val-
gus leading to the suggestion that 3° may be sufficient in
determining clinically meaningful change [21]. The mag-
nitude of change evident in the current study therefore
is likely to represent a clinical meaningful change and is
in accordance with previous studies investigating the ef-
fects of multimodal exercises on knee valgus [16]. More-
over the resultant valgus magnitudes, as measured at the
beginning and end of the study, demonstrate a shift from
Figure 4 Mean abductor strength (kg) for both groups. Error bar
represents one standard deviation.
a high risk category to a low risk category for established
valgus angle population norms [28].
The current study demonstrates that there appears to

be a large amount of variability in the response to the
exercises within the two groups, suggesting the response
is not homogenous. Despite this a group comparison in-
vestigating the frequency of responders failed to demon-
strate a significant difference between the functional
motor control group and the strengthening group. This
suggests that individuals were just a likely to reduce
their valgus or internal rotation with either exercise. A
five degree change was utilized as the definition of re-
sponder due to the minimal detectable change values
produced using the above described measurement tech-
nique. It is not clear from the results of this study why
some individuals responded whereas some did not, and
this could form a basis for future studies.
It is interesting to note that the magnitude of change

in valgus, within the FMC group, was double that of the
strengthening group. Moreover the magnitude of change
in internal rotation, within the strengthening group, was
double that of the FMC group. This seems to suggest
that the FMC exercise might be better at altering knee
valgus. The may be due to the lack of specific instructions
regarding femoral rotation during the FMC exercise,
where instructions focusing more on overall knee align-
ment were used. However it could be suggestive that this
exercise approach is better suited at addressing knee val-
gus, when knee valgus is the dominant impairment. The
opposite may be true for hip abductor strengthening. This
approach seemed to yield superior results for internal
rotation. These results suggest that it may be possible
for clinicians classify individuals based on their primary
impairment (valgus or internal rotation) and design spe-
cific targeted interventions based on the findings of the
current study. However it is worthy to note that these
changes in kinematics were trends and therefore this
concept requires further scientific study.
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Assessing knee kinematics during the single leg land-
ing task was important as it is likely to represent a more
subconscious and automatic task, and more akin to the
demands of many military tasks. There were no statisti-
cally significant differences in knee valgus and internal
rotation for the single leg-landing task for either group.
Moreover the actual magnitude of change was small.
Despite this, an interesting pattern of movement was ob-
served. Valgus and internal rotation were evident when
the participants flexed their knee prior to take off, but
often on landing minimal valgus and rotation was ob-
served (Figure 3). It is possible that the anticipation or
recognition of the relatively higher loading task triggered
movement patterns which differed to those associated
with the knee flexion prior to take off.
There was a significant increase in hip abductor

strength following both exercises, with a mean increase
of 35% (3.8 kg) for the strengthening group and 27%
(2.9 kg) for the functional motor control group. Neither
group resulted in significantly greater strength gains.
Previous studies have demonstrated slightly less mean
percentage change following targeted hip abductor
strengthening interventions [12] and multimodal exer-
cise regimens (from 10% to 28%) [9,16,18]. The adher-
ence to the ACSM guidelines may explain the slighter
greater gains evident in the strengthening group when
compared to the literature [23]. To the authors know-
ledge this is the first study to assess the effect of a func-
tional motor control exercise on hip abductor strength,
demonstrating statistically significant improvements.
This novel finding suggests that exercises aimed at im-
proving functional motor control are likely to result in
concomitant strength improvements of a significant
magnitude. In analysing the functional motor control ex-
ercise reasons for the strengthening effect can be
hypothesised. The single leg squatting requires hip ab-
ductor muscle activation on the weight bearing side in
order to control pelvis positioning in the frontal plane.
Electromyography has demonstrated that single leg
squatting can result in an 82% maximum voluntary con-
traction of gluteus medius [29]. This suggests that the
functional motor control exercise may have provided
enough stimuli to result in overload and strength gains
in the hip abductor muscles. This finding questions the
need to use isolated strengthening of the hip muscula-
ture in individuals with increased knee valgus and in-
ternal rotation.
Limitations of the current study should be acknowl-

edged. This study was conducted using pain-free individ-
uals and therefore caution is advised if attempting to
extrapolate the results to those with knee pain. It is not
possible to know if those with knee pain would respond
in the same way to those in this study. No control group
was used as it was deemed unnecessary because our aim
was to explore the effect of isolated approaches to alter-
ing knee angles rather than test an ‘intervention.’ It is
possible that alterations in dependent variables were due
to other factors such as natural variation over time,
measurement variability and not to the independent var-
iables used in this study. The sample size was small.
Despite a sample size calculation being conducted using
previously published data, the required sample size was
not quite achieved due to a larger than expected drop
out rate. However, a post-hoc power calculation did de-
termine that the current study had a power of 0.89 based
on a pooled standard deviation and mean change in val-
gus angle. The standard deviations in the current study
were large reflecting the natural variability across this
population for the tasks investigated. It is likely that such
deviations will have affected the statistics and future stud-
ies should perhaps investigate a more homogenous task or
population. The duration of the study was short as it is
known that strength changes continue for longer than
5 weeks therefore it is unlikely a strengthening ceiling was
reached within just 5 weeks [30,31]. Despite strength
changes being evident in the current study, it is not clear
whether a longer study duration would have influenced
the findings.

Conclusion
The results from this study demonstrate that there were
no statistically significant differences in knee kinematics
following 5 weeks of an isolated hip abductor strength-
ening programme or a FMC exercise programme. How-
ever, there was a tendency towards clinically significant
improvements in knee kinematics for both groups
resulting in a reduction in dynamic knee valgus and in-
ternal rotation. Both groups demonstrated significant
and similar gains in strength of the hip abductors. It is
possible that such approaches could lead to a reduction
of knee valgus and internal rotation and subsequent re-
duction in knee pain risk. Further studies should evaluate
the ability of such approaches to alter knee kinematics
long term with simultaneous monitoring knee injury risk.
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