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Constraint-based Soft Tissue Simulation for
Virtual Surgical Training

Wen Tang, Tao Ruan Wan Member, IEEE

Abstract—Most of surgical simulators employ a linear elastic model to simulate soft tissue material properties due to its computational
efficiency and the simplicity. However, soft tissues often have elaborate nonlinear material characteristics. Most prominently soft tissues
are soft and compliant to small strains, but after initial deformations they are very resistant to further deformations even under large
forces. Such material characteristic is referred as the nonlinear material incompliant which is computationally expensive and numerically
difficult to simulate. This paper presents a constraint-based finite element algorithm to simulate the nonlinear incompliant tissue
materials efficiently for interactive simulation applications such as virtual surgery. Firstly, the proposed algorithm models the material
stiffness behaviour of soft tissues with a set of three-dimensional strain limit constraints on deformation strain tensors. By enforcing
a large number of geometric constraints to achieve the material stiffness, the algorithm reduces the task of solving stiff equations
of motion with a general numerical solver to iteratively resolving a set of constraints with a nonlinear Gauss-Seidel iterative process.
Secondly, as a Gauss-Seidel method processing constraints individually, in order to speed up the global convergence of the large
constrained system a multi-resolution hierarchy structure is also used to accelerate the computation significantly, making interactive
simulations possible at a high level of details. Finally, this paper also presents a simple-to-build data acquisition system to validate
simulation results with ex vivo tissue measurements. An interactive virtual reality-based simulation system is also demonstrated.

Index Terms—Nonlinear soft tissue simulation and modeling, virtual surgical training, Robotic-assisted surgery.
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1 INTRODUCTION
Efficient and accurate simulation of biological soft
tissues is a key computational component in virtual
reality (VR) based surgical simulators as well as
in robotic-assisted surgery and image-guided surgery
for intraoperative dynamic guidance [Tang et al, 2012].
Despite the rapid development in computer simulation
technologies, achieving accurate soft tissue simulation
remains challenging, especially medical applications
require fast and accurate computations in order to
accommodate user interactions and haptic feedbacks.

Modeling material nonlinearity of biological tis-
sues often involves setting up complex constitutive
models to determine deformation behaviors of soft
tissues [Ogden, 1997], [Bonet and Wood, 2008]. It is well
acknowledged that tuning material parameters for these
constitutive models to find approximations to their real-
world counterparts is a complex and time-consuming
task [Mendis, 1995]. In recent years efforts have been
made to model the parametrization of complex biome-
chanical models as an inverse problem that are solved
by optimization. For examples, the estimation of elastic
properties of soft tissue is solved as a least squares
problem in [Eskandari, et al., 2011], and an evolutionary
algorithm is used to estimate the parameters of a
complex organ behavior model taking into account
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of various real patient data sets in [Vidal et al., 2012].
Previous methods for accelerating nonlinear finite
element computations include pre-computing various
quantities of a constitutive model [Müller et al., 2001],
modal analysis to compute deformations in a reduced
subspace [James and Pai, 2002], as well as GPU exe-
cutions [Taylor et al., 2008] and data-driven approach-
es [Bickel et al., 2009]. Still, a linear model is mostly
used in surgical simulators due to its computation-
al efficiency and simplicity [Chentanez et al., 2009],
[Pratt et al., 2010].

The distinctive feature of soft tissues such as skin
and relaxed muscles is the so called nonlinear material
incompliant, which are easily deformed under small
forces, but beyond some thresholds soft tissues become
very stiff and resistant to large deformations even
under large forces [Brouwer et al., 2001]. The stiffness
characteristic is due to the macroscopic behavior of
the materials that are submissive to small deformations
only within some thresholds. Such material stiffness
determines the nonlinear stress-strain relationship of
soft tissues and is the key in capturing physical
characteristics of the materials. In this paper ,we propose
a constraint-based algorithm to simulate the highly
incompliant constitutive regimes of soft tissues through
the use of a large number geometric constraints to enforce
the material stiffness.

Most numerical methods perform poorly for large
constraint systems both in terms of system convergency
and computational efficiency, because the equations of
motion of a large constraint system are infinitely stiff and
a small time integration step must be carefully chosen to
avoid the numerical instability. Instead of using a general
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numerical solver to solve a set of stiff equations of
motion, the proposed algorithm employs a Gauss-Seidel
type procedure to resolve the constraints iteratively. As
Gauss-Seidel methods processing constraints individual-
ly, in order to speed up the global convergence of the
large constrained system, a multi-resolution hierarchy
mesh structure is developed to accelerate the global
convergence of the constrained system significantly. The
multi-resolution approach enforces constraints at each
level of the hierarchy structure with different mesh
resolutions, making interactive simulations possible for
highly incompliant tissue properties at a higher level
of detail. We show a simple-to-build acquisition system
to validate the simulation results with ex vivo tissue
measurements and an interactive virtual reality-based
simulation system is also demonstrated.

2 MODELLING OF NONLINEAR SOFT TISSUES

2.1 Principal stretches

Classic approaches try to use various constitutive
models to describe the stress-strain relationship to model
nonlinear soft tissue behaviors [Ogden, 1997]. Instead,
we apply constraints directly on the symmetric strain
tensor of each finite element(tetrahedron or triangle)
to modify the stress-strain relationship nonlinearly
to prevent soft tissues from excessive stretching or
compressing. We firstly diagonalize the deformation
gradient of each element. The material stiffness is
characterized by strain ratios with some thresholds along
principal directions of deformations. We then apply
constraints directly on the symmetric strain tensor of
each element.

Most cellular tissues such as livers and skins are
treated as isotropic, hyperelastic, and incompressible
materials [Fung, 1993], [Humprey, 2003]. The state of
soft tissue deformation is defined by the deformation
gradient F, which is a 3× 3 matrix given by:

F(X) =
∂x

∂X
(1)

where X is the coordinate of a vertex in the material
space and x is the coordinate in the world space.
We compute the singular value decomposition of the
deformation gradient on each tetrahedral element F =
UΣ̂VT , where U and V are orthonormal matrices and
Σ̂ is a nonnegative diagonal matrix expressed by:

Σ̂ = diag{λ1, λ2, λ3} (2)

The nonnegative diagonal entries λ1, λ2, and λ3 are
eigenvalues representing ratios of stretch and compres-
sion in the three principal directions invariant to rigid
transformations. Using eigenvalues of principle strain
to model soft tissue material is not new in biomedical
engineering, for example, in the case of uniaxial
deformations, the deformation gradient is modeled as
a diagonal tensor given by [Holzapfel, 2004]: Σ̂ =

diag{λ, λ− 1
2 , λ− 1

2 }, where λ is the (applied) stretch
in the principal directions. We employ the modified
Neo-Hookean material using an energy density function
defined by [Bonet and Wood, 2008]:

W =
µ

2
(I1 − 3)− µ log J +

β

2
(log J)2 (3)

where µ = E
2(1+ν) and β = Eν

(1+ν)(1−2ν) are the Lamé
coefficients with E being the Young’s modulus and
ν being the Poisson ratio. Estimation of the elasticity
parameters of E and ν is described in §4.1. The three
principal invariants are expressed as I1 = λ2

1 + λ2
2 +

λ2
3, I2 = λ4

1 + λ4
2 + λ4

3 and I3 = λ2
1λ

2
2λ

2
3. In Eq.3, J =

√
I3.

We then analytically differentiate energy Eq. 3 with
respect to the invariants to compute forces. Therefore, for
stress defined by a strain energy density function, it can
be shown that the diagonal matrix Σ̂ yields a diagonal
stress that is invariant under the rotation of the material
space [Bonet and Wood, 2008].

P(Σ̂) = diag(
∂W

∂λ1
,
∂W

∂λ2
,
∂W

∂λ3
) (4)

Once we have calculated the stress P(F), the force
on a tetrahedral vertex can be found by multiplying
P(F) with an area-weighted normal of the tetrahe-
dron [Irving et al., 2006]. Furthermore, we implement a
multi-threading algorithm to parallel compute the SVD
procedures on tetrahedron elements on Eq.2 to improve
the computational time significantly, since SVD is a
costly computation (see §4.2 for details).

2.2 Strain limiting constraints

Equation (4) revels that the elastic energy is a function
of the singular values λ1, λ2, λ3 of the deformation
gradient, which are stretches and compressions corre-
sponding to the scaling in the orthogonal principal strain
directions. Our constraint-based algorithm enforces the
three-dimensional orthogonal scaling constraints on the
principal strains by clamping the principal stretch ratios
at defined maximum and minimum values, resulting
λmax and λmin for isotropic scaling. For example, λmax =
1.25 and λmin = 0.75 specify the maximum of 25 percent
of stretching and compressing along the principal strain
directions, preventing a tetrahedron from undergoing
large deformations. This leads to three clamped principal
strains defined by:

λ∗
1 = clamp(λ1, λmin

1 , λmax
1 ),

λ∗
2 = clamp(λ2, λmin

2 , λmax
2 ), (5)

λ∗
3 = clamp(λ3, λmin

3 , λmax
3 ).

Thus, a new diagonal strain matrix is construct-
ed based on the constrained values as: Σ̂∗ =
diag{λ∗

1, λ
∗
2, λ

∗
3}. Substituting Σ̂∗ into Eq.4 yields a new

constrained stress tensor:
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Fig. 1. The multi-resolution hierarchy: A base surface mesh of a liver is extracted from a MRI data set and a fine to coarse
hierarchy of tetrahedral meshes is generated from the base mesh, containing 17.1K, 15.3K, 0.6K and 0.23K tetrahedra at each
level, respectively.

P(Σ̂∗) = diag(
∂W

∂λ∗
1

,
∂W

∂λ∗
2

,
∂W

∂λ∗
3

) (6)

Thus, deformation forces on tetrahedron nodes are
re-computed based on the constrained Eq.6. The
presence of constrains in the principal directions is
clamping the stress at some maximum values and
modifying the constitutive model near the origin to
remove the singularity, which regularizes the system
and enables dynamic simulations remain stable even
for deformable objects that simultaneously undergo
both free-flying rigid motion and deformations. More
importantly, these modifications can be applied to
arbitrary constitutive models and our experimental
setup is aimed at validating the algorithm to be as
accurate as possible for medical simulations.

2.3 Multi-resolution constraint enforcement

The proposed strain limiting algorithm reduces a global
solution approach of using the classic method of solving
stiff equations of motion to a set of Gauss-Seidel
iterations. Because a Gauss-Seidel type solver enforces
constraints individually, it can be slow to convergence
for a system with a large number of constraints. Taking
the view that a hierarchical constraint enforcement can
greatly accelerate the system convergence [Müller, 2008],
we construct a multi-level hierarchical structure using
different tetrahedral mesh resolutions at multi-levels and
each level of the hierarchy is solved by a Gauss-Seidel
iterative process. Therefore, our multi-resolution ap-
proach enforces unilateral constraints from fine meshes
to coarser meshes, and then translate the solutions of
coarser meshes back to finer levels. This process is
termed as up- and down-sampling processes. Figure 2
shows the geometric correspondence between elements
in a tetrahedral hierarchy.

The multi-resolution hierarchy process starts with
the physically-based computation on the bases mesh.
Information of the base mesh is down-sampled to carry
out the simulation on coarse meshes. At each coarser
mesh level, nonlinear Gauss-Seidel iterations are run to
enforce limiting constraints on the current coarser level.
Results of the nonlinear stain limiting algorithm are then
up-sampled on finer level up the hierarchical chain to
enforce constraints on the base mesh. We obtained a
MRI data set of a liver from our local hospital with ethic

Fig. 2. Geometric correspondence between elements in
a tetrahedral hierarchy: solid lines are a coarse mesh H(j)

containing a subset of higher resolution meshes H(i) with
barycentric coordinates highlighted in dotted red lines.

Fig. 3. Multi-resolution mesh hierarchy process pipeline for our
simulation system.

clearance approved by our organizations. Segmentation
process was carried out manually in the medical image
open source software GIMIAS [Gimas] to obtain a base
surface mesh of the liver. We then created a hierarchy of
surface meshes using the base mesh. TetGen [Si, 2010]
was used to convert surface meshes into tetrahedral
meshes, containing m levels of meshes H(i), for i =
0,m − 1,, from the finest base level H(0) to the coarsest
level of mesh H(m−1) (see figure 1).

For every tetrahedron in a coarser mesh H(j), all
vertices of a finer mesh H(i) inside this tetrahedron are
determined. For each vertex in H(i) its closest element
in H(j) and its corresponding barycentric coordinates
are computed. The coordinates are used as interpolation
weights for sampling a scalar or a vector field defined
over the coarser mesh to the finer mesh using linear
interpolation. Mapping values from the finer mesh to
the coarse mesh is done using these same weights.
The multi-resolution mesh hierarchy process pipeline is
summarized in figure 3. The method described here can
be divided into a number of stages of computations:
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• Dynamic simulation and enforce constraints;
• Downsampling projections;
• Strain limiting on coarse meshes;
• Enforce constraints;
• Upsampling strain limited results.
Given an initial displacement values on the fine

mesh we perform the multi-resolution algorithm on the
hierarchical data structure:

• Sample positions on the finest level H(0) to obtain pi on
the coarsest level H(m−1):

• loop:
• Start at the coarsest level:H(i) ← H(m−1)

• Save all positions pi of level H(i) in a state vector qi.
• Run linear Gauss-Seidel iterations to enforce strain

limiting constraints.
• If H(i) = 0 stop else go to the next finer level:H(i) ←

H(i−1):
• Sample positions on level H(i)

• end loop.

Colour maps in figure 4 show strain distributions of a
soft tissue simulation. In these images, strain values are
scaled to between [0, 1], where value 0 representing the
green colour shows the zero strain of the deformation
and value 1 representing the red colour indicates the
largest strain of the deformation. Images (A) and (B)
compare the convergency of the constraint enforcements
between a multi-resolution hierarchy approach to that
of using only a single mesh with the same finest level
mesh resolution. As can be seen that the multi-resolution
algorithm archives better strain convergency with only
20 constraint iterations in total, whereas the fine only
single mesh simulation shows larger strains after 50
constraint iterations. This test illustrates the effectiveness
of the proposed multi-resolution algorithm for modelling
highly incompliant soft tissue materials. The strain
distributions across different levels of a three-levels mesh
hierarchy are shown in images (C), (D) and (E) with 5
iterations on each level.

3 DATA ACQUISITION

We developed a simple-to-build data acquisition system
for capturing soft tissue deformations ex vivo, which
was used to record the indentation and stretch tests
on ex vivo samples. Simulation results were validated
against results obtained by these tests. While in
vivo experiments can measure soft tissue behaviors
in its physiological state [Samur et al., 2007], ex vivo
tests, however, offer good controls over laboratory
experimental conditions [Brouwer et al., 2001].

3.1 Experimental setup
For indentation tests, the force measurement was
obtained by a force contact prob (a long thin solid
shaft of different tip shapes). A square force sensing
resistor of 1.5inch × 1.5inch was attached to the prob
tip for measuring tissue force responses. Figure 5 shows
schematics of the system. The force sensor was connected
to a Phidget Voltage Divider and a USB Interface Kit

Fig. 5. (A): Overview of the data acquisition system and its
components: the force probe was inserted into the trocar cover
that was fitted with a linear position sensor. The force sensor
was attached to the tip of the probe and A/D interface kit was
connected to a computer on Windows operating system, and the
force-displacement measurement was taken from ex vivo tissue
samples. (B): Stretching experiment setup.

8/8/8 by Trossen Robotics for A/D converting con-
trolled from Windows. A force-displacement transducer
(linear position sensor) was fitted inside a trocar cover
in which the probe was sliding through inside to take
the measurement of force-displacement for indentation
tests.

Tests were made along a user defined straight path
with a constant velocity. The force sensor has the
pressure range [1.5psi, 150psi] and the actuation force
range [100g, 10kg] with a repeatable force reading. The
linear position sensor had a 6 mm wide active cavity.

The data acquisition system also consisted of a testing
board and a pair of slats with one slat fixed on the board
and another was free to move vertically and horizontally.
The stretching measurements were conducted by using
this novel experimental setup, aimed at capturing tissue
stretch behaviors by measuring stretch ratios using the
biaxial tensile method [Brouwer et al., 2001]. The same
force sensor and the linear position sensor were used for
a skin sample of size 80mm × 80mm fixed between the
two slats on the testing board. Repeated stretching tests
were carried out in the two orthogonal stretch directions.

3.2 Experimental procedures

Indentation tests were aimed at validating the force-
displacement responses of computer simulation results.
These tests also demonstrated tissue relaxation behaviors
due to constant and periodic step strains. The stretch
tests were aimed at evaluating force-stretch behaviors of
the simulated soft tissue.

Porcine liver and abdominal tissue samples were
tested. Tissue samples (previously frozen) were procured
just slightly over a 24-hour period postmortem. We
precondition tissues samples as described in research
literatures [Fung, 1993] to obtain consistent results. All
samples were tested at room temperature (210C ± 30C).

Three indentation depths were applied with 5 mm
(testing data-1), 10 mm (testing data-2) and 15 mm (test-
ing data-3) to capture the force-displacement responses,
respectively. Deformation examples were taken from a
set of different surface points that were well distributed
over surface of the sample tissues. In tissue relaxation
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Fig. 4. Strain distributions shown in colour map on a soft tissue (red colour indicates large strains and green colour indicates
small strains). Images (A) and (B) show on the finest mesh level, where using a single mesh resolution requires a large number
of iterations compared with a multi-resolution with only 20 iterations. Images (C), (D) and (E) show a three-level multi-resolution
hierarchy strain distributions, the finer the mesh is, there are less strains and the better material stiffness.

tests, a sample was indented to the pre-defined depths in
separate trials, then the indenter was kept in place until
the tissue was fully relaxed. For stretch tests, the skin
tissue was stretched along each of the biaxial directions
to a pre-defined stretch length.

4 RESULTS AND DISCUSSION

4.1 Material parameters
In the context of medical simulations, the finite element
model with the modified Neo-Hookean material is
shown in Eq.3. It is still a challenging problem to
obtain material properties as Young’s modulus and
Poission ratio. In this paper the elasticity parameter
estimations is carried out as an inverse problem
by minimizing the quadratic norm of the difference
between the measured displacements obtained with the
data acquisition system and the displacements resulted
from the simulation model [Eskandari, et al., 2011]. The
recovered Young’s modulus and Poisson ratio through
an off-line optimization program are then used in the
multi-resolution strain limiting simulations.

4.1.1 Inverse problem
Assuming soft tissues are roughly incompressible
isotropic homogeneous materials can significantly re-
duce the number of elasticity parameters [Park, 2006].
Furthermore, according to [Fung, 1993], Poisson ratio of
soft tissues is selected in the range of 0.35 < ν < 0.45.
During an optimization process, if the value of Poisson
ration is fixed, it leaves Youngs modulus as the only
unknown.

After applying finite element method, Eq. 7 describes
the external force f and displacement u for all the nodes:

Ku = f , (7)

where K is the stiffness matrix, which depends on
the elasticity parameters (Young’s modulus and Poisson
ratio and the geometry of the elements; f is a vector of
external forces. For a 3D object with N nodes, K is a 3N×
3N matrix. The soft tissue material parameters needed in
the simulator are p = [E, ν], where E is Young’s modulus
and ν is Poisson ratio. For a set of given indentation
forces, displacements of a group points on tested tissue

samples and the simulated soft tissues are recorded. The
objective function to be minimized is defined as the
difference between the displacements ur(p) in the sample
tissue and the displacements us(p) in simulated tissue at
the corresponding locations:

Φ(p) =
1

2

∑
∥us(p)− ur(p)∥2, (8)

The parameter p = [E, ν] is iteratively updated using
a descent algorithm. We employ the L-BFGS method
based on the numerical analysis library ALGLIB [Alglib]
to minimize the above objective function. At the k − th
iteration, a descent direction ∆pk is computed based on
the gradient of Φ, and we search for an optimal step size
λ along the direction based on the value and slop of the
function:

Φ(λ) = Φ(pk + λ∆pk), (9)

where pk is the vector containing the current estimate
of the elasticity parameters.The gradient of the objective
function is given by the chain rule:

∇Φ(p) =
∑

JTD∥us(p)− ur(p)∥, (10)

where J is the Jacobian matrix of u(p) and D is a
matrix with each row essentially the spatial derivative
of ∥us(p) − ur(p)∥ with respect to the j − th axis. By
differentiating both sides of Eq. 7, the derivatives of u
with respect to the elasticities can be computed:[

∂K

∂Ej

]
u+K

{ ∂u

∂Ej

}
= 0, (11)

Therefore,the Jacobian matrix for Young’s modulus
can be computed by solving Eq. 11 for each column Jj ,
K
{

∂u
∂Ej

}
=

[
∂K
∂Ej

]
u, similarly, solving for the Jacobian

matrix for Poisson ratio. The L-BFGS optimization
algorithm uses the history of the gradient in previous
steps to estimate the curvature and compute a sym-
metric positive definite approximation of the Hessian
matrix [Nocedal, 1999]. Therefore, we do not need to
supply the Hessian to the optimizer. To accelerate
the optimisation process, while optimizing Young’s
modulus, Poisson ratio is kept constant for a number
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of steps, then using the resulting Young’s modulus to
optimise Poisson ratio for a number of steps, and so on.

4.1.2 Parameter estimation
Initial values of elasticity parameters for optimisation
are chosen based on common values used in medical
simulation, for Youn’s modulus within the range
10 kPa < E < 60 kPa and Poisson ratio between 0.3 <
ν < 0.45. Table 1 lists initial material parameters and the
estimated parameter values through optimisation.

TABLE 1
Estimation of Elasticities

Parameter Initial Iterations Estimate

Porcine-liver
E (kPa) 15 1500 16.36

ν 0.45 1500 0.44

Porcine-abdominal
E (kPa) 30 2000 32.15

ν 0.40 2000 0.43

Skin-pad
E (kPa) 50 1500 47.75

ν 0.45 1500 0.46

Fixed number of iterations is used in optimization pro-
cess for parameter examinations. The optimization is an
offline process. The elasticity parameters resulting from
the optimization are then used in the multi-resolution
strain limiting simulations.

4.2 Simulation of soft tissue
We developed a simulation system in C++ using
OpenGL graphics API. The multi-core architecture
of CPUs offers opportunities to the parallelization
of physics computations. In our implementation, the
SVD (single value decomposition) computation for
each tetrahedron element is parallel computed with
multi-threading operations. A mesh data set is designed
into tetrahedral batches which are dedicated to a list of
threads by the multi-threading component. Since a node
can belong to several tetrahedron elements, care must
be taken to ensure the memory of same variables is not
accessed by different threads at the same time, otherwise
the result will be undefined. The approach taken in
our system implementation is not to update the forces
directly on the nodes soon after the thread finishing, but
to write its value into a temporary buffer that duplicates
the shared nodes. This buffer is then accessed after the
parallel pass so that each node is updated safely.

Figure 6 shows the results of computational time in
milliseconds with respect to the number of CPU cores
used and the number of tetrahedra, demonstrating an
overall speed up in parallel computing SVD operations.
It is worth noting that the speedup using multi-cores in
parallel computing is limited by the time needed for the
sequential fraction of the program where threads for one

Fig. 6. Computational time with respect to CPU cores used and
the number of tetrahedra computed.

step in the algorithm have to wait for the threads of the
previous step to signal that they are ready. Although the
synchronization and reconstruction processes introduce
slight computation overhead as seen in figure 6 where
the cost of synchronization outweighs the benefit of
parallel when using 3 CPU cores than 2 cores, it is
not a problem because the overall performance gain is
definitely noticeable.

Tests were carried out in a single processor 8-core
3.40GHz Intel Xeon CPU with 16 GB RAM. Euler
integration scheme was employed with step lengths
chosen between 0.001 to 0.004 shown in table 1. Figure 7
shows computational speed up by using multi-resolution
approach. Figure 7 shows computation times on a
multi-resolution hierarchy with 3200 elements at the
level-0, and 1800, 800 and 200 elements at levels
1, 2 and 3, respectively. A single mesh with 3200
elements and 200 constrained iterations requires an
average of 40 milliseconds computation time, whereas
a multi-resolution 4-levels approach requires an average
of 11 milliseconds for a total of 200 iterations (50
iterations on each level). The significant speed up
demonstrates that the multi-resolution approach can
quickly archive convergence, because only 50 iterations
are applied to the most dense mesh with 3200 elements.
The subsequent meshes in the hierarchy each has far
fewer constraints that can be enforced with 50 iterations.
As can be seen in figure 7, the same multi-resolution
hierarchy with 20 iterations on each level archives an
interactive 6 milliseconds computational time, whereas
table 2 demonstrates much higher numbers of tetrahe-
drons and iterations.

TABLE 2
Time and simulation performance

Porcine-liver Porcine-abdominal Skin-pad
No. tets H(0) 17.1K 16.4K 11.6K

levels 4 4 4
Time/frame 8.45s 7.0s 6.58s
Step length 0.004 0.004 0.001

λmax 1.59 1.5 1.5
E(kPa) 16.36 32.15 47.75

ν 0.44 0.43 0.46
Iterations 155 165 125

Figure 8 shows comparisons between ex vivo samples
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Fig. 7. Computational time comparison of single and multi-
resolution simulations: single resolution has 3200 elements;
multi-resolution has 4-levels with 3200 elements (level-0), 1800
elements (level-1), 800 elements (level-2) and 200 elements
(level-3).

Fig. 8. Comparisons between sample tissues (A) and
simulated soft tissues (B), and a simulated heart example (C).

and simulated soft tissues using the multi-resolution
finite element algorithm. Parameters used for simula-
tions are listed in table 2. Images in column (C) show
a simulated heart with parameters E = 50.0kPa, ν =
0.45, λmax = 1.20.

4.3 Validation of force and displacement relation-
ship
We defined a set of corresponding points both in the
sample tissue and the simulated models, for which
force and displacement measurements were taken at
these locations to validate the proposed multi-resolution
nonlinear simulation algorithm. Two ex vivo porcine
tissues were tested in indentation tests, which were a
size of 8 cm3 abdominal tissue porcine-abdominal and a
porcine-liver tissue. A suturing skin pad skin-pad of size
8 cm × 12 cm × 2 cm was also used in indentation
tests, which was considered as is an ideal testing
media for iso-tropic soft tissue materials. Nonlinear
material properties of these samples were evaluated as
force-displacement relationships as shown in Figure 9 for
indentation tests of simulation and tissue samples.

Tissue relaxation tests evaluate the material behavior
in terms of the force-time relationship to show the
material nonlinearity after an indentation force being
released. Figure 9(D) compares relaxation behaviors of
the simulated data and tested tissue samples after 10

mm indentation depth. The close match between the two
demonstrates the capability of the proposed constrained
finite element algorithm can effectively capture soft
tissues’ material properties.

4.4 Force and stretch ratio

Stretch tests are designed to measure force-deformation
responses along two biaxial directions to show ma-
terial nonlinear characteristics. Literature [Fung, 1993]
and [Brouwer et al., 2001] show that the material nonlin-
earity can be expressed as an exponential function given
by the force-stretch ratio relationship: |f(λ)∥ = γeαλ, df

dλ =
αf , λ = l

l0
, where f(λ) is the measured force, l and l0

are the stretched and the rest tissue length, respectively.
α and γ are coefficients of tissue stiffness which can be
found through curve-fittings. Taking the derivative df(λ)

dλ ,
the stress due to stretching along two biaxial directions
is dependent on stretching ratio λ. In our stretch tests,
λ is the (applied) stretch in the principal directions in
Eq. 2.

Stretch tests were carried out on a 8 cm2 square
skin sample using the experimental setup shown in
figure 5. Triangle meshes were used in our simulation
for modelling the skin deformation using the proposed
multi-resolution algorithm. We build a 2×2 deformation
matrix from dx and dX, where x is the current position
and X the reference position of a vertex. Thus, we
compute two dimensional strain-limiting along the two
principal stretch directions using triangular elements.
Figure 10 (A) and (B) compare the simulation data
with the testing data, which demonstrate the nonlinear
biphasic behavior of skin tissue under stretch forces with
highly stiff incompliant material behaviors. Figure 10 (C)
captures nonlinear characteristics of the skin and shows
a simulation example of the proposed algorithm on
a three-level multi-resolution hierarchy, and simulation
parameters were E = 180, ν = 0.45.

5 CONCLUSION AND FUTURE WORK

We present a novel strain based constraint finite element
method for simulating nonlinear homogeneous soft
tissues efficiently. The algorithm is capable of modeling
rich nonlinear deformations in a straightforward finite
element framework. The proposed algorithm achieves
an average of 11 milliseconds computational time
interactive frame rate on a 4-level multi-resolution
hierarchy with 50 constrained iterations on each level,
a 70 percent speed up compared with a single level
with the same total number of iterations. Therefore,
the algorithm offers effective simulations for nonlinear
soft tissue properties with highly incompliant material
characteristics. Simulation results were validated by
experimental data captured by a simple-to-build system.
Measurements on ex vivo soft tissues were taken and
compared with simulation data. We would like to
implement a virtual reality suturing application for
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Fig. 9. (A), (B)and(C): Force-displacement measurements taken from ex vivo porcine-abdominal, porcine-liver, and skin-pad
tissues and simulation data. (D): comparisons the relaxation processes between simulated and experiment tissues for 10 mm
indentation depth.

Fig. 10. (A) and (B): A stretching experiment compares stretching strain-force responses between simulated and skin-pad sample;
(C): A simulation example of horizontal stretch of simulated skin using three levels of multi-resolution triangle elements with 2048,
968 and 338 triangle elements at level 0, 1 and 2, respectively.

which the proposed algorithm is applicable in terms of
isotropic and incompliant material behaviors.

We aim to improve our tests in the future work
including the selection of tissue samples, i.e tissues
that are mixed with glandular and fibrous materials
such as kidney. These soft tissues will challenge the
current assumptions of isotropic material behavior and
anisotropic materials will need to be addressed in our
future work. It is also worth exploring to what extent the
proposed approach could capture anisotropy by using
different stretch ratios with respect to each principal
directions.
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