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Abstract. Based on the finite element method, we present a simple
volume-preserved thin shell deformation algorithm to simulate the pro-
cess of inflating a balloon. Different from other thin shells, the material
of balloons has special features: large stretch, small bend and shear,
and incompressibility. Previous deformation methods often focus on typ-
ical three-dimensional models or thin plate models such as cloth. The
rest thin shell methods are complex or ignore the special features of
thin shells especially balloons. We modify the triangle element to sim-
ple three-prism element, ignore bending and shearing deformation, and
use volume preservation algorithm to match the incompressibility of bal-
loons. Simple gas model is used, which interacts with shells to make the
balloons inflated. Different balloon examples have been tested in our ex-
periments and the results are compared with those of other methods.
The experiments show that our algorithm is simple and effective.

Keywords: Finite element method · Physically based simulation · Thin
shell · Volume preservation · Deformation animation of balloons

1 Introduction

Physically based deformation simulation has emerged in the late 1980s to make
animations more physically plausible and to make the simulation of complex
passively moving object easier. The simulation of thin shells is one of the difficult
issues among the physically based deformation animation field. Rubber balloons
belong to thin shells with large deformation.

Similar to thin plates, thin shells are thin flexible structures with a thickness
much more smaller than other dimensions. The difference between them is that
thin shells have a curved undeformed configuration(e.g., leaves, hats, balloons)
while thin plates have a flat one(e.g., clothes). Thin shells are difficult to simulate
because of the degeneracy of one dimension. They should not be treated as
three-dimensional solids, otherwise the numerics become ill-conditioned. Due to
the similarity of thin shells and thin plates, thin shells are treated as curved
surface in many works[1][18] just like the approximation made for thin plates.
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Unfortunately, the thickness, which is very important for some materials such
as rubber, is discarded in such methods. Different thickness will lead to different
elastic force. Ignoring the thickness will cause artifacts. Additionally, for some
complex object, the material points demanded by these works[1][18] are hard to
get.

Compared to typical thin shells, the material of balloons has special fea-
tures[1]. First, the main force leading to deformation is stretching force, while
bending force is tiny. Second, significant transverse shearing should not exist.
Last, the deformation of balloons is volume-preserving. A balloon becomes thin-
ner when inflated. By adding gas, the expansion of the balloon under gas pressure
will be stretched with the elastic force increasing. Meanwhile, the volume of gas
is increasing and the pressure is dropping. In the end, gas pressure and elastic
force balance.

Considering the characteristics of thin shells and balloons, we propose a sim-
ple volume-preserved thin shell algorithm to simulate the process of inflating a
balloon, based on finite element method.

Our algorithms are mainly divided into two phases. In the first phase, finite
element method is applied to solve the temporary shape of the object in the
next time step. In the second phase, volume-preservation constraint is used to
get the final shape. In contrast to other system, we adopt three-prism element
instead of triangle element in order to involve thickness. The three-prism element
is modified from triangle element by adding a thickness property. Despite there
are six vertices in a three-prism, we need not to use all of them as there are
not significant transverse shearing in rubber material. In the first phase, our
method is similar to the finite element method based on triangle element. The
thickness is treated as a parameter. The force caused by thickness is counted as
the force of vertices. Thus, it is necessary to update the thickness and vertices
in volume-preservation algorithm. A position based method[28] is applied in our
volume-preservation algorithm, which is simple and effective. The gas pressure
of every point inside the balloon is equal and the coupling of gas and balloon is
simplified.

Our contributions:

– A simple thin shell finite element method with modification from finite ele-
ment method based on triangle element.

– A volume constraint for thin shells.

– A method simulating the process of inflating a balloon with a simple gas
model and capturing thickness effect.

2 Related Work

Physically based deformation simulation has emerged in the late 1980s. One of
the first studies was the pioneering work of Terzopoulos et al.[2], which presented
a simulation method about deformable objects based on finite differences. After
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that, many different approaches were proposed, such as mass-spring system[3, 4],
the boundary element method[5], the finite element method[6]. More approaches
can be found in surveys of this field[7, 8].

Due to the limitation of the calculation speed of computers, most of early
methods were based on linear elasticity, which will lead to artifact in large de-
formation. Non-linear finite element methods were introduced to improve the
accuracy of simulation[9, 10], which cost too much computation time. Consid-
ering the fact that large deformation is caused by rotation in many deformable
objects, corotated finite element method[11, 12] was presented to simulation such
objects with acceptable speed and accuracy. However, such methods are not suit-
able for objects with large stretching deformation. McAdams et al.[13] overcame
the shortcomings of corotated method to simulate the deformation of skin based
on hexahedral element. But the improvement could not be extended to other
types of element such as triangle element.

Thin shells. Due to the degeneracy of one dimension(the high radio of width to
thickness), thin shells are difficult to simulate. Robust finite element based thin
shell simulation is an active and challenging research area in physics, CAD and
computer graphics. Arnold[14]analyzed thin shells and pointed out the issues in
simulation. Based on Kirchhoff-Love thin shell theory, Cirak et al.[15] adopted
subdivision basis as the shape function in finite element method. The accuracy
of simulation was improved, neglecting the low speed. Green et al.[16] applied
the method of Cirak et al.[15] in computer graphics and improved the speed with
multi-level method. Grinspun et al.[17] also proposed an accelerated framework,
which was simpler and more adaptable. Grinspun et al.[18] presented the simplest
discrete shells model to simulate thin shells with large bending deformation such
as hats and papers. Bonet et al.[1] simulated thin shells under gas pressure with
the approach for clothes. 2D material points are demanded in this method, which
are difficult to calculate in some complex thin shells. Inspired by the work of
Bonet et al.[1], Skouras et al.[19] modified the form of deformation gradient to
make every element volume-preserved during deformation and got rid of the
demand of material points. Nevertheless, the new deformation gradient will lead
to a complex system, which may be ill-conditioned. Most of the works above
use triangle element, ignoring the thickness when simulating thin shells. But
for materials like rubber, thickness is a very important property, which should
be considered. On the other hand, thin shells should not be simulated based
on tetrahedral element, as the degeneracy of one dimension. In this paper, we
present a compromise method by using three-prism elements, which is simple
and keep the thickness information meanwhile.

Gas model. Gas is a type of fluid, which is a active research area in recen-
t years. Guendelman et al.[20] and Robinson et al.[21] coupled fluid with thin
shells and thin plates. The coupling process is very complex as thin structures
and fluid belong to two different system. Batty et al.[22] accelerated the cou-
pling of fluid and rigid bodies. However, the coupling of fluid and soft bodies is
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still a difficult problem. It is not necessary to use such complex system, when
there is not significant movement of gas. Chen et al.[23] proposed a three-layer
model to simulate the air effect between clothes and soft bodies. The air flow
was calculated by simple diffusion equation. In the deformation of balloons, the
equilibrium of gas pressure force and elastic force is achieved quickly so we can
just ignore the movement and treat the gas uniform[19].

Volume-preservation. Volume loss can be an obvious artifact when simulat-
ing large deformation. With meshless method, Müller et al.[24] adjusted material
parameters such as Poisson’s radio to make the deformation volume-preserved.
Bargteil et al.[25] proposed a plasticity model to preserve volume, which could
only be used in offline simulation. Local volume-preserving method was present-
ed by Irving et al.[26], which preserve the local volume around every vertex.
Position based method could also be used to preserve volume by adding volume
constraint[28]. Müller et al.[29] then improved this method with multi-grid to
accelerate the solving of constraints. Similar to Müller[28], Diziol et al.[30] also
use position based method, but they solve constraints of not only positions but
also velocities.

3 Overview

The balloon model is expressed by a triangles mesh, with gas inside. The mesh
is represented by three-prism elements with a set of N vertices. A vertex i ∈
[1, . . . , N ] has a mass mi, a initial position x0

i
, a current position xn

i
and a cur-

rent velocity vn
i
. With a time step ∆t, the whole volume-preserved deformation

algorithm for thin shells is as follows:

Algorithm 1. Balloon inflated deformation.

1 Set parameters: gas pressure p, balloon density ρ, initial thickness he.
2 for all vertices i
3 do initialize x0

i ,v
0
i , compute mass mi

4 while system dose not converge
5 do for all elements e
6 do compute felastic

i
, fpi of the three vertices

7 compute δfelastic = −Kelasticδx, δfp = −Kpδx
8 compute the time integration by implicit method
9 solve the equation to get all vn+1

i
,xn+1

i

10 Volume preserving, update all xn+1
i

, he

11 for all vertices i
12 do vn+1

i
=
(
xn+1

i
− xn

i

)
/∆t

Lines 1-3 set the parameters and initialize the positions and velocities of
vertices. The core of the algorithm are two parts, the finite element method
part(lines 5-9) and volume preserving part(line 10). Lines 11-12 update the po-
sitions and velocities at last.
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In the finite element method part, the elasticity forces and the pressure forces
of vertices are computed according to current positions xn

i
and initial positions

x0
i in every element in line 6. In line 7, the variations related to stiffness matrix

and gas tangent matrix of every element are computed, which will be assembled
in the variations related to stiffness matrix and gas tangent matrix of the system.
After these computed for all elements, the implicit time integration is used to
construct system equation in line 8 by combining the matrixes above. At last, the
new velocities are solved by Newton-Raphson method and Conjugate Gradient
method in line 9.

In volume preserving part, current positions xn+1
i

and thicknesses he are used
to compute the change of volume, and the positions and thicknesses are updated
in order to preserve the volume.

4 Balloon Model

In most of previous works, thin shells are simulated by triangle elements, which
ignore the thickness information, or tetrahedral elements, which may be ill-
conditioned. We present a three-prism element to keep the thickness. As there
is no significant shear in rubber material, we just add a thickness property on
the typical triangle element to get a three-prism element(see Fig.1).

2x 3x1x hx•

Fig. 1. Interpolating method of three-prism element.

The deformation of objects is represented by the deformation function ϕ :
Ω → R3, which maps a material point x̄ to its deformed point x = ϕ(x̄). Inside
the three-prism element, the location of a point x(α) can be interpolated by
three vertices and the thickness property(see Fig.1) and α is the interpolating
parameter.

In element e, let x̄e
1
, x̄e

2
, x̄e

3
∈ R3 denote the vertices positions in undeformed

configuration, h̄e ∈ R denote the thickness, and ēij = x̄ej − x̄ei denote the edges.

Let xe
1
,xe

2
,xe

3
∈ R3 denote the respective deformed vertices positions, he ∈ R

denote the deformed thickness and eij = xej − xei denote the deformed edges.
Using linear interpolating method, a point within element e in undeformed con-
figuration x̄e(α) and its respective deformed position xe(α) can be represented
as the same form

x̄e(α) = (1− α1 − α2)x̄
e
1
+ α1x̄

e
2
+ α2x̄

e
3
+ α3h̄

ed̄, d̄ =
ē12 × ē13
|ē12 × ē13|

(1)
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Within every element, the deformation is assumed to be constant, and can be
described by the deformation gradient Fe ∈ R3×3

Fe =
∂xe(α)

∂x̄e(α)
=
∂xe(α)

∂α
·
(
∂x̄e(α)

∂α

)−1

(2)

From equation (1), the partial derivative of x̄e(α) to α is

∂xe(α)

∂α
=
[
e12 e13 dhe

]
,
∂x̄e(α)

∂α
=
[
ē12 ē13 d̄h̄e

]
(3)

At last, the deformation gradient Fe can be represented as

Fe =
[
e12 e13 dhe

]
·
[
ē12 ē13 d̄h̄e

]−1
(4)

Deformation could cause strain energy, which is defined by deformation gra-
dient

E =

∫
Ω

ψ(F)dx̄ (5)

where ψ is the energy density function as a function of deformation gradient to
measure the strain energy per unit undeformed volume. Different material has
different energy density. Take St.Venant-Kirchhoff material for example

ψ(F) = µE : E+
λ

2
tr2(E) (6)

where µ, λ are Lamé coefficients of the material and E ∈ R3×3 is Green strain
tensor, which is a nonlinear function of deformation gradient

E =
1

2
(FTF− I) (7)

With strain energy, the elastic forces are defined as

felastic
i

= − ∂E
∂xi

=
∑
e

(
−∂Ee

∂xi

)
=
∑
e
fei

=
∑
e
−V e ∂ψ(F

e)
∂xi

=
∑
e
−V e ∂ψ(F

e)
∂Fe

∂Fe

∂xi

=
∑
e
−V eP(Fe)∂F

e

∂xi

(8)

where V e is the volume of element e, P(F) = ∂ψ
∂F is 1st Piola-kirchhoff stress

tensor, which of St.Venant-Kirchhoff material is

P(F) = F[2µE+ λtr(E)I] (9)

If we use explicit time integration, we can compute the accelerations of al-
l vertices and then update the positions and velocities. However, the explicit
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time integration is not stable in large time step. In order to apply implicit time
integration, the stiffness matrix need to be computed

Kelastic = −∂f
elastic

∂x
(10)

From Equation(4) and Equation(8), we can see that deformation gradient and
stress tensor are complex functions of x. Thus solvingKelastic directly is difficult.
However, Kelastic always multiply a vector like Kelasticw, so we just compte the
variation of elastic forces δfelastic = −Kelasticδx

δfi
elastic =

∑
e

−V eP(Fe; δFe)
∂δFe

∂δxi
(11)

Now we can use implicit time integration to solve positions and velocities.

5 Gas Model

As the equilibrium of gas pressure force and elastic force is achieved quickly
when inflating the balloon, we assume that the gas pressure is uniform and the
gas pressure of every point inside the balloon is the same. The pressure p and
the volume of gas V have a relationship as

pV = nRT (12)

where n is the amount of gas contained in volume V , T is the temperature and R
is the gas constant. In an enclosed balloon, the amount of gas, the temperature
and the gas constant do not change, so the product of pressure and volume
remains invariant. Increasing the volume will decrease the pressure.

In our model, when the mesh is very fine, the volume of the gas can be
approximately formed from tetrahedrons made up of triangles and the origin
point(see Fig.2)

V =
∑
e

1

3
·1
3
(xe

1
+ xe

2
+ xe

3
) · ne ·Ae (13)

where ne is the normal vector of element e and Ae is the area.
With the initial pressure p0, initial volume V0 and current volume V , current

pressure is defined as

p =
p0V0
V

(14)

The value of the pressure force of element e is the product of the pressure p and
the triangle area Ae of element e. The direction of the pressure force of element
e is the normal vector of the triangle ne. The the discrete nodal pressure forces
can be derived as

fpi =
∑
e∈Ti

1

3
pAene =

∑
e∈Ti

1

3
p · 1

2
(ee

12
× ee

13
) (15)
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O•
1x 2x 3xn

Fig. 2. Volume of the gas.

where Ti is the set of elements incident to vertex i, 1
3 are weights.

The tangent matrix of pressure force is calculated and we neglect the deriva-
tive of area and normal vector to vertex position in order to make tangent matrix
positive definite. The tangent matrix between vertex i, j is derived as

[Kp]ij =
∑
e∈Ti

−∂[fp]ei
∂xj

T

≈ −
∑
e∈Ti

1
3

(
∂p
∂xj

T A
ene
)

≈ 1
27
p0V0

V 2

( ∑
e∈Ti

Aene

)( ∑
e∈Tj

Aene

)T (16)

The tangent matrix is dense while the stiffness matrix is sparse. So the time
complexity of the tangent matrix is O(N2). In order to speed up, just like the
stiffness matrix, we compute the variation of pressure forces δfp = −Kpδx di-
rectly. Let Ani=

∑
e∈Ti

Aene, the variation of pressure forces is derived as

δfpi = −
∑
j

[Kp]ijδxj = − 1
27
p0V0

V 2 Ani

(∑
j

(Anj)
T
δxj

)
(17)

The time complexity of above is O(N).

6 Time Integration

Implicit time integration is used as in [31] and we get

Ma = felastic(xn+1) + fp(xn+1)−Cvn+1 + fext (18)

where a = vn+1−vn

∆t is the acceleration of vertices, vn is the velocity matrix at
time n, C is the damping matrix, fext is the external forces such as gravity and
M is the mass matrix. The discrete nodal mass is derived as

mi =
∑
e∈Ti

wiρ · V e (19)
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where wi are weights and ρ is the density of material.
As Equation.18 is nonlinear, we use Newton-Raphson method to solve it.

We will construct sequences of approximations xn+1
(k) : xn+1

(0) ,x
n+1
(1) ,x

n+1
(2) , ... and

vn+1
(k) : vn+1

(0) ,v
n+1
(1) ,v

n+1
(2) , ... such that lim

k→∞
xn+1
(k) =xn+1 lim

k→∞
vn+1
(k) =vn+1. Initial-

ize xn+1
(0) =xn,vn+1

(0) =vn and define the correction variables

∆x(k) = xn+1
(k+1) − xn+1

(k) , ∆v(k) = vn+1
(k+1) − vn+1

(k) (20)

Linearize the elastic force and pressure force as

f(xn+1) ≈ f(xn) +
∂f

∂x
∆x (21)

Then we use Equation.18, Equation.20 and Equation.21 to derive system linear
equation

M

(
vn+1

(k+1)
−vn

)
∆t = felastic

(
xn+1

(k)

)
+ fp

(
xn+1

(k)

)
+ fext

−Kelastic
(
xn+1

(k)

)
∆x(k) −Kp

(
xn+1

(k)

)
∆x(k) −Cvn+1

(k+1)

(22)

With ∆x(k) = ∆v(k)∆t, we get

A∆v(k) = b

A = M+∆tC+∆t2(Kelastic
(
xn+1

(k)

)
+Kp

(
xn+1

(k)

)
)

b = M
(
vn − vn+1

(k)

)
+∆t

(
felastic

(
xn+1

(k)

)
+ fext + fp

(
xn+1

(k)

)
−Cvn+1

(k)

)
(23)

∆v is solved by Conjugate Gradient method and vn+1 = vn+∆v is the velocities
in time n+ 1. In conclusion, The detailed process in lines 5-9 of Algorithm1 is

1. Compute the deformation gradient of each element using Equation.4.

2. Compute discrete nodal elastic forces and pressure forces using Equation.8
and Equation.15.

3. Construct system linear equation using Equation.23.

4. Solve sequences of approximations xn+1
(k) : xn+1

(0) ,x
n+1
(1) ,x

n+1
(2) , ... and vn+1

(k) :

vn+1
(0) ,v

n+1
(1) ,v

n+1
(2) , ... and compute the variations δfi

elastic, δfi
p during the

process using Equation.11 and Equation.17.

5. vn+1 = vn+1
(k+1) ,x

n+1 = xn+1
(k+1) .

7 Volume Preservation

Volume preservation is an important feature of balloons. During deformation,
the volume of gas is changing while the volume of balloon remains the same(see
Fig.3).
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gas balloon
2x 3x1x h4x•

Fig. 3. Volume preservation of balloon. Left: The solid line represents the balloon
before stretching, and the dot line represents the balloon after stretching, which is
thinner than before. Right: The virtual vertex in volume preserving algorithm.

There are three vertices and one thickness property in an element. For the
convenience of calculation, we convert the thickness property to a virtual vertex,
which is located in the center of the upper triangle of three-prism(see Fig.3). Af-
ter volume preservation, we will convert the virtual vertex to thickness property.

The volume constraint is defined as the equality of initial volume and current
volume of the balloon

C(x+∆x) = V b(x+∆x)− V b
0
= 0 (24)

where x are current positions of N + N1 vertices(N1 are the virtual vertices).
We need to solve the correction ∆x, which meet the constraint. Linearize C

C(x+∆x) ≈ C(x) +
∂C(x)

∂x
∆x (25)

And compute the volume of the balloon from the volume of all three-prisms

V b(x) =
∑
e

1

2
e14 · (e12 × e13) (26)

The correction is solved by position based method [28]

∆xi = − (N +N1)wi∑
j

wj

wiC(x)∑
j

∥∥∥∂C(x)
∂xj

∥∥∥2 · ∂C(x)
∂xi

(27)

where wi are weights wi = 1/mi
′
. The new masses are computed using Equation.19

with weight 1/6 for original three vertices and 1/2 for the virtual vertex. The
derivation of C to vertex is easy to derive

∂C(x)
∂xi

=
∑
e

∂Ce(x)
∂xi

=
∑

e:te1=i

1
2e24 × e23 +

∑
e:te2=i

1
2e13 × e14 +

∑
e:te3=i

1
2e14 × e12 +

∑
e:te4=i

1
2e12 × e13

(28)
where te1, t

e
2, t

e
3, t

e
4 are the four indices of the vertices belonging to element e.

The volume of balloon is preserved as follows
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Algorithm 2. Volume preservation.

1 for all elements e
2 do Compute the virtual vertex xe4 and add it to vertices matrix x
3 Compute new masses mi

′ using Equation.19

4 Using Equation.28 to compute ∂Ce(x)
∂xi

and add it to∂C(x)
∂xi

5 for all vertices i
6 do Using Equation.27 to compute ∆xi
7 xi = xi +∆xi
8 for all elements e
9 do Compute thickness he from virtual vertices

8 Results

All of our examples are tested on an Intel Core i7 3.4Ghz CPU with 16GB mem-
ory. In order to explore the capabilities of our method, we make tests with a
variety of different shapes from The Princeton Shape Benchmark as the unde-
formed balloons and the results are rendered by POV-Ray. For each shape, an
inflating animation is made and we choose some frames to analysis.

Fig. 4. Inflating result of the teddy. Left top is the undeformed shape, left bottom is
the deformed shape and right are detail images.

Fig.4 shows the inflating result of teddy. The shape of teddy’s head is some
of a big sphere, on which the ear is some of a small hemisphere. During the
animation, the big parts such as the head and the body are inflated fast, while the
small ones are inflated slowly like the ears. The reason is that the big parts have
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ap apbp bp
a bp p+

a b a b

a bp p+

Fig. 5. The relationship with curvature and pressure force.

equable curvature while the small ones have steep curvature. The steeper the
nodal’s curvature is, the smaller pressure force it gets(see Fig.5). Additionally,
as the head is inflated faster than the ears, the vertices connecting the two parts
will have larger elastic forces than those belong to ears and so the base area of
the ears will enlarged while the height is shorten correspondingly. As a result,
the ears seem like shrinking and merged into the head just like the balloons in
reality do.

Fig. 6. Results of more shapes. Left column are undeformed shapes and right column
are deformed shapes.
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More results are given in Fig.6. From the results, we can see that the big parts
are inflated faster than the small ones and they are merged gradually. However,
parts with the similar size will keep their shapes and be inflated separately. Ad-
ditionally, the regions between different parts become flat gradually. The rough
regions in the Vase model get smooth while the plates in the Cube&Cylinder
model get curved. The balloons simulated by our algorithm act just like the real
balloons.

Thickness analysis and comparison. The balloons in same shape are de-
formed in different ways with different thicknesses. With larger thickness, the
balloons are more difficult to stretch due to larger elastic forces. We experiment
with different thicknesses of 0.3mm, 0.2mm and 0.1mm in Fig.7.

Fig. 7. Results of different thicknesses and comparison with the result of Skouras et
al.[19].Left top is the result of thickness 0.3, right top is the result of thickness 0.2, left
bottom is the result of thickness 0.1, right bottom is the result of Skouras et al.[19].

From the results, we can see that the balloon is deformed more slowly with
larger thickness but the effect of emerging is more obvious. With thickness 0.3m-
m, the ears are barely inflated and the deformation is mainly from the stretch
of the connecting part with the head. At last, the two parts get merged quickly.
With thickness 0.1mm, the deformation of the ears is mainly from the inflating
of itself and the ears never be merged with the head. With thickness 0.2mm, the
deformation of the ears is the combination of the two effects.

The results show that thickness is an important property of balloons. Dif-
ferent thicknesses will cause different effects, which is ignored in other methods.
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The last figure in Fig.7 is the result of Skouras et al.[19]. In their method, the
deformation gradient is complex and the volume is preserved by brutely setting
the thickness to balance the changing of the area of triangles. Thus the method
can not realize the different effects of different thicknesses.

Performance We provide computation times and volume radios for all exam-
ples shown in this paper in Table 1. The volume radio is the radio of current
volume and the initial volume of the balloon. The thickness of all models is
0.3mm and the the number of iterations of Newton-Raphson method is 3. We
calculate the average computation time and volume radio of 300 frames.

Table 1. Computation times and volume radio.

Model #vertices #faces time[ms] volume radio

Teddy 11090 22176 278.0 1.0000026
Bird 7849 15694 187.2 1.0000028
Holes 5884 11776 207.6 1.0000065
Vase 14599 29194 522.6 0.9924975
Cube&Cylinder 15505 31006 484.2 1.0000036

It can be seen that the computation times are acceptable and the volume
radios of all models are almost 1, which means that our volume preservation
algorithm works well. Due to the rough surface, there are too much details in
the Vase model, thus the volume preservation performance is not as good as
other models.

9 Conclusion

In this paper, we present a simple thin shell deformation method, based on finite
element method. We focus on the objects with large stretch deformation and
little bend deformation, balloons are typical objects of which. Considering the
special features of balloons, we introduce gas model and volume preservation
algorithm to simulate the inflating process of balloons. We experiment with
a variety of different shapes from The Princeton Shape Benchmark and get
good results. Compared to other methods, we can realize the effects of different
thicknesses.

Although we can simulate balloons with different thicknesses, the thickness
of all elements should be the same when initialized. However, the real balloons
often have different thicknesses in different parts, which will be explored in our
future work. Additionally, adding external forces on balloons such as grabbing
or pinching is also an interesting topic.

Acknowledgments. The models are provided by The Princeton Shape Bench-
mark.
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