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Abstract 
 

Objective: Task specific training and Electrical stimulation (ES) are techniques used in 

rehabilitation of the upper extremity post stroke. This study describes the feasibility of using a 

rehabilitation system that combines personalised, precisely controlled levels of ES to the 

anterior deltoid, triceps and finger and wrist extensors during goal-oriented activity utilising 

real objects from daily life.  

Materials and Methods:  

Four chronic stroke participants undertook seventeen intervention sessions, each of one hour 

duration. During each session, particpants performed goal-orientated tasks while Iterative 

learning control (ILC) updated the ES signal applied to each muscle group. The update was 

based on the difference between the ideal and actual movement in the previous attempt at the 

task, measured using Microsoft Kinect and PrimeSense sensors. The control system applied 

the minimum amount of ES required with a view to facilitating success at each given task while 

maximising voluntary effort.  

Results: Preliminary results demonstrate that ES mediated by ILC resulted in a statistically 

significant improvement in range of movement in all four joint angles studied (shoulder flexion; 

elbow, wrist and index finger extension) over 17 intervention sessions. Additionally, 

participants required signficantly less extrinsic support for each task. The tasks and system is 

described and initial intervention data are reported.   

Discussion: The feasibility of using this system for assisting upper limb movement has been 

demonstrated. A large scale pilot RCT is now required.  
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Introduction  
Annually 16 million first strokes occur globally, and 10.3 million people are estimated to 

survive [1]. As age is a substantial risk factor, the aging of the world population means that a 

growing number of people are at risk, with associated impacts on the individual, their carers 

and broader society. Arm dysfunction is a major consequence of stroke;  only 41% of people 

with moderate to severe stroke and 71% with mild stroke regain dexterity [2], which affects 

performance in activities of daily living [3] and subsequently care. In 2009, stroke alone was 

estimated to cost the EU economy over €38 billion, of which 50% was due to direct health 

care costs, 22% was due to productivity losses and 28% was due to informal care costs of 

people with stroke [4]. 

 

Whilst the majority of any functional improvement is seen in the first six months following 

stroke, functional gains can be observed over several years [5, 6]. A  recent review and meta-

analysis highlighted that there is strong evidence for physical therapy interventions which 

include intensive, highly repetitive task-oriented and task-specific training in all phases post 

stroke [7].  This presents a major challenge to healthcare providers, and is driving the 

development of rehabilitation technology which can deliver this specific and intense 

rehabilitation without using additional resources. Technologies such as electromechanical and 

robot-assisted arm training have been demonstrated to improve activities of daily living and 

arm function (but not muscle strength) [8]. However few evidence based technologies are 

routinely used in clinical practice in the UK. Identified barriers which need to be overcome to 

facilitate translation include usability, knowledge, education, awareness and access to ATs as 

well as cost [9].  One of the technologies which shows promise in meeting some of these 



barriers is Electrical Stimulation (ES) which has a growing evidence base [10], demonstrating 

improvements in range of movement, strength and spasticity.   

 

The effectiveness of ES is increased when ES is associated with voluntary drive. It is 

therefore important to carefully control ES in order to support the user’s intended movement. 

ILC is an advanced control paradigm that operates by comparing movement data from a 

previous attempt at a task to an idealised reference trajectory for the same task. It sequentially 

adjusts the level of stimulation given to each muscle group with a view to achieving the 

required reference trajectory. This iterative process applies the minimum level of ES for task 

attainment while simultaneously encouraging voluntary contribution from the participant. 

Previous studies combining ES and ILC have demonstrated feasibility of using PayPals 

electrodes to deliver precisely controlled stimulation to the anterior deltoid, triceps and wrist 

extensors [11-13]. The GO-SAIL (goal-oriented stimulation assistance through iterative 

learning) system used in this study, is a multi-channel ES system for the upper extremity that 

precisely controls ES through advanced iterative learning control algorithms [14]. The 

technology employed in this study includes three important developments to that used in 

previous research: 

1. An electrode array is located over the wrist and finger extensors to enable functional 

hand gestures to be performed. 

2. A Primesense is used to measure hand and wrist joint angles, reducing set-up time and 

removing constraints associated with contact-based sensors (e.g. goniometers).  

3. A touch table displays the tasks in an interactive manner. 

 

The system directly trains goal-oriented activities and is able to provide greater assistance 

than in previous research by including an electrode array to support functional hand and wrist 

gestures. This is expected to lead to further reduction in upper limb motor impairments, as 

reflected by evidence that effects resulting from training are mostly restricted to the actually 

trained functions and activities [10]. To be useful in longer term self-management, 

technologies need to promote adherence through stimulating and motivating rehabilitation. 

The use of a touch table provides such an environment, and, when combined with 

inexpensive non-contact sensors (Kinect and Primesense), represent a significant step in the 

development of technology that is suitable for translation into the home environment. 

The aim of this study is to test the feasibility of using the multi-channel ES system to 

precisely control ES applied to multiple muscle groups in the UE in combination with real 

and virtual tasks to facilitate functional motor recovery post-stroke. The rehabilitation system 

has been designed to facilitate recovery of UE motor control and function in chronic stroke 

participants. 

Method 
Participants 

The inclusion criteria for participants were: i) aged 18 years old or over; ii) stroke causing 

hemiplegia of at least 6 months duration; iii) impaired upper limb that includes the inability 

to effectively extend the elbow in reaching and impaired opening and closing of the hand iv) 

ES produces movement through a functional range; v) able to comply with study protocol; vi) 

able to communicate effectively; vii) able to provide written informed consent.  The 

exclusion criteria for participants were: i) any active device implant; ii) a metal implant in the 

affected upper limb; iii) uncontrolled epilepsy; iv) pregnancy and lactation; v) any serious or 

unstable medical, physical or psychological condition or cognitive impairment that would 

compromise the subject’s safety or successful participation in the study; vi) requirement of an 



interpreter; vii) current participation in another study involving physical rehabilitation of the 

arm. Following ethical approval, to date, a total of 4 participants have been recruited to the 

trial. 

 

The rehabilitation system 

Pals Plus electrodes were applied to the anterior deltoid and triceps, whilst the 24 element 

electrode array was positioned over the finger and wrist extensors. Multi-channel ES was 

precisely applied to assist participants’ completion of the movement tasks. The system was 

goal-orientated; tasks included holding an imitation loaf of bread with one hand whilst 

simulating a cutting task with the other, or moving soap or toothpaste to a different position 

on the representation of the bathroom sink displayed by the touch screen. The control scheme 

considered each task to be a general optimisation problem where the desired movement was 

specified in terms of kinematic variables. For example, the task of moving the soap, involved 

reaching a certain position in Cartesian space at a predetermined time, with constraints which 

influenced the posture adopted, and the speed and smoothness of the motion. Healthy 

participants’ movements were used to identify the optimisation components. [24]. ILC 

iteratively solves the optimisation by learning from experimental data recorded on the 

previous attempts of the task, in such a way as to solve the optimisation and hence complete 

the task. Thus, the stimulation signal applied to each muscle group is updated on every trial.  

In the current system, this involves using kinematic, kinetic and stimulation signals, which 

are used in combination with an underlying bio-mechanical dynamic model of the arm [14, 

15].   

 

Insert Figure 1 about here 

 

 

 

Fig. 1. The components of the GO-SAIL system: (1) Microsoft Kinect® and Primesense 

sensors which provide kinematic data for the ILC algorithm; (2) virtual and real tasks displayed 

using touch table; (3) SaeboMAS® arm support; (4) FES and multiplexor hardware (5) surface 

electrode array on forearm. 

 

 

A schematic overview of the system can be seen in Figure 1. Participants sat on a perching 

stool in front of a touch table adjusted to their height and reach. Their arm was de-weighted 

according to individual need and task using a SaeboMAS® arm support (Saebo, Charlotte, 

USA). Electrodes were positioned on the anterior deltoid, triceps and an electrode array was 

used over the common extensor complex of the forearm. Joint angles of the shoulder, elbow 

and wrist were recorded using a Kinect® (Microsoft, Washington) and a PrimeSense (Apple 

Inc, California). Data from these sensors fed into the control algorithm hardware and software, 

which updated the ES control signals for each muscle group to provide enough ES to assist 

performance. The therapist used the operator monitor displaying the GO-SAIL graphical user 

interface to select appropriate tasks and monitor training. A safety override button could be 

used to terminate trials with immediate effect if required.  

 

Intervention sessions 

The participants repeatedly practiced functional tasks assisted by ES over 17, 1 hour 

intervention sessions, lasting between 6-8 weeks. Participants sat on the perching stool in 

front of the touch table, with their hemiplegic arm supported by the SaeboMAS® arm 

support. The support was adjusted to allow the participant to access a greater range of active 



or ES assisted movement without causing abnormal posture in the upper quadrant. The aim 

was for the participant’s hand to rest easily on the table top (see Figure 1). Electrodes were 

placed on the anterior deltoid, triceps and wrist extensors, ES was applied and the movement 

pattern was checked. For the wrist array, an automated programme stimulated electrode 

elements within the array to identify the combination of electrode elements that produced the 

optimal wrist and index finger gestures required in the tasks. For comfort and safety, upper 

limit stimulation amplitudes were identified for all muscles, which would not be exceeded in 

the intervention. Parameters within the model of the arm were also identified. 

 

During each task, joint angles, timings and error magnitudes between the participant’s arm 

movement and the reference movement were recorded to provide a measure of accuracy for 

each muscle group for unassisted tasks (i.e., movements without ES) and assisted tasks. 

Unassisted tasks: Four button pushing tasks (at 75% of reach at each of the four locations) 

and one light switch task (at 75% of reach at the highest location), were completed pre and 

post each session.  These consisted of one trial only.  

 

Assisted tasks: The intervention practice tasks were determined by the therapist according to 

clinical need, and designed to present an achievable challenge. The tasks began with the 

participant’s hand placed on the touch table in front of their shoulder (see Figure 2) and were 

typically repeated six times. Participants were instructed to always try to initiate the activity 

and try to move their arm to complete the task themselves. During each task, ES mediated by 

ILC, was applied to all three muscle groups. This facilitated the movement of the 

participant’s arm over the six repetitions of the selected task. A custom graphical user 

interface was used by the therapist to perform the subsequent tests. 

 

Task Design 

Daily life tasks were chosen that utilised reach and manipulation across the workspace, and 

were sufficiently challenging but achievable by the participants (see Figure 2). Four 

background images were used on the touch table: a default image, a table, a bathroom sink and 

a chopping board. Tasks included reaching and grasping using real objects relevant to the 

image. There were 5 main tasks; closing a drawer, switching on a light switch, stabilising an 

object, button pressing and repositioning an object. As illustrated in Figure 2, the light switch 

was located at two different heights (low and high) and there were four table-mounted positions 

in which the buttons could be located or objects repositioned both in the sagittal plane and 

towards the frontal plane (45° across body, 45° to the hemiplegic side or in line with the 

shoulder). The objects were placed at different percentages of arm length (60%, 75%, 80% and 

90%) from the participant’s glenohumeral joint (see Figure 2). The table was positioned at a 

distance of 45% of arm length away from the glenohumeral joint and 35 cm below the arm 

when the arm was held 90° horizontal to the shoulder. 

 

Level of Arm support used during FES-assisted tasks 

The level of arm support remained the same for the unassisted tasks. For the assisted tasks 

however, the level of arm support was reduced following consistently successful 

performance, to encourage voluntary effort. This was monitored and recorded for each task 

completed.  

 

FES-unassisted and FES-assisted performance 

The time it took to complete a task (or until maximum effort was achieved), joint angles and 

task success (i.e. whether the task was successfully performed) were recorded for each trial. 

Unassisted tasks: participants completed five unassisted tasks (i.e. without the aid of FES): 



the four button pushing tasks (located at 60% or 80% of reach in line with the shoulder, or at 

75% of reach, 45° to the left or right of the shoulder), and the high light switch task (located 

at 75% of reach and 115° of elevation) at the beginning and end of each session. The 

unassisted tasks consisted of one trial only. These data were used to map changes in these 

performance measures over time.  

In addition, the tracking error (i.e. the mean difference between the measured joint angle signal 

and the desired reference trajectory) for each muscle group was calculated across the six 

repetitions of each assisted task to quantify the change in task performance elicited by ILC. 

Statistical analysis 

FES-Unassisted and FES-Assisted Performance and Level of Arm Support: changes in the 

FES-unassisted and FES-assisted perfomance, and level of arm support required across the 

sessions were analysed by calculating best-fit linear regression slopes of performance against 

session number collapsed across all participants. Significance was associated with a value of p 

< .05. 

Results 

The feasibility trial took place at the Faculty of Health Sciences, University of Southampton. 

Data are reported from four participants (3 male and 1 female, aged 44-55) who completed the 

trial over 6-8 weeks. They have all had a right cerebral vascular event causing left hemiplegia. 

None of the participants demonstrated any loss in sensation or passive range of movement. 

With gravitational support, participants had varying degrees of volitional proximal activity but 

all demonstrated an increasing deficit in activity distally. 

The range of unassisted tasks during the intervention reflects different improvements in range 

of movement at the shoulder, elbow, wrist and index finger joints; the highlight switch 

demonstrated the most significant gain in shoulder flexion, the contralateral reach in elbow 

extension, the near reach in wrist extension and the far reach in index finger extension as seen 

in Table 1.  

Analysis demonstrates that the intervention of ILC mediated ES in conjunction with the task 

practice successfully improved range of movement in the upper limb, at all joints over the 

intervention. Statistically significant mean range of movement improvements over the course 

of the intervention can be seen to be 5° in shoulder flexion (High Light Switch), 13° in elbow 

extension (Contralateral Reach), 42° in wrist extension (Near Reach), and 34° in index finger 

extension (Far Reach). Greater detail can be seen in Figure 2 which shows range of movement 

in each intervention session for each participant. 

Insert Table 1 and text about here: 
 

 

Insert Figure 2 about here 
 

Figure 2 a) Changes in Range of Movement over the intervention a) High Light Switch Task: Shoulder Flexion  b) 
Contralateral Task: Elbow Extension, c)  Lateral Task: Elbow Extension, d) Near Reach Task:  Wrist Extension, e) Far Reach 
Task: Index Finger Extension. 



 

 

These results indicate reduced motor impairment.  This will be further quantified with the 

clinical assessments post-intervention.  Data collection is on-going. 
 

 

Discussion 
 

This study provides evidence of the feasibility of using the GO-SAIL system, incorporating 

ES mediated by ILC with real tasks for chronic stroke participants. The electrode array 

worked to enable hand gestures to be performed leading to changes in unassisted wrist and 

finger movement. No participants reported discomfort from the wrist array. The Primesense 

recorded hand and wrist joint angles, reducing set-up time and removing constraints 

associated with contact-based sensors (e.g. goniometers) and the touch table displayed the 

tasks in an interactive manner.    

 

The results of this feasibility study are relevant to all studies in which non-contact movement 

measurement is required. This type of system will become increasingly important in the drive 

to deliver cost-effective improvements in stroke rehabilitation and to fulfil national clinical 

guidelines which include recommendations for patients to have every opportunity to practise 

within their capacity.     
 

The results from this sample indicate reduced motor impairment following the intervention. 

The different improvements visible in Figure 2 relate to the movement requirements 

necessary for performing the different tasks. The ipsilateral and contralateral tasks challenged 

the elbow extension, but not the shoulder flexion. Participants were able to control their 

shoulder flexion and elbow extension so this may have reduced the degrees of freedom 

allowing the participants to forcus on their wrist extension. The far reach task challenged all 

joints, but was the only task to require index finger extension to complete the task; repetitive  

practice resulted in the most significant improvement in index finger extension.The highlight 

switch task challenged participants repeatedly in terms of their shoulder flexion, and this is 

where the changes in movement occurred.  

 

In clinical practice,outcome measurements would generally be recorded in line with the 

WHO International Classification of Functioning, Disability and Health [16]. However 

clinical outcomes generally do not measure incremental changes in movements, but solely 

provide a pre-post perspective. It can be oberved from the graphs that although the trend is in 

an overall direction, the day to day fluctuations could mean that a pre-post measurement 

could present a misleading picture of what the participant is achieving. Additionally, 

feedback is known to be an important factor in rehabilitation, and this type of  system could 

be used to provide feedback.  

 

Nevertheless, despite observing an improvement in range of movement it was still evident 

that further refinement of fine finger movement is required to optimise transfer of the benefits 

observed in to activities of daily living. Additionally, whilst the non contact technology 

worked well, it is still not at a stage where it could be easily transferred into people’s homes. 

On-going refinements, however, mean that this can be expected within 5 years. 

 



Limitations of the study were a small sample size, no control group or follow-up (due to time 

constraints). Participant had also taken part in previous ILC studies, so it is possible that the 

improvements seen were not representative of participants who have not had the opportunity 

of using ES mediated by ILC. Now we have demonstrated the feasibility of using this 

technology we will seek to verify these results with a larger sample of participants in a 

randomised controlled trial or cross-over study design in which the effects of no ES 

(unweighting from the arm support alone) or ES that is not precisely controlled by ILC are 

compared with ILC controlled ES. In addition further refinement of the hand movement is 

required. 

 

 

Conclusion 
 

This study aimed to assess the feasibility of  using the innovative GO-SAIL ES system that 

uses advanced ILC algorithms to precisely control stimulation to the anterior deltoid, triceps, 

and wrist and finger extensors during task specific upper extremity training.  The feasibility 

of the system has been demonstrated by supplementing activity and promoting the successful 

completion of a range of functional tasks.  
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Table 1:Regression slopes and p-values for range of movement in FES-unassisted tasks over the 17 sessions across all 

participants 

Joint angle Task  slope t-stat p-value 

Shoulder Flexion High Light Switch 0.2814 5.6755 0.0054 

Elbow Extension Contralateral Reach 0.78 6.2702 0.0041 

Lateral Reach 0.4137 3.1752 0.0251 

Wrist Extension Near Reach 2.4521 2.8616 0.0322 

Index Finger Extension Far Reach 1.9814 2.7172 0.0364 

 
  



Fig 1: 
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