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JOÃO GAMA, University of Porto, Portugal
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1. INTRODUCTION
Our digital universe is rapidly growing. The volume of data generated in 2012 has
been estimated to surpass 2.8 zetabytes (2.8 trillion gigabytes) as reported in the IDC
survey [Gantz and Reinsel 2012]. Efficient and effective tools and analysis methods for
dealing with the ever-growing amount of data in different applications and fields are of
paramount need. Very often data comes in the form of streams rendering its analysis
and processing even more resource demanding.

Traditionally in data mining data is first collected and then processed in an offline
mode. For instance, predictive models are trained using historical data given as a set
of pairs (input, output). Models trained in such a way can be afterwards applied for
predicting the output for new unseen input data. However, streaming data can not be
processed similarly because data comes continuously over time and possibly is never-
ending. Accommodating such data in the machine’s main memory is impractical and
often infeasible. Hence, only an online processing is suitable. In this case, predictive
models can be trained either incrementally by continuous update or by retraining us-
ing recent batches of data.

In dynamically changing and non-stationary environments, the data distribution
can change over time yielding the phenomenon of concept drift [Schlimmer and
Granger 1986; Widmer and Kubat 1996]. The real concept drift1 refers to changes in
the conditional distribution of the output (i.e., target variable) given the input (input
features), while the distribution of the input may stay unchanged. A typical example
of the real concept drift is a change in user’s interests when following an online news
stream. Whilst the distribution of the incoming news documents often remains the
same, the conditional distribution of the interesting (and thus not interesting) news

1The term real refers to one particular type of concept drift. It doesn’t mean that other types of drift are not
concept drifts.
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documents for that user changes. Adaptive learning refers to updating predictive mod-
els online during their operation to react to concept drifts.

Over the last decade research related to learning with concept drift has been in-
creasingly growing and many drift-aware adaptive learning algorithms have been de-
veloped. In spite of the popularity of this research topic, no comprehensive survey on
concept drift handling techniques is available to the community. One of the reasons for
that is that the problem is of a wide scope and spans across different research fields.
Moreover, terminology is not well established, thus similar adaptive learning strate-
gies have been developed independently under different names in different contexts.

Taking account of the current picture of research on concept drift, being very popular
but also scattered among various communities, there is a strong need for a comprehen-
sive summary of the research done so far to unify the concepts and terminology among
the researchers and to survey the state-of-the-art methodologies and techniques inves-
tigated over the past.

Several reviews related to drift-aware learning are available. However, they either
do not focus exclusively on concept drift or relate to specific topics of adaptive learn-
ing. Thus these reviews are fragmented and/or are outdated. Currently the most cited
survey on concept drift was published back in 2004 in [Tsymbal 2004]. The following
overviews which are related to the topic of concept drift focused on ensemble tech-
niques [Kuncheva 2004; 2008], inductive rule learning algorithms [Maloof 2010], or
mainly on non-incremental learning techniques [Zliobaite 2009] that can use compu-
tational resources unrestrictedly, thus were limited in scope. Reviews on data streams
[Gaber et al. 2005; Gama 2010; Bifet et al. 2011a] only partially deal with data drift.
Data streams research covers adaptive learning only to some extent, while the main
focus remains on making learning algorithms incremental and optimizing the balance
of computational resources and the predictive accuracy.

Several reviews are limited to specific application fields. A focused position paper
[Grisogono 2006] presents a set of requirements for complex adaptive systems to be
used for defence. A recent focused review [Kadlec et al. 2011] surveys adaptation mech-
anisms that have been used for soft sensors. Finally, a recent article [Moreno-Torres
et al. 2012] focuses on describing various ways how data distribution can change over
time and only briefly covers adaptation techniques from dataset shift community per-
spective, mostly leaving out works on concept drift. A recent review [Alberg et al. 2012]
focuses on decision trees.

The present contribution provides an integrated view on handling concept drift, by
surveying adaptive learning methods, presenting evaluation methodologies and dis-
cussing illustrative applications. It focuses on online supervised learning when the
relation between the input features and the target variable changes over time.

The paper is organized as follows. In Section 2 we introduce the problem of con-
cept drift, characterize adaptive learning algorithms and present motivating applica-
tion examples. Section 3 presents a comprehensive taxonomy of methods for adaptive
learning. Section 4 discusses the experimental settings and evaluation methodologies
of adaptive learning algorithms. Section 5 concludes the survey.

2. ADAPTIVE LEARNING ALGORITHMS
Learning algorithms often need to operate in dynamic environments, which is chang-
ing unexpectedly. One desirable property of these algorithms is their ability of incorpo-
rating new data. If the data generating process is not strictly stationary (as applies to
most of the real world applications), the underlying concept, which we are predicting
(for example, interests of a user reading news), may be changing over time. The ability
to adapt to such concept drift can be seen as a natural extension for the incremen-
tal learning systems [Giraud-Carrier 2000] that learn predictive models example by
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example. Adaptive learning algorithms can be seen as advanced incremental learning
algorithms that are able to adapt to evolution of the data generating process over time.

This section introduces concept drift and characterizes adaptive learning.

2.1. Setting and definitions
In machine learning the supervised learning problem is formally defined as follows.
We aim to predict a target variable y ∈ <1 in regression tasks (or y categorical in
classification tasks) given a set of input features X ∈ <p. An example is one pair of
(X, y). For instance, X is a set of sensor readings of a chemical process at 2 p.m. on the
2nd of January and y = “good′′ is the true quality of the produced product at that time.
In the training examples, that are used for model building, both X and y are known.
In the new examples, on which the predictive model is applied, X is known, but y is
not known at the time of prediction.

According to the Bayesian Decision Theory [Duda et al. 2001], a classification can
be described by the prior probabilities of the classes p(y) and the class conditional
probability density functions p(X|y) for all classes y = 1, . . . , c, where c is the number
of classes. The classification decision is made according to the posterior probabilities
of the classes, which for class y can be represented as

p(y|X) =
p(y)p(X|y)

p(X)
, (1)

where p(X) =
∑c
y=1 p(y)p(X|y). Here equal costs of misclassification are assumed.

The type of the target variable space depends on the task. In classification the target
variable takes categorical values (class labels), while in regression the target variable
takes continuous values.

We can distinguish two learning modes: offline learning and online learning. In of-
fline learning the whole training data must be available at the time of model training.
Only when training is completed the model can be used for predicting. In contrast,
online algorithms process data sequentially. They produce a model and put it in oper-
ation without having the complete training data set available at the beginning. The
model is continuously updated during operation as more training data arrives.

Less restrictive than online algorithms are incremental algorithms that process in-
put examples one-by-one (or batch-by-batch) and update the decision model after re-
ceiving each example. Incremental algorithms may have random access to previous ex-
amples or representative/selected examples. In such a case these algorithms are called
incremental algorithms with partial memory [Maloof and Michalski 2004]. Typically,
in incremental algorithms, for any new presentation of data, the update operation of
the model is based on the previous one. Streaming algorithms are online algorithms
for processing high-speed continuous flows of data. In streaming, examples are pro-
cessed sequentially as well and can be examined in only a few passes (typically just
one). These algorithms use limited memory and limited processing time per item.

In the setting that we are considering data arrives online, often in real time, forming
a stream which is potentially infinite. The machinery is given input data that has just
arrived to predict its target variable(s). That is, a prediction machinery is defined as
a mapping function between the input (feature) space and its corresponding output
(target) space. For instance, given sensor readings in a chemical production process
the task is to predict the quality of the product (output).

Because data is expected to evolve over time - especially in dynamically changing en-
vironments, where non-stationarity is typical, its underlying distribution can change
dynamically over time. The general assumption in the concept drift setting is that
the change happens unexpectedly and is unpredictable, although in some particular
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real-world situations the change can be known ahead of time in correlation with the
occurrence of particular environmental events. But solutions for the general case of
drift entail the solutions for the particular cases. Moreover the change may take dif-
ferent forms, i.e. the input data characteristics or the relation between the input data
and the target variable may change.

Formally concept drift between time point t0 and time point t1 can be defined as

∃X : pt0(X, y) 6= pt1(X, y), (2)

where pt0 denotes the joint distribution at time t0 between the set of input variables
X and the target variable y. Changes in data can be characterized as changes in the
components of this relation [Kelly et al. 1999; Gao et al. 2007]. In other terms,

— the prior probabilities of classes p(y) may change,
— the class conditional probabilities p(X|y) may change, and
— as a result, the posterior probabilities of classes p(y|X) may change affecting the

prediction.

We are interested to know two implications of these changes: First, we are interested to
know (i) whether the data distribution p(y|X) changes and affects the predictive deci-
sion and (ii) whether the changes are visible from the data distribution without know-
ing the true labels, i.e. p(X) changes. From a predictive perspective only the changes
that affect the prediction decision require adaptation.

We can distinguish the following types of drifts:

(1) Real concept drift refers to changes in p(y|X). Such changes can happen either with
or without change in p(X). Real concept drift has been referred to as concept shift
in [Salganicoff 1997] and conditional change in [Gao et al. 2007].

(2) Population drift refers to changes in the population from which future samples will
be drawn compared the design/training sample was drawn[Kelly et al. 1999].

(3) Virtual drift happens if the distribution of the incoming data changes (i.e., p(X)
changes) without affecting p(y|X)[Delany et al. 2005; Tsymbal 2004; Widmer and
Kubat 1993]. However virtual drift has had different interpretations in the litera-
ture:
— Originally a virtual drift has been defined [Widmer and Kubat 1993] to occur

due to incomplete data representation rather than change in concepts in reality,
— Virtual drift corresponds to change in data distribution that leads to changes in

the decision boundary[Tsymbal 2004],
— Virtual drift is a drift that does not affect the target concept [Delany et al. 2005],
— Virtual drift has been also referred to as temporary drift [Lazarescu et al.

2004],sampling shift [Salganicoff 1997] and feature change [Gao et al. 2007],
In this paper virtual drift refers to change in the data distribution p(X).

Example: Consider an online news stream of articles on real estate. The task for
a given user is to classify the incoming news into relevant and not relevant. Suppose
that the user is searching for a new apartment, then news on dwelling houses are rele-
vant whereas holiday homes are not relevant. If the editor of the news portal changes,
the writing style changes as well, but the dwelling houses remain relevant for the
user. This scenario corresponds to population drift. If due to a crisis more articles on
dwelling houses come out and less articles on holiday homes do, but the editor, the writ-
ing style, and the interests of the user remain the same, this situation corresponds to
drift in prior probabilities of the classes. If on the other hand the user has bought a
house and starts looking for a holiday destination, dwelling houses become not rele-
vant and holiday homes become relevant. This scenario corresponds to the real concept
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drift. In this case that the writing style and the priors remain the same. It may happen
that all types of drifts takes place at the same time.

Figure 1 illustrates these concepts. We see that only the real concept drift changes
the decision boundary and the previous decision model becomes obsolete. In reality
the virtual drift, changing priors or novelties may appear in combination with the real
drift, in those cases the decision boundary is also affected.

Original data Virtual driftReal concept drift

p(y|X) changes p(X) changes, but not p(y|X) 

Fig. 1. Types of drifts: circles represent instances, different colors represent different classes.

This survey primarily focuses on handling the real concept drift which is not vis-
ible from the input data distribution. In many cases the techniques that handle the
real concept drift can also handle drifts that manifest in the input data distributions,
but not vice versa. The techniques that handle real concept drift typically rely on the
feedback about the predictive performance. In this present paper, drift that can be de-
tected from the incoming data distribution is not covered. This corresponds to tracking
drifting priors (an interested reader is referred to [Zhang and Zhou 2010]), and novelty
detection (an interested reader is referred to [Markou and Singh 2003; Masud et al.
2011]). Furthermore, semi-supervised drift handling techniques based on clustering
(an interested reader is referred to [Aggarwal 2005; Bouchachia et al. 2010]) are not
discussed in this paper.

2.2. Changes in data over time
Changes in data distribution over time may manifest in different forms, as illustrated
in Figure 2 on a one-dimensional data. There changes happen in the data mean. Drift

time

da
ta

 m
ea

n

sudden/abrupt incremental gradual reoccuring concepts outlier (not concept drift)

Fig. 2. Patterns of changes over time (outlier is not concept drift).

may happen suddenly/abruptly by switching from one concept to another (e.g. replac-
ing a sensor in a chemical plant that has a different calibration), or incrementally con-
sisting on many intermediate concepts in between (e.g. a sensor slowly wears off and
becomes less accurate). Drift may happen suddenly (e.g. the topics of interest that one
is surveying as a credit analyst may suddenly switch from, for instance, meat prices
to public transportation) or gradually (e.g. relevant news topics change from dwelling
to holiday homes, while the user does not switch abruptly, but rather keeps going back
to the previous interest for some time). One of the challenges for concept drift han-
dling algorithms is not to mix the true drift with an outlier or noise which refers to a
once-off random deviation or anomaly (see [Chandola et al. 2009] for outlier detection).
No adaptivity is needed in the latter case. Finally, drifts may introduce new concepts
that were not seen before, or previously seen concepts may reoccur after some time
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(e.g. in fashion). Changes can be further characterized by severity, predictability and
frequency [Minku et al. 2010; Kosina et al. 2010].

Most of adaptive learning techniques implicitly or explicitly assume and specialize
in some subset of concept drifts. Many of them assume sudden non-reoccurring drifts.
But in reality often mixtures of many types can be observed.

2.3. Requirements for predictive models in changing environments
Predictive models that operate in these settings need to have mechanisms to detect
and adapt to evolving data over time, otherwise their accuracy will degrade. As time
passes, the decision model may need update taking into account the new data or gets
completely replaced to meet the changed situation. Predictive models are required to:

(1) detect to concept drift (and adapt if needed) as soon as possible;
(2) distinguish drifts from noise and be adaptive to changes, but robust to noise;
(3) operate in less than example arrival time and use not more than a fixed amount of

memory for any storage.

2.4. Online adaptive learning procedure
The online adaptive learning is formally defined as follows. A decision model is a func-
tion L that maps the input variables to the target: y = L(X). A learning algorithm
specifies how to build a model from a set of data instances.

Online adaptive learning procedure is the following.

(1) Predict. When new example Xt arrives, a prediction ŷt is made using the current
model Lt.

(2) Diagnose. After some time we receive the true label yt and can estimate the loss as
f(ŷt, yt), and

(3) Update. we can use the example (Xt, yt) for model update to obtain Lt+1.

Depending on the computational resources, the data may need to be
discarded once processed using the latest version of the model Lt+1 =
train ((Xt, yt),Lt). Alternatively, some of the past data may remain accessible
Lt+1 = train ((Xi, yi), . . . , (Xt, yt),Lt). There are different ways of handling data
online (e.g., partial memory: some of the examples are stored and used regularly in
the training, window-based: data is presented as chunks, instance-based: an example
is processed upon its arrival). More details on various schemes related to data
presentation will follow in Section 3.

After updating the model new example Xt+1 arrives and the loop of receiving-
predicting-feedback-model update continues infinitely. At some time steps one may
choose to preserve the current model Lt+1 = Lt.

Figure 3 depicts a generic schema for an online adaptive learning algorithm. In a
nutshell, the memory module defines how and which data is presented to the learning
algorithm (learning module). The loss estimation module tracks the performance of the
learning algorithm and sends information to the control module to update the model
if necessary. Section 3 will discuss the four modules of the system (Data Management,
Learning, Change Detection, Loss Estimation) in detail.

This setting has variations where, for instance, the true values for the target vari-
able (feedback) come with a delay or are not available at all. Moreover, new examples
for prediction may arrive before we get feedback for the data that has already been
processed. In such a case model update would be delayed, but the principles of oper-
ation remain the same. Finally, in some settings we may need to process examples in
batches rather than one-by-one.
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Fig. 3. A generic schema for an online adaptive learning algorithm.

2.5. Illustrative applications
The problem of concept drift has been recognized and addressed in multiple domains
and application areas, including medicine [Kukar 2003; Tsymbal et al. 2006], indus-
try [Pechenizkiy et al. 2009], education [Castillo et al. 2003], and business [Klinken-
berg 2003]. Applications requiring adaptation can be grouped into four categories:

Monitoring and control. includes detection of anomalous behavior and adversary ac-
tivities on the web, computer networks, telecommunications, financial transactions
and other application areas where an abnormal behavior needs to be signaled, and
it is often formulated as a detection task.

Management and strategic planning. includes predictive analytics tasks, such as eval-
uation of creditworthiness, demand prediction, food sales, bus travel time predic-
tion, crime prediction by region.

Personal assistance and information. includes recommender systems, categorization
and organization of textual information, customer profiling for marketing, personal
mail categorization and spam filtering.

Ubiquitous environment applications. includes a wide spectrum of moving and sta-
tionary systems, which interact with changing environments, for instance moving
robots, mobile vehicles, smart household appliances.

Next we discuss motivating application cases within each category to illustrate the
demand of adaptive learning systems that can handle concept drift.

2.5.1. Monitoring and Control. In monitoring and control applications data is often pre-
sented in a form of time series. Two most typical learning tasks are time-series fore-
casting (regression task) or anomaly detection (classification task).

Online mass flow prediction in an industrial boiler [Pechenizkiy et al. 2009] is an ex-
ample application in the monitoring and control category. Mass flow prediction would
help to improve operation and control of the boiler. In steady operation, combustion is
affected by the disturbances in the feed rate of the fuel and by the incomplete mixing of
the fuel in the bed. Knowing the mass flow is important for boiler control. The system
takes fuel that is continuously mixed inside and transferred from a container to the
boiler. Scaling sensors located under the container provide streaming data. The task
is to predict (estimate) the mass flow in real time.

Concept drift happens due to the following reasons. Fuel feeding is a manual and
non standardized process, which is not necessarily smooth and can have short inter-
ruptions. Each operator can have different habits. The process characteristics may de-
pend on the type and the quality of fuel used. The main focus for an adaptive learning
algorithm is to handle two types of changes: an abrupt change to feeding and slower
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but still abrupt switch to burning. One challenge for learning is that the feedback (the
ground truth of mass flow) is not available at all, it can only be approximately esti-
mated by retrospectively inspecting the historical data. An additional challenge is to
deal with specific one-sided outliers that can be easily mistaken for changes.

Traditional approaches (such as ADWIN) for explicit change detection based on the
monitoring of the raw sensor signal or streaming error of the regressors give reason-
able results. They can be improved by considering the peculiarities of the application.

2.5.2. Management and strategic planning. The Smart Grid (SG) is an electric system that
uses two-way digital information, cyber-secure communication technologies, and com-
putational intelligence in an integrated fashion across heterogeneous and distributed
electricity generation, transmission, distribution and consumption to achieve energy
efficiency. A key and novel characteristic of SG’s is the intelligent layer that analyzes
the data produced by smart meters allowing companies to develop powerful new capa-
bilities in terms of grid management, planning and customer services for energy effi-
ciency. The advent of SG’s has changed the way energy is produced, priced and billed.
The key aspect of SG’s is distributed energy production, namely renewable energies.
The penetration of renewable energies (solar, wind, etc.) is increasing fast and power
forecasting becomes an important factor in defining the operation planning policies to
be adopted by a Transmission System Operator.

When observing the literature in wind power prediction [Monteiro et al. 2009],
one realizes that most proposals are based on an off-line training mode, building a
static model that is then used to produce predictions. This option rely in assump-
tions of stationarity of the wind electric power model, which must be strongly ques-
tioned [Bremnes 2004; Bessa et al. 2009]. Using real data from three distinct wind
parks, [Bessa et al. 2009] presents the merits of on-line training against off-line train-
ing of neural networks. The authors point out the evolving nature of data and the
presence of concept drift in wind pattern behavior.

2.5.3. Personal assistance and information. Text classification has been a popular topic in
machine learning for decades. However, interesting applications related to the problem
of concept drift appeared relatively recently. Examples of text stream applications in-
clude e-mail classification [Carmona-Cejudo et al. 2010], e-mail spam detection [Lind-
strom et al. 2010] and sentiment classification [Bifet and Frank 2010]. Sentiment clas-
sification is a popular task in social media monitoring, customer feedback analysis and
other applications.

The main source of concept drift in e-mail classification and spam filtering are due to
changing e-mail content and presentation (virtual drift), as well as adaptive behaviour
of spammers trying to overcome spam filters (may be virtual or real). Besides, users
may change their attitude towards particular categories of e-mails starting or stopping
to consider them spam (real drift). In sentiment classification the vocabulary used to
express positive and negative sentiments may change over time. Since the collection
of documents is not static (virtual drift, novelties), the feature space representing the
current collection is dynamic that may require specific updates of the models.

Various adaptive learning strategies have been used in this domain, including indi-
vidual methods like case-based reasoning, and ensembles, either evolving or with an
explicit detection of changes by means of change detectors (Section 3.2).

Availability of feedback is a serious challenge in personal assistance and informa-
tion. The dilemma is that if feedback is easily available, that implies no need for au-
tomated predictions. In e-mail classification we can hope that from time to time we
will receive feedback from the user in case of misclassifications or can design an active
learning system (e.g. [Zliobaite et al. 2013]), which from time to time asks the user to
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provide labels on demand. However, when possible we need to aim at automatic ways
for obtaining the true labels.

Suppose for monitoring the attitude of people towards a political party we want to
classify the polarity or sentiment of tweets from Twitter. Labelling tweets manually
as positive or negative is a laborious and expensive task. However, tweets may have
author-provided sentiment indicators: changing sentiment is implicit in the use of var-
ious types of emoticons. Hence we may use these to label the training data. Smileys
or emoticons are visual cues that are associated with emotional states. They are con-
structed using the characters available on a standard keyboard, representing a facial
expression of emotion. By using emoticons, authors of tweets annotate their own text
with an emotional state. Annotated tweets can be used to train a sentiment classifier.

Building a content-based filter for adaptive news access present rather different per-
spective on text classification in streaming settings. The goal is to learn incrementally
and keep up to date a user model for news story classification. A simple yet effective
approach has been proposed in [Billsus and Pazzani 2000]. For each user an adap-
tive learning system is built consisting of a simple ensemble with separate models for
short-term and long-term interests of users. A stable Naive Bayes classifier is used for
modelling the long term interests of a user and the Nearest Neighbour classifier cap-
tures the short term interests of the user. For the short-term interests model a fixed
size window over the liked news stories is maintained and/or instances are weighed
with respect to their age. No explicit change detection is used for monitoring either of
the short-term or long-term interests. The true labels of some of the instances come
naturally due to a positive relevance feedback, i.e. a user accessing a particular news
item provides the signal that the item is relevant to his or her interests.

On the other hand, recommender systems is a broad application in the personal as-
sistance and information category [Bobadilla et al. 2013; Adomavicius and Tuzhilin
2005]. Interests of the data mining community in recommender systems domain have
been boosted by the NetFlix competition2. One of the lessons learnt by the winning
teams was that taking temporal dynamics into account substantially contributes to-
wards building accurate models. Modelling user interests and handling concept drift
were the other interesting aspects. In collaborative filtering, modelling of user inter-
ests relies primarily on the availability of other ratings already provide by the users.
In a realistic application case, the data is highly imbalanced. Some movies are very
popular, while most of the movies are not; some users rate many movies, but many
other rate only a few. The rating matrix is high-dimensional and extremely sparse
containing only about 1% of non-zero elements. Such properties make the application
of most supervised learning techniques inapplicable and motivate the development
of advanced collaborative filtering approaches. The sources and the nature of change
can be diverse. Both items and users are changing over time. The item-side effects in-
clude first of all changing product perception and popularity. Popularity of some movies
is expected to follow seasonal patterns. The user-side effects include changing tastes
and preferences of users, some of which may be short-term or contextual and therefore
likely reoccurring (mood, activity, company), changing perception of rating scale, possi-
ble change of rater within household and alike problems. The winning team developed
an ensemble approach including multiple models for handling these various kinds of
changes. As suggested in [Koren 2010] popular windowing and instance weighing ap-
proaches for handling concept drift are not the best choice for each kind of changing
behaviour, simply because in collaborative filtering e.g. the relations between ratings
is of the main importance for predictive modelling.

2www.netflixprize.com
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2.5.4. Ubiquitous environment applications. Autonomous vehicle control is an application
case in the ubiquitous environment category. DARPA Grand Challenge was a prize
competition open for teams developing fully autonomous driverless vehicles. Stanley,
the car of the winning team of the second long distance competition3 organized in 2005,
had a highly reliable system on board that allowed the car to drive through different
off-road environments at relatively high speeds. Among other intelligent components
of the systems, Stanley had to perform identification and avoidance of obstacles and
road finding [Thrun et al. 2006].

The Stanley team combined several ideas for automated terrain labelling using
streaming laser sensor data for short and medium range obstacle avoidance and
streaming data from the colour camera to learn the concept of the drivable surface and
use it for velocity control (if the surface further ahead in non-drivable the car should
slow down). That is the vision module had to maintain an accurate classifier for iden-
tifying drivable and non-drivable regions in the image stream. An adaptive learning
approach was necessary for performing this task reliably because of many changing
and not easily measurable factors such as surface material, lighting conditions or dust
or dirt on the camera itself that effect the target concept.

The classification task was to model the colour of the drivable terrain. The Stan-
ley team used an adaptive Mixture of Gaussians. The model had to adapt to slowly
changing lighting conditions and to abruptly changing surface colours, e.g., moving
from a paved to an unpaved road. For gradual adaptation the internal Gaussian was
adjusted, for the rapid adaptation the Gaussians were replaced with new ones. The
required speed of adaptation depended on the road conditions.

These real-world application cases present evidence that adaptive learning makes
it possible to address complex learning problems which would not be feasible to tackle
in the stationary settings. These examples also illustrate that it is important first to
understand the nature and source of drift and only then engineer an effective adaptive
learning strategy.

3. TAXONOMY OF METHODS FOR CONCEPT DRIFT ADAPTATION
In this section we propose a new taxonomy for adaptive algorithms that learn a pre-
dictive model from evolving data with unknown dynamics. The two main abstract con-
cepts are memory and forgetting data and/or models. We discuss a set of representative
and popular algorithms that implement adaptation strategies. The discussion is orga-
nized around the four modules of adaptive learning algorithms that were identified in
Figure 3: memory, change detection, learning, and loss estimation. The main idea be-
hind presenting the taxonomy in four separate modules rather than a tree of methods
is to see adaptive learning systems as consisting of modular components. An overview
of the taxonomy is presented in Figure 4, and the methods within each module are
further detailed in Figures 5, 6, 7 and 8.

3.1. Memory
Learning under concept drift requires not only to update the predictive model with
new information, but also forget the old information. We consider two types of mem-
ory: short term memory represented as data and long term memory represented as
generalization of data – models. In this subsection, we analyze the short term mem-
ory under two dimensions as illustrated in Figure 5: i) Data management specifies
which data is used for learning; and ii) Forgetting mechanism specifies how old data is
discarded. The issues of long term memory will be discussed in Section 3.3.

3http://archive.darpa.mil/grandchallenge05/
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Fig. 5. Taxonomy of memory properties of methods.

3.1.1. Data Management. The assumption behind most of the adaptive learning algo-
rithms is that the most recent data is the most informative for the current prediction.
Hence, data management typically aims at learning from the most recent data: either
a single example or multiple examples.

Single Example. Storing only a single example in memory has roots in online
learning algorithms that learn from one example at a time. An online algorithm can
process its input example by example in the order of arrival without keeping the entire
training dataset in memory. Most online learners maintain a single hypothesis (which
can originate from a complex predictive model) and model updates are error-driven.
When a new example Xt is available, the current hypothesis makes a prediction ŷt.
When the true target value yt is received, loss is computed and the current hypothesis
is updated if necessary. An example of such algorithms is Winnow [Littlestone 1987],
which is a linear classifier system that uses a multiplicative weight-update scheme.
The key characteristic of Winnow is its robustness to irrelevant features.

Online learning algorithms can be seen as naturally adaptive to evolving distri-
butions, mainly due to the update mechanism that continuously updates the model
with the most recent examples. However, online learning systems do not have explicit
forgetting mechanisms. Adaptation happens only as the old concepts are diluted due
to the new incoming data. Systems like WINNOW [Littlestone 1987], and VFDT [Domin-
gos and Hulten 2000] can adapt to slow changes over time. The main limitation is
their slow adaptation to abrupt changes, which depends on how sensible the model
update with a new example is set to be. Setting these parameters requires a tradeoff
between stability and sensitivity [Carpenter et al. 1991b]. Representative single in-
stance memory systems explicitly dealing with concept drift include STAGGER [Schlim-
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mer and Granger 1986], DWM [Kolter and Maloof 2003; 2007], SVM [Syed et al. 1999],
IFCS [Bouchachia 2011a].

Multiple Examples. Another approach to data management is to maintain a
predictive model consistent with a set of recent examples. The algorithm family
FLORA [Widmer and Kubat 1996] is one of the first supervised incremental learning
systems for evolving data. The original FLORA algorithm uses a sliding window of a
fixed length, which stores the most recent examples in the first-in-first-out (FIFO)
data structure. At each time step, the learning algorithm builds a new model using
the examples from the training window. The model is updated following two processes:
a learning process (update the model based on the new data) and a forgetting pro-
cess (discard data that is moving out of the window). The key challenge is to select an
appropriate window size. A short window reflects the current distribution more accu-
rately, thus it can assure fast adaptation in periods with concept changes, but in stable
periods too short window worsens the performance of the system. A large window gives
a better performance in stable periods, but it reacts to concept changes slower.

In general the training window size can be fixed or variable over time.

Sliding windows of a fixed size. These methods store in memory a fixed number of the
most recent examples. Whenever a new example arrives, it is saved to memory and
the oldest one is discarded. This simple adaptive learning method is often used as a
baseline in evaluation of algorithms.

Sliding windows of variable size. Here the number of examples in a window varies
over time, typically depending on the indications of a change detector. A straight-
forward approach is to shrink the window whenever a change is singled such that
the training data reflects the most recent concept, and grow the window otherwise.

One of the first algorithms using an adaptive window size is the FLORA2 [Widmer
and Kubat 1996]. Incoming examples are added to the window and the oldest ones are
deleted. Addition and deletion keeps the window (and the predictive model) consistent
with the current concept. Further versions of the algorithm deal with recurring con-
cepts (FLORA3) and noisy data (FLORA4). A later study [Klinkenberg and Joachims 2000]
presents a theoretically supported method to recognize and handle concept changes
with Support Vector Machines. This method maintains a window over the training ex-
amples with an appropriate size. The key idea is to adjust the window-size based on
the estimate of the generalization error. At each time step the algorithm builds a num-
ber of SVM models using various window sizes and selects the the window size that
minimizes the leave-one-out error estimate as the training window.

Learning windows of variable length appear in [Maloof and Michalski 1995;
Klinkenberg 2004; Gama et al. 2004; Kuncheva and Zliobaite 2009]. The assump-
tion behind relying on windowing is that the recency of the data is associated with
relevance and importance. Unfortunately, this assumption may not be true in every
circumstance. For instance, when the data is noisy or concepts reoccur, recency of data
does not mean relevance. Moreover, if slow change lasts longer than the window size,
windowing may fail as well.

3.1.2. Forgetting Mechanism. The choice of a forgetting mechanism depends on the ex-
pectations that we have regarding changes of data and what tradeoff between reactiv-
ity of the system and robustness to noise is required. The more abrupt is forgetting, the
higher the reactivity, but also the higher risk of capturing noise is. The most common
approach to deal with evolving data generated from processes with unknown dynamics
is forgetting the outdated observations.
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Abrupt Forgetting. At each time, a set of observations defines a window of the
information considered for learning. Abrupt forgetting, or partial memory, refers to
the mechanisms where a given observation either is inside the window or outside the
window. Several window models have been presented in the literature. Two basic types
of sliding windows are [Babcock et al. 2002]: i) Sequence based. The size of the window
is defined in terms of the number of observations. Two different models are sliding
windows of size j and landmark windows; ii) Timestamp based. The size of the window
is defined in terms of duration. A sliding window stores only the most recent examples
in the first-in-first-out (FIFO) data structure; while a landmark window stores all the
examples after the landmark timestamp. A landmark window is a window of variable
size. A timestamp window of size t consists of all elements whose timestamp is within
a time interval t of the current time period. Systems that use abrupt forgetting where
discussed in the previous section.

One of the alternatives to overcome windowing, especially fixed windowing, is sam-
pling. The goal is to capture/summarize the underlying features of the data stream
over long periods of time such that the selected sample is drawn uniformly from the
stream. One of well known algorithms is the Reservoir Sampling [Vitter 1985]. The
goal of reservoir sampling is to obtain a sound representative sample for the stream so
far seen. It operates as follows. When the ith item arrives, it is added to the reservoir
with probability p = k/i (k is the size of the reservoir). Then a randomly chosen item
is discarded from the reservoir to free space for the new item if added. The ith item
is discarded with probability 1 − p. A number of sampling techniques have been in-
vestigated like in [Al-Kateb et al. 2007; Efraimidis and Spirakis 2006; Aggarwal 2006;
Rusu and Dobra 2009]. Reservoir sampling has been discussed in some studies related
to drift, change detection and as an alternative to windowing in [Ng and Dash 2008;
Yao et al. 2012; Zhao et al. 2011].

Gradual Forgetting.. Gradual forgetting is a full memory approach, which means
that no examples are are dropped out of memory. However, examples in memory are
associated with a weight that reflects their age. Example weighting is based on a sim-
ple intuition that the importance of an example in the training set should decrease
with its age. Suppose that at time i, the stored sufficient statistics is Si−1 and we ob-
serve an example Xi. Assuming an aggregation function G(X,S), the new sufficient
statistics is computed as Si = G(Xi, αSXi−1

), where α ∈ (0, 1) is the fading factor, this
way the oldest information becomes the least important.

Linear decay techniques can be found in [Koychev 2000; 2002], and a technique for
exponential decay is presented in [Klinkenberg 2004]. The latter technique weights ex-
amples according to their age using an exponential ageing function wλ(X) = exp(−λj),
where the example X appeared j time steps ago. The parameter λ controls how fast
the weights decrease. For larger values of λ less weight is assigned to the examples
and less importance they have. If λ = 0, all the examples have the same weight.

Memory methods are summarized in Table I.

3.2. Change Detection
The change detection component refers to the techniques and mechanisms for explicit
drift and change detection. It characterizes and quantifies concept drift by indicating
change-points or small time-intervals of change [Basseville and Nikiforov 1993]. We
consider the following dimensions as illustrated in Figure 6: i) methods based on se-
quential analysis; ii) methods based on control charts; iii) methods based on differences
between two distributions; iv) heuristic methods.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2013.



1:14 J. Gama et al.

Table I. Categorization of Memory Techniques.
Data Management

Single Example
[Schlimmer and Granger 1986],[Littlestone 1987]
[Domingos and Hulten 2000],
[Kuncheva and Plumpton 2008],[Kelly et al. 1999]
[Bouchachia 2011a], [Ikonomovska et al. 2011]

Multiple Examples
Fixed Size

[Salganicoff 1997], [Widmer and Kubat 1996],
[Syed et al. 1999], [Hulten et al. 2001], [Lazarescu et al. 2004],
[Bifet and Gavalda 2006; 2007],[Gomes et al. 2011]

Variable Size [Maloof and Michalski 1995], [Klinkenberg 2004],
[Gama et al. 2004],
[Zhang et al. 2008], [Kuncheva and Zliobaite 2009]

Forgetting Mechanisms

Abrupt Forgetting
Temporal Sequences [Salganicoff 1997], [Widmer and Kubat 1996],

[Forman 2006], [Klinkenberg 2004], [Pechenizkiy et al. 2009]

Sampling [Ng and Dash 2008],[Yao et al. 2012], [Delany et al. 2005]
[Zliobaite 2011a],[Zhao et al. 2011], [Salganicoff 1993]

Gradual Forgetting [Koychev 2000; 2002], [Helmbold and Long 1994],
[Klinkenberg 2004], [Koren 2010]
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Fig. 6. Taxonomy of control properties of methods.

We already point-out that online learning systems, without any explicit change de-
tection mechanism can adapt to evolving data. The advantage of explicit change detec-
tion is the information about the dynamics of the process generating data.

A typical control strategy monitors the evolution of the performance indicators [Wid-
mer and Kubat 1996; Zeira et al. 2004] or raw data and statistically compares them
to a fixed baseline. A seminal work in adaptive learning with monitoring performance
indicators is the FLORA family of algorithms. The FLORA2 algorithm [Widmer and Kubat
1996] includes a window adjustment heuristic for a rule-based classifier. To detect con-
cept changes, the accuracy and the coverage of the current model are monitored and
the window size is adapted accordingly. In the context of information filtering monitor-
ing the values of three performance indicators: accuracy, recall and precision has been
proposed [Klinkenberg and Renz 1998]. The posterior of each indicator is compared to
the standard sample errors of a moving average value.

3.2.1. Detectors based on Sequential Analysis. The Sequential Probability Ratio Test
(SPRT) [Wald 1947] is the basis for several change detection algorithms. Let Xn

1 be a
sequence of examples, where the subset of examples Xw

1 , 1 < w < n is generated from
an unknown distribution P0, and the subset Xn

w is generated from another unknown
distribution P1. When the underlying distribution changes from P0 to P1 at point w, the
probability of observing subsequences under P1 is expected to be significantly higher
than that under P0: Significant means that the ratio of the two probabilities is no
smaller than a threshold. Assuming that observations Xi are independent, the statis-
tic for testing the hypothesis that a change point occurred at time w against the null
hypothesis of no change at time w, is given by

Tnw = log
P (xw . . . xn|P1)

P (xw . . . xn|P0)
=

n∑
i=w

log
P1[xi]

P0[xi]
= Tn−1w + log

P1[xn]

P0[xn]
, (3)
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and a change is detected if Tnw > L, where L is a user defined threshold.
The cumulative sum (CUSUM) is a sequential analysis technique due to [Page 1954]

that uses the SPRT rational. It is often used for change detection. The test outputs an
alarm when the mean of the incoming data significantly deviates from zero. The input
for the test is a residual from any predictor, for instance, the prediction error from a
Kalman filter. The CUSUM test is given by gt = max(0, gt−1 + (xt − δ)) (g0 = 0), and
the decision rule is if gt > λ then signal an alarm followed by setting gt = 0. Here xt
stands for the current observed value, δ corresponds to the magnitude of changes that
are allowed, t is the current time and λ is a user defined threshold. Since this expres-
sion only detects changes in the positive direction, when negative changes need to be
found, the min operation should be used instead of max. In this case, a change is de-
tected when the value of S is below the (negative) value of the threshold. The CUSUM
test is memoryless, and its accuracy depends on the choice of parameters δ and λ. Both
parameters control the trade-off between earlier detecting the true changes and allow-
ing more false alarms. Low values of δ allow faster detection, at the cost of increasing
the number of false alarms. CUSUM has been applied in stream mining, for example,
by [Muthukrishnan et al. 2007].

The Page-Hinkley [Page 1954] test (PH) is a variant of CUSUM. It is a sequential
analysis technique typically used for change detection in signal processing. It allows
efficient detection of changes in the normal behaviour of a process established by a
model. The PH test is a sequential adaptation of the detection of an abrupt change in
the average of a Gaussian signal [Mouss et al. 2004]. The test variable mT is defined
as the cumulative difference between the observed values and their mean up until
the current time: mT =

∑T
t=1(xt − x̄T − δ), where x̄T = 1

T

∑T
t=1 xt and δ specifies the

tolerable magnitude of changes. The minimum mT is defined as MT = min(mt, t =
1 . . . T ). PH tests for the difference between MT and mT : PHT = mT −MT . When this
difference is greater than a threshold (λ) (user defined) a change is flagged. Larger λ
will entail fewer false alarms, but might miss some changes.

Similar to the online versions of CUSUM test, and PH test presented here, Shiryaev
& Roberts method, Shiryae’s Bayesian test [Shiryaev 2009; Tartakovsky and Mous-
takides 2010] rely on online thresholding, that is, as soon as the computed statistic
exceeds a pre-set threshold ε, the change is diagnosed. The accuracy of such detection
methods often relies on indicators like the false alarm rate and the mis-detection rate.
Some of these methods are further explained below.

3.2.2. Detectors based on Statistical Process Control. Control charts, or Statistical Process
Control (SPC), are standard statistical techniques to monitor and control the quality
of a product during a continuous manufacturing. SPC considers learning as a process,
and monitors the evolution of this process. Drift detection methods based on SPC ap-
pear in [Klinkenberg and Renz 1998; Lanquillon 2002; Gama et al. 2004; Gomes et al.
2011; Bouchachia 2011a].

Let pairs (Xi, yi) form a sequence of examples. For each example, the model predicts
ŷi, that can be either true (ŷi = yi) or false (ŷi 6= yi). For a set of examples, the
error is a random variable from Bernoulli trials. The Binomial distribution gives a
general form of the probability for the random variable that represents the number of
errors in a set of n examples. For each point i in the sequence, the error-rate is the
probability pi of observing false with the standard deviation σi =

√
pi(1− pi)/i. The

drift detector manages two registers during the model operation, pmin and σmin. At
time i after casting the prediction for the current example and verifying the prediction
error, if pi + σi is lower than pmin + σmin, then pmin = pi and σmin = σi.

For a sufficiently large number of observations, the Binomial distribution is closely
approximated by the Normal distribution with the same mean and variance. Consider-
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ing that the probability distribution should not change unless a concept drift happens,
the 1− δ/2 confidence interval for pi with n > 30 examples is approximately pi±α×σi.
The parameter α depends on the desired confidence level. A commonly used confi-
dence level for Warning is 95% with the threshold pi + σi ≥ pmin + 2 ∗ σmin, and for
Out-of-Control is 99% with the threshold pi + σi ≥ pmin + 3 ∗ σmin.

Suppose at time j an example (Xj , yj) arrives and the model prediction leads to pj
and σj . The system is defined to be in one of the following three states:

(1) In-Control while pj + σj < pmin + 2 × σmin. The error of the system is stable. The
example Xj is deemed to come from the same distribution as the previous examples.

(2) Out-of-Control whenever pj + σj ≥ pmin + 3 × σmin. The error has increased sig-
nificantly as compared to the recent past examples. With the probability 1− δ/2 the
recent examples come from a different distribution than the previous examples.

(3) Warning state is in between of the two previous states. The error is increasing but
has not reached Out-of-Control yet. This is a not a decisive state. The error may
be increasing due to noise, drift, or due to a small deficiency of the predictive model.
This state signals that more examples are required for confirming a drift.

SPC can be used to measure the rate of change as the time between Warning and
Out-of-Control. Short times indicate fast changes, longer distances indicate slower
changes. The rate of change can also be measured as the rate errors to the number of
examples during Warning. SPC relies on the estimates of the error variance to define
action bounds, which shrink as the confidence in the error estimates increases. SPC
can be implemented inside incremental learning algorithms, or as a wrapper to batch
algorithms. (Algorithm 3 in the Appendix).

The exponentially weighted moving average (EWMA) algorithm [Ross et al. 2012]
advances on similar ideas. The EWMA computes a recent estimate of the error rate, µt,
by progressively down-weighting older data: Z0 = µ0 and Zt = (1− λ)Zt−1 + λet, t > 0,
where et is the error at the current example. It can be shown that, independently
of the distribution of Xt, the mean and standard deviation of Zt are: µZt

= µt and
σZt

=
√

λ
2−λ (1− (1− λ)2t)σE . Assume that before the change point that µt = µ0. The

EWMA estimator Zt fluctuates around this value. When a change occurs, the value
of µt changes to µc and Zt will react to this by diverging from µ0 towards µc. We can
signal a change when Zt > µ0 + LσZt . The parameter L, the control limit, determines
how far from Zt must diverge from µ0 before a change is flagged.

3.2.3. Monitoring distributions on two different time-windows. These methods typically uses a
fixed reference window that summarizes the past information, and a sliding detection
window over the most recent examples. Distributions over the two windows are com-
pared using statistical tests with the null hypothesis stating that the distributions are
equal. If the null hypothesis is rejected, a change is declared at the start of the recent
window. The windows can monitor univariate or multivariate raw data (separately for
each class), evolving model parameters of performance indicators [Dries and Ruckert
2009]. The two windows can be of equal or progressive sizes and different window
positioning strategies may be employed [Adae and Berthold 2013].

Comparing distributions on two detection windows4 in the context of data streams
has been introduced in [Kifer et al. 2004]. Examples from two windows are compared
with statistical tests based on the Chernoff bound to decide whether the two distri-
butions are different. In the same line, the technique VFDTc [Gama et al. 2006] has

4Note that the detection windows are conceptually different from training windows. They may coincide in
size. The detection windows are used for estimating data distribution and are typically paired. The training
windows determine training data set for the learning algorithm when producing a model.
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the ability to deal with concept drift, by continuously monitoring differences between
two distributions classes of examples: the distribution when a node was a leaf and the
weighted sum of the distributions in the children leaves of that node.

[Vorburger and Bernstein 2006] present an entropy-based metric to measure the
distribution inequality between two sliding windows including respectively older and
more recent examples. If the distributions are equal, the entropy measure results in a
value of 1, and if they are absolutely different the measure will result in a value of 0.
The entropy measure is continuously monitored over time, and a concept drift is sig-
nalled when the entropy measure decreases below a given fixed user-defined threshold.
Additional examples include the change detection methods proposed by [Dasu et al.
2006] and [Sebastião and Gama 2007]. Both use the Kullback-Leibler (KL) divergence
to measure the distance between the probability distributions of two different windows
(old and recent) to detect possible changes.

An illustrative example is presented in [Bach and Maloof 2008]. It uses two models:
stable and reactive. The stable model predicts based on a long history, whereas the
reactive model predicts based on a short recent time window. The technique uses the
reactive model as an indicator of concept drift, and it uses the stable model to make
predictions, since the stable model performs better than the reactive model when ac-
quiring a target concept. The drift detection method uses the differences in accuracy
between the two models to determine when to replace the current stable model, since
the stable model performs worse than the reactive model when the target concept
changes. Also [Nishida and Yamauchi 2007], consider two accuracies. The accuracy es-
timated over all the stream and the accuracy estimated over a sliding window of the
most recent examples. A concept drift is signalled, whenever a significant decrease of
the recent accuracy is observed.

The ADaptive sliding WINdow (ADWIN ) [Bifet and Gavalda 2006; 2007] is a change
detector and estimator using a detection window. ADWIN takes as inputs a (possibly
infinite) sequence of real values x1, x2, x3, . . . , xt, . . . and a confidence parameter
δ ∈ (0, 1). Each xt is generated according to some distribution Dt, independently for
every t and the value of xt is available only at time t. Denote as µt the expected value
of xt when it is drawn according to Dt. Assuming that always xt ∈ [0, 1] by an easy
re-scaling the algorithm can handle any case in which we know an interval [a, b] such
that a ≤ xt ≤ b with probability 1. ADWIN slides a fixed detection window W on the
most recently read xi. Let µ̂W denote the (known) average of the examples within W ,
and µW the (unknown) average of µt for t ∈ W . We use |W | to denote the length
of a (sub)window W . ADWIN is summarized in Figure 2 in the Appendix, it operates as
follows. Whenever two large enough (sub)windows of W exhibit distinct enough means,
the algorithm concludes that the expected values within those windows are different,
and the older (sub)window is dropped. Large enough and distinct enough are defined
by the Hoeffding bound, testing whether the average of the two (sub)windows is larger

than εcut computed as εcut :=
√

1
2m · ln

4|W |
δ , where m is the harmonic mean of |W0| and

|W1|, i.e. m = 2
1/|W0|+1/|W1| . ADWIN does not assume any particular data distribution.

δ is a user defined confidence parameter, the suggested default value is 0.2. ADWIN is
equipped with compression using a variant of the exponential histogram [Datar et al.
2002]. Therefore, it does not need to store all the examples from the detection window
W , it stores this data in only O(logW ) memory and O(logW ) processing time per item,
rather than the O(W ).

The adaptation techniques discussed next have originally been coupled with spe-
cific change detectors. In general, a strategy can deploy any detector, since the main
information that is needed from a detector is whether a change has occurred or not.
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Table II. Complexity of change detection algorithms, W is the size of the detection window.
Approach Memory at t Processing at t Example algorithms
sequential analysis O(1) O(1) CUSUM, PH
statistical process control O(1) O(1) SPC
monitoring two distributions O(logW )−O(W ) O(logW )−O(W ) ADWIN

3.2.4. Contextual approaches. Splice system [Harries et al. 1998] presents a meta-
learning technique that implements a context sensitive batch learning approach.
Splice is designed to identify intervals with stable hidden context and to induce and
refine local concepts associated with these contexts. The idea is to use a time-stamp of
the examples as an input feature for a batch classifier. In a first stage, examples are
augmented with a time-stamp feature, and a decision tree inducer learns a decision
tree. If the decision tree finds splits on the time-stamp feature, the partitions on that
feature suggest different contexts. In the second phase, C4.5 is applied to each parti-
tion to find interim (temporal) concepts. In the next stage, all examples and interim
concepts are given a score based on the accuracy of the concepts in given fixed window
(over the time-stamp). This is followed by clustering examples with the highest score
for the same concept. Another application of C4.5 then creates new interim concepts.

Independently of use of any time windowing, very often robust approaches that yield
a balance between incremental learning and forgetting are needed to deal with chang-
ing environments. This idea was applied in the IFCS algorithm [Bouchachia 2011a]
in the context of classification. There three mechanisms, called staleness, penalization
and overall accuracy, which are associated with the individual prototypes that form
the classifier, are combined. The first two measures intend to tackle the problem of
model complexity, but also gradual drift. If one of the two measure values falls below a
very small threshold, called removal threshold, the prototype is removed. The last one
is intended for handling gradual and abrupt drift. Staleness tracks the activity of the
prototype in making decisions about the new input and such an activity indicates that
the recent incoming new input emanate from the input space covered by the prototype.
Stale prototypes tend to cover obsolete regions. To express the staleness mechanism,
the following formula is used: w(i) = ζt−at where t and at indicate, respectively, the
current time index and the last time the prototype i was a winner. Small values of the
forgetting factor ζ accelerates the reduction in the weight. The weights are associated
with the prototypes. Their value for stale prototypes decays and for active prototypes it
reinforces. Clearly, if the staleness is long (that is t− at is large enough, wi diminishes
and then the prototype vanishes.

The second mechanism is about tracking the accuracy of the decisions made and
thus observing the evolution of the model in terms of consistency with the recent input
patterns. The aim is to ensure that the accuracy does not deteriorate (at least signif-
icantly). The following formula has been used: zi = λsi where si is number of errors
made by the prototype since it has been created. The weight decreases exponentially
as the number of errors increases. The smaller the value of λ, the more quickly are the
forgetting speed and the model update. The third mechanism is the Statistical Process
Control (SPC) criterion which is explained in Section 3.2.2 and which aims at handling
gradual and abrupt changes based on the number of errors produced by the learning
model during prediction.

Table II summarizes properties of the presented change detection algorithms. Over-
all, comparing two distributions for change detection requires more computational re-
sources than detecting based on the evolution of indicators, but potentially may give
more precise information about the location of change.
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Table III. Categorization of Change Detection Techniques.
Detection Methods

Sequential analysis [Wald 1947], [Page 1954], [Mouss et al. 2004]
[Muthukrishnan et al. 2007], [Ikonomovska et al. 2011]

Control Charts [Lanquillon 2002],[Gama et al. 2004]
[Kuncheva 2009], [Gomes et al. 2011],[Ross et al. 2012]

Monitoring two distributions
[Kifer et al. 2004], [Bifet and Gavalda 2006; 2007]
[Vorburger and Bernstein 2006], [Leeuwen and Siebes 2008]
[Gama et al. 2006], [Nishida and Yamauchi 2007], [Bach and Maloof 2008],
[Dries and Ruckert 2009], [Kuncheva 2013]

Contextual [Harries et al. 1998],[Klinkenberg 2004]

Learning Mode
Retraining

Incremental

Incremental

Online

Streaming

Adaption Methods
Blind

Informed
Local or partial

replace/updating

Global or complete
replacement

Model Management
Single model

Ensemble

Reoccurrence

Active model pool management

Model selection

Model weighting

L
E

A
R

N
IN

G

Fig. 7. Taxonomy of learning properties of methods.

3.3. Learning
The Learning component refers to the techniques and mechanisms for generalizing
from examples and updating the predictive models from evolving data. This Section
is organized as follows: i) Learning mode referring to model updating when new data
points are available; ii) Model adaptation analyze the behaviour of predictive models in
time-evolving data; iii) Model management refers to the techniques to maintain active
predictive models.

3.3.1. Learning Mode. Whenever new labeled examples are available, the learning sys-
tem might update the model. We consider two different learning modes: Retraining
that discards the current model and builds a new model from scratch using buffered
data; Incremental adaptation updates of the model.

Retraining approaches need some data buffer to be stored in memory. Retrain-
ing have been used to emulate incremental learning with batch learning algo-
rithms [Gama et al. 2004]. At the beginning a model is trained with all the available
data. Next, whenever new data arrives, the previous model is discarded, the new data
is merged with the previous data, and a new model is learned on this data [Street and
Kim 2001], [Zeira et al. 2004], [Klinkenberg and Joachims 2000].

Incremental approaches update the current model using the most recent data. In-
cremental algorithms process input examples one-by-one and update the sufficient
statistics stored in the model after receiving each example. They might have access to
previous examples or summaries of examples. This is the case of CVFDT [Hulten et al.
2001] described in the next section. The Online learning mode updates the current
model with the most recent example. They are error-driven updating the current model
depending on it misclassifies the current example. Examples include WINNOW [Little-
stone 1987], MBW [Carvalho and Cohen 2006]. MBW [Carvalho and Cohen 2006] refers
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that well-known algorithms, including perceptron and Multi-layer perceptrons, that
have been traditionally trained using several passes through the training data, when
restricted to a single training pass over the data are particularly relevant for massive
and streaming data [Carvalho and Cohen 2006]. The origins of online learning origin
goes back to the late 60s, with Perceptron [Rosenblatt 1958], and early 2000 with the
advent of the paradigm of ”prediction with expert advice” [Cesa-Bianchi and Lugosi
2006]. The early work appeared in a number of seminal papers [Littlestone 1987; Lit-
tlestone and Warmuth 1994; Herbster and Warmuth 1998; Vovk 1998]. The model is
updated with the current example. As time goes on, the newly arrived data tend to
erase away the prior patterns. In models, such as artificial neural networks, learning
is inevitably connected with forgetting. The ability to continuously learn from a stream
of examples while preserving previously learned knowledge is known as the stability-
plasticity dilemma [Carpenter et al. 1991a]. It is a dilemma because there needs to be
a balance between being stable to handle noise and being able to learn new patterns.
Some artificial neural networks completely forget the past patterns when exposed to a
new set of patterns; this phenomenon is known as the catastrophic forgetting [French
1994; Polikar et al. 2001].

Streaming algorithms are online algorithms for processing high-speed continuous
flow of data. Examples are processed sequentially and can be examined in only a few
passes (typically just one). These algorithms use limited memory and control the avail-
able memory. For example Hoeffding trees [Domingos and Hulten 2000] and variants
VFDTc [Gama et al. 2006] or FIMT-DD [Ikonomovska et al. 2011], are able to freeze leaves
when memory becomes scarce.

3.3.2. Adaptation Methods. The adaptation strategies manage adaptation of the predic-
tive model. They fall into two major types: blind and informed.

The blind adaptation strategies adapt the model without any explicit detection of
changes. Blind adaptation, typically use techniques as fixed size sliding windows that
take a window size w as a parameter and periodically retrain the model with the lat-
est w examples, and example weighting that consider the importance of training exam-
ples [Widmer and Kubat 1996; Klinkenberg and Renz 1998; Klinkenberg and Joachims
2000; Lanquillon 2002].

A special case of blind adaptation are incremental and online learning where the
model evolves with data. Without any strategy to explicitly detect concept drift, the
model adapts to the most recent data. A paradigmatic example is VFDT [Domingos
and Hulten 2000]. In VFDT, new examples update statistics in the leaves of the cur-
rent model. As the tree grows and new leaves are generated, the label in the these
leaves reflect the most recent concepts. The blind strategies are proactive, they up-
date the model based on the loss function. The main limitation of the blind approaches
is slow reaction to concept drift in data. The blind approaches forget old concepts at a
constant speed independently of whether changes are happening or not. When changes
are happening it may be more beneficial to discard old data faster, and discard old data
slower or not discard at all at times when changes are not happening.

The informed strategies are reactive, their actions depend on whether a trigger
has been flagged [Bifet and Gavalda 2006; Hulten et al. 2001]. Triggers can be ei-
ther change detectors (examples described in Section 3.2) or specific data descriptors
that we will see in the reoccurring concept management techniques [Widmer and Ku-
bat 1996]. Change detectors can be independent from the adaptation strategy (e.g. the
adaptive training window technique) or they can be closely integrated with the adap-
tation strategy [Gama et al. 2006; Ikonomovska et al. 2011] which we refer to as model
integrated detectors [Gama et al. 2006].
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The reaction to a drift signal might apply to the model as a whole, or might explore
characteristics of the language used to represent generalization of examples.

Global Replacement. Informed adaptation in global models (such as linear regres-
sion, discriminant classifiers, naive Bayes) require full reconstruction of the model.
This is the most radical reaction to a drift. The full model is deleted and a new model
is started from scratch. This strategy has been widely used, for example in [Gama
et al. 2004],[Street and Kim 2001], [Zeira et al. 2004], [Klinkenberg and Joachims
2000].

Local Replacement. In many cases changes occur only in some regions of the data
space. For example, in spam filtering the spammers may start using combinations of
words such as ”Facebook support” that were previously associated with legitimate e-
mails. This change in the concept of spam will affect only a small subset of all the
incoming e-mails [Carmona-Cejudo et al. 2010].

Granular models, such as decision rules or decision trees, can adapt parts of the
model. In a decision tree (or decision rules), each node (or rule) covers a hyper-rectangle
in the data space. Thus, such decomposable models only need to adapt those nodes
that cover the region of the data space affected by concept drift. CVFDT [Hulten et al.
2001] continuously monitors the quality of previous decisions (splitting features) with
respect to a sliding window of fixed size over the most recent data stream. CVFDT main-
tains a window of training examples and keeps its learned tree up-to-date with this
window by monitoring the quality of its old decisions as data moves into and out of
the window. In particular, whenever a new example is read it is added to the statistics
at all the nodes in the tree that it passes through, the last example in the window is
forgotten from every node where it had previously had an effect, and the validity of all
statistical tests are checked. If CVFDT detects a change it starts growing an alternate
tree in parallel which is rooted at the newly-invalidated node. When the alternate is
more accurate on new data than the original the original is replaced by the alternate
and freed.

Each node in a Hoeffding tree captures statistics from a time window over the
stream. The root node receives the oldest examples, the leaf nodes receive the most
recent examples. Nodes near the root were generated using examples older than those
that generated nodes near the leaves. This observation is on the basis of Sequential
regularization [Gama et al. 2006; Ikonomovska et al. 2011]. The technique compares
the distribution of the errors at leaves to the distribution of the errors at upper nodes
in the tree. Recall that the leaves contain the most recent information and the upper
nodes contain older information. Thus, if the two error distributions are significantly
different that is interpreted as a concept drift. In [Gama et al. 2006], when a concept
change is detected, the system adapts the model, assuming that the most recent in-
formation contains the useful information about the current concept. The statistics of
the most recent examples incorporated in the tree are stored in the leaves. Therefore,
supposing that the change of concept was detected in the node i, the reaction method
pushes up all the information of the descending leaves to the node i, namely the suffi-
cient statistics and the classes distributions. The decision node becomes a leaf and the
sub-tree rooted at the decision tree is pruned. This forgetting mechanism removes the
outdated information.

3.3.3. Model Management. Ensemble learning maintains in memory an ensemble of
multiple models that make a combined prediction. Adaptive ensembles are often mo-
tivated by the assumption that during a change, data is generated from a mixture
distribution, which can be seen as a weighted combination of distributions charac-
terizing the target concepts, each individual model models a distribution [Scholz and
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Klinkenberg 2007]. The final prediction is typically a weighted average of the individ-
ual predictions, where the weight reflects the performance of the individual models on
the most recent data. The weights change over time.

Ensemble methods for dynamically changing data can be categorized [Kuncheva
2004] into three types: (i) dynamic combination where the base learners are trained in
advance and dynamically combined to respond to the changes in the environment by
changing the combination rule (WINNOW and weighted majority are often used [Little-
stone 1987; Blum 1997; Tsymbal et al. 2006; Widmer and Kubat 1996]); (ii) continuous
update of the learners such that the learners are either retrained in batch mode or up-
dated online using the new data [Breiman 1999; Fern and Givan 2003; Oza 2001] (the
combination rule may or may not change in the process); (iii) structural update where
new learners are added (or existing ones are activated if they deactivated) and inef-
ficient ones are removed (or deactivated) [Kolter and Maloof 2003; Street and Kim
2001; Bouchachia 2011b]. These three categories do not necessarily need to be mutu-
ally exclusive, an ensemble combining two or all three types of strategies is technically
possible.

In connection to data drift and online learning, the application of ensemble learn-
ing has been the subject of some investigations over the recent past years. For in-
stance, in [Elwell and Polikar 2011] a batch-based ensemble of classifiers, called
Learn++.NSE, is proposed to deal with concept drift. The proposed algorithm aims
at coping with drift regardless of the rate and type of drift and the number concept
classes present at any time. For each new batch of data, a new classifier is trained and
combined using a dynamically weighted majority voting strategy.

In [Minku et al. 2010] diversity of learning ensemble is investigated in presence of
different types of drifts. The study shows that before the drift occurs, ensembles with
less diversity obtain lower test errors, but shortly after the drift occurs, highly diverse
ensembles are better regardless the type of drift. Longer after the drift, high diversity
becomes less important.

The SEA algorithm [Street and Kim 2001] is one of the first techniques to handle
concept drift with classifier ensembles learned from streaming data. It trains a sep-
arate classifier on each sequential batch of training examples. A trained classifier is
added to a fixed-size ensemble, while the worst performing classifier is discarded. The
final prediction is made using a simple majority voting.

A seminal work is the Dynamic Weighted Majority algorithm (DWM) [Kolter and
Maloof 2003; 2007] that is an adaptive ensemble based on the Weighted Majority algo-
rithm [Littlestone 1987]. It can be used with any on-line learning algorithm in time-
changing problems with unknown dynamics. DWM maintains an ensemble of predictive
models, each with an associated weight. Models are generated by the same learning
algorithm on different batches of data. DWM dynamically creates and deletes experts in
response to changes in performance. DWM makes predictions using a weighted-majority
vote of these models, and the weights are dynamically changing. The weights of all
the models that misclassified the current example are decreased by a multiplicative
constant β. If the overall prediction is incorrect, a new expert is added to the ensem-
ble with weight equal to 1. Finally, all the models are incrementally updated with the
current example. To avoid creating an excessive number of models DWM prunes the en-
semble by removing the poorly performing experts with a weight less than a threshold.
A variant of DWM called AddExp [Kolter and Maloof 2005] is an extension for classi-
fication and regression that is intelligently prunes some of the previously generated
models.

A similar approach, but using a weight schema similar to boosting and explicit
change detection appears in [Chu and Zaniolo 2004]. A boosting-like approach to
train a classifier ensemble from evolving data streams is also proposed in [Scholz and
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Fig. 8. Taxonomy of loss estimation properties of methods.

Klinkenberg 2007], where the dynamics of classifier weights is controlled by the lift
measure instead of accuracy, which measures the correlation between predictions and
their true label.

A general framework for mining concept-drifting data streams using weighted en-
semble classifiers has been proposed in [Wang et al. 2003]. An ensemble of predictive
models (e.g. C4.5, RIPPER, Naive Bayes) are trained on sequential batches of a data
stream. Weighted voting is used to make the final prediction, the weights follow the
expected predictive accuracy of each model. Suppose we have a training data set D
and a classifier Li. Let c be the true label of example X and Mc(X) be the proba-
bility that X belongs to class c output by Li. The mean square error of the classi-
fier is MSE = 1

|D|
∑
X∈D(1 − Mc(X))2. The weight of the classifier L should be re-

versely proportional to its MSE, the weight reflects the benefit of using this individ-
ual model in comparison to a random classifier. The MSE of a random classifier is
MSEr =

∑
c p(c) × (1 − p(c))2, where p(c) is the probability of observing class c. Thus,

the weight wi of a classifier Li is wi = MSEr −MSEi.
A notable technique DDD [Minku and Yao 2011] equips a dynamic ensemble with

a diversity control mechanism, and also uses an internal drift detection to speed
up adaptation. Initially the model is composed of two ensembles: a low diversity
ensemble and a high diversity ensemble. Both ensembles are trained with incoming
examples, but only the low diversity ensemble is used for predicting. The weights of
individual models are proportional to the prequential accuracy (described in Section
4). DDD assumes that, if there is no convergence of the underlying distributions to a
stable concept, there is a drift. DDD then allows to use the high diversity ensemble for
predictions. Online bagging (corresponding to sampling with replacement) is used to
control diversity levels in the two ensembles.

Reoccurring concept management. FLORA3 [Widmer and Kubat 1996] is the first
adaptive learning technique for the tasks where concepts may reoccur over time. More
recent works discussing reoccurring concepts appear in [Widmer 1997; Yang et al.
2006; Katakis et al. 2010; Gama and Kosina 2011] . In such settings, instead of dis-
carding outdated models, it might be useful to store the learned models in a sleeping
mode. Following this idea, the work presented in [Gama and Kosina 2011], discuss a
generic framework that identifies context using drift detection, characterizes contexts
using meta-learning, and select the most appropriate predictive model for the incoming
data using unlabeled examples. The proposed framework is based on a meta-learning
schema which aims to recognize the area of applicability of the individual model.

3.4. Loss estimation
Supervised adaptive systems rely loss estimation based on environment feedback. The
discussion in this section is close related with the performance related metrics dis-
cussed in Section 4.2.
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Table IV. Categorization of Learning Techniques.
Learning Mode
Retraining [Street and Kim 2001], [Zeira et al. 2004], [Klinkenberg and Joachims 2000]
Incremental [Schlimmer and Granger 1986],[Littlestone 1987],

[Bifet et al. 2009],[Hulten et al. 2001],[Polikar et al. 2001]
Streaming [Gama et al. 2006],[Ikonomovska et al. 2011]
Adaptation Methods

Blind [Littlestone 1987], [Maloof and Michalski 2000], [Klinkenberg and Renz 1998]
[Chu and Zaniolo 2004], [Bessa et al. 2009]

Informed [Hulten et al. 2001], [Gama et al. 2006],[Ikonomovska et al. 2011]
Model Adaptation
Model Specific [Hulten et al. 2001], [Gama et al. 2006], [Harries et al. 1998]
Model Independent [Wald 1947], [Gama et al. 2004], [Wang et al. 2003]

[Bifet and Gavalda 2006], [Kuncheva and Zliobaite 2009]
Model Management
Single Model [Hulten et al. 2001], [Gama et al. 2006], [Ikonomovska et al. 2011]

Recurrent [Widmer 1997], [Gama and Kosina 2011]
Ensemble [Polikar et al. 2001], [Street and Kim 2001],[Kolter and Maloof 2005],

[Gao et al. 2007], [Minku and Yao 2011], [Elwell and Polikar 2011]
Recurrent [Yang et al. 2006], [Katakis et al. 2010], [Gomes et al. 2011]

Model Dependent. As we previously referred [Klinkenberg and Joachims 2000]
recognize and handle concept changes using properties of Support Vector Machines.
Their method maintains a window over the training examples that minimizes the
leave-one-out error estimate. The key idea is to get an estimate of the generalization
error using the so-called ςα-estimates, an efficient method for estimating the leave-
one-out error of SVM. Leave-one-out estimators are accurate estimators but usually
very expensive: one must run the learner so many times as the number of training ex-
amples. For SVM ςα-estimate can be computed for free once a SVM has been trained.
It is computed as the percentage of training points that are between the margins.
The theoretical properties of this estimator is discussed in [Joachims 2000]. Analytical
loss estimation for the linear discriminant classifiers can be found in [Zliobaite and
Kuncheva 2009].

Model Independent. As already referred, several works [Bach and Maloof 2008]
[Nishida and Yamauchi 2007] [Gama et al. 2013], propose to detect changes using two
sliding windows: a short window containing the most recent information and a large
window, used as reference, containing a larger set of recent data including the data
in the short window. The rationale behind this approach is that the short window is
more reactive while the large window is more conservative. When a change occurs,
statistics computed in the short window will capture the event faster than using the
statistics in the larger window. Similarly, using fading factors, a smooth forgetting
mechanism, a smaller fading factor will detect drifts earlier than larger ones. Based
on this assumption, [Gama et al. 2013] propose to perform the PH test with the ratio
between two error estimates: a long term error estimate (using a large window or
a fading factor close to one) and a short term error estimate (using a short window
or a fading factor smaller than the first one). A drift is signaled when the short term
error estimator is significantly greater than the long term error estimator. The PH test
monitors the evolution of ratio of both estimators and signals a drift when a significant
increase of this variable is observed. The authors refer that the choice of α in fading
factors and the window size is critical. Their experiments show that drift detection
based on the ratio of fading estimates is somewhat faster that with sliding windows.

3.5. Discussion
Supervised adaptive learning algorithms rely on immediate arrival of feedback (true
labels). In reality labels may become known immediately in the next time step after
casting the prediction (e.g., food sales prediction). However, feedback can come with an
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Table V. Categorization of Loss estimation Techniques.

Loss Estimation
Model Dependent [Klinkenberg and Joachims 2000], [Zliobaite and Kuncheva 2009]
Model Independent Slidind Window [Maloof and Michalski 1995], [Klinkenberg 2004], [Bach and Maloof 2008],

[Nishida and Yamauchi 2007], [Gama et al. 2013]
Fading Factors [Koychev 2000] [Koychev 2002], [Gama et al. 2013]

uncontrollable delay, be unreliable, biased or costly. Labels may arrive within a fixed
or variable time lag (in credit scoring typically the horizon of bankruptcy prediction is
fixed, for instance, to one year, thus the true labels become known after one year has
passed). Alternatively, the setting may allow to obtain labels on demand (e.g. in email
spam categorization we can ask the user the true status of a given message).

4. EVALUATION
In order to perform an experimental evaluation of any machine learning technique, we
need to consider first of all (i) performance evaluation metrics chosen according to the
goal of a learning task and the operational settings, and (ii) a methodology allowing to
compute the corresponding estimates in the streaming settings. Besides, we may need
to find a justify whether one model (or technique) is superior to the other or not.

In this section we consider typical choices peculiar for evaluating an adaptive learn-
ing technique capable to handle concept drift. First, we discuss the performance eval-
uation metrics, then present possible experiment designs and conclude with pointers
to the performance benchmarking.

4.1. Performance evaluation metrics
Performance evaluation metrics may be selected from the traditional accuracy mea-
sures, such as precision and recall or their weighed average in retrieval tasks, sensi-
tivity and specificity or their weighed average in medical diagnostics, mean absolute
scaled errors in regression or time-series prediction tasks, root mean square error in
recommender systems.

It is important to consider appropriate reference points or baseline approaches in
particular settings. For example, one common baseline in time series prediction is a
moving average prediction, in its simplest form known as tomorrow will look the same
like today prediction. Such a baseline gives reference points allowing to judge how
much improvement a supposedly intelligent adaptive technique can achieve over a
naive approach.

In addition, taking into account practical considerations of the streaming settings,
we may consider the following measures:

A one-dimensional measure of the (computational) cost of the mining process. For ex-
ample, in [Bifet et al. 2010b] the use of RAM-Hours was introduced as an evalu-
ation measure of the resources used by streaming algorithms. Every GB of RAM
deployed for 1 hour equals one RAM-Hour. It is based on rental cost options of cloud
computing services.

A real-time unbalanced class measure of accuracy. The Kappa-Statistic may be a good
measure for such cases. Besides taking into account class-imbalance it is also very
efficient to compute as compared to e.g. the area under the ROC curve.

Besides evaluating the performance of the learning strategy as a whole we may like
to estimate the accuracy of change detection for those strategies that employ explicit
drift detection as part of the concept drift handling strategy. The following criteria are
relevant for evaluating change detection methods.
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Probability of true change detection. This measure characterizes the capacity of the
learning system to detect and react to drifts when they occur.

Probability of false alarms. This measure characterizes the resilience to false alarms
when there is no drift, that is detecting drift when there is no change in the target
concept. Instead of reporting the commonly used false positive rate for change de-
tections, in the streaming settings we may use the inverse of the time to detection
or the average run length, the expected time between false positive detections as
potentially more meaningful performance characteristic. This measure can be com-
puted appropriately using data without drifts, then all the detections are counted
as false alarms. Although, it could be possible to count false alarms in the case of
gradual drifts, where more than one drift detection may appropriately occur, it is
recommended to count false alarms only in the case that there is no drift in the
data.

Delay in or time lag of detection. These measures give the estimate of how many new
instances are required to detect a change after the actual occurrence of a change (or
how much time would elapse before the change is detected).

Detection point accuracy. Besides the delay in detection we may want to know the ac-
curacy of change localization. We can estimate it by counting the number of in-
stances from the point that is detected as a change point to the true change point.

When we know how well the employed change detection methods perform we can
also quantify the effect of particular error (or delay) in change detection on the overall
performance of the adaptive model.

4.2. Experimental design
The most common procedure for estimating the performance of supervised learning
techniques in the traditional settings with static data is cross-validation. In traditional
batch learning the problem of limited data is overcome by analyzing and averaging
multiple models produced with different random arrangements of training and test
data. However, cross-validation is not directly applicable to the streaming settings
with evolving data because it would mix the temporal order of data.

In the stream setting the problem of effectively unlimited data poses different chal-
lenges. One solution involves taking snapshots at different times during the induction
of a model to see how much the model improves. The evaluation procedure of a learning
algorithm determines which instances are used for training the algorithm, and which
are used to test the model output by the algorithm. When considering what procedure
to use in the data stream setting, one of the main concerns is how to build a picture
of accuracy over time: one classifier may do well on the first half on the stream, and
badly on the second. It is important to notice that streaming evaluation measures may
be evolving over time.

4.2.1. Evaluation on time-ordered data. We discuss two common procedures peculiar to
the evaluation of adaptive supervised learning techniques: holdout and prequential
evaluation, and point to a recent idea of the controlled permutations.

Holdout. When traditional batch learning reaches a scale where cross-validation is
too time consuming, it is often accepted to instead measure performance on a single
holdout set. This is most useful when the division between train and test sets has been
pre-defined, so that results from different studies can be directly compared. When
testing a model at time t, the holdout set represents exactly the same context at that
time t. The loss estimated in the holdout is an unbiased estimator. Unfortunately, it is
not always possible to use holdout because it is not always possible to know for sure
what examples belong to the concept that is active at time t.
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Interleaved Test-Then-Train or Prequential. Each individual instance can be
used to test the model before it is used for training, and from this the accuracy can
be incrementally updated. When intentionally performed in this order, the model is
always being tested on instances it has not seen before. This scheme has the advantage
that no holdout set is needed for testing, making maximum use of the available data.
It also ensures a smooth plot of accuracy over time, as each individual instance will
become increasingly less significant to the overall average. The prequential error is
computed based on an accumulated sum of a loss function between the prediction and
observed values: S =

∑n
t=1 f(ŷt, yt).

There are three prequential evaluations: using a landmark window(Interleaved
Test-Then-Train) a sliding window, or forgetting mechanism. The holdout evaluation
gives a good estimation of the accuracy of the model on recent data. However, it re-
quires recent test data that it is difficult to obtain for real datasets. In such a case a
forgetting mechanism for estimating holdout accuracy [Gama et al. 2013] can be used,
that is based on the prequential accuracy over a sliding window of size w with the
most recent observations, or fading factors that weigh observations using a decay fac-
tor α. These mechanisms give an estimation of the accuracy that is approximate to the
accuracy estimation obtained doing a holdout evaluation.

Controlled permutations. Averaging the accuracy over time has a potential prob-
lem, it may mask the adaptation properties of adaptive learning algorithms. For ex-
ample, if one algorithm does very well on the first half of data, and very badly on the
second; while another algorithm would show and average, but consistent performance,
taking an average over accuracies would mask that. Even the prequential evaluation
may produce biased results towards the fixed order of data in a sequence, as it runs
only one test in a fixed order of data. To reduce this risk, controlled permutations eval-
uation [Zliobaite 2011b] runs multiple tests with randomized copies of a data stream,
in a theoretical way restricted, so that different distributions from the original data
are approximately preserved in permutations. Randomization aims at keeping the in-
stances, that were originally nearby in time, close together. The technique suits best
to data streams with sudden drifts, but is also applicable to streams with other drifts.
Controlled permutations allow to generate multiple test sets for testing adaptive tech-
niques that enable assessing volatility and robustness of models, optimize their pa-
rameters and this way reduce the risk of overfitting the order of data in a sequence.

4.2.2. Cross-validation with aligned series of data. In many cases we use an adaptive learn-
ing technique to learn not a single adaptive model for the data stream associated with
an individual object (e.g. predicting antibiotic resistance within a particular hospital),
but to learn multiple models, one adaptive model per object, e.g. we want to predict
food sales for each of the product in the stock or popularity of each moving in a movie
renting store. Each object corresponds to a data steam on which we apply an adaptive
model. Each data stream is an analogue of a dataset (when we compare the perfor-
mance of different classification techniques over multiple datasets), but in this set-
tings, different data streams would be still alike, i.e. sharing the same feature space
or being of the same nature. In such cases it is logical to estimate the performance of
the adaptive learning strategy across multiple objects.

This method is rather generic for many real problems when a need for a more ex-
act evaluation setting justifies the use of large computational resources, for exam-
ple e.g. sales, recommendations, advertising, sentiment classification across topics or
sources. Figure 9 illustrates the estimation of the generalization performance of the
technique(s) across multiple individual (but related) data streams by cross validating
the data streams. For every individual data stream we can use one of the described
(prequential, hold-out or controlled permutations) evaluation procedures. A subset of
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Fig. 9. Estimating the generalization performance of the technique(s) across multiple individual (but re-
lated) data streams by cross validating the data streams.

data streams can be used to run the the learning strategy with different parameter-
izations to identify to most reasonable parameter settings for the particular domain
and then verify them on the remaining testing data streams. The values of the perfor-
mance metrics can be averaged over data stream in the test basket (and averaged over
the multiple cross-validation runs).

4.2.3. Statistical significance. Evaluating classifiers, we should be concerned with the
statistical significance of the results at particular points of the learning process. Look-
ing at the performance of only one classifier, it is convenient to give some insights
about its statistical significance. We may use confidence intervals, that are interval
estimates of parameters to indicate the reliability of an estimate. To do that, we can
use Chernoff or Hoeffding bounds, sharper inequalities than Markov’s or Chebyshev
bounds.

When comparing two classifiers we need to distinguish between random and non-
random differences in the experimental accuracies. The McNemar test [McNemar
1947] is a non-parametric test used in the stream mining literature to assess the sta-
tistical significance of differences in performance of two classifiers. This test needs
to store and update two variables: the number of instances misclassified by the first
classifier and not by the second one a, and b the number of instances misclassified by
the second classifier and not by the first one. The McNemar statistic (M ) is given as
M = sign(a−b)×(a−b)2/(a+b). The test follows the χ2 distribution. At 0.99 confidence
it rejects the null hypothesis (the performances are equal) if M > 6.635.

When comparing more than two classifiers, the Nemenyi test [Demsar 2006] is used
for computing significance: it is an appropriate test for comparing all classifiers to all
classifiers over multiple datasets, being based on the average ranks of the algorithms
across all datasets. The Nemenyi is recommended for use after a rejection of the null
hypothesis by Friedman. The Nemenyi test is the following: two classifiers are per-
forming differently if the corresponding average ranks differ by at least the critical
difference CD = qα

√
k(k + 1)/6N where k is the number of learners, N is the number

of datasets, and critical values qα are based on the Studentized range statistic divided
by
√

2. Other tests can be recommended when all classifiers are compared to a control
classifier [Demsar 2006]. For example, the Dunnett test can be used [Dunnett 1955].

4.3. Performance benchmarking
To perform a benchmarking comparing several methods, we need to use some large
datasets and software implementations of the algorithms. There are two types of
dataset: artificial or real datasets. Artificial datasets are useful because they give the
ground truth of the data, for example, all the points when the changes occur. However,
real datasets are more interesting as they correspond to real-world applications where
the algorithms usability is tested. Some authors use the term real world dataset to
refer to data sets using real world data with forced drifts, that cannot be considered as
completely real.
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Appendix B presents popular artificial and real datasets that are publicly available.
MOA is an open-source software to run data streaming experiments. It is written in
Java and it is based on the experience of WEKA. It contains methods for classifica-
tion, regression, clustering and frequent pattern mining. Online appendix C shows an
example of evaluating classification under concept drift using MOA.

5. CONCLUSIONS
We presented the conceptual categorization of many existing adaptive learning strate-
gies, capable of handling concept drift, along with the concrete state-of-the-art tech-
niques. We highlighted the peculiarities of the evaluation methodology for experiment-
ing with adaptive learning techniques in the data stream settings. The problem of
concept drift has been recognized in different application domains. Further interest
to adaptive learning has been boosted by the outcomes of several recently organized
contests or challenges in AI (controlling driverless cars at the DARPA challenge), data
mining and knowledge discovery (credit risk assessment competition at PAKDD’09),
and recommender systems (Netflix movie recommendation) fields. Winning teams in
each of these competitions emphasize that one of key factors in their success was due
to addressing temporal dynamics and various (hidden) contexts affecting their con-
cepts of interest. Therefore, we also referred to the conceptual categorization of typical
application settings in which adaptive learning systems have to operate and discussed
the lessons learnt from the real world cases of handling concept drift. We hope that
besides serving as an introduction into the research area of adaptive learning under
concept drift this article will help to position a new adaptive learning technique and
application settings to which they apply.

Most of the work on concept drift assumes that the changes happen in hidden con-
text that is not observable to the adaptive learning system. Hence, concept drift is
considered to be unpredictable and its detection and handling is mostly reactive. How-
ever, there are various application settings in which concept drift is expected to reap-
pear along the time line and across different objects in the modeled domain. Seasonal
effects with vague periodicity for a certain subgroup of object would be common e.g.
in food demand prediction [Zliobaite et al. 2012a]. Availability of external contextual
information or extraction of hidden contexts from the predictive features may help
to better handle recurrent concept drift , e.g. with use of a meta-learning approach
[Gama and Kosina 2011].

Temporal relationships mining can be used to identify related drifts, e.g. in the dis-
tributed or peer-to-peer settings in which concept drift in one peer may precede an-
other drift in related peer(s) [Ang et al. 2012]. In all these settings more accurate,
more proactive and more transparent change detection may become possible.

The vast majority of the work on concept drift detection summarized in this survey
does not address the problem of representation bias that is common to most of the
adaptive systems that enforce or suggest particular type of behavior. Whenever there
is a reinforcement feedback or a closed-loop control of the learning mechanism, we
cannot evaluate and compare the performance of concept drift handling techniques by
replaying historical data. Therefore, we can speculate that there will be more studies
that try to embed concept drift handling technique in real operational settings for
proper validation. While the majority of work on handling concept drift has focused
on supervised settings with immediate availability of labels, the actual problem space
is much wider. In unsupervised learning over evolving data, and in case of delayed
and on-demand labeling in supervised learning, validation of change detection and
adaptation mechanisms only start to be investigated.

Research on concept drift goes beyond the areas of machine learning, data mining,
and pattern recognition in which the term was originally coined and studied most.
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Thus, in Process Mining5 [van der Aalst 2012; 2011], the area of research dealing
with the different kinds of analyses of (business) processes by extracting information
from event logs recorded by an information system, handling concept drift has been
recognized as an important problem [Carmona and Gavaldà ; Bose et al. 2013].

5.1. Next challenges
The next challenges for concept drift research include: improving scalability, robust-
ness and reliability, moving from so called black box adaptation to more interpretable
and explainable adaptation, reducing the dependence on timely and accurate feed-
back (true labels) and moving from adaptive algorithms towards adaptive systems that
would automate full knowledge discovery process in addition to automating adaptation
of the decision models. Some of these challenges have been discussed in [Zliobaite et al.
2012b].

Studying how to integrate expert knowledge in concept drift handling and how to in-
teract with domain experts brings new challenges as well. Relying on non interpretabe
black-box models is not popular among the domain experts. They may need to trust
that e.g. a control system is really going to react to changes when they happen and
to understand how these changes are detected and what adaptation would happen.
Furthermore, experts may have valuable knowledge how to improve the concept drift
handling mechanism or to validate the system. The continuous or incremental learn-
ing nature of adaptive systems makes it challenging to come up with a strategy to
incorporate expert knowledge into the adaptive learning process and to communicate
with experts as the process evolves.

Studying how to perform localization and explanation of changes, e.g. by means of
visualization or a rule-based approach would be helpful in improving usability and
trust in adaptive learning systems.
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A. PSEUDOCODE OF CONCEPT DRIFT ALGORITHMS

ALGORITHM 1: Page-Hinkley Algorithm
input: Admissible change δ, Drift threshold λ, Loss at example t: et ;
output: drift ∈ {TRUE,FALSE} ;
/* Initialize the error estimators */ ;
SR(0)← 0; mT (0)← 0; MT ← 1;
/* Page Hinkley test */ ;
Let SR(t)← SR(t− 1) +R(t) ;
Let mT (t)← mT (t− 1) +R(t)− SR(t)

t
− δ ;

Let MT ← min(MT ,mT (t)) ;
if mT (t)−MT ≥ λ then

drift← TRUE ;
else

drift← FALSE ;
end

ALGORITHM 2: The ADWIN change detection algorithm
begin

Initialize Window W ;
foreach (t) > 0 do

W ←W ∪ {xt} (i.e., add xt to the head of W );
repeat

Drop elements from W
until |µ̂W0 − µ̂W1 | < εcut holds for every split of W into W = W0 ∪W1;

end
Output µ̂W

end

c© 2013 ACM 0360-0300/2013/01-ART1 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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ALGORITHM 3: The SPC change detection algorithm

input: Current decision model L; X, yT : Training Set with class y ∈ Y ;
α and β parameters
begin

Let Xt, yt be the current instance and ŷt ← L(Xt) be the prediction;
Let errort ← E(ŷt, yt), compute mean pt and variance σt of with errort;
if pt + σt < pmin + σmin then

pmin ← pt and σmin ← st;
end
if pt + σt < pmin + β × σmin then

In-control: Warning?← False; update L with the instance Xt, yt;
else

if pt + σt < pmin + α× σmin then
if NOT Warning then

Warning: Warning?← True; start buffer← {Xt, yt} ;
else

Warning: buffer← buffer ∪{Xj , yj};
end

else
Out-control: train a new decision model using the instances in the buffer;
Warning?← False; re-start pmin and σmin;

end
end

end

ALGORITHM 5: Algorithm for Dynamic Weighted Majority (DWM)
Input:
{−→x , y}1n: training data, feature vector and class label; c ∈ N∗: number of classes c ≥ 2; β:
factor for decreasing weights, 0 ≤ β < 1; θ : threshold for deleting experts; p: period between
expert removal, creation, and weight update; {e, w}1m: set of experts and their weights;
Λ, λ ∈ {1, ..., c}: global and local predictions; −→σ ∈ Rc: sum of weighted predictions for each
class.

begin
m← 1
em ← Create-New-Expert()
wm ← 1
foreach i← 1, ..., n do
−→σ ← 0
foreach i← 1, ...,m do

λ← Classify(ej ,−→xi )
if λ 6= yi ∧ i mod p = 0 then

wj ← βwj
end
σλ ← σλ + wj

end
Λ← argmaxjσj
if i mod p = 0 then

w ← Normalize-Weights (w)
{e,w} ← Remove-Experts ({e, w}, θ)
if Λ 6= yi then

m← m+ 1
em ← Create-New-Expert()
wm ← 1

end
end
foreach j← 1, ...,m do

ej ←Train(ej ,−→xi , yi)
end
return Λ

end
end
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ALGORITHM 4: The CVFDT algorithm
intput: S is a sequence of examples,

X is a set of symbolic attributes,
G(.) is a split evaluation function,
δ is one minus the desired probability of

choosing the correct attribute at any given node,
τ is a user-supplied tie threshold,
w is the size of the window,
nmin is the # examples between checks for growth,
f is the # examples between checks for drift.

output: HT is a decision tree.

Procedure CVFDT(S,X,G, δ, τ, w, nmin)
/* Initialize */
Let HT be a tree with a single leaf l1 (the root).
Let ALT (l1) be an initially empty set of alternate tree for l1.
Let W be the window of examples, initially empty.
Inicialize sufficient statistics to compute G.
/* Process the examples */
foreach example (x, y) in S do

Sort (x, y) into a set of leaves L using HT and all trees in ALT of any node (x, y) passes
through.
Let ID be the maximum id of the leaves in L.
Add ((x, y),ID) to the beginning of W .
if |W | > w then

Let ((xw, yw),IDw) be the last element of W
ForgetExamples(HT, n, (xw, yw), IDw)
Let W = W with ((xw, yw),IDw) removed

end
CVFDTGrow(HT, n,G, (x, y), δ, nmin, τ )
if there have been f examples since the last checking of alternate trees then

CheckSplitValidity(HT, n, δ)
end

end
return HT .

B. DATASETS FOR CONCEPT DRIFT
B.1. Synthetic
Synthetic data has several benefits: they are easy to reproduce and bear little cost of
storage and transmission. Seven popular changing data generators are summarized
in Table VI and described below. Synthetic data provides an advantage of knowing
the ground truth (e.g. where exactly concept drift happens, what is the drift, what are
classification accuracies achievable on each concept). The main limitation of synthetic
data is uncertainty weather corresponding drifts happen in reality.

SEA Concepts Generator. This data model due to [Street and Kim 2001] presents
abrupt concept drifts (real). The data contains three independent real valued at-
tributes in [0, 10], only the first two attributes are relevant for prediction. The orig-
inal data model produces four different concepts. The class decision boundary is
defined as x1 +x2 ≤ θ, where x1 and x2 are the first two attributes and θ is a thresh-
old value different for each concept: (1) θ = 9, (2) θ = 8, (3) θ = 7 and (4) θ = 9.5.

STAGGER Concepts Generator. This data model due to [?] presents abrupt concept
drifts (real). The data contains three independent categorical attributes: size ∈
small, medium, large, color ∈red, green, blue and shape ∈ square, circular, trian-
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ALGORITHM 6: The AddExp algorithm for discrete classes

input: X, yT A Training Set with class y ∈ Y
β ∈ [0, 1]: factor for decreasing weights; τ ∈ [0, 1]: loss required to add a new expert

begin
Set the initial number of experts: N1 ←− 1;
Set the initial expert weight: w1,1 ←− 1;
for t← 1 to T do

Get expert predictions: εt,1, . . . , εt,Nt ∈ Y ;
Compute prediction: ŷt = argmaxc∈Y

∑Nt
i=1 wt,i[c = εt,i];

Update experts weights: wt+1,i ←− wt,iβ[yt 6=εt,i];
if ŷt 6= yt then

Add a New Expert;
Nt+1 ←− Nt + 1;
wt+1,Nt+1 ←− γ

∑Nt
i=1 wt,i;

end
Train each expert on instance Xt, yt;

end
end

ALGORITHM 7: The AddExp algorithm for continuous classes

input: X, yT A Training Set with class y ∈ [0 : 1]; β ∈ [0, 1]: factor for decreasing weights
γ ∈ [0, 1]: factor for new expert weight; τ ∈ [0, 1]: loss required to add a new expert

begin
Set the initial number of experts: N1 ←− 1;
Set the initial expert weight: w1,1 ←− 1;
for t← 1 to T do

Get expert predictions: εt,1, . . . , εt,Nt ∈ [0, 1];

Compute prediction: ŷt =
∑Nt

i=1 wt,iεt,i∑Nt
i=1 wt,i

;

Suffer loss ‖ŷt − yt‖;
Update experts weights: wt+1,i ←− wt,iβ‖εt,i−yt‖;
if ‖ŷt − yt‖ ≥ τ then

Add a New Expert;
Nt+1 ←− Nt + 1;
wt+1,Nt+1 ←− γ

∑Nt
i=1 wt,i‖εt,i − yt‖;

end
Train each expert on instance Xt, yt;

end
end

Table VI. Models for synthetic data generation

Name # of concepts Task Type of drift
real CD virtual CD priors novelties

SEA 4 classification (2) X – X –
STAGGER 3 classification (2) X – X –
Rotating hyperplane any classification (2) X – – –
RBF generator any classification (any) X X X –
Function Generator 10 classification (2) X – X –
LED Generator – classification (10) – X – –
Waveform Generator – classification (3) – X – –
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gular. A binary classification task is defined by a disjunct of conjuncts. There are
three concepts: (1) positive class if size = small and color = red, (2) color = green or
shape = circular, (3) size = medium or size = large.

Rotating Hyperplane. This data model was first used to test CVFDT against VFDT
in [Hulten et al. 2001]. Data is generated uniformly from a hyperplane d-
dimensional space. The decision boundary is defined as

∑d
i=1 wixi = w0 =

∑d
i=1 wi,

where where xi, is the ith attribute. Examples for which
∑d
i=1 wixi ≥ w0 are la-

beled positive, and examples for which
∑d
i=1 wixi < w0 are labeled negative. Con-

cept changes are introduced by modifying the weights wi (they need to satisfy the
constraint w0 =

∑d
i=1 wi to keep the priors fixed). Hyperplanes are useful for simu-

lating time-changing concepts, because we can change the orientation and position
of the hyperplane in a smooth manner by changing the relative size of the weights.
Noise can be added by randomly swapping class labels.

Random RBF Generator. This generator was devised to offer an alternate complex
concept type that is not straightforward to approximate with a decision tree model.
The RBF (Radial Basis Function) [Bifet et al. 2009] generator works as follows. A
fixed number of random centroids are generated. Each center has a random posi-
tion, a single standard deviation, class label and weight. New examples are gener-
ated by selecting a center at random, taking weights into consideration so that cen-
ters with higher weight are more likely to be chosen. A random direction is chosen to
offset the attribute values from the central point. The length of the displacement is
randomly drawn from a Gaussian distribution with standard deviation determined
by the chosen centroid. The chosen centroid also determines the class label of the
example. This effectively creates a normally distributed hypersphere of examples
surrounding each central point with varying densities. Only numeric attributes are
generated. Drift is introduced by moving the centroids with constant speed.

Function Generator. It originates from [Agrawal et al. 1992], and was a popular data
model for early work on scaling up decision tree learners [Agrawal et al. 1993;
Mehta et al. 1996; Shafer et al. 1996; Gehrke et al. 1998]. The generator produces
a stream containing nine attributes, six numeric and three categorical. Although
not explicitly stated by the authors, a sensible conclusion is that these attributes
describe hypothetical loan applications. There are ten functions defined for gen-
erating binary class labels from the attributes, presumably meaning approval os
the loan. The original data model has no drift. Concept drift may be introduced by
switching between functions to generate class labels.

LED Generator. This data source originates from the CART book [Breiman et al. 1984]
and an implementation in C is available from the UCI repository [Bache and Lich-
man 2013]. The goal is to predict the digit displayed on a seven-segment LED dis-
play, where each attribute has a 10% chance of being inverted. The optimal Bayes
classification accuracy is 74%. The original data model has no drift. Drift may be
introduced by swapping the positions of attributes.

Waveform Generator. It shares its origins with LED, and is available from the UCI
repository. The goal of the task is to distinguish three classes of a waveform, each
of which is generated from a combination of two or three base waves. The optimal
Bayes classification accuracy is 86%. There are two versions of the problem, wave21
which has 21 numeric attributes, all of which include noise, and wave40 which in-
troduces an additional 19 irrelevant attributes. The original data model has no drift.
Drift may be introduced by swapping the positions of attributes.

Implementations of these data models are available in MOA [Bifet et al. 2011b].
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B.2. Real-World Data
Nowadays, it is easier than in the past, to find large real-world datasets for pub-
lic benchmarking with concept change. The UCI machine learning repository [Bache
and Lichman 2013] contains some real-world benchmark data for evaluating machine
learning techniques, however they are not large datasets.

The main real data domains of the large datasets mentioned in the Concept Drift
page of Wikipedia6 are the following ones.

Text mining. Documents of text that contains words or combinations of words as the
features to use to process the data. A collection of text mining datasets with concept
drift is maintained by I. Katakis7. Data recollected from Twitter may be also be
considered for text mining.

Electricity. A widely used dataset is the Electricity Market Dataset introduced
in [Harries 1999]. This time series based data was collected from the Australian
New South Wales Electricity Market, available from J. Gama8. In this market, the
prices are not fixed and are affected by demand and supply of the market. The prices
in this market are set every five minutes. The ELEC2 dataset contains 45, 312 in-
stances. Each example of the dataset refers to a period of 30 minutes, i.e. there are
48 instances for each time period of one day. The class label identifies the change of
the price related to a moving average of the last 24 hours. The class level only reflect
deviations of the price on a one day average and removes the impact of longer term
price trends.

Email Spam. Datasets of email messages used to predict if they are unsolicited mes-
sages or not. For example, ECUE Spam datasets are two datasets each consisting of
more than 10,000 emails collected over a period of approximately 2 years referring
to a one user compiled by S.J.Delany9.

Business oriented. Datasets that contains data used in decision management systems
in companies. PAKDD’09 competition dataset10 is used for a credit evaluation task.
It is collected over a five year period, unfortunately the true labels are released
only for the first part of the data. Another dataset called Airline, contains approxi-
mately 116 million flight arrival and departure records (cleaned and sorted) and it
is compiled by E. Ikonomovska11.

Games. Datasets obtained from online or non-online games: for example, a dataset
Chess.com (online games) compiled by I.Žliobaitė12.

C. EVALUATION EXAMPLE
We give an example on evaluation of data stream classification, using the MOA soft-
ware framework [Bifet et al. 2011b]. MOA is an open-source framework for dealing
with massive evolving data streams. MOA is related to WEKA [Hall et al. 2009],
the Waikato Environment for Knowledge Analysis, which is an award-winning open-
source workbench containing implementations of a wide range of batch machine learn-
ing methods.

6http://en.wikipedia.org/wiki/Concept_drift retrieved 12/11/2012
7http://mlkd.csd.auth.gr/concept_drift.html
8http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
9http://www.comp.dit.ie/aigroup/?page_id=729
10http://sede.neurotech.com.br:443/PAKDD2009/arquivo.do?method=load
11http://kt.ijs.si/elena_ikonomovska/data.html
12https://sites.google.com/site/zliobaite/resources-1
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MOA enables evaluation of data stream classification algorithms on large streams,
in the order of tens of millions of instances under explicit memory limits. Any less than
this does not actually test data stream algorithms in a realistically challenging setting.

MOA is written in Java. The main benefits of Java are portability, where applications
can be run on any platform with an appropriate Java virtual machine, and the strong
and well-developed support libraries. Use of the language is widespread, and features
such as automatic garbage collection help to reduce programmer burden and error.

MOA contains stream generators, classifiers and evaluation methods. Figure 10
shows the MOA graphical user interface. A command line interface is also available.

Fig. 10. MOA Graphical User Interface

Considering data streams as data generated from pure distributions, MOA models
a concept drift as a weighted combination of two pure distributions that characterizes
the target concepts before and after the drift. Within the framework, it is possible to
define the probability that instances of the stream belong to the new concept after the
drift using the sigmoid function, as an elegant and practical solution [Bifet et al. 2009].

MOA contains the popular data generators described in Appendix B. MOA streams
can be built using generators, reading ARFF files, joining several streams, or filter-
ing streams. They allow for the simulation of a potentially infinite sequence of data.
The following generators are currently available: Random Tree Generator, SEA Con-
cepts Generator, STAGGER Concepts Generator, Rotating Hyperplane, Random RBF
Generator, LED Generator, Waveform Generator, and Function Generator.

MOA contains several classifier methods such as: Naive Bayes, Decision Stump, Ho-
effding Tree, Hoeffding Option Tree, Adaptive Hoeffding Tree, Bagging, Boosting, Bag-
ging using ADWIN [Bifet et al. 2009], and Leveraging Bagging [Bifet et al. 2010a].
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Fig. 11. Evaluation for a stream of a million of instances comparing hold-out, prequential with landmark
window and prequential with sliding window.

Figure 11 shows a comparison between a hold-out evaluation, a prequential evalu-
ation using a landmark window (InterleavedTestThenTrain), and a prequential evalu-
ation using a sliding window of size 1000. We observe that the prequential evaluation
using a sliding window is a good approximation to the hold-out evaluation.

We run also on MOA the following experiment simulating a concept drift scenario:
a prequential evaluation using a sliding window of size 1000 for a stream of a million
of instances generated by the Random RBF Generator, with the following learners:
Hoeffding Tree, Adaptive Hoeffding Tree, and ADWIN Bagging and Leveraging Bagging.
The stream is evolving and the centroids are moving with constant speed 10−4: this
speed is defined as the distance moved each new instance arrives and it is initialized
by a drift parameter.

Figure 12 shows accuracy, Kappa statistic and RAM-Hours for this experiment. We
observe that the Hoeffding Tree is the method with lower capacity of adaption. En-
semble methods perform better than single classifiers, but they have a higher cost
in RAM-Hours. Leveraging Bagging is the method with higher accuracy and Kappa
statistic, but the number of resources that it needs is considerably larger. Data stream
evaluation is a two-dimensional process with a trade-off between accuracy results and
resource costs.
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Fig. 12. Prequential Evaluation for a RBF stream of a million of instances where the centers are moving
with a speed of 10−4.
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