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Abstract

Insects are common in our world, such as ants, spiders, cockroaches etc.

Virtual representations of them have wide applications in Virtual Reality (VR),

video games and films. Compared with the large volume of works in biped an-

imation, the problem of insect animation was less explored. Their small body

parts, complex structures and high-speed movements challenge the standard

techniques of motion synthesis.

This thesis addressed the aforementioned challenge by presenting a frame-

work to efficiently automate the modelling and authoring of insect locomo-

tion. This framework is inspired by two key observations of real insects:

fixed gait pattern and distributed neural system. At the top level, a Triangle

Placement Engine (TPE) is modelled based on the double-tripod gait pattern

of insects, and determines the location and orientation of insect foot contacts,

given various user inputs. At the low level, a Central Pattern Generator (CPG)

controller actuates individual joints by mimicking the distributed neural sys-

tem of insects. A Controller Look-Up Table (CLUT) translates the high-level

commands from the TPE into the low-level control parameters of the CPG.

In addition, a novel strategy is introduced to determine when legs start to

swing. During high-speed movements, the swing mode is triggered when the

Centre of Mass (COM) steps outside the Supporting Triangle. However, this

simplified mechanism is not sufficient to produce the gait variations when

insects are moving at slow speed. The proposed strategy handles the case

of slow speed by considering four independent factors, including the relative

distance to the extreme poses, the stance period, the relative distance to the

neighbouring legs, the load information etc. This strategy is able to avoid the

issues of collisions between legs or over stretching of leg joints, which are

produced by conventional methods.

The framework developed in this thesis allows sufficient control and seam-

lessly fits into the existing pipeline of animation production. With this frame-

work, animators can model the motion of a single insect in an intuitive way

by specifying the walking path, terrains, speed etc. The success of this frame-

work proves that the introduction of biological components could synthesise

the insect animation in a naturalness and interactive fashion.
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Chapter 1

Introduction

Motion synthesis, the process of generating realistic natural motion for a vir-

tual character, is an area of growing research interest, as evidenced by the

number of publications in prestigious computer graphics conferences and

journals (Figure 1.1). The motion of these virtual characters is as impor-

tant in determining the perceived quality of an application, such as video

games and films, as the model fidelity or rendering quality. Various methods

have been proposed for motion synthesis and they can be categorised into

two broad groups: example-based methods (Pejsa and Pandzic, 2010) and

simulation-based methods (Geijtenbeek et al., 2011). Example-based meth-

ods synthesise motions by utilising existing motion databases; these methods

are most widely used in entertainment applications such as video games due

to the resultant advantages of naturalness and speed of the synthetic motion

(Kovar et al., 2008). Simulation-based methods generate motion by simulat-

ing the physical principles of both the virtual character and the environment.

By following the rules designed by the controller, the character follows a

strictly prescribed trajectory and is able to interact with the environment in a

physically plausible fashion.

Compared with the large volume of published works on biped animation

(Geijtenbeek et al., 2011; Pejsa and Pandzic, 2010) and quadruped animation

(Skrba et al., 2008), to date there has been much less attention given to motion

synthesis for multi-legged insects. Therefore, this will be the focus of the

work presented in this thesis. Small-scale multi-legged insects, such as ants,
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Figure 1.1: Publication frequency of motion synthesis in SIGGRAPH. The
data are collected from Google Scholar using keywords ”Character Motion
Synthesis” filtered with publications in SIGGRAPH. The growing number of
publications shows a sharp increase in research interest in character motion
synthesis in the past decade.

crabs, spiders, centipedes and millipedes, are common in the natural world,

and they are represented virtually in many applications such as Virtual Reality

(VR), video games and films (for example, The Ant Bully (2006), The Mist

(2007), The Death of an Insect (2010)).

Existing Challenges: Conventional techniques of motion synthesis, either

example-based or simulation-based, face great challenges in animating multi-

legged creatures.

The small size and rapid movement of insects make it difficult to capture

their motion using a standard motion capture system (Gibson et al., 2005)

and their skeletal structure tends to be complex (centipedes typically have

more than one hundred skeletal joints), making it challenging to build an

accurate dynamic skeletal model (Abdul Karim et al., 2012b; Cenydd and

Teahan, 2013). This complex skeletal structure means that tremendous effort

is required in order to manually animate the characters by key-framing.

In addition, real insects are able to survive in complex and unpredictable

environments, often performing abrupt changes in their movement direction

and speed as well as gait pattern in hazardous circumstances. Thus, modelling

their delicate and agile movements is a complex task for both animators and

2



simulation-based methods.

1.1 Motivation

There are over a million known and characterised insects, making them one of

the most diverse animal groups. Mobility, an important insect characteristic,

is of crucial importance for their survival and reproduction (Chapman, 1998).

Some important observations that differentiate the locomotion of insects from

that of bipeds will now be described in the following paragraphs.

Fixed locomotion pattern A common gait pattern observed in six-legged

insects, such as ants, is the double-tripod gait, whereby the left front, right

middle and left hind legs form the left tripod (LT) while the other three legs

form the right tripod (RT) (Zollikofer, 1994a,b,c). The tripod, formulated by

three stance legs, is intuitively named as the Supporting Triangle. Research

shows that the typical alternating tripod gait prevails when insects walk at

moderate to high speed (Zollikofer, 1994c). This gait pattern is believed to be

controlled by the Central Pattern Generator (CPG), a network of ganglia in the

distributed nervous system which regulates the joint coordination (Zollikofer,

1994c).

Distributed nervous system The locomotion of an insect is controlled by

the brain and ganglia (clusters of neurons in the trunk), with the brain de-

termining the onset and velocity of motion and the ganglia coordinating the

inter-leg and intra-leg movements (Chapman, 1998). In the field of computer

animation, a user interface is said to be friendly if the function of the animator

takes the role of the ”brain”, commanding only high-level behaviours without

worrying about low-level joint coordination.

Specialised physiological properties Insects have evolved to possess spe-

cial physiological characteristics, such as having an exoskeleton, having light-

weight legs with single-rotational-axis joints connecting the leg segments

(Chapman, 1998; Delcomyn, 1999). This allows one to create the virtual
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insects with a simplified model, then facilitating controller design and im-

proving computational performance.

These specialised insect features lead to a natural question regarding the

design of a natural and stable controller for virtual insects: is it possible to

design a suitable controller and replicate the capability and flexibility of real-

world insects? Before investigating such a possibility, some research ques-

tions, proposed in the next section, must be addressed.

1.2 Research Questions

The work in this thesis aims to replicate the capability and flexibility of real-

world insect locomotion in a virtual insect, while providing a user-friendly

interface for industry practitioners. Such a replication should satisfy the fol-

lowing requirements from the perspective of character motion synthesis:

• Naturalness: the naturalness of the synthetic motion is important for

determining the perceived quality of a given application, especially for

interactive applications. Defects, such as foot-skating or ragdoll effects,

would deliver negative impacts on user experiences.

• High level control: users should be able to manipulate the charac-

ter with an intuitive control interface. The designed controller, in-

stead of the user, should handle the task of computing joint rotations

in example-based methods or forces and torques in simulation-based

methods.

• Stability: the character should be able to resist against external per-

turbations within a range of magnitude. This feature is critical in game

engines which involve frequent interactions between characters and en-

vironments.

• Ease of design: labour intensive processes, such as parameter tuning,

should be automated as much as possible in order to facilitate controller

design. This automatic process increases the efficiency of controller

design, especially in the situation where each task requires a specialised

controller.

4



Although the problem of motor control seems an easy task for real-world

insects, it is challenging to replicate their capability in virtual insects. For

example, one of the challenges is that the underlying machinery of how real

insects move around is not fully understood, so that reasonable assumptions

are needed to build a complete model. Although the Central Pattern Gener-

ator (CPG) has been widely accepted as the underlying mechanism for the

production of the fixed gait pattern, the link between the CPG and rich motor

skills is not fully understood (Ijspeert, 2008). Furthermore, different models

have been proposed to describe the same structure or phenomenon. For ex-

ample, the nervous system can be modelled either as a network of oscillators

at a functional level, or as a population of spiking neuron cells at a structural

level. Each particular case requires a careful selection of models to fit a set of

specific purposes.

More specifically, the following questions must be addressed in order to

develop a theoretic framework for modelling and describing the locomotion

of virtual insects:

• How to model the control mechanism of a real insect given the afore-

mentioned requirements of character motion synthesis? If a similar

distributed system is adopted, how to construct the high-level compo-

nents to allow intuitive control and the low-level components to ensure

sufficient stability?

• How to communicate between the high-level user commands and the

low-level control patterns? The map between these two spaces is not

an easy task since the dimensions of user inputs are much fewer than

the number of Degrees of Freedoms of joint rotations.

• How to model the delicate physical structure of a real insect in a bio-

logically plausible and intuitive fashion? In other words, how far can

one go in simplifying the dynamic model without sacrificing too much

naturalness in the synthetic motion?

• Can this artificial system achieve the same level of performance as real

insects in terms of naturalness, stability and adaptation? If not, which

factors account for the defects and how should the research be properly

5



focussed to maximise the improvements?

The following hypotheses are now proposed to address each of these ques-

tions. Firstly, nonlinear oscillators with the property of convergence would

be ideal to ensure the stability of the controller. Secondly, a precomputed

control table arises as a promising trade-off solution for reducing the dimen-

sions between extrinsic behaviour and intrinsic control parameters. Thirdly,

the dynamic model needs to be simplified while keeping a selected number

of key features.

1.3 Contributions

The work in this thesis presents a comprehensive framework to automate the

modelling and authoring of insect locomotion. This work is, to the best of

the author’s knowledge, the first biologically-plausible framework that meets

the demands from computer graphics. The success of this framework demon-

strates that the introduction of biological components has the ability to im-

prove the naturalness of synthetic motion as well as the stability of the con-

troller. Furthermore, this framework provides an artist-friendly interface and

fits seamlessly into the existing pipeline of animation production. This frame-

work is able to model a wide repertoire of locomotion abilities for insects,

including walking on both even and uneven grounds, recovery from pertur-

bations, steering, load carrying, following curve paths and flexible runtime

changes between different motion states and speeds etc. The detailed contri-

butions of this work are as follows (Figure 1.2):

1. First, the Triangle Placement Engine (TPE), similar to the brain of an

insect, is introduced to distribute a series of supporting triangles in a

specific task. The TPE is built up by mathematically formulating ex-

perimental observations and brings a wide range of settings such as

speed, load, path and terrain into consideration.

2. A network of nonlinear oscillators is then proposed in order to model

the Central Pattern Generator (CPG) , which serves as a low-level con-

troller to coordinate the angles of the leg joints. The introduction of

6



Figure 1.2: Block diagram of the framework presented in this thesis. The
Triangle Placement Engine takes various user settings as input and deter-
mines the size, location and orientation of the Supporting Triangle. The gen-
erated triangle profiles will be passed into the animation engine, which han-
dles stance and swing legs separately. The Controller Look-Up Table maps
the desired triangle profiles into a set of control parameters for the CPG. The
actuators apply joint torques, which are converted into the interaction force
on the foot of each leg and produce the desired movement. The information
from the sensors includes the external force and joint angles etc, and will be
passed into the physics engine for forward simulation.

the Hopf Bifurcation comes with two significant merits. The first merit

is that characters can start or stop moving (a common observation for

insects) by toggling a single bifurcation parameter and the second merit

is that the motion is able to converge to the periodic or discrete gait in

the case of unexpected perturbations.

3. The Controller Look-Up Table (CLUT) relates the CPG to the triangle

profiles by translating the high-level locomotion commands (mainly ve-

locity manipulation) into fixed patterns in the low-level physics-driven

controller. The CLUT is modelled by optimising the control parame-

ters in the CPG to simulate the insect dynamics in a single stride under
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an exhaustive set of settings.

4. A biologically-meaningful mechanism for insects to trigger the legs

from stance to swing is also developed. Different strategies are pro-

posed for insects moving at fast and slow speed. For the fast mode,

the switch is triggered as soon as the Centre of Mass (COM) moves

outside the Supporting Triangle, while for the slow mode, the switch

is determined by a probability framework which takes into considera-

tion various temporal and spatial factors. This mechanism provides an

intuitive criterion for evaluating gait stability in general cases without

further modification.

During the period of this research, I, together with my supervisors and

colleagues, have published the following academic papers to disseminate the

work related to this thesis:

• Shihui Guo, Jian Chang, Xiaosong Yang, Wencheng Wang, Jianjun

Zhang, Locomotion Skills for Insects with Sample-based Controller.

Computer Graphics Forum, Volume 33 - Issue 7, pp. 31-40 (Proceed-

ings of Pacific Graphics 2014) (Link).

• Shihui Guo, Richard Southern, Jian Chang, David Greer and Jianjun

Zhang, Adaptive Motion Synthesis: A Survey. The Visual Computer

(2014): 1-16, Springer (Link).

• Shihui Guo, Jian Chang, Yang Cao, Jianjun Zhang, A novel locomotion

synthesis and optimisation framework for insects, Computers & Graph-

ics, Volume 38, February 2014, Pages 78-85 (Proceedings of CAD/CG

2013) (Link).

• Shihui Guo, Safa Tharib, Jian Chang, Jianjun Zhang, Biologically-

Inspired Motion Pattern Design of Multi-legged Creatures, Springer

Lecture Notes in Computer Science, Volume 7834, 2013, pp 145-156

(Link).

• Fangde Liu, Richard Southern, Shihui Guo, Xiaosong Yang and Jianjun

Zhang, Motion Adaptation With Motor Invariant Theory, IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol-

ume: PP, Issue: 99, Page(s): 1-15, November 2012 (Link).
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1.4 Structure of Thesis

Figure 1.3: Block diagram of the report structure.

The thesis chapters give a thorough explanation on individual components

formulating the proposed framework (Figure 1.3).

Chapter 2 gives a review of the existing works in modelling and synthesis-

ing character locomotion, citing a wide range of research from fields includ-

ing biology, robotics and computer graphics.

Chapter 3 covers a selection of background knowledge about insect phys-

iology. The inclusion of this chapter ensures that this thesis is self-contained

and provides readers with sufficient background knowledge for latter chap-

ters.

Chapter 4 moves to the topic of how animators can specify the locomotion

behaviours using the typical gait patterns found in insects. This chapter ex-

plains the design of the Triangle Placement Engine (TPE) which takes user

inputs and generates the triangle profiles.

Chapter 5 studies the design of the proposed CPG controller, which com-

prises a network of neuron-oscillators to actuate the stance legs and a proce-

dural controller to animate the swing legs.

Chapter 6 presents the design of the CLUT, which serves as the middle-
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ware between the low-level CPG controller and the high-level user com-

mands.

Chapter 7 demonstrates how the controller determines the switch of leg

states from stance to swing during both fast and slow movements. The switch

mechanism introduced in this thesis is biologically meaningful and is demon-

strated to be successful in a wide range of situations.

Chapter 8 concludes this thesis and suggests some future directions of the

current work.
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Chapter 2

Related Work

Motion synthesis is the process of artificially generating natural motion for a

virtual character. The design of a satisfactory controller is challenging, given

the demanding requirements, including stability against perturbations, natu-

ralness of the synthetic motion, adaptation to the challenging environment

and user intuition control. Existing research in computer animation could

be categorised into two groups: example-based and simulation-based. Re-

searchers also explored the hybrid way by combining both example-based

and simulation-based methods. The following discussions will give a general

introduction to the individual methods, before focussing on insect animation

particularly.

The discussions on related work will move on to an emerging solution to

build a locomotion controller using biologically-inspired methods. Locomo-

tion is of crucial importance to the survival of insect. Despite their unso-

phisticated neural system compared with vertebrates, insects thrive in a wide

range of environments and demonstrate a rich variety of complex behaviours,

which outperform the best controller for both robots and virtual characters in

most, if not all, aspects. The past two decades saw a surge, first in neuron-

biomechanics simulation and then in actual robots, in experimenting with the

design of a controller based on the underlying machinery of real insects. This

section reviews existing work on biologically-inspired controllers, including

robotics actuation and neuron-biomechanics simulation.
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2.1 Example-based Methods for Character Mo-

tion Synthesis

Example-based methods synthesise motions by using existing databases and

are widely used in entertainment applications such as video games due to their

advantages of naturalness and speed (Kovar et al., 2008). Existing motions

are either resequenced and interpolated to synthesise new motion clips or

transformed to other characters. This led to the development of Motion Graph

(Kovar et al., 2008) and Motion Retargetting (Gleicher, 1998) respectively.

In a Motion Graph, motion clips are represented as edges and connected

by nodes, which are frames of similar character poses. By traversing from one

clip to the next via a similar pose, novel motion clips can be synthesised. By

building a large motion graph containing various motion performances, this

method is able to react to different environments (Lau and Kuffner, 2006;

Heck and Gleicher, 2007; Safonova and Hodgins, 2007; Beaudoin et al.,

2008; Kovar et al., 2008)

Motion Retargetting adapts motion from a source character to a target one

(Gleicher, 1998). This technique can be summarised as Inverse Kinemat-

ics (IK) solvers integrated with an optimisation for space-time constraints.

Constraints are effectively the interactions between the characters and envi-

ronments, which users intend to preserve during adaptation. The objective

functions are designed to penalise unacceptable types of changes. The con-

figuration of an articulated figure is denoted by q, containing the root position

of the hierarchy and the angles of its joints. The original motion and the re-

targeted motion are referred to as q0(t) and q1(t) respectively. The motion

displacement d(t) represents the difference between two motions:

q1(t) = q0(t) + d(t), (2.1)

For retargetting, a simple objective is to minimise the amount of noticeable

changes:

g(q) =

∫ t

0

(q1(t)− q0(t))2 =

∫ t

0

d(t)2 (2.2)

The above equation minimises the magnitude of motion differences over time.
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In this optimisation framework, constraints can be either equality constraints,

such as point-to-point attachment, or inequality constraints, such as joint lim-

its:

C(q, t) = 0

C(q, t) > 0, (2.3)

Instead of modifying the motion by constraining specific joints, another

method is to construct statistical models of high-level behaviours based on a

large motion database. This technique alone is not sufficient to adapt motions

to either different characters or environments, but it is useful when the user

intention is to generate motions with variations (Lau et al., 2009). The most

popular decision-making network in adapting character animation in various

situations is the Bayesian Network (BN). A Bayesian network is a directed

acyclic graph that represents a joint probability distribution over a set of ran-

dom variables. Each node of the graph represents a random variable while

edges represent the dependency relationship between these variables. The

BN is widely used to synthesise motion for virtual characters (Rother, 2008;

Qinxin, 2007) due to a number of appealing features including:

• The causal relationship between variables is intuitive to understand,

given the graphical representation of the BN.

• This graphical representation also reduces memory overhead, espe-

cially when the dependencies in the joint distribution are sparse.

• The structure of a BN is based on existing data and can be updated

dynamically.

• A BN handles missing observations by calculating marginal probabili-

ties conditional on the observed data using Bayes’ theorem.

A representative work (Lau et al., 2009) learns a BN model from a few

examples of a particular type of input motion. Here the dynamic BN defines
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a joint probability distribution over X[0], ..., X[T]:

P (X[0], · · · ,X[T ]) =

PGprior(X[0],X[1]) ·
T−2∏
t=0

PGtrans(X[t+ 2] | X[t],X[t+ 1])
(2.4)

The prior network Gprior represents the joint distribution of the nodes in the

first two frames, X[0] and X[1]. The transition network Gtrans (Figure 2.1)

specifies the transition probability P (X[t + 2] | X[t],X[t + 1]) for all t, as-

suming that a second-order Markov property applies to this network.

Figure 2.1: Bayesian Network for variables X1, ..., Xn. The prior network
Gprior refers to the first two frames, and the transition network P (X[t +
2]|X[t],X[t + 1]) models subsequent frames given the previous two frames,
which assumes this BN as a second-order Markov Model. Image from Lau
et al. (2009) used with permission.

The most significant disadvantage of a BN-based approach is the fact that

there is no universally accepted method for constructing a network from data.

In addition, the acyclic property of the standard BN implies that feedback

effects cannot be included in the network (Rother, 2008).

Insect Animation with Example-based Method The common disadvan-

tage of example-based methods is the dependency on the original database

and thus lack of adaptations to both different characters and environments

(Guo et al., 2014b). It is more challenging to apply this method to insects
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because their high speed movement and small scale make it difficult to cap-

ture their motion data. A specialised system with high speed, synchronised

cameras is set up to capture the insect motion so that novel animation se-

quences can be synthesised and applied to a swarm of insects (Gibson et al.,

2005, 2007). This state-of-the-art system is ideal for capturing and synthe-

sising motions of small-scale insects, such as ants and spiders. However it

is a non-trivial task to set-up this system and manual labelling is involved in

the semi-automatic post-processing of the original footages. Since the mo-

tion is captured on a planar surface, additional efforts are needed to apply the

synthetic motion to uneven surfaces.

Recently, online motion input from low-cost devices such as Kinect has

been used to animate non-human characters, including spiders (Seol et al.,

2013). This method is composed of two phases: design and puppetry. First,

during the design phase, direct feature mapping and motion classifier are

trained using target animations for virtual characters and captured motion

by performers with the intention to mimic the target animation. Direct fea-

ture mapping is used in cases where performers can easily mimic the input

target animation, and motion classifier is introduced for more challenging

tasks, such as performing the millipede walking. Second, during the pup-

petry phase, the motion features of target characters are computed by blend-

ing the results from both direct feature mapping and motion classifier. Com-

pared with traditional puppetry (or Motion Retargetting) methods, this work

has advanced the realistic animation of non-humanoid characters in real time.

However, the significant differences of topological and geometrical structures

between human and insects make this method difficult to achieve independent

and accurate control of each Degree of Freedom in the target character. In ad-

dition, this work only considers the adaptation to different characters at a

particular moment and ignores the adaptation to different environments.

Pros and Cons in a Nutshell Currently, example-based approaches are

widely used in industry for their advantages in naturalness and real-time per-

formance (Kovar et al., 2008). Furthermore, the ability to generate a diverse

range of motion styles by using statistical methods is of practical use to gen-

erate realistic crowd simulation (Lau et al., 2009). However, it is difficult
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to adjust the motion once it has been captured and it lacks the flexibility

to transform to another character with topology differences (Yamane et al.,

2010; Seol et al., 2013). Synthetic motion can interact with the environment

with constraints, however not in a physically-plausible style. Due to the non-

linearity of the statistical methods, it is difficult to apply accurate control over

the character (Lau et al., 2009). In addition to these common limitations, the

capture of insect motions constrains the wide applications of example-based

methods to animate virtual insects (Gibson et al., 2005).

2.2 Simulation-based Methods for Character Mo-

tion Synthesis

In the past few years, there has been a surge in simulation-based methods (Liu

and Popović, 2002; Yin et al., 2007; de Lasa et al., 2010; Coros et al., 2011;

Muico et al., 2011; Wang et al., 2012). This approach generates character ani-

mation by simulating the principles of physics in a virtual environment. Phys-

ical simulation is essential in motion synthesis because of the flexible level

of control over virtual characters and real-time responses to environmental

perturbations. According to Geijtenbeek et al. (2011), a simulation frame-

work is composed of three parts: simulator, character and controller. Since

the framework in this work is also simulation-based, fundamental knowledge

on dynamics simulation is included in the Appendix A to help readers gain

an in-depth understanding of this method.

Simulator Design The dynamics of a set of linked rigid bodies can be for-

mulated as:

M(q)q̈ + C(q, q̇) + h(q) = fext (2.5)

where q, q̇ and q̈ represent the joint angle poses, velocities, and accelerations

respectively. Parameters M(q), C(q, q̇) and h(q) are the joint space inertia

matrix, centrifugal/Coriolis and gravitational forces respectively. The con-

troller applies the joint torque (or direct force), which is included in the term

fext, to generate the desired acceleration.
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Basically, a physics simulator performs the following steps:

1. Collision detection: the simulator first investigates if intersections exist

between different object geometries. If yes, a contact force will be

applied between these two intersected geometries. Collision detection

and the computation of contact force are regarded as the most difficult

issues in designing a physics engine (Baraff, 2001).

2. Forward Dynamics (FD): the task of FD is to compute the accelerations

of the inter-connected rigid bodies in response to the external forces and

internal joint torques. Once the contact forces and other external forces

are determined, individual rigid body will be considered as a separate

unit.

3. Numerical integration: a numerical integrator updates the positions and

velocities of the rigid bodies at t + δt with their positions, velocities

and accelerations at t. Two critical factors will affect, or even deter-

mine, the stability and performance of the numeric integration: one is

the choice of integration technique, and the other is the size of time step

(Geijtenbeek et al., 2011). Implicit integration, opposite to the explicit

one, would normally allow greater time step at the same level of accu-

racy (Baraff, 2001). Smaller time step will improve the accuracy and

stability of the integration, at the increasing cost of computing time.

A standard approach in character animation is to use the readily avail-

able physics engine. Popular choices include Open Dynamics Engine, Bullet,

PhysX and Havok. A performance comparison of these engines is presented

by Boeing and Bräunl (2007). A recent work by Giovanni and Yin (2011)

deployed a generalised physics-based locomotion control scheme to multiple

simulation platforms, and studied how different platforms affect the perfor-

mance of character locomotion.

Character Modelling The task of character modelling involves two parts:

body and actuator modelling.

Body modelling in simulation-based methods mainly refers to designing a

hierarchy of rigid bodies, each including geometry and inertial properties, the
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connecting joint type (such as hinge joint) and joint properties (such as joint

limits) (Geijtenbeek et al., 2011). In most cases, this hierarchy is designed

to follow the physiological properties of its equivalent in real world, such as

bipeds or quadrupeds. In some cases, a simplified physics model (such as the

Inverted Pendulum (Tsai et al., 2010)) is intentionally selected to drive the

motion of complex characters. The reason for this choice is:

• The abstraction of complex physical models to simplified ones often

makes the same controller adaptable on different characters, even for

those with significant topological differences (Liu and Popović, 2002;

Coros et al., 2010).

• The simplified models also reduce the computational burden and speed

up the performance, which is of vital importance for real-time applica-

tions (Tsai et al., 2010).

The design of abstracted models is determined by the features which the con-

troller intends to manipulate. Features of character animation describe a set

of high-level, physically-related properties of character state, such as trajecto-

ries of the Centre of Mass or end-effectors (de Lasa et al., 2010). Specifying

the variations in selected features provides an alternative tool to author the

desired motion.

Actuator modelling defines how controllers apply forces and torques on

the hierarchy of rigid bodies. As pointed out in Geijtenbeek et al. (2011),

there are three types of actuators:

• Muscle-based: this type of actuator mimics the properties of a biologi-

cal muscle. Muscles are activated by neural signals and produce force

by contracting muscle proteins. A classical model is proposed by Hill

(1938), who studied the two key relationships: between the contrac-

tion force and muscle length as well as between the contraction force

and velocity. The non-linearity of these relationships is believed to ac-

count for the naturalness, stability and energy-saving of the movement

of real animals (Loeb and Ghez, 2000). Wang et al. (2012) and Gei-

jtenbeek et al. (2013) introduced non-linear muscle model to actuate

various types of characters and produced better results than previous
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work in terms of visual performance and stability.

• Servo-based: before the popularity of the non-linear muscle model,

the community of character animation followed the standard approach

from the robotics control: servo-based actuator. Servo-based actuators

drive the joints by offsetting the differences between the current and de-

sired trajectories, thus tracking the predefined motion. Yin et al. (2007)

developed a simple control strategy to drive the physically-simulated

characters with the Proportional Derivative (PD) servos as the actuator.

Compared with the muscle model, this type of actuator enjoys the ad-

vantages in its simplicity of implementation, however is criticised for

producing stiff movements.

• Virtual force: Similar to the abstraction of body model, researchers also

introduced abstract actuators (such as Virtual model control (VMC)

(Pratt et al., 1997)). VMC transforms generalised virtual forces f into

the actuator torques ~τ (or forces) with a Jacobian matrix. By designing

the virtual component, this technique is intuitive to compute the actu-

ator torques required by high-level control tasks, especially in control-

ling the relative movement of end-effectors. More detailed examples

in the field of character animation include balance control (Pratt et al.,

2001) and steering (Coros et al., 2011).

Controller Design The representative work in simulation-based techniques

is Simbicon (Yin et al., 2007). The character is modelled as a typical hierarchy

of linked rigid bodies and the actuator is modelled with the Proportional-

Derivative (PD) servo to track target angles for individual Degree of Freedom.

The whole motion cycle is divided into two or four states and target angles are

specified for different states with the help of Pose Graph. Priori information

from motion capture data is used to set the target value for individual PD

servos. The resulting framework is able to respond to external perturbations

and simple terrain variations.

The main contribution from Simbicon is the introduction of an additional

balance controller which is simple and capable of adapting to a changing

environment and external perturbations. The target angles in the PD servo
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for both torso and swing hip are explicitly specified in the world coordinate,

which ensures the character’s balance by directly controlling the torso and

hip. Assuming τtorso and τB are the torques applied on torso and swing hip

respectively (Figure 2.2), the torque on the stance hip can be derived from:

τA = −τtorso − τB (2.6)

An additional component is a feedback strategy for swing foot placement.

Assuming θd is the target angle for the PD controller at swing hip, θd0 is the

default value, the feedback law is designed as follows:

θd = θd0 + cdd+ cvv (2.7)

where d is the horizontal distance from stance ankle to the COM and v is the

velocity of the COM (Figure 2.2), and cd, cv are feedback gain parameters.

The additional components feed the controller with the position and velocity

of the COM, directly and effectively controlling the swing hip, and thus swing

foot placement.

Figure 2.2: Balance controller in Simbicon (Yin et al., 2007). (a) The torso
and swing hip are directly controlled by the PD servos with target angles with
respect to the world coordinates. (b) An additional balance feedback strategy
is introduced to control swing foot placement.
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Inspired by Simbicon, the following research pushes the adaptation bound-

ary by employing various improvements. Changes include the introduction

of four additional walking states in the Finite State Machine (FSM) to take

the preparation of lifting and striking into consideration, thereby improving

the naturalness (Wang et al., 2012). Rather than manually setting the objec-

tive value for the PD servo, motion priori informs the controller design via

the optimisation-based scheme. The implementation of virtual model control

helps adapt to non-locomotive tasks, which can be used to adapt to simulta-

neous high-level control (Coros et al., 2011).

A recent development replaces the PD servo with biologically-inspired

muscle units to actuate joints (Wang et al., 2012), improving the natural-

ness and stability. This implementation also provides a comparison against

the performance driven by real muscles. While existing work only controls

the lower body joints with these muscle units, the simulation of full body

controlled with biologically-inspired principles is expected.

Insect Animation with Simulation-based Method Interestingly, there is

few work on animating virtual insects with a pure simulation method. The

reasons accounting for this scarcity may be that the complex physical struc-

tures of insects and their less important role compared with bipeds push re-

searchers to find solutions to avoid building a sophisticated simulation frame-

work. Therefore, a popular choice is the hybrid method, which combines

example-based and simulation-based methods. This hybrid formulation pro-

duces the synthetic motion in a natural and fast way while maintaining the

interaction with users and environments. How to animate virtual insects with

hybrid methods will be discussed in later sections.

Abdul Karim et al. (2012a) proposed a procedural framework to animate

multi-legged creatures in a dynamic environment in real time without using

any motion data. The framework included:

• a Character Controller to manage the overall gait

• a Gait/Tempo Manager to regulate the temporal coordination of the legs

• a 3D Path Constructor to generate the path in a 3D environment
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• a Footprints Planner to determine the foot placement to adapt to differ-

ent terrains

Collectively these four components adapt to different characters and envi-

ronments. The framework is able to speed up by simulating the details at

different levels, which is critical to simulate a swarm of insects. The main

disadvantage of this framework is the necessity to pre-define the rules due to

the lack of fully-feathered simulation.

Pros and Cons in a Nutshell Simulation-based methods are able to adapt

to perturbations and terrains automatically. However a pure simulation-based

method often produces rigid animation (Yin et al., 2007), which explains the

main differences between character motion synthesis in computer graphics

and computer simulation in robotics. Pure simulation-based methods are

also difficult to adapt to characters with significantly different geometries or

topologies. Abstract physical models (such as the Inverted Pendulum) and

abstract actuators (such as the Virtual Model Controller) have proved useful

(Coros et al., 2011). As there is no universal controller that could produce

every motion, new controllers are needed in order to extend the skill reper-

toire (Muico et al., 2011; Liu et al., 2012). Animating virtual insects in a

physically-plausible style is attractive but challenging due to the high dimen-

sions resulting from their complex physical structures.

2.3 Hybrid Methods for Character Motion Syn-

thesis

Researchers also explored the possibility of combining both example-based

and simulation-based methods. This combination not only possesses the in-

herent feature of responsive adaptation to external environments from the

simulation side, but also adapts to a broader range of situations by using

constraints to produce additional high-level stylised motion, or using exist-

ing motion to inform the complex design of a simulation-based controller.

With minor editing of the original motion data, this hybrid approach could
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improve the naturalness of the synthesised motion, which has been one of the

drawbacks of simulation-based methods. The specific method for this com-

bination varies case by case, but in general there are three typical solutions

which are discussed below.

Tracking the Reference Motion Trajectory tracking is a standard tech-

nique in robotics control. The success of Simbicon relies on specifying a

set of key poses to provide input to the PD servos, however the scarcity of the

key-poses requires the high frequency of simulation steps (Yin et al., 2007).

There are two significant advantages of using a large motion library instead

of key-poses (Tsai et al., 2010):

• allowing low frequency tracking with increasing number of sample

points (as key-poses in Simbicon)

• enabling quick design of tracking controller in an automated method

Reference motion and online simulation may often stay out of phase, espe-

cially with different characters or environments. To adapt to these situations

and maintain synchronisation, the controller needs to detect foot-strike events

in physics simulation and compare against the reference trajectory. A solu-

tion is proposed from Lee et al. (2010): when the foot strike happens earlier

in the simulation process than the reference trajectory M, the rest of M is

dumped and the current pose is smoothly blended towards the next reference

trajectory; when the foot-strike happens later in the simulation, the current

reference trajectory is extended by applying constant velocities at the end of

M.

By combining the simulation and the reference trajectory, the character

is able to perform natural movements and recover from small perturbations.

However the motion generated in this way stays close to the original motion,

otherwise artefacts can be easily spotted. As the introduction of the reference

trajectory requires a strict topological similarity between the animated char-

acter and the original actor performing the reference motion, these methods

are difficult to adapt to a different topology. Recently, non-humanoid charac-

ters have been animated with human motion data (Yamane et al., 2010; Seol

et al., 2013). This can be further combined with motion tracking to drive the
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character in a simulation-based way (Tsai et al., 2010).

Dynamic Selection of Motion Examples Trajectory tracking combines the

motion example and simulation process in the same time window, while the

second hybrid formulation switches between these two at different time win-

dows (Zordan et al., 2005, 2007). During undisturbed motion, the character

will perform the example motion in a kinematic fashion, which is straightfor-

ward and ensures the naturalness of the motion. When perturbation or control

is introduced, the simulation component will be activated and the character is

able to react interactively.

As developed by Zordan et al. (2005), two key components are included

in this system: a search engine to find the next motion clip after the sim-

ulation and a controller to drive the character state towards the target pose.

Supervised learning was introduced in Zordan et al. (2005) to train the search

engine to make an online prediction of the next motion. Blending can be

performed to generate the transition clip, which can be tracked with the tech-

niques described in the previous section.

This technique serves as an intelligent decision maker in emergency situa-

tions, and is able to adapt interactively to environmental perturbations. Since

the dynamic selection of motion examples does not alter the existing motion

data, this technique alone can not adapt motion to other situations, such as

characters with different topologies. This high level adaptation could be fur-

ther enhanced with additional constraints inside each motion clip, which may

expand its adaptivity scope.

Physics Simulation with Statistics Models The third method is to combine

the physics simulation with a statistical model. The former gives the user

control over the virtual character, while the latter serves as the prediction

mechanism and improves the naturalness of the synthetic motion. In the work

of Wei et al. (2011), a non-linear probabilistic force field function is learned

from pre-recorded motion data by the Gaussian Process and is combined with

physical constraints in a probabilistic framework.

First, a force field prior is extracted from the motion capture data with
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Newtonian dynamics:

u = M(q)q̈ + C(q, q̇) + h(q) (2.8)

where the parameters notation follow the Equation 2.5.

The Gaussian process model learns this force field from a training database:

pr(u|q, q̇) = Ψ(µ(q, q̇),
∑

(q, q̇)) (2.9)

where both the mean and the covariance matrix are functions of kinematic

states [q, q̇].

According to Bayes’s rule, the probabilistic motion model pr(x) is broken

down into the following three terms:

pr(x) = pr(q, q̇)︸ ︷︷ ︸
prinit

·
∏
t

pr(ut|qt, q̇t)︸ ︷︷ ︸
prforcefield

· pr(qt+1, q̇t+1|qt, q̇t,ut)︸ ︷︷ ︸
prphysics

(2.10)

As shown in this chain-like equation, physical and statistical motion mod-

els are complementary. Statistical models ensure the naturalness of motion,

while the physical components can equip the characters with the capability to

react to external circumstances. Compared with previous example-based or

simulation-based approaches, this hybrid formulation achieves wider adap-

tation in a single framework, including performing stylised walking conven-

tionally generated with example-based methods (Figure 2.3a) and adapting

to the external force originally from a simulation side (Figure 2.3b). More

results are displayed in Figure 2.3.

(a) (b) (c) (d)

Figure 2.3: Results demonstrated by the method in Wei et al. (2011): (a)
walking with a heavy shoe; (b) resistance running; (c) stylised walking; (d)
running→walking→jumping. Images from Wei et al. (2011) used with per-
mission.
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Insect Animation with Hybrid Methods A popular method to animate vir-

tual insects is to drive the character in a kinematic way for common cases and

in a dynamic way for unexpected perturbations. In films or video games, in-

sects are normally small-scale and act as the background characters, in which

case the synthetic motion from example-based methods is sufficient. To im-

prove the visual credibility, dynamics (often in a simplified version) are in-

troduced to simulate the responses to unexpected situations.

Figure 2.4: Myriapod body structure in Fang et al. (2013). Their method in-
cludes dynamics simulation for rigid and deformable segments, and a proce-
dural controller for legs. This hybrid formulation allows the natural synthesis
of the motion, with realistic body deformation for the myriapoda’s specialised
body structure.

This hybrid approach has been adopted by Fang et al. (2013) to simulate

the locomotion of myriapoda by incorporating both kinematics and dynam-

ics at different body parts. Firstly, a physical model was constructed with

massless kinematic legs, rigid dynamic exoskeleton segments and passively

dynamic elastically deformable segments. The deformable segments are used

to connect the exoskeleton segments to simulate the soft body segments in

myriapoda. The physics simulation controls the rigid parts of the main body

and passively actuates the connecting segments. The kinematics computa-

tion is performed on the leg movement. This wave-like gait for individual

legs is generated from a six-states machine with pre-defined target angles in a
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kinematic fashion. A decentralised and distributed leg control system, similar

to the Central Pattern Generator proposed in this thesis, was introduced to

perform the natural wave-like ambulatory gait for myriapoda. However their

controller may suffer from insufficient stability due to the lack of feedback

control against perturbations, thus not able to recover from pushing.

Recently, Cenydd and Teahan (2013) dynamically simulated insect loco-

motion in an arbitrary environment. They found that physical simulation did

not make any differences in environments which mainly consisted of flat ter-

rain with small inclines. Supported by this argument, they approached the

problem of insect locomotion with a hybrid framework combining both kine-

matic and dynamic control. For example, the gravity in their method is only

activated when the character loses its balance.

Pros and Cons in a Nutshell Hybrid methods demonstrate their potential

in tackling a wider range of problems than individual approaches, but still

suffer from the inherited drawbacks from individual components (Wei et al.,

2011; Tsai et al., 2010). For example, a statistical framework always suffers

from non-determinism (Wei et al., 2011; Seol et al., 2013). In addition, there

is still no satisfactory mechanism to design a physically-valid controller that

provides sufficient naturalness. In the situation of insect animation, the so-

lution of activating the simulation component when needed and deactivating

when not proves effective (Abdul Karim et al., 2012b; Cenydd and Teahan,

2013), but is far from perfect. A fully developed simulation framework is still

worth exploring in order to take full advantage of physics simulation.

2.4 Bio-inspired Locomotion Controller

The underlying principle of character animation could find its similarities

with actuating electronic servos to drive a robot and innervating the muscles

to move an animal by itself. Such inspiration leads researchers to explore

the possibility of designing a locomotion controller based on studies from

computational neural science.
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This section explains the related work in two main fields: bio-robotics and

neuron-biomechanics simulation. It is worth noting that although these two

fields, together with character animation, share fundamental knowledge, the

requirements or goals are different for each specific field. For example, a con-

troller to actuate a robot would always prioritise stability over other factors,

however the naturalness of the synthetic motion and intuitive user control are

often the major foci from the point of computer graphics applications.

Bio-robotics The field of bio-robotics is a fusion between the biology and

robotics. It mimics the neural networks of real animals and applies the similar

control strategy to drive a robot. The Central Pattern Generator (CPG) is

believed to be the underlying mechanism for animal locomotion and has been

proved by numerous researchers (Mellen et al., 1995). To date, biologically-

inspired controllers have been successfully applied to drive animal-like robots

in the situations such as walking (Liu et al., 2011), swimming and crawling

fish (Crespi et al., 2008), flying bird (Chung and Dorothy, 2010) etc. For

a review on applications of the CPG for locomotion control in animals and

robots see Ijspeert (2008).

Traditional control strategies, such as Zero Momentum Point (ZMP) (Vuko-

bratović and Borovac, 2004), have been popular in the robotics community,

producing impressive results, such as ASIMO (Hirai et al., 1998). ZMP en-

sures the stability of the robot by constraining the Centre of Pressure (COP)

within the stance foot region, which remains in flat contact with the ground at

all times. The other body joints are actuated by stiff tracking pre-defined joint

trajectories. However, this stability comes at the price of energy inefficiency,

heavier computation than its biological counterparts and stiff motion perfor-

mance (Collins et al., 2005). In computer animation, ZMP was introduced

later to control virtual characters as well (Wu and Popović, 2010).

In contrast, passive dynamic walking models (McGeer, 1990) are very

energy efficient and require little or no computation to synthesise a simple

downhill bipedal gait. However, the application of these approaches is limited

as they generally suffer from poor state stability. Liu et al. (2012) introduced

both global and local controllers to improve structural and state stability re-
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spectively. Global control was achieved by coupling the dynamic system with

a neural oscillator, which preserves the periodic structure of the motion prim-

itive and ensures stability by entrainment. A group action derived from Lie

group symmetry was introduced as a local control which transforms the un-

derlying state space while preserving certain motor invariants.

Robotic researchers have proposed various controllers for multi-legged

robots, especially hexapod (Pratt et al., 1997; Saranli et al., 2001). Hexa-

pod, as a special category of robots, attracts much interest from researchers

because of its stability (Altendorfer et al., 2001). However, these robot-based

controllers are designed to maximise the stability performance and are not

entirely suitable for the computer graphics community.

A representative work on actuating a hexapod robot is RHex (Altendorfer

et al., 2001). RHex was able to outperform its predecessors in performing

challenging tasks including walking at various speeds and traversing differ-

ent height variations. The robot was designed to perform an alternating tripod

gait by actuating the joints at each leg with periodic desired trajectories, en-

forced by the PD servos. However, there were only six motors, one for each

leg, which significantly constrained the flexibility of the robot’s movements,

therefore special care was required in the turning of RHex. For example, dur-

ing forward walking, the robot turns by adding differential perturbations to

the controller parameters for contra-lateral legs. Nevertheless, this strategy

may not be the best choice as it involves the manual tuning of the parameters.

Although the control mechanism of RHex may provide further information to

design a simplified version of character controller, the synthetic motion will

be more likely to look rigid. Compared with the inherent stability of the limit

cycle in the proposed Central Pattern Generator (CPG), the open loop control

used in RHex also suffers from instability.

neuron-biomechanical simulation Computer simulation is a popular ap-

proach adopted by biologists to study the underlying mechanism of real or-

ganisms. Taga et al. (1991) first introduced this concept in the design of

a neuron-musculo-skeletal system to execute the task of stepping in an un-

predictable environment. One of the biggest challenges in designing such a
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system is to set the large numbers of parameters by hand.

Due to its simplicity, the insect, particularly the hexapod, has been chosen

by many researchers to build a sophisticated neuron-musculo-skeletal sim-

ulation framework. Ghigliazza and Holmes (2005) proposed a hybrid dy-

namic system incorporating rudimentary motor-neuron activation and ago-

nist/antagonist Hill-type muscle pairs that drive a point mass body along a

straight line. Later developments introduced more advanced activation rules

and demonstrated stable gait in the events of perturbations (Kukillaya and

Holmes, 2008, 2009). This series of work (Ghigliazza and Holmes, 2005;

Kukillaya and Holmes, 2008, 2009) focused on the analysis of gait stability

and made extreme simplification by ignoring the leg mass and treating the

whole body as a point mass. The simulation is done in a 2D horizontal plane

and excludes gravity. The distinct focus and model complexity differentiate

their work from the one presented in this thesis.

Walknet is an artificial neural network which simulates the movements of

walking stick insects (Cruse et al., 1998). The earliest version of Walknet

started with kinematic simulation (Cruse et al., 1998), which was designed to

mimic the joint rotations captured from real stick insects. This can be consid-

ered similar to the procedural modelling in computer animation (Abdul Karim

et al., 2012a). The controller was designed in a de-centralised architecture,

similar to real insects and also to the method in this thesis. The controller

managed eighteen leg joints (three for each leg) and was able to demonstrate

impressive behaviours including turning and gait switching. Later various

functional components were added to enhance the controller, such as search-

ing for foot placements (Bläsing, 2006) and avoidance reflexes (Dürr, 2005).

This control framework was also tested with dynamic simulation and six-

legged robots (Dürr, 2005; Bläsing, 2006; Schilling et al., 2012). For a review

on a collection of work based on Walknet see Schilling et al. (2013).

Örjan Ekeberg (2004) constructed a reduced model of the nervous system

by incorporating the activation mechanisms confirmed from biological exper-

iments, and actuated a 3D biomechanical model using this nervous system.

However the bistable circuits used in this system are only able to produce a

constant activation value, rather than fully simulated spike signals of a neu-
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ron. The muscle model follows the linear muscle model from Storrer (1976),

ignoring some important features, such as the nonlinear relationship of force-

length/force-velocity, from real muscles.

Szczecinski et al. (2014) proposed a neuron-mechanical simulation of the

cockroach, which is currently the truest model compared with the individual

and population behaviours of real neurons. However, the complexity of this

framework limits its current applications to explore changes in locomotion

when the animal transitions from straight walking to turning. There is still

a significant gap between the skill repertoire of existing controllers and the

demands of industry practitioners.

Pros and Cons in a Nutshell Existing work from bio-robotics and neuron-

biomechanics simulation explores the alternative possibility of designing a lo-

comotion controller. This bio-inspired solution has proved successful in terms

of its naturalness and stability. However, state-of-the-art robotics are still far

from their real equivalents in terms of naturalness while neuron-biomechanics

research aims to copy the real controller as much as possible while currently

ignoring the control inputs from users (Ijspeert, 2008). These artefacts con-

strain the direct application of existing work from both fields to animate vir-

tual characters. The proposed framework in this thesis takes advantage of

recent progress in neural science and bio-robotics, especially the inspirations

in the design of the Central Pattern Generator (Ijspeert, 2008; Kukillaya and

Holmes, 2008, 2009; Chung and Dorothy, 2010). Moreover, this work em-

phasises the intuitive and efficient control for animators and seamless inte-

gration with the traditional pipeline of animation production.
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Chapter 3

Background

This chapter is an overview of insect physiology, in particular, how their phys-

iological properties could affect, or even determine, their ability to move. Lo-

comotion by itself is a complex interaction between the skeleton, muscle, ner-

vous system and environment. The following sections will cover the funda-

mental knowledge on insect physiology from three aspects: skeletal structure,

muscle actuator and nervous system. The purpose of including this chapter

is to make this thesis as self-contained as possible, rather than to provide a

thorough investigation. Therefore the presentation is highly selective. For an

in-depth discussion, readers could refer to the additional literatures mentioned

in the context or a textbook such as Chapman (1998).

The term insect used in this thesis refers to the class of Insecta, part of

the phylum of arthropoda. The ant is selected as a representative insect for

its typical physical structure and geographical diversity1. The morphology of

ants varies across species and classes, even individuals. For example, con-

siderably different from female and male ants, workers are wingless and are

specialised for terrestrial locomotion. This thesis focuses on modelling the

locomotion of workers, the majority of an ant colony.

1 Ants are found on all continents except Antarctica and a few inhospitable islands, with
an estimated 22,000 species (Jones, 2008)
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3.1 Skeletal Structure

A typical insect body is composed of a body trunk and individual legs. The

body trunk is divided into three parts as shown in Figure 3.1:

• Head, the front part, contains the brain, mouth, eyes, antenna etc.

• Thorax, the middle part, connects with six legs.

• Abdomen, the latter part, contains the heart and stomach etc.

The thorax consists of three segments known as the pro-, meso- and meta-

thoracic segments, each of which possesses a pair of legs (Chapman, 1998).

Each leg is typically divided into coxa, trochanter, femur, tibia, tarsus and

pretarsus (Figure 3.1). The three main leg joints – the thorax-coxa (TC-)

joint, the coxa-trochanter (CT-) joint and the femur-tibia (FT-) joint – are

responsible for insect mobility (Büschges et al., 1995). The structure of the

tarsus and pretarsus allows strong attachment to surfaces, which also affects

insect mobility (Ji et al., 2011).

The following features are exploited to build a realistic, simplified insect

model. Firstly, the femur is usually immovably attached to the trochanter

(Büschges et al., 1995; Chapman, 1998). Secondly, there is evidence showing

that the pairs of coxa and trochanter, femur and tibia can only move relative

to each other in the vertical plane (Büschges et al., 1995; Chapman, 1998).

Thirdly, although the joint between the thorax and coxa has more than one

degree of freedom, most of the time it operates like a hinge joint (Blmel,

2011).

Unlike vertebrates with bones inside the body (endoskeleton), insects ex-

pose their skeletons outside (exoskeleton). This difference affects how the

muscles connect and actuate the joint. The final torque applied on the joint is

determined by both the contraction force and the moment arm. Each joint is

connected by a pair of antagonist muscles – flexor and extensor (Figure 3.2a).

As the name suggests, the contraction of extensor muscle increases the joint

angle and extends the body part while the contraction of flexor performs the

opposite function. The moment arm is the perpendicular distance from the

rotating pivot (O in Figure 3.2b) to the force vector. The lengths, denoted
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Figure 3.1: Typical structure of an insect skeleton adapted from California
Academy of Sciences online resources. The main body is divided into three
parts: head, thorax and abdomen. The thorax is connected with six legs and
each leg is typically divided into coxa, trochanter, femur, tibia, tarsus and
pretarsus. For clarity only one leg is illustrated.

as Lext and Lflx in Figure 3.2b, represent the distances between the rotat-

ing pivot and attachment point respectively. In biological experiments and

simulation, Lext and Lflx are used as approximations of the moment arm of

respective forces (Blmel, 2011).

Each joint has its rotational limits, therefore determining the furthest po-

sition a leg can reach. The Posterior Extreme Position (PEP) is the furthest

point which the leg can reach backwards in relation to the COM in stance.

The Anterior Extreme Position (AEP) is the furthest point which the leg can

reach forwards in relation to the COM in stance. Research has suggested that

a leg starts to swing when it approaches the AEP and PEP (Cruse, 1985). This

observation is taken into consideration when designing the switch mechanism

in Chapter 7.

3.2 Neural System

Compared with the vertebrate nervous system, the insect nervous system ex-

hibits decentralisation, that is, instead of a definite central nervous system, the
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Figure 3.2: Sketch of a femur-tibia joint connection of an insect. (a) Sketch of
the muscle attachment in the femur-tibia joint. Muscles are typically attached
to either end of the skeleton, spanning across a joint so that contraction of
the muscle moves one part of the skeleton relative to the other. (b) Sketch of
the actuation mechanism in the femur-tibia joint. Fext and Fflx denote the
forces produced respectively by extensor and flexor muscles, and Lext and
Lflx denote the distances between the rotating pivot and attachment point
respectively of extensor and flexor muscles.

Figure 3.3: Insect nervous system. The ganglia, each of which is a cluster
of thousands of nerve cells, are distributed throughout the body, including
the head, thorax and abdomen. The ganglia located in the brain send out the
high-level commands while the ganglia located in the thorax coordinate local
leg movements (Chapman, 1998).
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insect has numerous ganglia distributed throughout the body, though there is

a major association centre in the head (Figure 3.3). Experiments demonstrate

that each thoracic ganglion has its own walking pattern generating network

(Bässler and Büschges, 1998). With regard to locomotion, the brain is in

charge of the onset, direction and speed while the thoracic ganglia are respon-

sible for the local control and coordination of legs. However the axons from

the brain or subesophageal ganglion are still able to modulate the activity of

thoracic ganglia, for example, to initiate, suppress, and maintain walking be-

haviour, or determine speed and direction of locomotory behaviour (Bässler

and Büschges, 1998).

The ganglion is a cluster of thousands of nerve cells, or neurons, which

are the basic units of the insect nervous system. There are two main types

of neurons in the ganglia, motor neurons that control the muscle of the body,

and inter-neurons that integrate information from sense organs. A neuron typ-

ically consists of a cell body (soma), a tree-like outreaching dendrite and a

long cable-like axon (Figure 3.4). More specifically, the axon of a neuron is

connected to the dendrite of the next neuron with a narrow distance, forming a

structure called the synapse. When neural spikes (membrane potential peaks)

arrive at the axon, chemical transmitters are released from the previous neu-

ron and collected by the dendrite of the next neuron, and further processed by

the soma in the next neuron, which fires its own series of spikes. This machin-

ery forms the information processing of the insect nervous system (Gerstner

and Kistler, 2002).

Figure 3.4: The insect neuron as the basic unit of nervous system. Figure
from Chapman (1998).

The end of axon connects to either another neuron or muscle structure.

For the latter case, it innervates the muscle. The innervation mechanism is

complex and not yet fully understood. Most muscles are innervated by both
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fast and slow axons and by inhibitory axons, but not all the fibres within a

muscle are innervated by all three types of motor neurons (Chapman, 1998).

3.3 Muscle Property

Each muscle is made up of thousands of muscle fibers, each comprising many

myofibrils in parallel (Figure 3.5). The motor neuron together with its inner-

vated muscle fibre is referred to as the Motor Unit (Figure 3.6a). Individual

myofibrils consist of longitudinally repeated cylindrical units, called sarcom-

eres. Each sarcomere contains contractile proteins, organised into a regular

interdigitated matrix of thick and thin filaments, and is bounded by Z disks.

The thick myosin filaments are composed of numerous myosin molecules,

which are elongate structures with two globular heads at one end, while the

thin actin filaments consist of two chains of actin molecules twisted round

each other (Loeb and Ghez, 2000). The structure of insect skeletal muscle

is detailed in Figure 3.5. The contraction force is produced by the relative

sliding movement between the thick and thin filaments. The biochemical

processes involved in muscle contraction are beyond the scope of this thesis.

More detailed information could be found in Loeb and Ghez (2000).

The most widely used Hill-type muscle model (Zajac, 1988) is composed

of three parts (Figure 3.6b):

• Contractile Element (CE) models the contraction machinery of muscle

fibres and serves as the principle component of contraction forces when

activated.

• Parallel Elastic (PE) spring models the resistive tension from muscle

membranes when a muscle is passively stretched.

• Series Elastic (SE) spring models the effects of tendons that act like a

spring to store elastic energy when an active muscle is stretched.

The analogue of tendon structure in insects is called the apodeme. When

building an insect muscle model, it is appropriate to discount the apodeme

or SE component in the Hill-type model because of the stiffness of apodeme

(Holmes et al., 2006).
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Figure 3.5: Detailed structure of an insect muscle. From Loeb and Ghez
(2000)
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Given these three components, the following equations hold:

F = Fpe + Fse

Fce = Fse

L = Lpe = Lce + Lse

(3.1)

where variables of F,L indicate the measurements of force and length of

each component respectively, and subscripts denote the corresponding com-

ponents.

(a)

CE

PE

SE

(b)

Figure 3.6: Components of an insect muscle. (a) Muscle structure cor-
responding with Figure 3.5. Thousands of muscle units, including the motor
neuron and their innervated muscle fibres, constitute each muscle. (b) Muscle
unit in correspondence with Equation 3.1. The component of Series Elastic
(SE) is occasionally ignored due to its stiffness.

The main features when building a Hill-type muscle model are the force-

length and force-velocity relationships. The force-length (FL) component

models the function of both active and passive forces in terms of the muscle

length (Figure 3.7a). The data is normally collected in an isometric situa-

tion which means the muscle length is held constant. Experimental biologists

measure the contraction force when muscles are stimulated (total force) and

not stimulated (passive force). The active force can be derived by deduct-

ing the passive force from the total force (Zajac, 1988). The force-velocity

(FV) component describes how the contraction force varies with respect to

the muscle contraction velocity (Figure 3.7b). The data is collected by ap-

plying a constant force to pull at the end of the muscle, which contracts and

eventually stops. The velocity is measured during this contraction process.

Note that the FV relationship varies given different muscle lengths (Zajac,

1988).
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Figure 3.7: Force-length and force-velocity relationships of insect muscle.
This figure is reproduced based on the experimental result from Zajac (1988).
(a) The passive force is generated when the muscle is passively stretched, thus
creating resistive tension (Fpe in Equation 3.1). The active force is generated
via the contraction of muscle fibres (Fce in Equation 3.1). The total force is
the sum of both active and passive forces. (b) The force indicates the total
force. Muscle is stretched when the velocity is less than zero and contracts
when the velocity is greater than zero.

In comparison to the model of Direct-Current (DC) motors used in robotics,

these springy muscles appear flawed for the following reasons:

• The direct output from the muscle is force and the final torque also de-

pends on the moment arm. Different configurations of muscle length

and velocity affect the outcome, giving rise to a more complex con-

troller.

• Propagation of the control signal from the nervous system is slow and

there is an additional delay when considering the activation and con-

traction dynamics inside the muscle.

• Fatigue effects can result from the nervous system failing to generate

the signal or the motor unit failing to release Ca+ to trigger the con-

traction dynamics.

• The single polarity means that the muscle can only pull and not push.

Electronic servos, however, can alter the torque direction simply by

alternating the direction of the electrical current.

The reason why these springy muscles have evolved in nature is not yet fully

understood. It has been suggested that the springy effect saves energy dur-
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ing transportation (Alexander, 1991, 2002). It has also been proposed that

the springy feature increases joint stiffness, allowing automatic adaptation to

external perturbations without control input (Loeb and Ghez, 2000).
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Chapter 4

Triangle Placement Engine

4.1 Introduction

Insect locomotion demonstrates a strict alternating tripod pattern. Tripods

formed by legs L1R2L3 and R1L2R3 switch alternatively from stance to

swing in temporal sequence. Supporting Triangles are defined by foot prints

of the tarsus of alternating legs L1R2L3 or R1L2R3 in a tripod gait. This

work introduces a novel mathematical model, the Triangle Placement En-

gine (TPE), to author the characteristics of insect locomotion (for example

speed and path) in a representation of the position and orientation of the sup-

porting triangles.

The TPE is proposed to determine the distribution of supporting triangles

along a given path while satisfying user-specified settings, such as locomotion

speed, load condition, terrain and perturbations etc (Figure 4.1). The engine

is built up by mathematically expressing the experimental observations on the

existing patterns of supporting triangles made by the zoologist Dr. Zollikofer

(Zollikofer, 1994a,b,c) and the following contributions from his peers (Jin-

drich and Full, 1999; Dürr and Ebeling, 2005; Seidl and Wehner, 2008). The

results from Zollikofer (1994a,c) show that ants normally employ a double

tripod gait when moving within a wide range of speeds. Zollikofer (1994c,b)

reveals that the shape of the supporting triangle is independent of both speed

and trajectory curvature (Figure 4.2), but is influenced by the carried load and
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Figure 4.1: Flowchart of the presented framework with the TPE highlighted.
The TPE takes various user settings as input and determines the size, loca-
tion and orientation of the Supporting Triangle along the path curve. The
generated triangles are passed into the Central Pattern Generator (CPG),
which selects the optimal control parameters from the Controller Look-Up
Table (CLUT) in order to approach the desired trajectory.

by external perturbations.

Animation authoring is an important aspect of character animation and re-

cently it has attracted significant research interest. van Basten et al. (2010)

proposed the concept of step space to generate character animations over a set

of desired foot steps in real time. Their method is divided into three stages.

First, the step space is constructed by extracting steps from existing motion

capture data. A step is represented in a ten dimensional parameter space: six

dimensions are used for the spatial parameters expressing the relative posi-

tion of the swing foot in the local frame of the supporting foot at the start and

the end of the swing phase, and four dimensions are used for the temporal

parameters (stance durations of both placements, swing time and stance du-

ration of the supporting foot). Given the initial foot placement, the weighted

nearest-neighbour in the step space is then calculated to give the foot position

for the next step. Spatial warping and time warping are then introduced in

order to remove any artefacts. The concept of Supporting Triangle differen-

tiates from the Step Space in its designed adaptation of the template triangle

to various settings. This adaptation approach avoids the problem of lacking

existing motion data, which is difficult to capture for small-scale insects.

43



Figure 4.2: Locomotion of Cataglyphis bombycina (body mass 17.9 mg)
at a mean velocity of 17mm/s (A), 43 mm/s (B) and 15 mm/s (C); the mean
radius of curvature in C is 30 mm. This figure shows that the shape of the
supporting triangle remains unchanged under different settings of speed and
trajectory curvature. Solid-line triangles are tripods R1L2R3; dashed-line
triangles are tripods L1R2L3; the longitudinal axis of the body is indicated
from the head position (dot) to the centre of mass (end of line); time intervals
are 20 ms; walking direction is from left to right. This image is reproduced
from Zollikofer (1994c).
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4.2 Triangle Placement Engine

The design of the Triangle Placement Engine (TPE) is composed of two parts:

first, to find a triangle template for general cases and second, to adjust the

orientation and shape of the template according to user-specified settings. The

shape of the triangle is changed in the cases of carrying an object and walking

against external forces, and the orientation of the triangle is influenced by the

input curve path.

4.2.1 Triangle Template Design

A template for the Supporting Triangle is identified by computing the statisti-

cal mean of a collection of supporting triangles taken from a real ant walking

along a straight line.

The shape of a triangle is defined as three sets of coordinates, each of

which represents the location (x, y) of touchdown point in the local frame

of the COM (the red dot in Figure 4.3). The static position of the COM is

computed as the average of two threshold positions: one being the entrance

point and the other being the exit point on the triangle edges (the blue dots

in Figure 4.3). In total, 35 triangles were collected from three locomotion

sequences taken from a real ant; the results are presented in Table 4.1.

x y

L1 2.625 0.973
L2 -0.105 2.714
L3 -2.520 1.746
R1 2.625 -0.973
R2 -0.105 -2.714
R3 -2.520 -1.746
Unit: (x−mm); (y −mm)

Table 4.1: Coordinates of the vertices of the template triangle in the local
frame of the COM. +x aligns with the posterior-anterior direction. The sym-
metry of ant anatomy means that the tripods L1R2L3 and R1L2R3 have the
same shape but are the reflection of each other along the anterior-posterior
axis.
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Figure 4.3: Extraction of the template triangle from video sequences of ant
locomotion. The videos are provided by courtesy of researchers Holger Bohn
from University of Freiburg, and Karin Moll and Walter Federle from Univer-
sity of Cambridge (Moll et al., 2010). Blue dots indicate the positions where
the COM enters and exits the triangle; the static position of the COM is the
average of these two. The shape of the template triangle is represented as the
relative positions of the three touchdown points of the standing legs in this
local frame.

Data Collection The foot contact positions for each leg are marked manu-

ally for every frame using the software ImageJ (Abràmoff et al., 2004) and

the plugin MTrack (Meijering et al., 2012). The original videos are captured

by researchers Holger Bohn from University of Freiburg, and Karin Moll and

Walter Federle from University of Cambridge (Moll et al., 2010). The pixel

coordinates are then converted into real world coordinates (x, y). The videos

are captured at a frame-rate of 30fps with a resolution of 640x480 pixels.

The image resolution is sufficient to mark the touchdown position in com-

mon cases (Figure 4.4a). The noise, or the inaccuracy of the result, mainly

results from two factors listed below:

• Visual occlusion occurs when the ant is carrying an object (a long pa-

per flake in the captured videos). In Figure 4.4b, the right front and

hind legs are occluded from the camera by the object. In this case, the

position of the foot contact is inferred with the position where the foot

re-enters the camera view. Though this issue inevitably introduces the

noise to the collected data, the frames with such issue only occupy a

small proportion of the samples (3 out of 57).

• Motion blur, a common problem in image processing, does not present

great challenges in the case of determining the template triangle, be-

cause the foot stays static on the ground when forming the triangle
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(Figure 4.4a and Figure 4.4b). However, this issue is critical in the case

of acquiring the ground truth data of the foot trajectory during swing

mode. For example in Figure 4.4c, it is hardly possible to determine

the accurate position of the middle left leg (L2), which is swinging for-

ward. This issue is mainly caused by the thinness of the legs combined

with their fast movement for this frame-rate. For frames with such an

issue, marker positions are determined by blending the marker coordi-

nates in the preceding and following frames in which the positions can

be accurately determined.

(a) (b) (c)

Figure 4.4: Captured images of the locomotion of real ants. The images are
provided by courtesy of researchers Holger Bohn from University of Freiburg,
and Karin Moll and Walter Federle from University of Cambridge (Moll et al.,
2010). (a) Normal walking. In this case, the foot contact positions can be ac-
curately marked with sufficient image resolution. (b) Walking while carrying
an object. In some frames (3 out of 57), the foot contacts are occluded from
the viewpoint by the object (for example, the right hind leg in this image).
(c) Normal walking (side view). It is difficult to determine the accurate po-
sition of the foot during its swing mode (for example, the left middle leg in
this image). Although this does not affect the design of the template trian-
gle, the issue of motion blur introduces noise to the comparison between the
simulated and real trajectory of foot.

Adjustment of the Triangle Template Animators can adjust the shape and

size of the triangle template via an IK handle on each leg, which connects

from the coxa-femur joint to the tiba-tarsus joint (Figure 4.5). The final trans-

formation of the IK handles will be saved and used as the template triangle.

The manipulation of the IK handles is constrained by two limits. On one

hand, the IK handles are constrained within the range specified by the An-

terior Extreme Position (AEP) and the Posterior Extreme Position (PEP) of

47



each leg in the posterior-anterior direction (Figure 4.5). On the other hand, se-

lected DOFs (three for each leg) are constrained within the range [q̄−g, q̄+g].

q̄, g are the mean value and the amplitude respectively of this rotational DOF.

This constraint is in correspondence with the design of the CPG controller in

Chapter 5.

The PEP is the furthest point which the leg can reach backward in relation

to the COM in stance. Respectively, the AEP is the furthest point which the

leg can reach forward in relation to the COM in stance. The distance between

the AEP and PEP is equal to the maximum stride length S̄max, which can

be computed by its relationship with respect to the walking velocity (Equa-

tion 4.4). Therefore, the positions of the AEP and PEP can be found as two

end points of the segment, whose length is equal to S̄max and middle point

is the original position of the template triangle from the experimental result

(Figure 4.5).

Figure 4.5: Adjustment of the shape of the triangle template with an IK han-
dle in the posterior-anterior direction. An IK solver connects from the coxa-
femur joint to the end of the tarsus part. The adjustment is constrained by the
Anterior Extreme Position (AEP) and Posterior Extreme Position (PEP) for
each leg.

4.2.2 Triangle Adaptation

Triangle Orientation–Curvature Ants are assumed to exert efforts to con-

trol their body in order to follow a curve path and, thus an intuitive way of

controlling the placement of triangles along the curve path is developed. At
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Figure 4.6: In the case of walking along a curve, the triangle Ti+2 is placed
by interpolating the vertices of T ′ and T ′′.

a certain point P of the curved path, if the triangle Ti on this point is known,

it is necessary to put a triangle Ti+2 of the next stride on the curve. A tangent

line is first drawn at point P. A triangle T ′ is created by tiling along the tan-

gent line for a distance of stride length S̄ as if the ant moves along a straight

path. Next a triangle T ′′ is created by drawing another tangent line at point

Q as if the ant is moving along the tangent line at Q (Figure 4.6). The point

Q is where the curve length P̂Q is equal to the stride length. The location of

the next triangle Ti+2 is computed as a weighted sum of the two congruent

triangles T ′ and T ′′:

V
Ti+2

j = (1− wc)V T ′

j + wcV
T ′′

j (4.1)

where V T ′
j denotes the location in fixed world coordinates of the jth vertex of

a certain associated triangle which is labelled by the superscript. The 1st, 2nd

and 3rd vertices are related to fore-, mid- and hind-legs respectively.

In classical mechanics, the centripetal force is to drive an object to move

along a curve path. It is computed as (Takwale and Puranik, 1979):

F = mcν2 (4.2)

where m is the object mass, c is the curvature at the specific curve point and

ν is the tangential speed along the path. The weight coefficient wc is inspired
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by the format of the centripetal force and takes the value of :

wc = e
−cν2

g (4.3)

where g is the gravitational acceleration. When the curvature c = 0 (a straight

line), the next triangle will be identical to T ′′, which locates exactly on the

curve. The case of a large curvature indicates that the character must follow

a sharp turn along the curve, which may lead to deviations of the simulated

trajectory away from the predefined path. In such extreme cases, small veloc-

ities are required to achieve the sharp turning. In the example (Figure 4.7), the

character walks along a curve at a speed ν = 0.015m/s and carries no object.

The triangles are generated along the curve path according to Equation 4.1.

Figure 4.7: The TPE generates the triangle profiles for characters walking
along a curve path. In this case, the character is set to walk at ν = 0.015m/s
without carrying an object.

Triangle Distance–Speed This framework next considers how the speed

of an ant affects the distance between two successive supporting triangles.

Here the stride length S̄ is defined as the distance between the barycentric

points of two successive supporting triangles of same leg group, i.e. Ti and

Ti+2. Results from experiments on real ants (Zollikofer, 1994c; Seidl and

Wehner, 2008) demonstrate a linear dependency between the triangle distance

S̄ and speed ||ν||. During faster movement, insects reach their legs out further

and this increases the distances between the foot contact positions of two

successive strides:

S̄ = S0 + as||ν|| (4.4)

The intercept S0 = 3mm and slope as = 0.1s are constants. S0 defines the

minimum stride length. as defines the ratio of the amount of change in stride

length to the amount of change in locomotion speed. The maximum velocity

is 0.04m/s. The reader should refer to Appendix D for a complete list of
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constants used in the simulation. Figure 4.8 demonstrates a series of triangle

profiles generated by the TPE. Compared with Figure 4.7, the velocity in-

creases to ν = 0.02m/s, which results in an increase in the distance between

consecutive triangles.

Figure 4.8: The TPE generates the triangle profiles for characters walking
with varying speeds. The distances between two consecutive triangles are
increased compared to those seen in Figure 4.7. This is due to the increase in
velocity (from 0.015m/s to 0.02m/s ). Other settings remain the same.

Triangle Shape–Load The shape of the Supporting Triangle is adjusted in

the case of load-bearing characters. When carrying extra loads, ants actively

lower their COM and increase the projection area of supporting triangles as a

means of enhancing their locomotion stability. A linear model is introduced

to describe the adjustments that are made to the supporting triangle, based on

the experimental observations (Figure 1 in Zollikofer (1994b)). Although a

nonlinear relationship may exist, there is insufficient experimental evidence

and therefore, this work uses the linear model which is given as follows:

∆LCOM = acommw

∆xi = axi∆LCOM (4.5)

∆yi = ayi∆LCOM

where mw is the load weight, ∆LCOM is the shifting of the COM along the

vertical axis and acom is the slope ratio between these two variables. ∆xi and

∆yi are the anterior and lateral shifting in the touchdown position of the ith

leg measured in the local coordinate system. and axi and ayi are coefficients

specified for individual legs. Table 4.2 lists the values for ax, ay from linear

regression on the experimental data (Figure 1 in Zollikofer (1994b)).

Figure 4.9 compares the shape of the supporting triangles in two different

cases: when the character is carrying an object (the weight is 0.003kg) and
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ax ay

L1 0.33 0.28
L2 0.0 0.30
L3 -0.64 0.60
R1 0.33 -0.28
R2 0.0 -0.30
R3 -0.64 -0.60
ax, ay are ratios with no units

Table 4.2: Coefficients for Equation 4.5.

when the character is carrying no objects. When the character is carrying

no objects, the shape of the supporting triangle is the same as the template

triangle (Table 4.1). When the character is carrying an object, the shape of the

supporting triangle is adjusted according to Equation 4.5. The result shows

that in the case of carrying an object, the character stretches out its legs and

enlarges the area of the supporting triangle.

(a) Left Tripod (L1R2L3) (b) Right Tripod (R1L2R3)

Figure 4.9: Comparison of supporting triangles between the cases of carry-
ing an object (the solid line) and carrying no objects (the dashed line). The
object weight is 0.003kg.

Triangle Shape–Terrain Insects adjust the shape of their supporting trian-

gles dynamically when walking up or down a gradient, which maximises the

utilisation of gravitational potential and secures the stability. Biologists be-

lieve that these changes may be caused by the shifting of the COM, which is

equivalent to load bearing (Seidl and Wehner, 2008). Here the effect of the

slope rate on the shifting of the COM ∆LCOM is modelled as:

∆LCOM = −h sin(θ) (4.6)
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where h is the average height of the COM during a single stride and θ is the

angle of inclination of the gradient. θ is positive when the character walks up-

slope and negative when the character walks downslope. Given the variability

of ∆LCOM , the changes to the supporting triangle are computed with Equa-

tion 4.5. When the terrain is uneven, the supporting triangle is first placed

on the tangent plane and then the triangle vertices are projected to the nearest

points on the terrain surface.

Triangle Shape–Perturbation If the character is subjected to external non-

gravitational forces during locomotion, the forces can be modelled as pertur-

bations similar to the case of load bearing. For the force Fext, the equivalent

distance of the COM shifting ∆LCOM is modelled as:

∆LCOM =
−Fext
mg

h (4.7)

where m is the mass of the ant, g is the gravitational acceleration and h is the

height of the COM. Similar to the load-bearing scenario, insects lower their

COM and spread out their legs in order to maximise the Supporting Triangle

area, and thus the stability is improved. Following the previous discussions,

the supporting triangles are adapted according to Equation 4.5. When walk-

ing against the external perturbations, the character increases the area of the

supporting triangle (Figure 4.10).

(a) Left Tripod (L1R2L3) (b) Right Tripod (R1L2R3)

Figure 4.10: Comparison of supporting triangles between the cases of walk-
ing against an external force (the solid line) and walking against no external
force (the dashed line). The magnitude of the external force is 0.01N .
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4.3 Results & Discussions

UI Interface A Maya plug-in is developed in order to allow animators to

author insect behaviour in a user-friendly way (Figure 4.11). The interface

is set up in correspondence with the design of the TPE. The ground surface

and path curve are first constructed, using built-in functions of the Maya.

Next, animators specify the velocity, load weight and external force for the

locomotion task. Using customised Python commands, these variables can

also be key-framed as attributes associated with individual characters. For

example, characters are able to move along a continuous curved path with

speed variations.

Figure 4.11: UI interface written as a Maya plug-in. The framework is writ-
ten as a Maya plug-in so that it can fit into the existing animation production
pipeline. The user interface allows animators to specify the curve, ground,
velocity, load and external force. Selecting the option of a flat ground speeds
up the program by avoiding the costly computing of finding the closest point
on the ground surface.

Performance Table 4.3 presents a summary of computing time of generat-

ing the supporting triangles for some representative cases. The time cost is

divided into two parts, T1 and T2 in Table 4.3. T1 refers to the time cost

of the core algorithm of the TPE, including computing the shape, location

and orientation of the supporting triangles. T2 refers to the time cost of other
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auxiliary operations, such as rendering in the Maya viewport.

The time cost T1 for generating each supporting triangle is on average 1.1

milliseconds, with a standard deviation of 0.8 milliseconds. This performance

outperforms the similar method in determining the foot-contacts of virtual

characters (van Basten et al., 2010). In comparison, their method requires

on average 3 milliseconds, with a standard deviation of 1.9 milliseconds to

determine the foot contact positions for the next step. The time cost T2 for

other operations (rendering etc) on each supporting triangle is on average 13.8

milliseconds, with a standard deviation of 5.3 milliseconds. The result shows

that the core algorithm of the TPE only occupies a small percentage (about

7%) of the total time (T1 + T2). Comparatively, the time cost T2 is most

related with the functionality inside the Maya. This is part of the price to be

paid, in exchange for the off-shelf tools from Maya and familiarity with its

UI for animators. One of the method to reduce the T2 is to switch to C++

API of the Maya, rather than Python API used in the current implementation.

The time cost of determining the triangle location and orientation is much

larger in the case of uneven terrain than other cases. This is due to the addi-

tional operations to find the closest point on the mesh for the triangle vertices,

which is a time-consuming operation in the Maya. Replacing the existing

Maya algorithm with faster alternatives could further speed up this operation.

For the case of swarm simulation, individuals from a group of 30 ants are

instructed to follow 30 individual curves. By using the module of multi-

processing (MP), the performance increases by approximately three folds

when four processing cores are used in parallel (Table 4.3). Further code

optimisation is expected to improve the performance.

Speed Locomotion speed is the key input from the animator and affects

directly the distance between consecutive triangles. Animators are able to

set the speed as key-frames while insects travel on the same curve. Given

the strategy proposed in Equation 4.1, characters are constrained to walk at

slow speed when following a curved path with a high curvature. Figure 4.12

compares three different paths with the same locomotion velocity (0.04m/s).

In the case of straight path A, the Barycentric centres of triangles are located
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Cases Curve Length Ants Triangles T1 T2
U -turn 30.4 1 61 0.068 0.752
Perturbations 35.1 1 70 0.073 1.017
Uneven Terrain 32.0 1 64 1.028 2.350
Load Carrying 36.6 1 74 0.083 1.247
Swarm 765.23 30 1531 1.712 24.281
Swarm (MP) 765.23 30 1531 0.640 7.761

Unit: (Curve Length - cm); (T1 - second); (T2 - second)
T1: total time cost for computing the shape and location of all supporting triangles.
T2: total time cost for other operations, including rendering in Maya viewport.

Table 4.3: Computing time of generating the supporting triangles
for some representative settings. There is no significant influence by
load/velocity/perturbations on the algorithm performance. The case of un-
even terrain costs more time since it requires additional time to find the clos-
est points on the mesh for each vertex of supporting triangles. Curve length
is given in cm. For the case of swarm simulation, the curve length is the total
length of curves for all individuals.

exactly on the path. When the curvature of the input paths B,C increases,

the triangles start to deviate from the path. The deviation could be regarded

as one of shortcomings of this framework since the triangles are not located

exactly on the curve when the character travels along a curve path at a high

speed. However, this shortcoming could also be regarded as another match

with the experiences from real world: cars taking a sharp turning at high

speeds are more likely to lose balance and deviate from their original path.

Carrying loads In the case of carrying an object (Figure 4.14a), insects

normally slow down and shorten their stride length (in agreement with Equa-

tion 4.4). Both triangle expansion and distance shortening lead to an increas-

ing overlapping area of two neighbouring triangles, Ti and Ti+1, which is

believed to improve the stability of the ant in transition of stance legs (Zol-

likofer, 1994b). The maximum load for the simulated ant is determined by

two limitations: the maximum leg stretch that still allows a full stride and the

lowest COM position (assumed to be ground level). The maximum load is

found to be mLmax = 0.005kg (five times the ant’s own weight).
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Figure 4.12: Triangle profiles generated when the character is walking fast
on three different curves. When the character is walking at fast speed while
taking a sharp turning (in this case 0.04m/s), the generated triangle profiles
will not strictly follow the desired trajectory (curve B), or even not converge
to it (curve C).

Curved path The proposed framework allows virtual characters to follow a

predefined trajectory and achieve complex navigation, such as taking a mod-

erate U turn (Figure 4.14b). However minor flaws are found for synthetic

motion in cases such as extreme turning. This is partially caused by the issue

of speed discussed above, and partially caused by joint limits, which prevent

the swing leg from reaching the next supporting triangle.

Uneven terrain The TPE is capable of generating foot contact positions on

an uneven terrain (Figure 4.14c). This allows the character to traverse the un-

even terrain with the CPG controller proposed in the latter chapter. The terrain

is input as a Nurbs surface in the Maya. The virtual ant is placed on a prede-

fined uneven terrain, with gradients in the range [-10◦, +10◦]. The proposed

controller adapts to the terrain changes by adjusting the COM height and the

shape of Supporting Triangle, according to the rules defined in Equation 4.6.

For the swing leg, the controller also anticipates the stepping location for the

next stride and adjusts the qAEP in Equation C.1.
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Perturbations Since the controller is physics-based, the character can re-

spond to external perturbations. Most existing works demonstrate the con-

troller stability by applying unanticipated forces for short intervals. The con-

troller presented here differentiates itself from previous works in its dynamic

adjustments of the Supporting Triangles, which allows unanticipated pushes

to be applied for a continuous period. Some typical circumstances that re-

quire a controller of this type include walking against a continuous wind. In

the case of external perturbations, the character dynamically increases the

area of the supporting triangle (Figure 4.13). The maximum force which in-

sects can resist for at least 20 strides is 0.01N .

Figure 4.13: Triangle profiles generated when an external force is introduced
for a time interval. Triangles in solid lines are generated when the external
force exists, and triangles in dashed lines are generated when the external
force does not exist.

4.3.1 User Study Experiment

Measuring the naturalness of synthetic motion is a difficult task. Currently

there are two popular methods. One is to design a user study experiment,

in which humans subjectively rate the naturalness based on their perceptions

(Jansen and van Welbergen, 2009). Another is to compare against the motion

capture data. This section presents the result of user study experiment, while

the next section will discuss the comparison against the motion capture data.

Experiment Setup Two groups of participants take part in the experiment:

• Non-animators: 10 graduate students (5 male, 5 female) from the sub-

ject of computer science, with the age range between [24, 25].
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(a) Carrying an object (b) Taking a U-turn

(c) Walking on uneven terrains

Continuous Wind

(d) Walking against wind force

Figure 4.14: Screenshots of motion sequences generated from this frame-
work. (a) carrying an object. (b) walking along a U-shape curve. (c)walking
on uneven terrains. (d) walking against a continuous force from side wind.
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(a) Carrying an object (b) Taking a U-turn

(c) Walking on uneven terrains (d) Walking against wind force

Figure 4.15: Result of user study experiments of four animation sequences
in correspondence with Figure 4.14. The participants include both profes-
sional animators and non-professional students. The four sequences receive
an average score of 73.75% (being rated as natural), which confirms the nat-
uralness of the synthetic motion.

• Animators: 10 professional animators (5 male, 5 female), with the age

range between [24, 28] and the range of working experiences (in years)

between [1, 5].

These two groups are intentionally selected to study whether there exist dif-

ferences between the result of professionals and non-professionals.

The participants are asked to watch four different animation sequences

generated by this framework and rate whether this animation looks natural or

not. Screenshots of these four sequences are presented in Figure 4.14 (with

supporting triangles being removed).

Result The result from the user experiment confirms the naturalness of the

synthetic motion generated by the framework in this thesis (Figure 4.15).

More than half of the participants rate the animation as natural in all cases.

The average ratio is 73.75%; in other words, on average every three out of

four animations are rated as natural by both professionals and non-professionals.

This proves that this framework is able to generate natural insect animation.
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Detailed analysis includes:

• Animators generally give lower scores than non-animators. This re-

sult comes as no surprise since the professionals should have a better

capability in judging the animation quality. The major defects of the

animation, suggested by the animators, are the rigid rotations of the

body trunk. In other words, there is no relative rotation between the

head, thorax and abdomen. Since the current framework considers the

whole trunk as a single rigid body, secondary animation is needed to

synthesise the relative rotations between the three body parts.

• The animation of walking against the wind force receives lower scores

than the other three. This preference is consistent between the anima-

tors and non-animators. The reason for receiving low score on this

case may be the lack of motion variability in this animation sequence.

Van Welbergen et al. (2010) suggests that a performance looks unnatu-

ral if the same motion occurs repeatedly. In the case of walking against

the wind, the adjustment of increasing the triangle area is not signifi-

cant; therefore the character appears to repeat the same pattern along a

straight line. In other cases, the character carries an object and takes a

U-turn, which adds to the motion variability and increases the perceived

naturalness of the motion.

4.3.2 Comparison with the ground truth

To quantitatively assess the synthetic motion, the simulated results are com-

pared against the data collected from the ground truth.

Walking along a curve path First, the triangles of real ants are extracted

from captured videos of Atta vollenweideri (Figure 4.16(a) and 4.16(c)). Mark-

ers are placed at the positions of foot contacts when the legs stay on the

ground, using the software ImageJ (Abràmoff et al., 2004) and the plugin

MTrack (Meijering et al., 2012). The COM trajectory is drawn by connect-

ing the position of the ant’s trunk centre in each frame. In Figure 4.16, the

triangles in red and blue are the left (L1R2L3) and right (R1L2R3) tripods
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respectively, and the curve in black is the trajectory of the COM. Next, the

COM trajectories of real ants are imported into the simulation framework.

The supporting triangles for virtual ants are generated based on the input tra-

jectories and the same settings (speed and load etc) extracted from the videos.

(a) Real ant on a straight path (b) Simulated ant on a straight path

(c) Real ant on a curve path (d) Simulated ant on a curve path

Figure 4.16: Comparison between the Supporting Triangles generated by
real and simulated ants. The images of (a) and (c) are provided by courtesy
of researchers Holger Bohn from University of Freiburg, and Karin Moll and
Walter Federle from University of Cambridge (Moll et al., 2010). (a) a real
ant walks along a straight path. The ant carries no object at an average speed
of 15mm/s. (b) a simulated ant walks along a straight path. The character
is set to carry no object and walks at a speed of 15mm/s. (c) a real ant walks
along a curved path. The ant carries an object (the weight is 0.001kg) at an
average speed of 20mm/s. (d) a simulated ant walks along a curve path.
The character is set to carry an object (the weight is 0.001kg) and walks at a
speed of 20mm/s.

A good correspondence is achieved for the overall shape and placement of

triangles. However, there still remain differences between the exact shape of

the triangles, especially in the case of walking along a curved path (in Fig-

ures 4.16c and 4.16d). The reason for the deviations may be that the simulated

location of the triangle is computed as a weighted sum of two triangles using

Equation 4.1, instead of the one exactly on the trajectory.

Detailed data analysis of the comparison between the simulated and cap-

tured triangle profiles is given in Table 4.4.

• The average geometric shape difference Adiff is computed as:

Adiff = ||
∑
Asimu −

∑
Areal∑

Areal
|| (4.8)
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where
∑
Asimu,

∑
Areal are the sum of areas of supporting triangles in

simulated and real cases respectively.

• The deviation from the path Dsum is computed as:

Dsum =
∑
Ti

dTi , Ti ∈ all simulated triangles (4.9)

where d is the perpendicular distance from the barycentric centre of the

simulated triangle to the predefined locomotion trajectory.

The result shows that the shape of the simulated triangle is close to identical

to the real ones when the character is following a straight path. However, the

mismatch between the simulated and real triangles increases when the path

is a curve one. It is worth pointing out that due to the data availability, the

ground truth in Figure 4.16c is a case of an ant walking along a curve path

while carrying an object (weight 0.001kg). The effects of carrying an ob-

ject on the triangle shape are removed by reversely applying Equation 4.5.

However, this may be partially responsible for the deviation between the sim-

ulation and the ground truth presented in Table 4.4.

Straight Path Curve Path
Number of Triangles 12 16
Average Shape Difference 3.78 12.56
Average Deviation from Path 0.46 1.57
Unit: ( Average Shape Difference - %); (Average Deviation from Path - mm);

Table 4.4: Comparison between the simulated triangle profiles and the
ground truth. The data show that in the case of straight walking, the sim-
ulated triangle profiles closely match the real ones. Larger differences exist,
however, in the case of walking along a curved path. This is because the
proposed adaptation of the triangle in this case is determined by both the
curve trajectory and locomotion speed, which results in a loose tracking of
the desired trajectory (Equation 4.1).

Foot Trajectory Additional comparison is conducted about the trajectories

of the left front foot L1 in both simulated and real cases (Figure 4.17). The

foot trajectory of the real ant is obtained by manually marking the foot po-

sition in a sequence of video frames using the software ImageJ (Abràmoff
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et al., 2004) and the plugin MTrack (Meijering et al., 2012). The video is

provided by courtesy of researcher Antoine (2014). The foot trajectory of

the simulated ant is obtained by computing the foot positions after the whole

body motion is synthesised. The comparison between the real and simulated

trajectories reveals that:

• The overall shapes of the two trajectories, including the timing of swing

and stance phases, the peak value, are similar.

• However, there exists a significant difference in the middle of the swing

phase (highlighted with shadowed circles in Figure 4.17). The simu-

lated trajectory demonstrates a sharp turning before and after the peak

value, while the real trajectory has a valley between two peaks. The

reason accounting for this difference could be that each step of the sim-

ulated trajectory is only divided into stance and swing phases, while

real ants may employ additional strategies to prepare for the event of

ground contact during the second half of the swing phase.

4.4 Summary

This chapter explains the design of the Triangle Placement Engine (TPE).

The TPE serves as the high-level interface communicating with the user and

converts the user input into triangle profiles, which are then passed into the

animation engine to generate the full-body animation. Based on the experi-

mental data, this thesis investigated how ants adjust the shape and orientation

of their Supporting Triangles under different conditions of speeds, curves,

loads, terrains and perturbations. The controller is able to drive the character

in various challenging situations, such as walking against a continuous wind

which has not been possible in previous research.

Generating the whole body motion for virtual characters from their foot

contacts or trajectory of the COM is not entirely new, and previous sections

have described existing work in this field (Singh et al., 2011; van Basten

et al., 2010; Lockwood and Singh, 2012). However the work presented in

this thesis is the first to develop a comprehensive procedure where a wide
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(a) Captured image of ant locomotion (by courtesy of Antoine (2014)).

(b) Comparison of the foot trajectory of the left front leg (L1).

Figure 4.17: (a) Captured image of ant locomotion. This screenshot is taken
from the video provided by courtesy of researcher Antoine (2014). (b) Com-
parison of the foot trajectory of the left front leg (L1) in both simulated and
real cases. The dashed blue line is from the real ant and the solid red line is
from the simulated ant. The foot trajectory from the real ant shows that the
swing leg is lifted up again in the second half of the swing phase, which im-
plies that additional strategies may be applied to prepare for the foot contact
of the next step.
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range of settings are thoroughly considered and mathematically formulated

using data from real insects.
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Chapter 5

CPG–Based Controller Design

5.1 Introduction

The previous chapter discussed about how the shape and orientation of the

Supporting Triangles adapt to the five high-level settings specified by users,

including the path curvature, speed, load, terrain and perturbation. This chap-

ter will cover the detailed design of the low-level component, the Central Pat-

tern Generator (CPG). In recent years, biologists have confirmed that animals

have evolved to possess a specialised neural structure, the CPG, to coordinate

motor behaviour (Collins and Stewart, 1993; Mellen et al., 1995; Golubitsky

et al., 1999; Katz and Hooper, 2007; Ijspeert, 2008). A CPG is a neural net-

work that is able to produce endogenously (i.e., without rhythmic sensory or

central input) coordinated patterns of rhythmic output (Chung and Dorothy,

2010).

This control principle has gained widespread acceptance in the robotics

community and researchers have successfully designed CPG-inspired con-

trollers to control robots in different situations, such as walking quadruped

(Liu et al., 2011), swimming fish (Crespi et al., 2008) and flying bird (Chung

and Dorothy, 2010) etc. Compared with other approaches based on finite-

state machines, time-series tracking, or heuristic control law (e.g. Virtual

Model), the CPG has the following advantages (Ijspeert, 2008):

• Robustness against perturbations of the state variables. Because a CPG
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is designed to produce stable rhythmic patterns, the system is able to

return automatically to its limit cycle on the phase plot.

• Reduced control parameters. With a hierarchy of modulated oscillators,

a CPG normally has a small number of control parameters and this

reduces dramatically the dimensionality of the control signal.

• Convenient integration of sensory feedback. A CPG is normally repre-

sented as a system of differential equations, which can be coupled with

additional inputs from sensory feedback.

The objective of this chapter is to investigate the hypothesis that the adap-

tive control and synchronisation of coupled nonlinear oscillators, inspired by

the CPG found in animal spinal cords, can generate realistic locomotion for

virtual insects. Figure 5.1 presents an overview of the framework with the

CPG highlighted. The design of the CPG includes separate treatments for

legs in stance and swing modes. The main insect body is driven forward by

legs in stance controlled by a network of nonlinear oscillators. Experimen-

tal results show that insect legs constitute only a small proportion of mass

compared to that of the whole body (6% in cockroach) (Kram et al., 1997);

legs can therefore be treated as being massless and legs in swing are decou-

pled from the physics simulation. Legs in the swing mode are animated with

the procedural controller SwingNet2 proposed by Schumm and Cruse (2006).

Readers should refer to Appendix C for detailed information on the imple-

mentation of this model.

5.2 CPG Model

5.2.1 Design Intuition

It is important to clarify, from the outset, that there is no obvious or cor-

rect representation of the CPG given the complexity of insect nervous sys-

tem (an ant typically has 250,000 neurons) and behaviours (Ijspeert, 2008).

Researchers have proposed several levels of CPG models to fit different pur-

poses. Popular choices include (Ijspeert, 2008):
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Figure 5.1: Flowchart of the presented framework with the CPG highlighted.
The CPG handles the stance and swing legs separately in order to simplify
the control mechanism. Inputs of Supporting Triangles manipulate the be-
haviours of the CPG by selecting the optimal control parameters to follow
the desired trajectory.

• Detailed biophysical models that are constructed based on the Hodgkin-

Huxley type of neuron models. This type of model computes how ion

pumps and channels affect membrane potentials and the generation of

action potentials (Hellgren et al., 1992).

• Connectionist models that use simplified neuron models, such as the

integrate-and-fire neurons, to analyse the overall network and inter-

neuron connections (Ekeberg, 1993).

• Oscillator models that are represented as a network of nonlinear os-

cillators with the motivation to study the general topology of coupling

(Collins and Stewart, 1993; Crespi et al., 2008; Righetti and Ijspeert,

2006)

Even for the category of oscillator models, different researchers choose dif-

ferent oscillators (mathematically speaking Ordinary Differential Equation

(ODE)) as the building blocks. One must choose an appropriate model for

a particular purpose. The model selection depends on the researcher’s own

requirements since each model represents a different level of detail and has

its own advantages and disadvantages. This work selects the third option (the

oscillator model) mainly because:
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Figure 5.2: The mapping between the oscillators in the CPG controller and
specific joint DOFs. The unit oscillator is transformed by the operators into
individual channels (DOFs). This distributed model, similar to the control
machinery in real insects, has the potential to reduce the design complexity
and computational demands.

• the focus of this work is to design a locomotion controller, which is

more closely related to the output from neuron control than to its bio-

physical structures.

• the exact neuron mechanism is not completely understood, and thus it

is of limited value to attempt to model with accuracy.

• the inherent property of stability from the limit cycle enhances the sta-

bility of the final animation (Liu et al., 2012)

In detail, the CPG in this work is formulated by two components: the os-

cillator and operators. In this framework, the CPG is composed of 18 coordi-

nated Hopf Bifurcation oscillators. Each DOF is controlled by one oscillator

instance. This setup is confirmed by biological experiments where each joint

in stick insects is controlled by its own oscillator (Büschges et al., 1995).

Without sensory input, the activity of each joint is uncoordinated with that of

other joints. The oscillator takes the current angle and velocity values of this

DOF as input, and returns the corresponding values for the next simulation

step. The operators transform the basic form of unit oscillator to produce a

DOF-specific control signal and achieve the coordination between them. A

block diagram of the CPG is illustrated in Figure 5.2. Details of the oscillator
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and operators will be explained in the following paragraphs.

5.2.2 Oscillator Model

The first challenge in building the CPG is to select the appropriate neuron-

oscillator. There are several popular oscillator models, for example Matsuoka

(Matsuoka, 1985) and Van Der Pol (Dutra et al., 2003). Here a dynamics

system, mathematically defined as Hopf bifurcation, is selected (Chung and

Dorothy, 2010). Its Ordinary Differential Equation (ODE) is given in Equa-

tion 5.1 and its phase plot is given in Figure 5.3:

(
q̇
q̈

)
=

[
−λ(q2+q̇2

ρ2 − σ) −ω(t)

ω(t) −λ(q2+q̇2

ρ2 − σ)

](
q
q̇

)
(5.1)

Equivalently, Q̇ = f(Q; ρ;ω;σ), with Q = (q, q̇)T

Equation 5.1 defines a limit cycle of the Hopf oscillator with a radius

ρ > 0. q denotes the vector containing the joint angles for all DOFs. In

the mathematical theory of bifurcations, a Hopf Bifurcation (also sometimes

called Poincaré-Andronov-Hopf bifurcation) refers to the local birth of a pe-

riodic solution (self-excited oscillation) from a equilibrium point when a pa-

rameter (here referred to as σ) passes a critical value (Marsden and Mc-

Cracken, 1976). The bifurcation parameter σ in Equation 5.1 can switch from

1 to -1 so that the stable limit cycle is converted into a globally stable equi-

librium point (Steven, 1994) (Figure. 5.3). The parameter ω determines the

oscillation frequency of the limit cycle. The parameter λ denotes the conver-

gence rate to the circular limit cycle or an attraction point.

The nonlinear oscillator presented in Equation 5.1 has also been success-

fully applied in actuating a flying robot (Chung and Dorothy, 2010). Al-

though the concept of the Hopf bifurcation is similar, the sensory information

is passed into their controller as a separate component while the controller

proposed here reacts to the sensory feedback by adjusting the internal pa-

rameters. Compared with other oscillator choices, it is chosen because of its

following merits:
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Figure 5.3: The phase plot of Equation 5.1 can switch between the limit cycle
(σ = 1) and attraction point (σ = −1). q denotes the vector containing the
joint angles for all DOFs. (a) Starting from a random position, the output q
is able to converge to a limit cycle, thus ensuring that the character can re-
cover from external perturbations and continue stable locomotion. (b) When
σ switches to −1, the phase plot converts itself into an attraction point, thus
allowing characters to maintain a static pose or perform discrete movements.

• Symmetry

Unlike other popular oscillator models the phase plot of this nonlin-

ear oscillator is symmetric (Figure 5.3), indicating that the phase co-

ordination can be represented as a phase shifting operator (this will be

explained later).

• Controllable Switch Between Periodic and Discrete Motion

With the assistance of the Hopf bifurcation, a unified representation of

periodic and discrete motion can be given, and this further simplifies

the control framework.

• Fast Inhibition of Oscillation by Hopf Bifurcation

The rapid convergence of this oscillator ensures a stable response against

external perturbations and ensures a smooth transition between periodic

and discrete motions.

A limitation of this oscillator is the simplicity of the generated signal; how-

ever, since the control parameters in Equation 5.1 are constantly updated dur-

ing walking, the output profiles of joint angles demonstrate a high level of

complexity. The same oscillator is also used in producing and controlling
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stable flapping flight patterns, which require fast adaptation and agility in

order to meet more challenging aerodynamics compared with terrestrial lo-

comotion (Chung and Dorothy, 2010). Published research also shows that

modulation of sinusoidal patterns can be implemented to successfully drive

humanoid robots (Morimoto et al., 2008). The final animation demonstrates

that the modulation of this oscillator is sufficient for the less-developed loco-

motion pattern of multi-legged insects.

5.2.3 Operators

One of the main contributions of the proposed controller is the design of op-

erators which transform the basic form of unit oscillator into a DOF-specific

control signal. The operator corresponds to an individual DOF and maps

the basic control signal to each DOF. Alexander (1984) proposed the Dy-

namic Similarity Hypothesis, stating that two systems of moving bodies are

described as dynamically similar if the motion of one can be made identical to

that of the other by 'multiplying all time intervals by another constant factor,

all linear dimensions by some constant factor, and all forces by a third con-

stant factor '. Despite the differences in body form between insects and other

animals (bipeds, quadrupeds etc), researchers have shown that they share sim-

ilarities in force production, stride frequency and mechanical energy produc-

tion (Full and Tu, 1990).

The choices of operators are vital to the final result and determines the

usability of the proposed controller. Inspired by observations of data obtained

from human motion (Liu et al., 2012), the following operators are proposed:

Phase Shifting An advantage of choosing the nonlinear system in Equa-

tion 5.1 is its symmetry when the phase plot is a limit cycle. Because of this

symmetry, this dynamics system can introduce a rotational matrix R(∆) =( cos(∆) −sin(∆)
sin(∆) cos(∆)

)
to project the motion of different joints onto the different

positions on a same phase plot:

f(R(∆)Q; ρ;ω;σ) = R(∆)f(Q; ρ;ω;σ) (5.2)
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∆ denotes the difference of two joint angles on the phase plot. For example,

the two tripod groups (L1R2L3 and R1L2R3) demonstrate a phase lag of π

at any given moment during a walking cycle. By computing the joint values

on one tripod and converting it to the values on another tripod with the Phase

Shifting operator, the computations for the nonlinear oscillator reduce by half.

Energy Scaling This operator can adjust the amplitude of individual chan-

nels separately.

f(gQ; ρ;ω;σ) = gf(Q; ρ/g;ω;σ) (5.3)

g denotes the ratio between the amplitude of the standard oscillator and the

transformed one. It is straightforward to shift the energy of the whole system

by changing the amplitude of the unit oscillator. However, in some cases,

it is necessary to adjust the amplitude of the selected DOFs only. In this

situation, DOFs can be separated into different groups and their amplitude

can be independently adjusted by applying the energy scaling operator on

individual groups of DOFs.

Offsetting The unit oscillator produces a signal with the average value of

zero. This operator can shift the average of the oscillator signal from zero to

a target value:

f(Q− q̄; ρ;ω;σ) = f(Q; ρ;ω;σ)− q̄ (5.4)

q̄ denotes the offsetting value between average of the standard oscillator and

the target one. For periodic motion (normal walking pattern), the oscillator is

under the mode of limit cycle and the offset value denotes the average value

of individual DOFs. For discrete motion (reaching for objects), the oscillator

is under the mode of attraction point and the offset value denotes the target

value of individual DOFs.

Although the CPG is known to behave in a self-sustained fashion, sensory

feedback is also crucial in altering motion patterns when adapting to the envi-

ronment or perturbations. The operators introduced here fulfil this adaptation.

The values of the parameters contained in these operators will be adjusted by
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(a) (b) (c)

Figure 5.4: Three types of operators introduced in this work: (a) Phase Shifting
(b) Energy Scaling (c) Offsetting. The original phase space (in blue) is transformed
into the new phase space (in red) by applying the respective operators. The original
phase space is generated by integrating Equation 5.1 and plotting the output (qo, q̇o).
The transformed phase space is generated by individually applying the operators to
the initial condition (qi, q̇i), integrating Equation 5.1 and plotting the transformed
output (qo, q̇o).

the CLUT (discussed in Chapter 6), according to the input from the high-level

commands from the TPE.

5.2.4 Sensors and Actuators

Sensors The physics model in this work has two types of sensor: positional

and force sensors.

Positional sensors are located at each joint to measure the rotational angles

and velocities. The angle values are computed with an analytical Inverse

Kinematics solver (Tolani et al., 2000). The angular velocity for each DOF

is computed as the difference of the rotational angles with respect to the time

step:

q̇ =
qn+1 − qn

∆t
(5.5)

The collected data are fed into the CPG controller (Equation 5.1) in order

to produce the angles and velocities (q, q̇) for the next simulation step.

Force sensors measure the external forces applied to the character at the

positions of end-effectors (foot) and the COM. The ground reaction force Fi

on the ith foot is measured as the opposite to the active force F′i from the

character (Newton’s Third Law). The variable i = 1 · · · 6 refers to the leg
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L1, L2, L3, R1, R2, R3 respectively. The active force F′i acting against the

ground by end–effectors is computed in a representation of joint torques by

Virtual Control Model (Pratt et al., 1997):

Fi = −F′i = −(JT )−1


τα

τβ

τγ

 (5.6)

τα,β,γ is computed using Equation 5.7. The Jacobian J can be derived from the

relationship between joint velocity and end effector velocity (Craig, 2004).

The measured forces Fi are passed as the external force F in Equation B.1 in

the Appendix B during the process of physics simulation. The readers could

refer to the Appendix B for a detailed design of the physics simulation.

Figure 5.5 shows the ground contact force applied on the left middle leg

L2 when the character is travelling on an uneven terrain. When the leg is

in the swing mode, the contact force is zero. When the leg is in the stance

mode, the contact force behaves as a bell-shaped function. This bell-shaped

function means that the contact force starts from zero when the foot contact

is initialised, increases to the peak value in the middle of the stance phase and

decreases to zero by the end of the stance phase. This fact is in accordance

with the strategy proposed in Chapter 7. The proposed strategy triggers the

swing mode of a leg if the force decreases to zero, which means that this leg

reaches the end of the stance phase.

Actuators Once the joint angle and angular velocity for the next frame are

obtained, each joint is propelled by a Proportional Derivative (PD) controller

(Yin et al., 2007):

τ = kp(qn+1 − qn) + kdq̇n (5.7)

where q, q̇ are the angle value and velocity, respectively, for the correspond-

ing DOF with their subscripts denoting the corresponding simulation step.

kp, kd are the gain and damping coefficients of this controller, respectively.
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Figure 5.5: Ground contact force applied on the left middle leg (L2) when
the character is travelling on an uneven terrain. The top figure is the force
applied in the sideways direction (−y), while the bottom figure is the force
applied in the vertical direction (+z). The contact forces behave as a bell-
shaped function in both directions when the leg is in stance. The contact
forces are zero when the leg is swinging.

5.3 CMA Optimisation Strategy

A major challenge in designing a controller is how to determine the optimal

control parameters. Manual tuning is only possible for systems with a limited

number of parameters (Yin et al., 2007). The parameters of the proposed CPG

controller include operator parameters (∆, g, q̄) and PD controller parameters

(kp, kd) for each DOF. Assuming the parameters on different sides of the body

to be symmetrical (g, kp, kd are the same while ∆, q̄ are opposite values), the

total number of parameters is 45.

There is not, to date, a well-established method of designing a CPG con-

troller, and different approaches including hand-coding, learning and opti-

misation algorithm, guessing from dynamical system theory (Buchli et al.,

2006; Ijspeert, 2008) have been explored. Optimisation has been demon-

strated as a useful technique in designing motion controllers for virtual char-

acters. Given the fact that objective functions are generally non-convex and

high-dimensional for the problem of character animation, designing an ap-

propriate objective function and choosing a robust optimisation strategy are

both crucial (Wang et al., 2009).

Here the Covariance Matrix Adaptation (CMA) is employed to set the pa-
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Figure 5.6: Comparison of four different optimisation algorithms in setting
the value of the CPG control parameters. The vertical axis is the value of the
weighted-sum fitness function (Equation 5.22). Standard methods, includ-
ing a downhill simplex method (Wright, 1996), a truncated Newton method
(Nash, 1984), a modified Powell method (Powell, 1964), are only able to find
a local minimum or fail to converge. In comparison, the CMA method used
in this thesis produces better results in successful convergence and smaller
fitness value of the objective function.

rameters in the CPG automatically. CMA is an advanced evolutionary al-

gorithm especially suited for non-linear non-convex optimisation problems,

and it has been applied successfully to design controllers in character ani-

mation (Wampler and Popović, 2009; Tan et al., 2011; Wang et al., 2012).

Standard gradient methods, such as Newton-based methods, will generally

fall into local minima and fail to reach global optimal solutions. Figure 5.6

presents a comparison of four different optimisation algorithms in minimis-

ing the same weighted-sum fitness function (Equation 5.22). The demon-

strated methods include a downhill simplex method (Wright, 1996), a trun-

cated Newton method (Nash, 1984), a modified Powell method (Powell, 1964)

and the CMA method. The result shows that the CMA method outperforms

other options in successful convergence and smaller fitness value of the objec-

tive function. A brief introduction on the CMA is now given in the following

section and readers can refer to Hansen and Kern (2004) for a complete tuto-

rial on the CMA.
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5.3.1 Introduction to the CMA

The CMA (Hansen, 2006) handles general constraints of space-time optimi-

sation on non-differential variables with high dimensions. The optimisation

process is initialised with the mean vector m0 and the standard deviation vec-

tor σCMA. New search points are sampled with a normal distribution:

x ∼m + σNi(0,C), for i = 1, ..., λ (5.8)

The mean vector m ∈ Rn represents the favourite solution, and σ ∈ R+

controls the step length. The covariance matrix C ∈ Rn×n determines the

shape of the distribution ellipsoid. This covariance matrix is updated by the

principle that this adaptation increases the likelihood of successful steps to

appear again.

λCMA offspring are sampled from this distribution and are evaluated indi-

vidually by a fitness function f . By sorting the entire population in order of

the lowest associated values of f , the lowest µ samples, defined as elites, are

selected:

f(x1) 6 · · · 6 f(xµ) 6 · · · 6 f(xλCMA
) (5.9)

Therefore, the new mean for the next generation is updated from a weighted

sum of these µ elites. The routine for defining weights ωi is adopted from

Wampler and Popović (2009):

mi+1 =

µ∑
i=1

ωixi

ωi =
ln(µ+ 1)− ln(i)

(µ+ 1)−
∑µ

k=1 ln(k)
(5.10)

The covariance matrix is updated as a weighted sum of the previous Co-

variance Matrix, Evolution Path and stepsize control:

Cg+1 = (1− c1 − cµ)Cg + c1C1 + cµCµ (5.11)

Cg refers to the covariance matrix for gth generation. C1,Cµ are the Rank-

One and Rank-µ update respectively. This update strategy is able to reuse
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prior information and takes control of step size for the next generation.

The Rank-One update C1 uses the evolution path p and reduces the num-

ber of function evaluations to adapt to a straight ridge from O(n2) to O(n)

(Hansen et al., 2003).

pg+1
c = (1− Cc)pgc +

√
Cc(2− Cc)µ

mg+1 −mg

σg
(5.12)

C1 = pg+1
c (pg+1

c )T (5.13)

The constant Cc is chosen so that pg+1
c fits the normal distribution Ni(0,C).

The Rank-µ update Cµ extends the update rule for large population sizes

λ using µ > 1 vectors to update C at each generation. The matrix

Cµ =

µ∑
i=1

ωiy
g+1
i:λCMA

(yg+1
i:λCMA

)T (5.14)

yg+1
i:λCMA

=
xgi:λ −mg

σg
(5.15)

computes a weighted mean of the outer products of the best µ steps and in-

creases the possible learning rate in large populations. It can reduce the num-

ber of necessary generations roughly from O(n2) to O(n) (Hansen et al.,

2003).

New individuals for the next generation are re-sampled with updated mean

and covariance matrix. By repeating this process, individuals are expected to

converge to the optimal value. There are two difficulties in employing such an

optimisation strategy, one is to set the initial value, and the other is to design

the fitness functions.

5.3.2 Setting Up Initial Values

The initial guess of oscillator parameters (∆, g, q̄) is taken from animation cy-

cles created by animators which track the motion of real ants. For example,

because the leg groups (L1R2L3 and R1L2R3) alternate in a temporal se-

quence, the phase shifting operator ∆ is set to zero for the left tripod L1R2L3

and π for the right tripod R1L2R3. The values of PD controller parameters
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(kp, kd) are initialised by following design guidelines on reaction force F on

individual foot:

Fiz = mg/3 (5.16)

F1y = F3y = −F5y

2
(5.17)

F4y = F6y = −F2y

2
(5.18)

The first subscript i = (1 · · · 6) refers to the leg (L1, L2, L3, R1, R2, R3)

respectively. The second subscript (x, y, z) denotes the force direction. Here

the same proportion of gravity is spread across the three standing legs based

on experimental observations (Kram et al., 1997). The horizontal forces are

designed to minimise the movement on the frontal plane.

5.3.3 Objective Function Design

The optimal solution is defined as the one which simultaneously minimises

the following objectives:

Metabolic Consumption To quantify the energy efficiency of a specific

gait, the energy cost corresponding to one unit of character mass travelling

one unit of distance is calculated as:

Em =
1

ms

∑
i

∑
j

||τijδθij||2 (5.19)

where m is the mass of the insect, s is the travelling distance, τij, δθij are

respectively the torque and angle differences for jth DOF on ith frame.

Torque Limit Soft constraints on joint torque are set up to minimise the

implausible actuation.

Et =
∑
i

∑
j

||
τij − τ ∗j
τ ∗j

||2, if ||τij|| > τ ∗j (5.20)
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where τ ∗j is the torque threshold for jth DOF on a single leg. The same

threshold is applied for DOFs at the same location across different legs. Here

the term || τij−τ
∗
j

τ∗j
|| is used instead of ||τij − τ ∗j ||, in order to normalise the

magnitude differences of different DOFs. The same principle applies when

computing the position and direction deviations in the following paragraph.

Position and Direction Deviations Soft constraints are also set up to re-

duce the deviations in the sagittal and coronal planes. Large deviations in

these two planes are assumed to not contribute to the overall movement of

the insects and to have increased the energy cost. Due to the periodic torque

applied by supporting legs, the insect’s main body rotates at a certain fre-

quency. A penalty is introduced to maintain the head rotation to the heading

direction. Large head deviations have the potential to interfere with the vi-

sual senses that are necessary for an insect to move through a challenging

environment. This objective function is defined as:

Ed =
∑
i

(||yi − y
∗

y∗
||2 + ||zi − z

∗

z∗
||2 + ||φi − φ

∗
i

φ∗i
||2), (5.21)

where yi, zi are current y/z coordinates of the COM and y∗, z∗ are the y/z co-

ordinates of the COM when insects remain in a static pose. φi is the current

angle between the heading direction and +x axis, φ∗i is the desired head-

ing direction for ith frame. Each component is normalised by the thresholds

y∗, z∗, φ∗i respectively.

However, the aforementioned objective functions may conflict with each

other and there is no unique solution which minimises all of the objectives

simultaneously. The weighted sum method transforms the multi-objective

optimisation problem into a single-objective optimisation problem:

Etotal = ωmEm + ωtEt + ωdEd (5.22)

The formulation of the weighted sum introduces an additional problem: how

to properly set the weight values? The magnitude of each objective function

differentiates from each other, thus making it difficult for users to choose

the weight values. Therefore, the normalisation of the objective functions is

82



critical in removing the effects of different magnitudes.

Some of the normalisation methods include (Grodzevich and Romanko,

2006):

• normalise by the magnitude of the objective function at the initial point

• normalise by the minimum of the objective functions

• normalise by the differences of optimal function values at the Nadir and

Utopia points that give the length of the intervals where the optimal

objective functions vary within the Pareto optimal set

The first two methods, either by initial or optimal points, can often lead to dis-

torted scaling since each of them only represents a single point in the whole

optimisation landscape. This work chooses the third method as the normalisa-

tion approach of the objective function. The justification and implementation

are presented in the following paragraphs.

Pareto Optimality A multi-objective optimisation problem can be defined

in a general form as follows:

min {f1(x), f2(x), · · · , fk(x)} (5.23)

s.t. x ∈ Ω

Z = {z ∈ Rk : z = (f1(x), f2(x), · · · , fk(x))}

where Ω is the feasible space of x. A solution x∗ is Pareto optimal if there

exists no another x ∈ Ω such that fi(x) ≤ fi(x
∗) ∀i = 1 · · · k and fj(x) <

fj(x
∗) for at least one index j (Grodzevich and Romanko, 2006). In other

words, there exists no other feasible solution that improves the value of at

least one objective function without deteriorating any other objectives. The

set of Pareto optimal solutions forms a Pareto optimal set.

Utopia Point The Utopia point zU defines the lower bound of the Pareto

optimal set by:

zUi = fi(x
[i]) where zUi = argminx{fi(x) : x ∈ Ω} (5.24)
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This is to find the solution x[i] with the minimum fitness value for each objec-

tive function in an independent fashion. However, the Utopia point is gener-

ally not feasible because the objective functions may conflict with each other

and the solutions x[i] are different for each objective. This conflict is evi-

denced in Table 5.1. The three objective functions Em, Et, Ed require three

different solutions x to achieve the lowest value respectively.

Utopia Point x[i] = (∆, q̄, g, kp, kd)j, j = 1 · · · 9
Metabolic Consumption Em (-0.902, -0.790, 1.301, 0.812, -0.935, · · · )
Torque Limit Et (-0.852, -0.722, 1.165, 0.538, -0.653, · · · )
Deviation Error Ed (-0.848, -0.691, 1.190, 0.421, -0.967, · · · )
Unit: (∆, q̄− rad); (kp −Nm/rad); (kd −Nms/rad), (g is a ratio with no units);)

Table 5.1: Utopia points for different objective functions. Utopia points are
different for different objective functions, which means there exists conflict
between these objective functions and the utopia points cannot be satisfied
simultaneously.

Nadir Point The Nadir point zN defines the upper bound of the Pareto op-

timal set by:

zNi = max
1≤j≤k

(fi(x
[j])), ∀i = 1, · · · k (5.25)

This is to select the solution with the maximum fitness value for each ob-

jective function from the Pareto optimal set. In practice, the Nadir objective

vector can only be approximated as, typically, the whole Pareto optimal set is

unknown (Grodzevich and Romanko, 2006; Kim and De Weck, 2006). The

Nadir point can be approximated by iterating all the optimal solutions x[i] for

each objective function (Marler and Arora, 2004; Kim and De Weck, 2006).

Table 5.2 lists the Nadir points for the three objective functions in this work.

The result shows that the the objective functions Et, Ed share the same solu-

tion of the Nadir point and differentiate from Em.

Table 5.3 lists the fitness values of the objective functions at both Nadir

and Utopia points. To bring all the objective functions to a consistent magni-

tude, each of them will be bounded by

0 ≤ fi − zUi
zNi − zUi

≤ 1 (5.26)
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Nadir Point x[i] = (∆, q̄, g, kp, kd)j, j = 1 · · · 9
Metabolic Consumption Em (-0.848, -0.691, 1.190, 0.421, -0.967, · · · )
Torque Limit Et (-0.902, -0.790, 1.301, 0.812, -0.935, · · · )
Deviation Error Ed (-0.902, -0.790, 1.301, 0.812, -0.935, · · · )
Unit: (∆, q̄− rad); (kp −Nm/rad); (kd −Nms/rad), (g is a ratio with no units);)

Table 5.2: Nadir points for different objective functions. The Nadir points
are approximated by iterating all the optimal solutions x[i] for each objective
function (Grodzevich and Romanko, 2006; Kim and De Weck, 2006).

Figure 5.7 presents the comparison between the non-normalised and nor-

malised fitness value of the objective functions. Without the normalisation,

three objective functions demonstrate significant differences in the magni-

tude (Figure 5.7a). After normalising each objective function, the fitness

value falls between the range of [0, 1] except for a few outliers at the very

beginning of the optimisation (Figure 5.7b). The fitness values at these few

solutions are greater than one after normalisation. This is due to the fact that

the Nadir points are the approximate, rather than the accurate, upper bounds

of the Pareto optimal set.

Nadir Point Utopia Point
Metabolic Consumption Em 3040.093 81.562
Torque Limit Et 4524.422 1.673
Deviation Error Ed 392.434 3.454

Unit: (Em - J/(kg · s)); (Et, Ed are ratios with no units)

Table 5.3: Fitness value of the objective function at both Nadir and Utopia
points.

With the consistent magnitude for all objective functions Em, Et, Ed , the

weight values ωm, ωt, ωd for each objective function solely reflect their im-

portance in determining the final result of the optimisation problem. In the

method of the weighted sum optimisation, it is a common strategy to choose

the sum of the weights to be one:

ωm + ωt + ωd = 1 (5.27)

that degenerates the dimension of the weight space to two: ωm, ωt are chosen

to be independent variables while ωd is computed as ωd = 1− (ωm + ωt). To
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(a) Non-normalised fitness value of the objective functions.

(b) Normalised fitness value of the objective functions.

Figure 5.7: Comparison between non-normalised and normalised fitness
value of the objective functions. After normalising each objective function
with Nadir and Utopia points, the fitness values of three functions fall within
the range of [0, 1]. There are still a few solutions whose fitness values are
greater than one. This is caused by the fact that the Nadir points used here
are not the accurate maximum values for the Pareto set.
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choose the appropriate weight values, ωm, ωt are linearly sampled between

the range of [0, 1] while satisfying the constraint that ωm + ωt ≤ 1 (Fig-

ure 5.8).

Figure 5.8: The best optimal value of the weighted sum objective function,
with respect to different weight choices. This map is drawn by linearly sam-
pling the weights ωm, ωt and calculating the optimal value at each sample.
The weight values ωm, ωt, ωd are selected at the position of the best optimal
value of the objective function.

Figure 5.8 shows that the best case of the objective function occurs at

the position: ωm = 0.5, ωt = 0.2, ωd = 0.3. ωm is set to be larger than

the other two because of its significance in determining the outcome of this

optimisation problem. The main priority of the locomotion controller is for

the insect to travel as far as possible at the price of least energy, which is

equivalent to the goal of maximising s and minimising Em (Equation 5.19).

For the other two components Et, Ed, the weights are set to improve visual

performance by reducing the unnecessary deviations in the coronal plane.
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5.4 Results & Discussions

5.4.1 Implementation

The articulated character (ant) is comprised of 13 links (one for main body

and two for each leg) and 18 internal DOFs. There is no check for collisions

between links during simulation. A list of parameters of the ant model is at-

tached in the Appendix D. The simulation loop is solved by ODE45 with an

integration step of 0.001s. It is found that the time step is crucial for the pro-

posed implementation. Larger time step will result in failure of the oscillator

convergence. Concerning the computational performance, one walking cycle

takes about 500 simulation steps (or 0.5s).

5.4.2 Simulated Results

Normal Gait The control parameters of the CPG are initialised with the

basic rules in Section 5.3.2. However, the rules are designed to provide an

approximate value, instead of an accurate one. For example, the gravitational

force is equally distributed across three legs in the same tripod group. How-

ever, this force distribution should be constantly changing in both real insects

(Full and Tu, 1991) and simulated characters (Figure 5.5). Therefore, the ini-

tialised parameters may not produce the locomotion in a stable and desired

way, but could serve as the initial values for the CMA optimisation. Figure 5.9

plots the comparison of the produced motion between optimised control pa-

rameters and unoptimised initial control parameters. With the initial values,

the character is able to move forward for a short interval and then move back-

ward in an unpredictable fashion until its COM touches ground, terminating

the simulation. With the optimised control parameters, the character performs

the stable gait of forward walking.

The optimisation strategy, CMA, is introduced to find the optimal control

solution. Important parameters used in this implementation include 100 indi-

viduals per generation, 30 are selected for re-sampling in the next generation.

It is found that increasing the number of individuals is able to avoid the lo-

cal minima and, after testing, a generation of 100 individuals is chosen. The
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(a) Travelling Distance in x axis (b) Sketch of the failure case

Figure 5.9: The comparison of the produced motion between optimised con-
trol parameters and unoptimised initial control parameters. (a) Travelling
distance in x axis. +x is the desired locomotion direction. (b) Sketch of the
comparison between the stable locomotion and the failure one. With opti-
mised CPG parameters, the character is able to travel forward at a stable
velocity (solid line in blue). In comparison, the character moves backward,
as opposite to the desired direction (Figure (b)), with unoptimised initialised
parameters (solid line in red). At the end of the simulation in failure, the
COM touches the ground and the simulation terminates.

fitness function (Equation 5.22) is evaluated every time the insects take 100

steps. The optimisation is set to terminate after 1000 generations, which takes

approximately 30 hours on a six-core PC. Parallel computing is implemented

for each individual standing leg. In practice, the optimisation takes around

200 generations to converge (Figure 5.10).

Figure 5.10: The result of optimising the parameters in CPG controller. The
vertical axis represents the best fitness function value for each generation.

Stability The stability of a physics controller refers to its capability to re-

cover from external perturbations. Figure 5.11 plots the angle value of the

coxa-femur joint in the left middle leg in the case of applying external forces.
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The character demonstrates a perturbed gait after applying the force, but even-

tually converges back to its original stable gait. This recovery is accomplished

with the inherent property of convergence of the Hopf Bifurcation in the mode

of limit cycle. The CPG parameters remain unchanged.

Figure 5.11: The angle value of coxa-femur joint in the left middle leg when
applying external forces. It shows that the character is capable of main-
taining its stable gait after applying the perturbations, which confirms the
stability of the CPG controller. This feature of stability is achieved with the
convergence property of the Hopf Bifurcation and requires no further strate-
gic adjustment from the controller.

This chapter is concerned with the stability of the CPG controller only,

with no additional assistance from other components of the framework, such

as the TPE or the CLUT. When the character encounters the perturbations,

additional strategies can be introduced. For example, the character increases

the area of the supporting triangle in the case of a continuous external force

(Figure 4.13). To effectively and objectively assess the stability of the CPG

controller, these auxiliary strategies are not employed here.

Given a fixed time interval for which the force is applied, the magnitude

of a force which a character can resist is determined by several factors. More

specifically, a character is said to successfully resist a force if the character is

able to maintain the specified locomotion speed after dismissing the external

force.

The scientific research method, control variable (Salkind, 2010), is used
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here to independently assess the relationship between the force magnitude

and individual determinants. When studying the effects of a specific determi-

nant, other determinants remain constant. The determinants include:

• The force direction. The force direction is measured as the angle of

counter-clockwise rotation about +z axis, starting from zero (+x axis)

and with a range of [0, 360◦] (Figure 5.12).

• The initial timing. The timing when the external force is initialised is

within [0, T], where T is the walking period. The force is applied for

half of the walking period.

• The locomotion speed. The increase in speed leads to an increase in

stride length and the distance between two supporting triangles. When

transitioning between two supporting triangles during high speed move-

ment, the character will be supported by no legs (flying in the air), de-

creasing the locomotion stability.

y

x

F

ᵐ

Figure 5.12: Sketch of the force direction θ

Table 5.4 gives the best and worst cases of the maximum force that a char-

acter is able to resist from different force directions. The forces are applied

between the same time range [T
4
, 3T

4
] and the character is walking at the same

speed 2cm/s. This result shows that the character is able to resist larger per-

turbations from the opposite direction of the locomotion velocity, than from

the lateral direction of the body. This is because the force from the lateral

direction is more likely to push the COM outside the current supporting tri-

angle.

Table 5.5 gives the best and worst cases of the maximum force that a char-

acter is able to resist at different timings. The forces are applied from the

same direction and the character is walking at the same speed 2cm/s. The
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Force Direction Initial Timing Speed Maximum Force
best case 180 T/4 2 9.38 x 10−3

worst case 90 T/4 2 3.56 x 10−3

Unit: Direction - ◦; Initial Timing - second; Speed - cm/s; Maximum Force - N

Table 5.4: The maximum force that a character is able to resist from different
directions. The data of best and worst cases are obtained by linearly sampling
the force direction; for each force direction, the force magnitude starts from
zero and increases by 10−5N until the simulation runs into failure.

result shows that the character is able to resist larger perturbations when its

COM is in the middle of a supporting triangle, than during the transition be-

tween two supporting triangles. This is because the COM is prevented from

entering the next triangle when the force is introduced during the transition

between two triangles.

Force Direction Initial Timing Speed Maximum Force
best case 180 T/4, 3T/4 2 6.18 x 10−3

worst case 180 0, T/2, T 2 2.05 x 10−3

Unit: Direction - ◦; Initial Timing - second; Speed - cm/s; Maximum Force - N

Table 5.5: The maximum force that a character is able to resist at different
timings. The data of the best and worst cases are obtained by choosing dif-
ferent initial timings from a uniform distribution of [0, T]; for each case of
initial timings, the force magnitude starts from zero and increases by 10−5N
until the simulation runs into failure.

Table 5.6 gives the best and worst cases of the maximum force that a char-

acter is able to resist at different speeds. The forces are applied from the

same direction and within the same time range [T
4
, 3T

4
]. The result is in agree-

ment with the daily experiences. Characters are capable of absorbing larger

perturbations during slow locomotion, compared with fast locomotion. The

best case occurs when the character is at the static position (its speed is zero).

In this case, the Hopf Bifurcation switches to the mode of attraction point,

instead of the limit cycle.

Uneven Terrain The proposed method is sufficiently robust to adapt to un-

even terrain including varying gradients. The force term F in Equation B1 (in
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Force Direction Initial Timing Speed Maximum Force
best case 90 T/4 0 12.46 x 10−3

worst case 90 T/4 4.0 2.55 x 10−3

Unit: Direction - ◦; Initial Timing - second; Speed - cm/s; Maximum Force - N

Table 5.6: The maximum force that a character is able to resist at different
speeds. The data of the best and worst cases are obtained by linearly sam-
pling the speed; for each speed, the force magnitude starts from zero and
increases by 10−5N until the simulation runs into failure.

the Appendix B) is replaced as follows:

F =
3∑
i=1

Fi −


mgsin(ξ)

0

mgcos(ξ)

 (5.28)

where ξ is the gradient angle in radians. By splitting gravitational force into

directions parallel and vertical to the gradient plane, ants demonstrate differ-

ent speeds when walking upslope and downslope. It is found, however, that

the adaptation generated by this way appears rigid due to the lack of actuation

adaptation of control mechanism.

Frequent Motion Transition The feature of collective social behaviour ex-

hibited by ants results in a high possibility of an ant encountering other indi-

viduals, which requires a sudden change in gait. Such a frequent transition

between walking and stopping can be achieved by toggling the bifurcation pa-

rameter σ in the proposed CPG controller from 1 to -1. This provides flexible

high level control by key-framing a single parameter, thus fitting into tradi-

tional animation pipeline. The following example of ant foraging behaviour

demonstrates the advantage of this distinctive feature.

Forage Behaviour Modelling A specific experiment to model ant foraging

behaviour is set up to further validate that the introduction of Hopf bifurcation

enables characters to perform frequent motion transitions. In nature, foraging

ants lay chemical trails, known as the pheromone, between their nest and

food sources, which other ants follow and repeat laying more pheromone to
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(a) Viewed from above.

(b) Close-up view.

Figure 5.13: Animation screenshot of ant foraging along a predefined chem-
ical trail. Viewed from above, the nest is located at the left end while the food
is at the right end.

strengthen the trail. In so doing, ants converge to a collective route connecting

the nest and food.

To model this natural phenomenon, the scene is set up as a narrow strip

(x = [0, 1], y = [−0.01, 0.01], unit: m) in the x/y plane. The ant nest is at

[0, 0] while the food source is placed at [1, 0]. The position (p = [x, y]) and

orientation (φ) of a character are initialised as:

p =

[
xmin + (xmax − xmin) ∗ rand()

ymin + (ymax − ymin) ∗ rand()

]
(5.29)

φ = 2π ∗ rand() (5.30)

Goal =

nest, if rand() ≥ 0.5

food, if rand() < 0.5
(5.31)

where the value rand() indicates the pseudo-random values drawn from uni-

form distributions between 0 and 1. Note that only horizontal movements are

considered here. Initial velocities of ants are all set to 0. The Goal prop-
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erty ensures that ants move towards either their nest or the food source, and

loosely constrains the group of ants to move within this narrow strip.

Each ant is able to detect other ants within a sensory radius of r = 0.02m

and the interaction between two ants is determined by the following rules:

• When two ants have opposite Goal directions, they stop, communicate

and then resume moving. This can be simulated by switching the bifur-

cation parameter σ : 1→ −1→ 1.

• When two ants have the same Goal directions, they deviate from each

other to avoid further collision.

Figure 5.14 plots the coxa-femur joint angle when the character status of

the character changes between motion and stop. The transition is controlled

purely by manipulating the bifurcation parameter σ. With this particular fea-

ture, the sudden changes in motion status can be easily authored by animators.

Figure 5.14: The coxa-femur joint angle of the left middle leg when the char-
acter switches between motion and stop. When the bifurcation parameter σ
switches to -1, the oscillator will converge to an attraction point and the char-
acter will stop. When σ is switched back to 1, the oscillator will converge to
the limit cycle and the character will resume walking.

Discussions The simulation results have demonstrated that the proposed

CPG controller is able to generate a stable and natural gait. This work differs

95



from previous work in a number of aspects:

• Compared with example-based methods (Gibson et al., 2005; Seol et al.,

2013), the proposed method does not require setting up a motion cap-

ture system and post-processing of captured sequences. Furthermore,

contrary to example-based methods, the proposed controller can control

individual joints with accuracy and is responsive to external perturba-

tions and changing environments.

• Compared with simulation-based (Abdul Karim et al., 2012a,b) or hy-

brid methods (Cenydd and Teahan, 2013; Fang et al., 2013), the pro-

posed controller is biologically meaningful and is able to flexibly change

motion states (onset, termination, directions and speed) of a character,

which is more specifically tailored for small scale insects.

• Compared with biologically inspired methods (McKenna and Zeltzer,

1990), the convergence characteristics of the Hopf bifurcation ensures

that the motion is able to recover from unexpected situations while

the method by McKenna and Zeltzer (1990) uses only oscillatory sig-

nals, which lacks stability. Besides, abstract actuator modelling (Virtual

Model Control) and automatic parameter tuning allow the same frame-

work to be applied to other characters with similar locomotive pattern.

5.5 Summary

This chapter presents the design of the CPG-based controller. This controller

is composed of two parts: the oscillator and operators. The oscillators are

modelled as instances of ODEs, with joint angles and angular velocity as

inputs. Each oscillator controls an individual joint DOF. The operators trans-

form the properties of a standard oscillator and achieve the coordination be-

tween different DOFs and legs. The parameters of the CPG controller are

optimised with the Covariance Matrix Adaptation, and the optimal result will

serve as the initial guess when building the CLUT in Chapter 6.

Limit cycle proves to be an effective solution to improve locomotion sta-

bility (Laszlo et al., 1996). This work chooses a nonlinear oscillator with the

96



property of the Hopf bifurcation, which is able to switch between limit cycle

and attraction point. This design not only ensures the locomotion stability

but also allows intuitive switching between periodic and discrete motions.

However, the CPG controller alone is only capable of producing the fixed lo-

comotion pattern of walking forward with a double-tripod gait. In Chapter 6,

the controller look-up table adjusts the parameters of the CPG controller, ac-

cording to the information embedded in the supporting triangles. By doing

this, the character is capable of performing more challenging tasks, such as

following curve paths, which cannot be achieved with the CPG controller

alone.
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Chapter 6

Controller Look-up Table

6.1 Introduction

Insect neural control involves the brain, which determines the onset, direction

and speed of walking and the ganglia, which control the local coordination

between leg joints (Delcomyn, 1999). The designed controller in this the-

sis is to mimic this hierarchy: the user input serves as the brain and is in

charge of the overall behaviour of the character, while the Central Pattern

Generator (CPG) is responsible for producing the coherent joint movement.

Figure 6.1 presents an overview of this framework with the Controller Look-

Up Table (CLUT) highlighted. CLUT serves as a black box and maps the

character behaviours, represented by profiles of supporting triangles, to the

control parameters in the CPG: ξ = [∆1, g1, q̄1 · · ·∆k, gk, q̄k] (where k is the

number of joints). Biological experiments confirm that insects are unlikely

to adjust their control on the fly given their limited computing power (Kukil-

laya and Holmes, 2008). The design of the CLUT separates the high level

task commands specified by animators from the low level control parameters,

and allows animators to efficiently specify insect locomotion behaviours. The

moderate size of the CLUT is also convenient for record and inquiry.

The idea of the CLUT is similar to the biped control strategy outlined

by Coros et al. (2008), in which researchers aim to dynamically navigate

physically-driven characters with stepping constraints. First, control solu-
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Figure 6.1: Flowchart of this framework with the CLUT highlighted. CLUT
converts the high-level commands, represented as a series of Supporting Tri-
angles, into low-level control parameters of the CPG. The whole process
includes offline optimisation to construct the table and online query.

tions are computed for randomly generated example problems with an offline

optimisation. The example problem is to find a control sequence that re-

sults in the character stepping precisely at the desired target foot locations

(Figure 6.2). Second, the example motions and their control patterns are

analysed to build a low-dimensional step-to-step model. The step-to-step

dynamics model (SSDM) is built using k-Nearest-Neighbors (kNN) on both

low-dimensional state space (manually selected) and action space (reduced by

Principle Component Analysis (PCA)). During online simulation, the planner

finds an optimal solution to solve the new instances of the task at interactive

rates. Different from the work by Coros et al. (2008), the work presented

in this thesis focuses on insect animation with emphasis on the intuitive and

efficient control for animators. Biped characters are different from insects in

terms of physiological structure and locomotion patterns, which makes the

direct transfer of existing work on simulation of biped locomotion to insects

over complicated and infeasible.
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Figure 6.2: An example problem in Coros et al. (2008). This work aims to
dynamically navigate physically-driven characters with stepping constraints.

6.2 Precomputing the CLUT

The CLUT is precomputed by solving the example problems under different

settings with offline optimisation. The input problem is defined as: given the

fixed amount of time (half period), which control parameters can successfully

drive the insect COM to reach the target location? Or in other words, which

control parameters are able to maintain the average speed ν = Ptarget
T/2

in a

fixed time step?

The input vector includes:

• χ: which leg group (L1R2L3 or R1L2R3) forms the current supporting

triangle.

• ν = (νx, νy, νz): the average velocity for the current stride.

There are two separate tables because the stance legs are formulated by dif-

ferent leg groups (either L1R2L3 or R1L2R3). ν is represented in the local

coordinates of insect body frame.

Firstly, velocity ranges for three directions are defined and subdivided into

fixed steps. Table 6.1 shows the settings used in the current application. It

should be noted that the x/y/z coordinates are in the character’s local frame

with +x as the posterior-anterior direction. The step width (SW ) is set to

0.001m/s for all three directions while the velocity ranges are differentiated,

with the consideration that the body movement along the vertical direction

is smaller compared with movements on the horizontal plane. The varied

settings for three dimensions saves computing time of offline optimisation

(discussed in later sections), without sacrificing much utility. Section 6.4
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presents discussions on the experiments of different values of SW and their

effects on the overall performance and accuracy of the controller. For the

settings shown in Table 6.1, 40 × 40 × 20 = 32000 different velocities are

obtained: ν = [νx, νy, νz]. The storage size for each table is 6.3 megabytes on

the disk. For each case, the optimisation is performed to ensure that the target

velocity is successfully satisfied. Table 6.2 shows a snippet of the CLUT.

max min steps step width (SW )
νx 0.02 -0.02 40 0.001
νy 0.02 -0.02 40 0.001
νz 0.01 -0.01 20 0.001
Unit: (max - m/s); (min - m/s); (SW - m/s)

Table 6.1: Settings for precomputing the CLUT. Unit of speed and step
width: m/s. The planar and vertical movements are differentiated in order
to balance between performance and accuracy.

Unit: (vx, vy, vz - m/s); (∆, q̄ - radian); (g - ratio with no unit)

Table 6.2: Snippet of the CLUT. The CLUT gathers the optimal control
parameters ξ = [∆1, q̄1, g1, · · ·∆k, q̄k, gk] (k = 9 here) for individual cases
by linearly sampling the velocity in three directions.

6.2.1 Objective Function Design

The design of objective functions is critical to the final performance of the

controller. It is worth pointing out that both objective functions and optimi-

sation algorithms applied to construct the CLUT are different from those to
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build the CPG controller in Chapter 5. Objective functions to build the stan-

dard CPG are based on fundamental principles of locomotion, for example

minimum metabolic energy consumption, while this chapter focuses on de-

signing a high-level interface for animators, and thus the criteria are designed

to evaluate how well the simulated result matches the desired trajectory. In

fact, the parameters optimised by the objective functions in Chapter 5 serve

as the initial values in precomputing the CLUT in this chapter.

The top priority is to ensure that the direction and magnitude of average

velocity in this stride meet the target. In other words, the aim is to minimise

the differences between the target position and the simulated result:

Ep =
∑

(
PCOM
target −PCOM

simulation

∆P
)2 (6.1)

where PCOM
target is the target position of the COM of the virtual character while

PCOM
simulation is the simulated position of the COM of the virtual character. ∆P

is the distance between the Barycentric centres of two consecutive triangles.

PCOM
target is computed as:

PCOM
target = PCOM

initial + ∆P (6.2)

PCOM
initial is the position of the COM of the virtual character when the current

triangle is initialised.

Additionally, the movements on the lateral and vertical directions (along y

and z axis) are constrained in order to improve the energy efficiency:

Ed =
∑
i

(||yi − y
∗

y∗
||2 + ||zi − z

∗

z∗
||2) (6.3)

where yi, zi are current y/z coordinates of the COM in the ith frame and y∗, z∗

are the y/z coordinates of the COM when insects stay at static pose.

Finally, the velocity direction should always be consistent with the vector

pointing towards the target position. For example, if the target position is
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ahead of the initial position, only forward velocity would be expected.

Ev =
∑
i

|| νi
νtarget

||2, if νi · νtarget < 0 (6.4)

where νi is the simulated velocity in the ith frame.

The final value of the objective functions is a weighted sum of all these

three components:

Esum = ωpEp + ωdEd + ωvEv (6.5)

Similar to the problem of optimising the CPG controller in Section 5.3.3, the

weight values are determined by first normalising each objective function,

and then selecting the set of weight values which produces the best fitness

value of the weighted-sum objective function (Equation 6.5).

First, the Utopia points are computed for each objective functionEp, Ed, Ev
by iterating all the sample points. The Utopia point for each objective func-

tion is the solution which produces the lowest fitness value of the correspond-

ing objective function. The Nadir point for each objective function is approx-

imated by selecting the solution with the largest fitness value among all the

Utopia points. The fitness values of the objective functions at both Utopia and

Nadir points are presented in Table 6.3. It is worth noting that values of all

Utopia points are close to zero, especially for the term Ev. The zero-value of

the objective function Ev means that this requirement is perfectly satisfied. In

other words, the velocity direction always points towards the target position.

Nadir Point Utopia Point
Ep 1.583 0.000095
Ed 5.576 0.00010
Ev 27.720 0.00000
Ep, Ed, Ev are ratios with no units

Table 6.3: Fitness values of the objective function at both Nadir and Utopia
points.

Next, the objective functions Ep, Ed, Ev are normalised with the fitness

values of their Nadir and Utopia points respectively, before computing the
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final fitness value Esum in Equation 6.5. Figure 6.3 presents the compari-

son between the non-normalised and normalised fitness value of the objective

functions. After the normalisation, the fitness value is bound between [0,

1] for most of the time. The reason for the cases where values are greater

than one is that the Nadir points can only be approximated (Grodzevich and

Romanko, 2006; Kim and De Weck, 2006). Figure 6.3 shows that the nor-

malised and non-normalised function shapes of Ep, Ed, Ev are identical. This

is because the fitness values at Utopia points zUi are close to zero, and Equa-

tion 5.26 is transformed as:

fi − zUi
zNi − zUi

⇒ fi
zNi

(6.6)

The above equation shows that the fitness value of each objective function is

scaled by the value of the Nadir point only. In this case, the functions shapes

of normalised and non-normalised look identical to each other.

Finally, the weights ωp, ωd, ωv are determined with the similar approach

in Chapter 5. Assume that ωp + ωd + ωv = 1. By linearly sampling the

range between [0, 1] for ωp, ωd, it is possible to acquire a list of weight

choices (ωp, ωd, ωv). After iterating all the choices in the list, the lowest fit-

ness function value of Equation 6.5 could be determined, thus finding the best

choice for ωp, ωd, ωv. Figure 6.4 plots the result of the fitness values, with re-

spect to different combinations of (ωp, ωd). The value of ωv is determined by

1−ωp−ωd. Eventually, the weights are set as: ωp = 0.6, ωd = 0.2, ωv = 0.2.

6.3 Online Lookup

When running the online simulation, the CLUT is loaded into the memory

and ready to be inquired. In theory, the program could look up the desired

CPG parameters in the table at any time during the simulation. The higher the

look-up frequency is, the better the simulation accuracy will be. Section 6.4

discusses the performance and effects of different look-up frequencies. In

most cases, the control parameters for the CPG are updated once a new Sup-

porting Triangle is initialised.
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(a) Non-normalised Ep (b) Normalised Ep

(c) Non-normalised Ed (d) Normalised Ed

(e) Non-normalised Ev (f) Normalised Ev

Figure 6.3: Comparison between non-normalised and normalised fitness
value of the objective functions. The result shows that the function shapes
of non-normalised and normalised cases are almost identical. The reason is
that the fitness values at the Utopia points are close to zero, which makes the
effects of normalisation similar to scaling by a scalar (the fitness value at
Nadir points). This is proved in Equation 6.6.
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Figure 6.4: The best optimal value of the weighted sum objective function
(Equation 6.5), with respect to different weight choices. This map is drawn
by linearly sampling the weights ωp, ωd and calculating the optimal value at
each sample. The weight values ωp, ωd, ωv are selected at the position of the
best optimal value of the objective function.

During the precomputing process, the initial velocity is assumed to be zero,

which is not true for most cases during simulation. The effect of the initial

velocity ν is eliminated by deducting its corresponding contribution to the

overall trajectory:

νlookup =
∆P n+1

n −
∫ tf

0
νidt

tf
(6.7)

where ∆P n+1
n is the distance between the barycentric position of n+ 1th and

nth supporting triangle. tf is the expected time to cover this stride (normally

half period).

During the online simulation, the value of the velocity may not exactly

match the samples in the look-up table. For example, the velocity [0.0005, 0, 0]

falls into the range between two samples [0, 0, 0] and [0.001, 0, 0]. In this case,

the desired CPG parameters are computed as a weighted sum of the parame-

ters of the neighbouring samples points, with the method of Inverse Distance
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Weighting (Shepard, 1968):

Ξ =
n∑
i=1

ωiξi, ξi ∈ Ω (6.8)

ωi =
d−pi∑n
j=1 d

−p
j

p = 2, n = 8

Ω is the set containing all the neighbouring points, di is the Euclidean distance

between two vectors ‖ξi − ξj‖. The weighted-sum vector Ξ is selected to

update the parameters of the CPG controller in order to achieve the desired

velocity.

6.4 Results & Discussions

Performance The offline process to generate the CLUT requires a signifi-

cant amount of optimisation. The optimisation is performed with a standard

method, which accepts an unconstrained multivariate scalar function with the

algorithm of Newton-Conjuagete-Gradient from the scientific computing li-

braries Scipy. To speed up the process of optimisation, the result from the last

optimisation is selected as the initial value for the next iteration. On average,

it takes around 300 iterations (Figure 6.5) and one second for the optimisation

algorithm to process one sample point, with the fitness value of the objective

function reaching the value below 10−4. The total time to complete the op-

timisation for the whole CLUT (32000 samples) is around ten hours on a

standard PC (CentOS with 4GB memory, Intel Core Quad CPU @2.83GHz).

This could be further reduced to less than three hours (on four threads) with

parallel processing. Though the performance is acceptable for an offline op-

timisation, it can be improved with more advanced hardware specifications

(Wang et al., 2012) and using the optimisation library written in a low-level

language such as C.

Using the optimal solution from the last sample point as the initial value

for the next sample point is an effective strategy to speed up the optimisation

process. The value of the objective function for the initial iteration is as high

as 13.472 (for the purpose of image scale, this is omitted from Figure 6.5).
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The initial value of the objective function for the rest of sample points starts

from less than one. Additionally, the optimisation for the first sample point

takes more than 300 iterations to converge, while the rest take about 200-300

iterations (Figure 6.5).

Figure 6.5: The result of the optimisation process when precomputing the
CLUT.

Sampling Rate There are two types of sampling rates which affect the final

outcome of this method. The first is the sampling rate when computing the

CLUT and the second is the sampling rate (or look-up rate) when running the

simulation during runtime.

The selection of the suitable step width is a trade-off between the time

to construct the look-up table and the deviation error which may occur dur-

ing online simulation. On one hand, choosing a smaller step width increases

the number of samples, thus increasing the time cost of optimisation. On the

other hand, deviation errors decrease when the accuracy of the control param-

eters increases due to a smaller step width. Table 6.4 presents a comparison

of time cost, storage size and deviation error for different sampling rates.

• Step Width (SW ): the distance between two nearby sampling points

in x/y/z directions (unit: m/s). Note the velocity ranges remain the

same as Table 6.1.

• Time Cost: the total time cost for the optimisation process (unit: hour).

This data are collected after speeding up the performance with parallel
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processing with four threads. Figure 6.5 shows that each sample takes

around 300 iterations to converge. The average computing time for

each sampling point is 1.13 seconds with a standard deviation of 0.29

seconds. Therefore, the total time cost grows approximately in a linear

fashion with the number of samples.

• File Size: the storage size on the disk (unit: megabytes). Each sample

point is a fixed-length vector including an input velocity vector of 3 di-

mensions and a control parameter vector of 27 dimensions (Table 6.2).

Therefore, the file size of the CLUT grows in a linear fashion with re-

spect to the number of sampling points.

• Deviation Error: the summed differences between the target trajectory

and simulation result (unit: metre). The simulation setting is a straight

curve with its length L = 0.5m, walking velocity ν = 0.015m/s. The

look-up frequency is twice per walking cycle.

Step Width (SW ) Number of Points Time Cost File Size Deviation Error
0.0005 256,000 24 52.4 0.008
0.0010 32,000 3 6.3 0.026
0.0020 4,000 0.5 0.80 0.069

Unit: (SW - m/s); (Time Cost - hour); (File Size - megabytes); (Deviation Error - metre)

Table 6.4: The data of total time cost are collected using a multi-processing
technique (unit: hour). As the number of samples grows, the time cost in-
creases in proportion while the deviation error decreases.

Table 6.4 does not take into consideration the time cost for online lookup

because the whole CLUT is loaded into the memory and the memory-reading

action is fast enough to be ignored (in units of nanoseconds).

On the other hand, if the look-up frequency is increased during the runtime

simulation, the control parameters of the CPG will be updated at a higher

frequency and the controller is able to react with the environment or follow

the user-defined trajectory with more accurate adaptation. This also leads to

a reduced error between the simulation result and the target trajectory. The

simulation setting is a straight curve with its length L = 0.5m and walking

velocity ν = 0.015m/s. The CLUT is generated with a step width SW =

0.001m/s. The criteria used in the table are:
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• Look-up frequency: the relative frequency of look-up action compared

with the walking frequency. When it is set to 2, the control parameters

are updated when each triangle is initialised.

• Number of look-ups: the total counts of look-up actions during the

simulation.

• Time: the time cost for the simulation (unit: second).

• Deviation Error: the summed differences between the target trajectory

and simulation result (unit: metre).

Look-up Frequency Number of look-ups Time Deviation Error
2 67 2.50 0.026
4 123 2.57 0.014
8 269 2.62 0.007

Unit: (Look-up Frequency - Hz); (Time - second); (Deviation Error - metre)

Table 6.5: Comparison of the time cost and deviation error for different
look-up frequencies. The result shows that different look-up frequencies have
little effects on the time cost. Meanwhile the deviation error could be signifi-
cantly reduced by increasing the look-up frequency. It is worth noting that by
increasing the look-up frequency to 8, the deviation error reduces to a similar
level as decreasing the step width to half of the standard setting.

Discussions on scalability The data shown in Tables 6.4 and 6.5 reveal the

need to handle the settings of these two rates with care, in order to find a

balance between accuracy and performance. The number of sampling points

is calculated as Sx × Sy × Sz (each indicates the number of samples along

x/y/z). The heavy computation, especially for offline optimisation, con-

strains the scalability of the method if the precision of the CLUT needs to

be adjusted. A solution is to design a look-up strategy with an adapted fre-

quency. When the character is walking in an unchallenged mode such as

along a straight path on a flat ground, a lower look-up frequency could be

selected. While in more complex situations such as sudden turning, a higher

look-up frequency could be introduced.

Another possible solution is to construct a low-dimensional space. Poten-

tial dimension-reduction methods include the linear one, such as Principle
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Component Analysis (PCA) (Coros et al., 2008), or the nonlinear one, such

as Gaussian Process Latent Variable Model (GPLVM) (Levine et al., 2012).

Both methods are tested in the motion space of joint angles and the parameter

space of the controller. The results are shown in Figure 6.6. Some observa-

tions can be drawn from the results:

• The result of applying PCA to the joint motion space is shown in Fig-

ure 6.6a. The vertical axis is the percentage of the total variance ex-

plained by each principal component. The joint motion space origi-

nally has 18 dimensions, while using PCA, more than 95% of the total

variance is explained by the first six principle components. The first

principle component accounts for about 50% of the variability in the

data. In comparison, the result of applying PCA to the control space is

shown in Figure 6.6b. The control space originally has 27 dimensions,

while using PCA, the first ten principle components are needed to reach

the threshold of 95%. Figure 6.7 demonstrates the coefficients of first

and second principle components (PC) at different velocities along x

axis. The velocity along x axis varies between [-20, 20]mm/s, and

the velocities on the y and z axes are zero. The result shows a high

level of non-linearity, which confirms the complexity of the control

look-up table. The variance of the first principle component reduces

to about 30%, lower than the case of joint motion space. This compari-

son reveals that the CLUT demonstrates a higher level of non-linearity

compared with the motion space.

• Figure 6.6c shows an extreme correlation between the 18 DOFs of the

joint motion, which are dramatically reduced to one single dimension

by GPLVM. This result may appear surprising at the first place, but

in fact is in accordance with the design of the CPG controller. The

CPG controller is constructed in such a way that DOF-specific opera-

tors transform the signal from a standard oscillator. Note that the input

motion data is from a normal walking cycle, in which no perturbation,

turning, noise is added. In this simplified case, the operators (ampli-

tude, phase shifting, offsetting) remain constant for individual DOFs.

GPLVM is able to extract the information from the standard oscillator,

while removing the information contained in the unchanged operators.
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When applied to the control space (Figure 6.6d), GPLVM still outper-

forms PCA. This advantage is verified by the larger variance explained

by the first principle component, and less dimensions needed to reach

the threshold of 95%. This comparison demonstrates the advantage of

GPLVM over PCA in processing non-linear data.

(a) PCA in Motion Space (b) PCA in Control Space

(c) GPLVM in Motion Space (d) GPLVM in Control Space

Figure 6.6: Applying PCA and GPLVM to both the motion space and control
space. Please note that the input motion data is from a normal walking cycle,
in which no perturbation, turning, noise is added. The comparisons of (a)-
(b), (c)-(d) show that the control space contains greater variability compared
with the motion space. The comparisons of (a)-(c), (b)-(d) demonstrate the
advantage of GPLVM over PCA in reducing the dimensions of both joint and
control spaces.

Methods such as PCA or GPLVM transform the discrete representation of

the parametrised control space into a continuous one. This transformation

has pros and cons. On one hand, the elegant low-dimensional space not only

reduces the computation but also filters possible noises. On the other hand,

it introduces an additional layer, adding up the complexity. In the case of

an unexpected simulation result, it requires additional efforts to identify the

cause, whether it is rooted in the original sample space, or results from the

regression error between the discrete and continuous spaces.
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(a) Coefficients of first principle component (PC) at different veloc-
ities along x axis. The velocities on the y and z axes are zero.

(b) Coefficients of second principle component (PC) at different
velocities along x axis. The velocities on the y and z axes are zero.

Figure 6.7: Coefficients of first and second principle components (PC) at dif-
ferent velocities along x axis. The result shows high non-linearity of the con-
trol parameters among different samples of velocities. This could be caused
by the optimisation strategy when constructing the look-up table. Given the
high dimensions of the control parameters, there is a high probability that the
optimisation falls into different local minima for different velocities.
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6.5 Summary

This chapter presents the design and application of the CLUT. As one of

the most popular techniques used in robotics control, this method proves to

be effective in authoring the locomotion behaviours of insects. The key idea

behind the CLUT is not constrained to the implementation of the current con-

troller, or any type of design of the CPG. Therefore, it is possible to transfer

this to design an efficient control strategy in robotics. The balance between

performance and accuracy is worth pointing out. Currently the look-up for

control solutions is implemented per step. Velocities would certainly change

during the course of one step, which demands control solutions different from

the one initialised at the beginning of the current step. The deviation errors

could be reduced by increasing the look-up frequency.

Geijtenbeek et al. (2013) pointed out that the dependence on optimisation

strategy introduces additional complexity when designing a controller, which

applies to this case. This adds to the confusion when the simulation does not

produce the desired result. Furthermore, since the control parameters in the

CLUT are responsible only for a single stride, it is difficult to justify that the

final outcome from the optimisation is the optimal solution in a biological

sense.
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Chapter 7

Switch Mechanism

7.1 Introduction

The motion cycle is divided into two phases for each leg: stance and swing.

To determine when legs switch from stance to swing or vice versa, traditional

approaches use time-series signals (e.g. switch after a fixed time period)

(McKenna and Zeltzer, 1990; Yin et al., 2007) and foot-strike events (Cenydd

and Teahan, 2013). Some use the spatial information, to initiate the leg swing

when the horizontal distance between the COM and ground contacts exceeds

a threshold (Wang et al., 2012; Geijtenbeek et al., 2013) (Figure 7.1).

These strategies are not applicable to multi-legged insects where interac-

tions between neighbouring legs play an important factor. In addition, they

do not take into consideration the case when insects are carrying an object

and making an effort to maintain their stability. Cruse (1985) conducted the

experiment in which a stick insect (Carausius morosus) walked on a tread-

wheel and studied the relationship between the triggering of a swing phase

and the load and position of a leg. The results showed that although the leg

position is an important parameter, load, instead of position, is possibly the

true determinant for the decision to terminate the stance phase and initiate the

swing phase.

While experimental biologists are still looking for the determinant which

initiates the swing phase, this study aims to build a capable and intuitive
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Figure 7.1: The switch mechanism for each leg in Wang et al. (2012); Gei-
jtenbeek et al. (2013). The variable d̃ is computed as the normalised signed
horizontal distance (d) between the COM and the stance ankle (normalised
by leg length). d̃ is compared against two threshold parameters (d̃SI , d̃SP ), to
decide whether or not the Finite State Machine should switch to the states of
swing initialisation (SI) and stance preparation (SP) respectively.

framework for applications in animation and film production. Given the spe-

cial pattern of tripod gait in the hexapod, existing work suggests switching to

the swing mode when the COM reaches the edge of the current supporting

triangle (Ting et al., 1994; Guo et al., 2014a). This is true when the insect

is moving fast and allows no extra time for complicated decision making.

However, when insects are moving at slow speeds, rigid animation is pro-

duced with this triangle approach and is more easily noticed than high speed

movement.

Here the Froude number is the criterion chosen to select the proper rule for

stance-swing switch. Froude number is a general indicator which reflects gait

patterns among animals with different sizes and masses (Alexander, 1984).

Fr =
‖ν‖2

gh
(7.1)

where ν is the average speed in a stride, h is the average height of the COM

above the ground and g is the gravitational acceleration.

• If Fr >= Frthreshold, the ant is walking fast or running. In this case,

the leg transition between stance and swing is triggered when the COM

steps outside the Supporting Triangle (Ting et al., 1994; Guo et al.,
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2014a).

• If Fr < Frthreshold, the ant is walking slowly. In this case, a novel

probability framework is proposed to replace the tripod gaits and deter-

mines the switch for individual legs based on four independent condi-

tions.

Equation 7.1 states that the threshold of Fr is determined by the threshold

velocity, given the gravitational acceleration g = 10m/s2 and standard COM

height h = 0.002m. The threshold velocity of transitioning between walk-

ing and running is set to 0.02m/s, the median value of the speed range [0,

0.04m/s]. Therefore, Frthreshold is set to 0.02.

7.2 High Speed

The Supporting Triangle is used as the switch mechanism when the Froude

number is larger than Frthreshold. The state of the individual legs is tog-

gled between stance and swing whenever the COM steps out of the current

supporting triangle, resulting in the periodic alternation of the left and right

tripod.

This pattern is observed in the captured walking sequences of an ant. Fig-

ure 7.2 provides a side-by-side comparison of the supporting triangles be-

tween real and simulated ants. In addition to its underlying biological intu-

ition, Supporting Triangle is independent of gait and can be applied to eval-

uate gait stability in general cases, such as in turning (Figure 7.2(c)). When

the COM steps outside the triangle via other edges, the same switch mecha-

nism is triggered and the new triangle is placed according to the current body

orientation and position.

Figure 7.3 illustrates the algorithm to check whether the COM is inside or

outside the supporting triangle. The point in red denotes the COM projected

onto the plane of the Supporting Triangle. The point O in black denotes the

average of the three vertices:

PO =
V1 + V2 + V3

3
(7.2)
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(a) (b) (c)

Figure 7.2: Using Supporting Triangle to determine the switch from stance
to swing in the case of high speed. (a) Video screenshots of a real ant with
two consecutive steps. The image sequences in (a) are provided by courtesy
of researchers Holger Bohn from University of Freiburg, and Karin Moll and
Walter Federle from University of Cambridge (Moll et al., 2010). (b) Ani-
mation screenshots of a simulated ant with two consecutive steps. The red
dots in both figures indicate the position of the COM. (c) State transition
between two supporting triangles during normal walking (top) and turning
(bottom). The solid curve indicates the trajectory of the COM when the char-
acter is walking straight forward, and the dashed curve indicates the actual
trajectory when the character is turning left.
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Note that O will always lie within the triangle. The question to check whether

the COM is inside the triangle is then converted into: whether the COM falls

on the same side with O for each of the triangle edges? ~rCOMi , i ∈ (1, 2, 3)

denotes the vector connecting from the COM to the ith vertex of Supporting

Triangle. ~rOi , i ∈ (1, 2, 3) denotes the vector connecting from O to the ith

vertex of Supporting Triangle. Next the cross products of these vectors are

computed respectively and the results are compared against the other:

ArrayCOM = [~rCOM1 ×~rCOM2 ,~rCOM2 ×~rCOM3 ,~rCOM3 ×~rCOM1 ] (7.3)

ArrayO = [~rO
1 ×~rO

2 ,~r
O
2 ×~rO

3 ,~r
O
3 ×~rO

1 ] (7.4)

if each corresponding element in ArrayO and ArrayCOM has the same posi-

tive or negative signs respectively, the COM falls within the current Support-

ing Triangle.

COM

V1

V3

V2

r com

r com

r com

O

r o

r o
r o

1

2

3

1

2

3

Figure 7.3: The algorithm used to check whether the COM falls within the
Supporting Triangle (ST).
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7.3 Low Speed

In the mode of low speed, an insect adopts the mechanism of metachronal co-

ordination by taking into consideration four different factors. A metachronal

gait is a stepping sequence in which leg movements propagate from the back

of the insect to the front on each side of the body (Beer et al., 1997).

Probability of extreme position Cruse (1985) suggests that there exists a

relationship between the possibility of switch occurrence and the relative po-

sition of a leg to its Anterior Extreme Position (AEP) and Posterior Extreme

Position (PEP). AEP and PEP are the furthest points which a leg can reach

forward and backward in relation to the COM of an insect. Therefore, the

possibility of a leg swing can be defined as a function of the relative posi-

tion to its extreme pose. The variable ∆Dcom is the travelling distance of the

COM since the foot contact is initialised on the ground. The further the COM

moves relative to each stance leg, the greater the possibility of state switching

is. This probability is modelled as:

Pe = 1− e−ae
∆Dcom

S (7.5)

where S is the stride length (average value is 5mm) and the constant ae = 5.

Probability of phase The switch of a leg will be triggered once this leg

stays in stance mode after a sufficiently long time. This is the most common

situation. Because the whole walking cycle is divided into two phases - stance

and swing, a leg is expected to start swinging after standing on the ground for

half of the motion period. φ ∈ [0, 2π] is the phase variable indicating the

relative temporal position in a walking cycle. This probability is modelled as:

Pt = 1− e−
φ
φc (7.6)

where φc = π
4
.
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Probability of Neighbouring leg Another factor is the relative position of

a neighbouring leg. In the case of forward walking, the possibility for the ith

leg to switch from stance to swing increases, if the (i + 1)th leg on the same

side moves closer. This probability is modelled as:

Pd = e−
∆d
dc (7.7)

where ∆d is the relative distance between the end points of two neighbouring

legs and dc = 0.5mm.

Probability of Load The probability of a leg to start swinging is also deter-

mined by the load on the leg, that is the force applied on the leg in the vertical

direction:

Pl = e
− FL
FLc (7.8)

During the stance phase, the leg is loaded in order to support and propel its

body. Once it reaches the PEP, the leg is unloaded and enters the swing phase

(Zill et al., 2004; Szczecinski et al., 2014). Flc is set to 0.005N (half of the

ant’s own gravitational force) through simulation trials.

Figure 7.4 plots the probability of a leg switching from stance to swing,

with respect to the aforementioned four factors. The final probability is cal-

culated as follows:

P = 1− (1− Pe)(1− Pt)(1− Pd)(1− Pl) (7.9)

This concatenation form of probability allows the switch to take place as long

as at least one of the four aforementioned conditions is satisfied. Different

thresholds are set for three legs in the same group: Pthreshold = [0.6, 0.7, 0.8].

If P > Pthreshold for a specific leg, the leg is switched to the swing mode,

otherwise the leg remains in stance.

It is worth noting that this probability module is likely to result in the

situation where legs belonging to different groups are visually in the same

state (either stance or swing), but the group which they belong to is actually

unchanged. In other words, each leg is hand-coded into two fixed groups,

either L1R2L3 or R1L2R3.
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(a) (b)

(c) (d)

Figure 7.4: Four probability components introduced in this switch mech-
anism. Assume P indicates the probability of a stance leg to start swing-
ing. (a)Pe: the relationship between the traveling distance of COM and P
(Equation 7.5). (b)Pt: the relationship between the phase variable and P
(Equation 7.6). (c)Pd: the relationship between the distance of neighbouring
legs and P (Equation 7.7). (d)Pl: the relationship between the applied load
weight and P (Equation 7.8)
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7.4 Results & Discussions

Phase Plot Figure 7.5 shows the phase plot for six legs of insects, walk-

ing at a comparatively slow mode and carrying no objects. According to

Equation 7.1 and given that ν = 1.5cm/s, h = 0.2cm, the Froude number

Fr = 0.01125. This confirms that the character is currently moving slowly

and will adopt the metachronal coordination. The phase plot demonstrates a

greater versatility of timing for legs switching from stance to swing, instead

of a strict double-tripod pattern. The phase plot in Figure 7.5 also reflects the

overlap of two successive triangles, which is meant to enhance the stability.

T/2 T/2

L1

L2

L3

R1

R2

R3

Figure 7.5: Phase plot of six legs when speed ν = 1.5cm/s (slow mode) and
the load weight mL = 0kg. Yellow denotes that the leg is in stance mode
while blue is for swing mode. This graph reveals that legs in the same group
are triggered to swing at different time points. The coordination varies when
the different thresholds Pthreshold are chosen.

The influence of distance of neighbouring legs The synchronised move-

ments of legs along the longitude axis produce the metachronal wave. When

insects move fast, the neighbouring legs on the same side tend to collide with

each other if the anterior leg does not start to swing earlier than normal. In

Figure 7.6, the probability of distance of neighbouring legs is disabled in the

case of fast movement, resulting in the overlapping of the front and middle

legs on the same side.

The influence of extreme positions The stride length increases when the

locomotion speed of a character increases. The area of the supporting triangle
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Figure 7.6: Comparison between two simulated results to demonstrate the
defect of front leg’s over-crossing. (L): The influence of the distance of neigh-
bouring legs is taken into consideration. (R): The influence of the distance of
neighbouring legs is ignored. When ants move fast (ν = 3cm/s), the distance
between Supporting Triangles increases and neighbouring legs on the same
side are more likely to overlap each other. In the right picture, the front and
middle legs on the left side overlap.

increases when the character is carrying an object or resisting against pertur-

bations. In these two situations, the AEP and PEP will reach further in the

forward and backward direction respectively. This could lead to the defect of

breaking the joint limit and over-stretching or over-bending a specific joint.

In Figure 7.7, the influence of extreme positions is ignored, resulting in the

over-stretching of the left hind leg.

Figure 7.7: Comparison between two simulated results to demonstrate the
defect of hind leg’s over-stretching. (L): The influence of the extreme po-
sitions is ignored. (R): The influence of the extreme positions is taken into
consideration. When an ant carries an object, the area of the Supporting
Triangles increases and so does the Posterior Extreme Position (PEP). When
the influence of PEP is ignored in triggering the leg swing, the leg will be
over-stretched, as is the case for the left-hind leg on the left side of the image.

Limitations However, the method proposed in this work does not consider

the collision between the legs and main body. This type of collision happens

124



frequently when the character is walking sideways, which is commonly ob-

served in the case of collective transport (Figure 7.8). This failure is partially

caused by the fact that the current probability framework only determines

when a leg switches from stance to swing. Additional strategy to switch

from swing to stance is needed to terminate the swing phase and initialise

the stance phase in time. One of the solutions is to terminate the swing phase

ahead of time when the leg approaches the extreme poses in the lateral direc-

tion. This is similar to the effects of the extreme poses in the posterior and

anterior directions in Equation 7.5.

Figure 7.8: Collision between the right hind leg and main body. The right
hind leg collides with the abdomen when the character is walking sideways.
This is because the framework only determines when a leg switches from
stance to swing, and does not address the reverse problem of switching a
swing leg to the mode of stance.

7.5 Summary

This chapter presents a novel strategy to trigger the swing of a stance leg

with fast and slow movements treated separately. For fast movements, legs

in stance are triggered to swing as soon as the COM steps outside the cur-

rent Supporting Triangle. However when insects move at slow speeds, they

demonstrate remarkable variations of leg coordination, which cannot be pro-

duced with the same strategy for high speed. The strategy designed for slow

movements takes various factors into consideration, including the relative dis-
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tance to the extreme positions, the relative distance between neighbouring

legs, the current phase in whole motion cycle and the load on the legs. This

strategy is able to cope with complex tasks such as collective transport, which

is challenging for previous controllers.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

Natural-looking insect animation is difficult to simulate. On one hand, it

is difficult to capture the motion data of real insects because of their fast

movement and small scale, therefore conventional example-based methods

are not applicable here. On the other hand, simulation-based methods require

modelling their delicate and complex physiological structure, which makes it

challenging to design an appropriate controller to actuate the joints.

This thesis addressed this challenge by presenting a control framework of

insect animation, based on two key observations of real insects: fixed gait

pattern and distributed neural system. These observations lead to the devel-

opment of the two components in this framework: the Triangle Placement

Engine (TPE) and the Central Pattern Generator (CPG). On one hand, the

TPE addresses the limitations of example-based methods, by utilising the in-

formation embedded in the foot contact of real insects; therefore, the frame-

work in this thesis is able to generate whole body animation of insect, without

the access to the joint motion data. On the other hand, the CPG addresses the

challenges with simulation-based methods, by constructing the controller as

a network of oscillators, each of which separately actuates one DOF; this

design mimics the distributed neural system in real insects and provides an

alternative solution to controller design in simulation-based methods.
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The framework is able to generate a wide range of locomotion skills for

virtual insects, including walking along straight or curve paths, traversing un-

even terrains, recovering from emergent or continuous perturbations, carrying

objects individually or cooperatively etc. The following paragraphs will first

discuss the findings which arise in this exploration, and second systematically

evaluate this framework using the four criteria in the introduction chapter.

Findings

Firstly, this work demonstrates that a biologically-inspired framework is able

to successfully synthesise insect animation. This framework is tailored to

address the problem of insect animation in the following manners:

• The TPE is constructed as a novel mathematical model, extracting the

ant’s stepping pattern under different locomotion speed, path curvature

and load from experimental results by Zollikofer (1994a,b,c). Differ-

ent from existing works in using step patterns to generate whole body

animation (van Basten et al., 2010), the TPE specifically takes advan-

tage of the fixed double-tripod gait, which is widely observed in insects

(Chapman, 1998). This component also avoids the problem of lacking

motion data in joint space for example-based methods.

• The CPG is modelled as a distributed network, where a standard os-

cillator signal is transformed by DOF-specific operators. This hierar-

chy mimics the specialised structure of insects, whose joints are inde-

pendently controlled by individual body ganglia. The CPG controller

demonstrates its capability in resisting the external perturbations (Fig-

ure 5.11). This feature of stability is benefited from the convergence

property of the oscillator.

• The CLUT connects the high level commands from the TPE with the

low level control pattern of the CPG. This is accomplished by pre-

computing the map between the desired velocity and the corresponding

control parameters in the CPG. The advantage of the look-up table is

that it is conceptually simple and relatively easy to implement.
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The performance of this framework, including comparisons with example-

based and simulation-based methods, will be evaluated with four criteria -

naturalness, high level control, stability and ease to design - in the following

section Evaluation.

Secondly, this work proves that a complete framework (TPE+CLUT+CPG)

achieves more flexibility and stability than an isolated CPG controller. Cur-

rent research in neuron-biomechanics simulation focuses on modelling the

CPG only (Örjan Ekeberg, 2004; Kukillaya and Holmes, 2008; Szczecin-

ski et al., 2014). In comparison, this framework connects the CPG with the

CLUT and TPE, improving the performance in the following two aspects:

• Stability. Although the CPG controller is able to respond to perturba-

tions by itself, the magnitude of the force it can resist is limited (on

an average numeric scale of 10−3N for a period of one stride in Ta-

ble 5.4, 5.5, 5.6). Connecting the CPG with the TPE proves to be

useful in increasing the stability of this control framework. This is

evidenced in the case of walking against the continuous wind force in

Figure 4.14d. The simulation of walking against sideways wind shows

that by increasing the area of the supporting triangle in the case of per-

turbations, the character is able to resist a larger force (0.01N ) for a

longer period (20 strides).

• Flexibility. The capability of generating normal locomotion with the

CPG alone is confirmed by the work presented in Chapter 5. Further-

more, the whole framework presented here takes full advantage of the

CPG’s inherent stability, and successfully addresses its limitations in

flexibility. The TPE adjusts the control parameters of the CPG accord-

ing to external environment or user commands. This allows high-level

user control over the locomotion trajectory, velocity etc of the virtual

characters (Figure 4.14), which cannot be accomplished by the CPG

controller alone.

Thirdly, this work shows that without the data of joint angles, the foot

contact information of insects alone can be successfully used to generate the

whole body animation. This finding is important, because it provides an alter-

native solution for researchers with the goal to synthesise insect animation.
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The naturalness of the synthetic motion is confirmed by a good match be-

tween the simulated result and ground truth in terms of supporting triangles

(Figure 4.16) and foot trajectory (Figure 4.17). However, the differences be-

tween the simulated result and ground truth deserve extra attention, because

these differences may be the causes for the gap between the current con-

troller and real insects. For example, currently the simulation divides the mo-

tion cycle into two phases: swing and stance, while the foot trajectory from

real insects suggests that it may be better to divide the swing phase into two

sub-phases. The evidence supporting this hypothesis could be found in Fig-

ure 4.17, where insects clearly lift up the swing foot again during the second

half of the swing period. This implies that the insect may employ different

strategies in the first and second halves of the swing period.

Evaluation

Naturalness Naturalness is defined as the perceived realism of the char-

acter animation (Van Welbergen et al., 2010). Measuring the naturalness of

character animation is difficult because it is, for most of the time, subjec-

tively evaluated by human observations, and determined by physics plausi-

bility, style and variability etc of the synthetic motion (Van Welbergen et al.,

2010). Van Welbergen et al. (2010) summarises that currently there are two

types of methods to assess the naturalness of the synthetic motion: com-

parison with captured motion data and user study evaluation. The synthetic

motion produced by this framework is evaluated by these two methods re-

spectively:

• Comparison with captured motion data. The naturalness of the syn-

thetic motion is first quantitatively evaluated by comparing against the

ground truth data from different aspects. The comparison shows that

there exists a good match between the synthetic motion and the ground

truth, in terms of the shape and location of supporting triangles (Fig-

ure 4.16 and Table 4.4), foot trajectory of a swing leg (Figure 4.17) and

the switch mechanism during high speed motion (Figure 7.2). These

results confirm the naturalness of the synthetic motion.
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• User study evaluation. The synthetic animations are rated by both pro-

fessional animators and non-professional students. The result (Fig-

ure 4.15) shows that the animations are rated as natural by an aver-

age score of 73.75%; in other words, almost three out of four trials are

rated as natural by participants. This further confirms that this frame-

work is able to synthesise natural insect animation. The suggestions

from animators, such as the relative rotation between the head, thorax

and abdomen, will be taken into consideration in future studies.

High level control Compared with simulation-based methods (Yin et al.,

2007; Wang et al., 2009, 2012), this framework frees animators from calculat-

ing joint torques or adjusting control parameters, but still produces physically-

plausible animation with the assistance from control patterns of the CPG

controller. This is key to industry applications of simulation-based meth-

ods. With this framework, animators are allowed to directly manipulate the

settings, such as path, speed, terrain etc because the design of the CLUT sep-

arates low-level joint actuations from high-level user commands.

This framework also provides high level control with another particular

feature of the proposed CPG controller — bifurcation. The scenario of forage

in Section 5.4 simulates a swarm of ants, which involves frequent interactions

between individuals. In this case, the insect locomotion is characterised by

sudden initialisation and termination. The result (Figure 5.14) shows that

animators can easily simulate this sudden change in motion status by toggling

the bifurcation parameter σ between -1 and 1.

Stability The stability of a controller refers to its capability of resisting ex-

ternal perturbations and recovering to normal locomotion states. The result

in Section 5.4 shows that the character is able to resist various perturbations

from different force directions (Table 5.4), at different timings (Table 5.5),

and at different locomotion speeds (Table 5.6). This feature of stability re-

quires no additional adaptations of the controller, and is an inherent benefit

from the stable convergence of Hopf Bifurcation to either the limit cycle or

the attraction point.
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This framework also shows that compared with the case of the CPG alone,

the complete controller (TPE+CLUT+CPG) demonstrates greater stability.

This improvement is a result of the dynamic adaptation of the controller to the

external environment. When a character walks against the continuous wind

force in Figure 4.14d, the TPE increases the area of the supporting triangle

and the character lowers its COM. Both strategies allow the character to resist

larger perturbations for a longer period (0.01N for 20 strides). In comparison,

the CPG controller alone is only able to resist a smaller force for a shorter

interval (<0.01N for one stride in Table 5.4, 5.5, 5.6). This is discussed as

one of the findings in this work as well.

Ease to design The criterion of ease to design concerns about the amount

of labouring work, which is needed in the design process. Controller design,

especially the process of parameter tuning, requires a significant amount of

time and efforts in previous works (Yin et al., 2007). Optimisation emerged

as a successful solution in designing the locomotion controller (Wang et al.,

2009; Coros et al., 2011; Wang et al., 2012). In this thesis, the parameters

of the CPG controller and the control look-up table are automatically deter-

mined with the optimisation strategy, which minimises the need for manual

intervention.

However, character locomotion is normally a multi-objective problem, since

the optimisation needs to consider various factors, including to minimise the

energy consumption, to minimise the deviation from target positions or ve-

locities, to minimise the head rotation etc. It is a common strategy to use a

weighted-sum form to convert the multi-objective function into a single scalar

objective function (Wang et al., 2009; Coros et al., 2011; Wang et al., 2012).

Existing works still determine the weight values for individual objectives by

manual trial and error. This work first normalises each objective functions to

a consistent magnitude [0, 1], and automatically selects the weights, which

produce the smallest fitness value of the weighted-sum function (Figure 5.8

and 6.4). This further automates the process of controller design, proving that

the framework in this thesis is ease of use to design a locomotion controller.

The current method is not without its limitations. Compared with body
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movements of real insects, the synthetic motions of animated insects are of

somewhat lesser fidelity. This can be explained, in part, by the absence of

a fully actuated model. A better result is expected when a more faithful dy-

namics model is introduced that uses a physics engine such as Bullet, ODE

or OpenSim. The current implementation uses the PD servo as the actuator

to connect the controller and simulator. In several recent works on biped an-

imation, non-linear muscles were demonstrated as a successful alternative to

PD servo with enhanced naturalness and stability (Wang et al., 2012; Gei-

jtenbeek et al., 2013). The integration of non-linear muscle into the current

framework is a future direction. Another limitation is the scalability when

building the CLUT. The performance complexity is O(n3) where n is the

number of sample points for one dimension. A means of reducing the time

cost to pre-compute the look-up table is to maintain low sampling rates while

increasing the look-up frequency. Other methods include constructing a la-

tent space based on current parametrisation, using either a linear one (PCA in

Coros et al. (2008)), or a nonlinear one (GPLVM in Levine et al. (2012)).

This work bridges between biology and computer animation by selectively

applying what is known about locomotion control in insects to design a lo-

comotion controller for virtual insects. Although the neural control inside

the insect is not completely understood, the few principles that are already

known are rarely used to design a stable and natural controller in the area of

character animation. This may partially be due to the lack of communication

between these two fields. This thesis could be regarded as a moderate attempt

to explore this less exploited area. The future research directions which can

be derived from this thesis will be discussed shortly.

8.2 Future Research Directions

This work brings together a wide range of inter-disciplinary research in a

novel context. It would be regarded as a starting point for my continuing

research career. Based on the current implementation, there are three general

directions that are worth exploring in the future.

One of the directions is to improve the proposed system by applying more
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sophisticated models. Although the current implementation has taken many

realistic features of insect locomotion into consideration, the model is still

far from closely representing the locomotion of real insects. There are two

major differences between the proposed model and a realistic insect: the ac-

tuator and controller. On one hand, the actuator in current implementation

is PD servo, which is criticised for producing stiff movements. The use of

non-linear muscles is expected to improve the naturalness of the synthetic

motion and this has been demonstrated in recent success of biped animation

(Wang et al., 2012; Geijtenbeek et al., 2013). One would also expect similar

improvements after introducing a non-linear muscle model into the proposed

framework. On the other hand, the current controller is modelled as a net-

work of non-linear oscillators while the controller in real insects (the brain

and ganglia) is composed of thousands of neurons, which send out pulse-like

spiking signals. Various models have been proposed by experimental biolo-

gists to describe the behaviours of both a single neuron and large populations

of neurons (Gerstner and Kistler, 2002). It is an intriguing problem to simu-

late large scale neuronal groups and to design their spiking patterns in order

to activate joint muscles. Simple models, such as those proposed by Izhike-

vich et al. (2003), serve well as a starting point. However, the introduction of

neurons at such a level presents further challenges in maintaining the stability

of the controller and designing an intuitive interface for animators.

Insects posses a rich skill repertoire, which is well beyond the capability

of the current implementation. It would be of practical application in film and

animation productions to build a diversified controller library. Even more in-

teresting is to connect locomotion skills to behaviour. There has been a recent

surge in research that models the interaction of multiple characters (Ho et al.,

2010; Wampler et al., 2010; Shum et al., 2012; Hwang et al., 2014); however,

most are limited to biped animation. Insects demonstrate some interesting

and specialised behaviours, from which the problem of foraging is among the

most interesting. Still use ants as the exemplar of the insect group. Ant for-

age is an intelligent colony-level behaviour which emerges out of interactions

among large numbers of individuals with limited competence. An interest-

ing feature in their forage behaviour is group retrieval, whereby a group of

ants collectively transports a large prey; an activity that would be impossible
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for a single ant. This cooperation is special because there is no direct com-

munications between individuals and no hierarchical coordination inside this

swarm (Sudd, 1965; Berman et al., 2010). Surprisingly, a group of ants is still

able to achieve a highly-coordinated result without any sophisticated machin-

ery. Most existing works on character animation simulate crowd behaviour

by designing rules for a single agent while ignoring collaboration between

agents (Peters and Ennis, 2009; Qiu and Hu, 2010). Such rules are not suffi-

cient in the case of group transport of insects, which requires coordination of

force and involves interactions with prey and the environment. To achieve the

comparable result of the real equivalents, a solution should have following

features:

• Scalable to simulate large swarm behaviour

• Flexible to author different shapes or changing positions of food supply

• Sufficiently stable to adapt to a complex environment, such as obstacles

The existing CPG implementation is modelled as a network of non-linear os-

cillators. A further extension to synchronise oscillators of different individ-

uals in order to achieve group coordination is worth exploring (Cross et al.,

2004).

The work presented in this thesis draws inspiration from biology and en-

deavours to replicate the capability and flexibility of real insects. The encour-

aging results from this work could be regarded as a success in the field of

bionics. Meanwhile, the question of reverse engineering, using the proposed

simulation to answer the unattended questions in biology, is worth exploring.

There is already a large collection of works in building neuron-biomechanics

models to study the locomotion of insects, as reviewed in Chapter 2. Some

questions, however, remain unaddressed, such as how can simulations be

utilised to demonstrate the merits of non-linear muscles. For the classical

Hill-type muscle model (Hill, 1938), the force produced by a muscle depends

on its length and contraction velocity, which in turn are constantly changing

while joints are rotating. This seems at first glance an unfortunate complica-

tion, while Loeb and Ghez (2000) proposed that the brain takes advantage of

this property in order to create the joint stiffness and enhance gait stability.
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The reproduction of this feature in the proposed framework would provide

further support to this claim. The other is to use the proposed framework

to study the long-term interaction between species and environment. Evo-

lutionary theory claims that large environmental differences lead to natural

selection and thus individual variation. Locomotion, a vital skill for insect

survival, plays a significant role in the evolution of their physical charac-

teristics and structure. However, how the external environment affects their

locomotion and the development of their internal organism is poorly under-

stood. The optimisation strategy used in this thesis (Covariance Matrix Adap-

tation (CMA)), as one type of Evolutionary Algorithm, reflects the similarity

between the methodology of optimisation and the process of evolution. From

this perspective, the proposed simulation framework provides a potential so-

lution to this kind of problem.
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Appendix A

Physics Simulation

A character is typically modelled as a hierarchy of interconnected rigid bod-

ies assigned with kinematics (for example, length and radius) and dynamics

(for example, mass and inertia) properties. Rigid bodies are connected to

each other by constraints. Compared with the delicate structures of real an-

imal joints, constraints are virtually modeled in a more simplified style, for

example hinge or ballpoint constraints (Fig A.1).

(a) Hinge Constraint (b) Point Constraint

Figure A.1: Hinge and point constraints in various physics engine, including
Open Dynamics Engine(ODE) and Bullet. Different types of constraints de-
termine how two connected rigid bodies could move relative to each other.
For example, a hinge constraint has only one Degree of Freedom (DOF)
which means two objects can only rotate around one axis while a point con-
straint allows two objects to rotate around three axes. But both constraints
do not allow translational movements.

The state of a character can be expressed using the global positions ~Xcom =

[xcom ycom zcom] and orientations ~Θcom = [θx θy θz] of the Centre of Mass
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(COM) and all joint angles (body configurations) ~Θ = [θ1 · · · θn]:

~q =



xcom

ycom

zcom

θx

θy

θz

θ1

...

θn



(A.1)

In general, the problem of physics simulation can be divided into four

sub-problems: Forward Kinematics (FK), Inverse Kinematics (IK), Forward

Dynamics (FD), Inverse Dynamics (ID). Following paragraphs will explain

these sub-problems shortly.

Forward Kinematics and Inverse Kinematics

Forward Kinematics When dealing with the environment (for example

collision detection), it is often required to compute the position and orien-

tation of a specific body part. This problem is defined as Forward Kine-

matics (FK), which aims to express the position (x, y, z) of the Centre of

Mass (COM) of a rigid body and orientation (φx, φy, φz) of the body frame

in the world space as a function of the joint angles:

x

y

z

φx

φy

φz


=



hx(θ1, · · · , θn)

hy(θ1, · · · , θn)

hz(θ1, · · · , θn)

hφx(θ1, · · · , θn)

hφy(θ1, · · · , θn)

hφz(θ1, · · · , θn)


(A.2)
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Note here the global translation and rotation of the root are not considered.

When needed, this global component can be added in a linear fashion.

Inverse Kinematics There exists an opposite problem to FK — Inverse

Kinematics (IK), which is to compute the body configuration given the rel-

ative position of two body parts. This problem is of more interest when it

comes to character control and trajectory generation. The solutions of IK can

be categorized into two different ways: the analytical solution (Gan et al.,

2005) or the iterative solution (Buss, 2004).

Forward Dynamics and Inverse Dynamics

The ultimate problem in simulating character animation is to compute the

force and torque applied at each joint. When it comes to dynamics, there

are two equations that lay the foundation for the rigid body dynamics — the

Newton equation:
~F = m~̇ν (A.3)

and the Euler equation:

~τ = I~̇ω + ~ω × I~ω (A.4)

here m, I indicate the mass and inertia tensor of this rigid body, ~ν, ~ω are its

linear and rotational velocity.

Forward Dynamics The problem of Forward Dynamics (FD) is a funda-

mental component when designing a physics simulation engine. The chal-

lenges of simulating the trajectory of linked rigid bodies mainly lie in two

aspects: collision detection and contact forces (Baraff, 2001) since the body

parts are regarded as solid and do not allow inter-penetration. As long as the

contact forces are computed correctly, the forces are applied on individual

rigid bodies as though they are unconstrained.

Once the accelerations of the rigid bodies are calculated from the process

of FD, the velocities and positions are updated by numeric integration. Two

critical factors will affect, or even determine, the stability and performance

140



of the numeric integration: one is the choice of integration technique, and

the other is size of time step (Geijtenbeek et al., 2011). Implicit integration,

opposite to the explicit integration, would normally allow greater time step at

the same level of accuracy (Baraff, 2001). Smaller time step will improve the

accuracy and stability of the integration, at the increasing cost of computing

time.

Inverse Dynamics Out of the four sub-problems, Inverse Dynamics (ID)

is most relevant to character control. In this case, an in-depth explanation is

presented on a technical level to give readers a clear picture. The problem

of ID is to calculate the joint torques when given the motion trajectory, and

this problem is also called Motion Tracking or Trajectory Tracking. A typical

formulation is iterative Newton-Euler Dynamics (Craig, 2004).

First, an outward process is carried out to compute the linear and rotational

accelerations for individual rigid bodies composing the virtual character. It

normally starts from the COM and propagates towards the end–effector using

the following equations:

i+1ωi+1 =i+1
i R iωi + θ̇i+1

i+1Ẑi+1

i+1νi+1 = i+1
i R(iνi +i ωi ×i Pi+1)

(A.5)

i+1
i R,i Pi+1 indicates the rotational matrix, linear translation of i + 1th joint

relative to ith joint. i+1Ẑi+1 assumes that the rotational axis in the body frame

is the Z axis.

By applying the differential operators, we can derive the linear and rota-

tional accelerations:

i+1ω̇i+1 =i+1
i R iω̇i +i+1

i R iω̇i × θ̇i+1
i+1Ẑi+1 + θ̈i+1

i+1Ẑi+1

i+1ν̇i+1 = i+1
i R(iν̇i +i ωi ×i Pi+1 +i ωi × (iωi ×i Pi+1))

i+1ν̇Ci+1 = iν̇i +i ωi ×i PCi+1 +i ωi × (iωi ×i PCi+1)

(A.6)

i+1ν̇Ci+1 denotes the linear velocity of COM of the i+ 1th body in i+ 1th

joint frame. iPCi+1 denotes the translation of COM of the i+ 1th body in ith

joint frame.
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By substituting the Equation A.6 into Equation A.3 and A.4, we can cal-

culate the force and torque applied at the Centre of Mass (COM) of each rigid

body:

i+1 ~Fi+1 = mi+1
i+1ν̇Ci+1

i+1~τi+1 =i+1 Ii+1
i+1ω̇i+1 +i+1 ωi+1 ×i+1 Ii+1

i+1ωi+1

(A.7)

The next step is to convert the force and torque applied at each rigid body

into the original torque from each joint. This process is an inward iteration

starting from the end–effector towards the COM. We define:

fi = force applied on rigid body i by rigid body i-1

τi = torque applied on rigid body i by rigid body i-1

By analyzing the force–balance and torque–balance of each rigid body, we

can derive the iterative equations for computing the joint torques:

ifi =i
i+1 R

i+1fi+1 +i Fi

iτi =i
i+1 R

i+1τi+1 +i PCi ×i Fi +i Pi+1 ×ii+1 R
i+1fi+1 +i τi

(A.8)

The torque for this joint is simply the Ẑ component of the iτi.

The final representation of the torque in terms of the joint angles and

character–specific properties can often be rewritten in this fashion:

~τ = M(~Θ)~̈Θ + C(~Θ, ~̇Θ) +G(~Θ) (A.9)

Parameters M(~Θ), C(~Θ, ~̇Θ) and G(~Θ) are the joint space inertia matrix, cen-

trifugal/Coriolis and gravitational forces respectively.

142



Appendix B

Physics Model

Figure B.1: A standing leg of the character in this implementation. Each
leg has three DOFs: α, β, γ (shown in this figure). rCOM denotes the world
coordinate of the Centre of Mass (COM) and rfi denotes the world coordinate
of ith foot. Fi denotes the reaction force with the ground on ith foot.

The dynamics complexity is simplified by making two assumptions: a)

the main body is regarded as a single rigid body; b) the legs are massless.

These assumptions are based on the experimental result that the legs of insects

only possess a small proportion of mass compared with whole body (6% in

cockroach (Kram et al., 1997)).

With the simplified model, the state of the system is reduced as ~q =
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[x, y, z, φ], where x, y, z are the world coordinates of the COM and φ denotes

the angle between heading direction and +x axis. Each leg has three DOFs:
~Θ = [α, β, γ], two on the hip joint, the third on the knee joint. α corresponds

to the thorax-coxa (ThC) joint, which is responsible for the protraction and

retraction of the leg. β corresponds to the coxa-trochanter (CTr) joint, which

is responsible for the levitation and depression of the leg. γ corresponds to

the femur-tibia (FTi) joint, which is responsible for the extension and flexion

of the leg.

Readers could refer to Figure B.1 for visual notation. The forward dynam-

ics is governed by the following equations:[
M 0

0 I

]
q̈ =

[
F

τ

]
(B.1)

F =
3∑
i=1

Fi −


0

0

mg


τ =

3∑
i=1

(rfi − rcom)× Fi

where M is the mass matrix and I is the angular inertial matrix, the gravita-

tional constant g = 9.8kg·m/s2 (please also refer to Figure B.1 for visual

notation of other variables).

Instead of using Coulomb’s Law to model friction forces, these frictional

forces are explicitly equating to the horizontal components of ground reaction

force. To compute the ground reaction force Fi, the forces acting against the

ground by end–effectors are computed in terms of joint torques by Virtual

Control Model (Pratt et al., 1997):

F′i = (JT )−1


τα

τβ

τγ

 (B.2)

The Jacobian J can be derived from the relationship between joint velocity

and end effector velocity (Craig, 2004). Then the ground reaction force Fi on
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the character is opposite to the active force F′i from the character (Newton’s

Third Law). The foot contact is maintained by an analytic Inverse Kinematics

solution (Tolani et al., 2000).

The Jacobian J matrix of each leg takes the following form:

J =


(LtibiaSβ+γ + LfemurSβ)Cα (LtibiaCβ+γ + LfemurCβ)Sα LtibiaCβ+γSα

(LtibiaSβ+γ + LfemurSβ)Sα −(LtibiaCβ+γ + LfemurCβ)Cα −LtibiaCβ+γCα

0 −(LtibiaSβ+γ + LfemurSβ) −LtibiaSβ+γ


(B.3)

Sα = sin(α)

Cα = cos(α)

Sβ = sin(β)

Cβ = cos(β)

Sβ+γ = sin(β + γ)

Cβ+γ = cos(β + γ)

Lfemur and Ltibia are the lengths of the femur and tibia respectively.
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Appendix C

SwingNet 2

In the locomotion of biped characters, such as human beings, their legs take

a big portion of the total body mass, and their movement and rotation have

to be simulated dynamically to generate good quality animation (Ha et al.,

2012; Muico et al., 2009). Insects are different. The total weight of six legs

of a ant is about 1/20 of its body weight, therefore, its contribution to the

body dynamics is trivial in the simulation and can be ignored without causing

degeneration to the results.

Based on previous observations, an artificial neural network model, Swingnet

2 (Schumm and Cruse, 2006), is introduced to simulate the swing of in-

sect leg. The Swingnet 2 model calculates the velocity of the rotation angle

q = [α, β, γ] explicitly as,

dq

dt
= Aq−BqAEP + C(t) (C.1)

A =


3.4
Ts

0 0

0 6
Ts

0

0 0 3
Ts

 , B =


3
Ts

0 0

0 6
Ts

0

0 0 3
Ts

 , C =


0
−t
5Ts

0


qAEP is the joint angle values at the Anterior Extreme Position.
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Appendix D

Table of Coefficients

Variable Symbol Value Unit

Mass of ant m 0.001 kg
Moment of Inertia I 0.0000001 kg ·m2

Oscillator frequency at normal state ω 10 Hz
Oscillator bifurcation parameter σ 1
Oscillator convergence parameter λ 10
Gravity acceleration g 9.8 m/s2

Average height of COM h 2 mm
Intercept of Equation 4.4 S0 3 mm
Slope of Equation 4.4 as 0.1 s
Slope coefficients of ∆LCOM and mw acom 0.1 mm/kg
Length of Trunk Ltrunk 5 mm
Length of Coxa Lcoxa 0.3 mm
Length of Femur (Front/Middle/Back) Lfemur 1.3775/1.3848/2.2705 mm
Length of Tibia (Front/Middle/Back) Ltibia 1.0120/1.1580/1.9163 mm
Length of Tarsus (Front/Middle/Back) Ltarsus 1.2310/1.3562/2.1075 mm

Table D.1: Constants used in the simulation. As the only data we can access
are for Cataglyphis fortis, other ant species may take different coefficients.
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Boeing A. and Bräunl T., 2007. Evaluation of real-time physics simulation

systems. In Proceedings of the 5th international conference on Computer

graphics and interactive techniques in Australia and Southeast Asia. ACM,

281–288.

Buchli J., Righetti L. and Ijspeert A. J., 2006. Engineering entrainment and

adaptation in limit cycle systems. Biological Cybernetics, 95(6), 645–664.
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