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ABSTRACT 

 

Author:  James Richard Hawkins 

Title:  The Dynamic Characterisation of ESR Prosthetic Running Feet: An 

investigation of the key parameters affecting their performance. 

 Prosthetic running feet (referred to as Energy Storing & Returning (ESR) or 
Running Specific Prostheses (RSP) but better known as ‘blades’) take the form of a 
carbon fibre leaf spring with a deflecting keel component. Available literature on the 
subject of their dynamic response is limited but suggests that the amputee with 
running foot can be considered to act in accordance with Simple Harmonic Motion, but 
this does not appear to be reflected by the prescription processes currently employed 
by manufacturers. The research question is asked: ‘Is the current method of 
prescribing prosthetic ESR running feet appropriate and are there additional factors 
that should be taken into consideration?’ 

 This thesis aims to first understand the static mechanical characteristics of a 
single model of prosthetic foot; the Flex Run from Ossur (Reykjavik, Iceland). Previous 
works carried out (that aim to define the energy return efficiency of the devices but 
results vary from 63% - 100%) are examined and replicated using a series of fabricated 
jig fixtures, and the disparity in efficiency results is explained. The running action of an 
amputee is measured using a wearable measurement system that is developed as well 
as high-speed video capture. The measured action is then replicated in the laboratory 
using a rig capable of reproducing the dynamic response of the foot. This rig is 
subsequently used to manipulate the variables of Simple Harmonic Motion and 
evaluate the suitability of this assumption to model the running action of an amputee.  

The research concludes by using the gathered learning to create a tool capable 
of mathematically replicating the response of a prosthetic foot, and the application of 
such a tool is discussed.  

It is found during the course of the research that the available Flex Run feet 
possess an energy return efficiency of >99% and a variable stiffness along the length of 
the deflecting keel. As a contribution to knowledge, it was also found that during 
amputee running the ground contact point (and therefore effective stiffness) of the 
prosthetic changes significantly from foot strike through to toe-off and the profile of 
this change is defined. As such the principle of a spring-mass system cannot be applied 
in such a simplistic manner as previously suggested. Furthermore the relationship 
between amputee mass, stance length, foot deflection and response timing is defined 
for the first time. It was also discovered that the passive nature of the prosthetic 
device (and therefore fixed response) has the potential of limiting the top speed of 
running of an amputee and as such the current prescription method falls some way 
short of expectations. Methods of improving the prescription process are discussed 
and further work is suggested to improve the function of these prosthetic devices and 
therefore the user experience of the amputee athlete. 
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CHAPTER 1  

INTRODUCTION & LITERATURE REVIEW 

CHAPTER 1: INTRODUCTION & LITERATURE REVIEW 

1.1  Project Scope 

The work detailed herein was conducted in order to further knowledge in the area of 

the dynamic response and use of prosthetic running feet. Within this remit is the static 

characterisation and testing of ESR devices but moreover the examination of the first-

order dynamic performance and characteristics of the foot and amputee athlete. It is 

concerned with the dynamics of a foot in as much as can be appreciated (or ‘felt’) by 

the user and therefore secondary, tertiary, etc. orders or modes of vibration are 

ignored. Whilst a more complex dynamic performance of a composite structure (such 

as an ESR foot) exists and is acknowledged by the author, the literature studied shows 

that a more detailed and fundamental understanding of first-order performance could 

directly benefit the amputee athlete. 

1.2  Introduction 

Since the commercial introduction of the ESR (Energy Storing and Returning) prosthetic 

foot in 1985 (Michael, 1987) prosthetists and amputees have been able to choose 

ever-more specific and potentially suitable feet for any given application. The principle 

of an ESR foot is that it captures energy that would otherwise be dissipated when the 

runner lands (beginning at the moment of foot strike until mid-stance), and returns 

this energy (from mid-stance until toe-off) therefore propelling the runner forward 

(figure 1.1). 

Figure 1.1: The running gait cycle at maximum velocity (adapted from http://www.oandplibrary.org) 

Foot strike/ 

heel strike 

  

Mid-stance Toe-off/ 

Push-off 

  

Initial swing Mid-swing Terminal swing 

STANCE PHASE SWING PHASE 
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The remit of purely restoring basic function to the amputee dissolved in lieu of greater 

and greater performance enhancements culminating in the development of the first 

specialised prosthetic sprint foot, the Flex Run (figure 1.2) in 1996 (Lechler, 2005). 

However as the complexity and specific nature of the feet increases, so does the 

importance of effective prescription, although as Hafner (2005, p.8) notes, 'There is 

currently little compelling scientific evidence to guide the clinical prescription of 

prosthetic foot-ankle systems.' 

The advent of the specialist sprinting foot has enabled adaptive athletes to run faster 

than ever before. Indeed 2012 was a landmark year in prosthetic sprinting with Oscar 

Pistorius, a bi-lateral trans-tibial amputee, competing in the able-bodied summer 

Olympic Games in the individual 400m race and alongside his South African colleagues 

in the 4 x 400m relay. 

The journey to the Olympic Games for an amputee using ESR feet was not without 

controversy and in 2008 Pistorius was banned from IAAF (the International Association 

of Athletics Federations; the governing body in world athletics) competition. Dr Peter 

Brüggemann, Professor of Biomechanics at the Cologne Sports University, was charged 

with investigating the performance of Pistorius’s feet. Following the testing he 

commented that:  

“(Pistorius) has considerable advantages over athletes without prosthetic limbs 

who were tested by us. It was more than just a few percentage points. I did not 

expect it to be so clear.” (Die Welt newspaper, December 2007). 

Figure 1.2: Typical ESR running-specific foot (Ossur Flex Run) 
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Discipline Able-bodied world record 

(a) 

Assistive world record 

(b) 

% of time 

=(b)/(a) x 100 

400m 43.18s (Michael Johnson) 45.07s (Oscar Pistorius) 95.8% 

200m 19.19s (Usain Bolt) 20.66s (Alan Oliveira) 92.9% 

100m 9.58s (Usain Bolt) 10.85s (Jonnie Peacock) 88.3% 

Table 1.1: Comparison of current world record sprinting times of able-bodied and amputee athletes. 

Noroozi et al. (2012a) suggest a comparison can be made between an amputee runner 

and a basic spring - mass system, relying on spring stiffness and exhibiting natural 

damping and hysteresis behaviour and further: 

‘If [the] bending mode could be synchronised with the cyclic excitation force 

generated by the body, the mass/body can exhibit a bouncing behaviour’.  

(Noroozi et al. 2012b, p.40). 

The suggestion of a resonance-based principle of operation is supported by other 

publications (Lehmann, 1993a, b) and Noroozi et al. (2012b) embellish the subject with 

the modal analysis of two prosthetic devices to understand the conditions affecting 

their harmonic frequencies.  

Despite this work the prevalence of research in this field over the past two decades is 

limited. Indeed according to Nolan:  

‘Only one study measuring the dynamic hysteresis has been found. This showed 

a Cheetah foot (Ossur, Reykjavik, Iceland) to have 63% energy efficiency’. 

(Nolan, 2008, p.126). 

Nolan also reports that using basic energy calculations:  

‘the human foot has been calculated to have an energy efficiency of 241% 

during running at 2.8m s-1’.  (Nolan, 2008, P.127). 

This is due to the positive work that can be achieved with musculature that is absent in 

an amputee subject. The disparity in these published energy return efficiency figures 

would suggest a distinct advantage for able-bodied athletes. However if able-bodied 
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and assistive world record times are compared for various disciplines (table 1.1) it 

would suggest that there is a more complex picture emerging; the equation is not as 

simple as these basic efficiency numbers would suggest. 

If the 241% (c) efficiency of the human foot is combined with the reported 63% (d) 

efficiency of the ESR prosthetic device it would suggest an advantage of 383% in favour 

of the able-bodied athlete exists (100/(d) x (c)). If this is a genuine advantage in energy 

return with a natural foot - ankle system, how can an amputee be remotely 

competitive and why are the time discrepancies so small in high-level sprinting? What 

can explain the progressively tightening times of able-bodied athletes vs. their 

amputee colleagues as the event distance increases? When examining the times for 

the 100metre sprint for both the able-bodied and amputee world records it can be 

seen that the able-bodied record is 88.3% of the amputee time. This figure increases to 

95.8% for the 400m discipline. It can be seen that as the distance of the run increases, 

the able-bodied and amputee times become progressively close. 

This phenomenon is compounded when one considers the pool of athletes that the 

assistive sports have to draw from when compared with its able-bodied counterpart. 

There appear to be no solid statistics published to suggest the numbers of amputees in 

the UK but the estimate from the Limbloss Information Centre (2015) is circa 62,000. 

According to the NHS (2015) ‘Approximately 5-6,000 major limb amputations are 

carried out in the UK every year’ but this figure includes lower and upper limb 

operations. The general proportion of upper:lower limb amputations has been 

suggested as 20:80 by the Limbless Association (2012) but no figures are published to 

confirm these numbers. However the NHS (2015) go on to suggest that ‘the most 

common reason for amputation is a loss of blood supply to the affected limb (critical 

ischaemia), which accounts for 70% of lower limb amputations.’ Such conditions are 

most likely to occur in the less active population and the elderly, and the NHS (2015) 

conclude that ‘More than half of all amputations are performed in people aged 70 or 

over’. Following this thread and assuming some validity to the numbers available it 

could be suggested that there are some 24 - 34,000 lower limb amputees under the 

age of 70 in the UK today. 
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To progress this further and obtain more accurate numbers is not a trivial task as, 

according to the NHS and the Limbless Association, data only exists for those 

considered ‘live’ amputees; this means those who are registered on the NHS database 

which essentially originates from those who undergo an NHS procedure. However if 

further work were to be done, additional factors exist that should be taken into 

account and would again diminish the numbers of those available to represent Great 

Britain & Northern Ireland in the assistive sports. For example the proportions of AK:BK 

(Above Knee: Below Knee) amputees that exist (all current adaptive world sprinting 

records have been set by BK amputees), the aging amputee population as well as the 

proportion of the general population who are not only young enough but athletically 

gifted enough to compete on an international stage, regardless of disability.  

However working with the data that is available it would not be unreasonable to 

suggest that the total number of amputees in the UK who are of an age to take part in 

competitive sports (circa. 20 – 35 years) does not exceed perhaps ten thousand. 

According to the Office of National Statistics (2011) and the 2011 UK Census the 

estimated UK population for the same age group is approximately thirteen million.  

Very crudely put, for every Paralympic sprinter hopeful that exists in the UK there are 

around 1,300 in the able-bodied community of the equivalent age and at least an 

equal athletic ability. This information leaves no questions answered but does suggest 

that this is an area worthy of further study. Given the diminutive nature of the trans-

tibial (BK) amputee population and the apparent disadvantage that any runner has 

when using a prosthetic foot, what allows adaptive athletes to be remotely 

competitive? Perhaps the prosthetic devices themselves provide an advantage over 

able-bodied athletes that has yet to be understood. If so, what research has been done 

to help understand the dynamics of a runner using an ESR foot and how are these feet 

prescribed? Given that a prosthetic running foot is a passive device, how does the 

prescription process make allowances for different running styles, speeds and weights 

of amputees? A literature review was conducted in order to identify what research has 

been conducted in the field of ESR prosthetic dynamics and where significant areas of 

study remain. 
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1.3  Research Objectives 

A research question was defined as stated below: 

‘Is the current method of prescribing prosthetic ESR running feet 

appropriate and are there additional factors that should be taken 

into consideration?’ 

Justification for this question is provided in the proceeding chapters following the 

Literature Review. The objectives of this study were: 

 

- To define the mechanical characteristics of a specific prosthetic running 

foot including spring rate and energy return efficiency 

 

- To measure, understand and explain the action of a prosthetic running 

foot when in use across a range of running velocities  

 

- To replicate the action of an amputee runner in a laboratory 

environment and manipulate variables to demonstrate the application 

of Simple Harmonic Motion 

 

- To define what limitations a prosthetic foot imposes on running 

performance 

 

- To suggest an alternative and improved method of running foot 

prescription based on the work conducted.   
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1.4  Publications 

1.4.1  Journal Publications 

 

Written, awaiting submission: 

Hawkins, J., Schroeder, J.W., Sewell, P., Noroozi, S., Dupac, M. Development of a 

wearable sensor system for dynamically mapping the behaviour of a prosthetic running 

leg.  

Planned / in progress: 

Hawkins J., Sewell, P., Noroozi, S., Dupac, M., 2015 Spring Rate Variations of a 

Prosthetic Running Foot: A Quantitative Investigation. 

Hawkins J., Sewell, P., Noroozi, S., Dupac, M., 2015. Limitation Mechanisms of a 

Prosthetic Running Foot With Regard to Velocity, Cadence and Stance Length. 

Hawkins J., Sewell P., Noroozi, S., Dupac, M., LaCompte, C., 2015. Techniques for 

Effective Characterisation of Prosthetic Feet in a Laboratory Environment: Controlling 

Boundary Conditions.  

Hawkins J., Sewell P., Noroozi, S., Dupac, M., LaCompte, C., 2015. Techniques for 

Effective Characterisation of Prosthetic Feet in a Laboratory Environment: Friction and 

Hysteresis Sensitivity. 

Hawkins J., Sewell P., Noroozi, S., Dupac, M., LaCompte, C., 2016. Prosthetic Running 

Foot Prescription: An Investigation into the Required Parameters. 

 

1.4.2  Conference Publications 

Sewell, P., Hawkins, J. 2015. An Investigation of the Ground Contact Point and Sagittal 

Plane Displacement of Energy Storage and Return (ESR) Composite Lower-Limb 

Prosthetic Feet during Running. ISPO 2015  
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1.5  Literature Review 

The papers published in the field of lower limb prosthetics are varied in their nature 

and scope. In 'Perspectives on How and Why Feet are Prescribed' Stark comments:  

'Modern prosthetic practice includes a growing array of foot deigns that offer a 

wide spectrum of functions, indications, and costs.' (Stark 2005, p.18). 

Further:  

'this constant innovation requires a greater knowledge of physiologic foot 

function and more descriptive terminology when recommending feet to 

patients.' Stark (2005, p.18). 

Indeed it is clear that there are a wide variety of feet available, each with their 

increasingly specific and appropriate application. When considering the available 

literature it is important to remember the remit of this piece of work; specifically that 

is the function and dynamic characterisation of ESR prosthetic feet. The aim of this 

section is to understand the areas of knowledge that already exist in this field and 

importantly identify the gaps in this knowledge. What potential is there for expansion, 

what can be learned from previous investigations and what research methods should 

be adopted. 

The review was carried out by searching a variety of published databases as well as 

using a central repository and reference managing tool for controlling the papers. In 

this case Mendeley (Mendeley Ltd.) was chosen. The primary sources for papers were 

online databases Elsevier.com, Sciencedirect.com and MEDLINE/PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed). Articles were limited to those published in, or 

translated into the English language and keywords used for searching included, but 

were not limited to, such words as ‘prosthetic’, ‘feet, ‘foot’, ‘artificial’, ‘prescription’, 

‘energy’, ‘composite’, 'dynamics' and combinations thereof. Papers were mainly 

selected for review if their primary research questions were regarding the function of 

ESR prosthetic feet or their prescription process.  

  

http://www.ncbi.nlm.nih.gov/pubmed
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1.5.1  Characterisation of Papers 

This review is intended to give the reader an understanding of the research that has 

been carried out in the field of ESR prosthetic feet to date and identifies any areas of 

information deficit. Papers were divided into four distinct categories as defined in the 

following four sections: 

 

Walking/Running Dynamics Papers    (section 1.5.2) 

Prosthetic Comparative & Review Papers   (section 1.5.3) 

Prosthetic Prescription Papers     (section 1.5.4) 

Prosthetic Dynamics Papers inc. Measurement (section 1.5.5)  
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1.5.2   Walking/Running Dynamics Papers  

This category includes papers that describe the action & mechanism of walking and 

running for both able-bodied and amputee athletes. There are many theories 

concerning the most efficient gait styles or how different variables affect bipedal 

locomotion (for example stride length, strike rate and ground reaction force). Running 

has also been compared with mechanical models such as a spring – mass system. 

 

It has been generally accepted that as animals (including humans) run they bounce 

over the ground, effectively using legs as musculoskeletal springs. This action can be 

considered as storing and returning elastic energy (Cavagna et al., 1964, 1977). Farley 

at al. (1996) comment: 

‘all of the elements of the musculoskeletal system are integrated in such a way 

that the overall system behaves like a single linear spring during running.’ 

(Farley et al., 1996, p.185). 

 Seyfarth et al. (2002, p.649) continue by suggesting ‘Mechanically self-stabilized 

running requires a spring-like leg operation’. This is by contrast to the action of bipedal 

walking which was described in the seventeenth century as the action of vaulting over 

stiff legs (Borelli 1685) and has developed into the ‘inverted pendulum’ model 

(Alexander 1976). Subsequently the concept of a spring-mass model to describe 

walking has been suggested and according to Geyer et al. (2006, p.2861) ‘not stiff but 

compliant legs are essential to obtain basic walking mechanics’. 

The action of a runner has successfully long been compared with a spring-mass system 

and has been shown to accurately predict running mechanics (Alexander 1992; 

Blickhan 1989; Blickhan et al. 1993; Cavagna et al. 1988; Dalleau et al. 1998; Farley et 

al. 1991, 1993; He et al. 1991; Ito et al. 1983; McGeer 1990; McMahon et al. 1990; 

Seyfarth et al. 2003; Thompson et al. 1989). A graphical representation of this concept 

is shown in figure 1.3. 
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Figure 1.3: Illustration of a typical spring-mass system as 

proposed valid to represent human running (Farley et al. 1996). 

L = Spring length 

L0 = Original effective spring length 

y = Vertical displacement of mass 

The change in spring length represents the amplitude of compression of the effective 

leg spring and the change in ‘y’ value demonstrates the vertical oscillation of the 

centre of mass of the runner. This model has been the basis of further research under 

various running conditions investigating ground reaction forces, foot strike conditions, 

leg stiffness predictions, gait efficiency and fatigue (Bobbert et al. 1992; Dutto et al. 

2002; Farley at al. 1996; Geyer et al. 2002; Gottschall et al. 2005; Gunther et al. 2002; 

Keller et al. 1996; Kerdok et al. 2002; Morin et al. 2006). Furthermore the accuracy of 

such an approach has been investigated by Bullimore et al. (2007) who suggested the 

majority of running parameters could be predicted to within 10% of the measured 

values.  

Additional research has been conducted to investigate if a rigid body assumption is 

valid for running and progressively complex models have been constructed that 

employ a multitude of mass, spring and damper elements (Clark et al. 2014; Liu and 

Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999; Nikooyan and Zadpoor, 2011; Zadpoor 

and Nikooyan, 2010). However as the model becomes more complex it can be seen 

that the case becomes more specific to an individual and less suitable for predicting 

the action of a broad spectrum of runners. Clarke et al. (2014, p.2037) suggest ‘the 

relatively specific objective of the multi-mass models has limited the breadth of their 

application’ and conclude: 

‘two mechanical phenomena, acting in parallel, are sufficient to explain running 

ground reaction forces: (1) the collision of the lower limb with the running 
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surface, and (2) the motion of the remainder of the body’s mass throughout the 

stance phase.’ (Clark et al. 2014, p.2037). 

In a study to understand how runners affect a faster running velocity Weyand et al. 

(2000) found that stride frequency, stride length and contact length were all increased 

for faster runners.  

‘We conclude that human runners reach faster top speeds not by repositioning 

their limbs more rapidly in the air but by applying greater support forces to the 

ground.’ (Weyand et al. 2000, p. 1998). 

Subsequently Weyand et al. (2010) expand on this research concluding that: 

‘a limit to spring running speed is imposed not by the maximum forces that can 

be applied to the ground but rather by the maximum rates at which the limbs 

can apply the forces required.’ 

In support of these conclusions Keller et al. (1996) found that ‘(Ground reaction 

force) increased linearly during walking and running from 1.2 BW (Body Weight) to 

approximately 2.5 BW at 6.0 ms−1‘ (Keller et al. 1996, p.253) suggesting that as running 

speed increases so too does the ground reaction force exerted by the athlete. It would 

be logical to suggest that this increase in ground reaction force is accompanied by 

increased effective leg stiffness, but Farley et al. (1996) report the contrary: 

‘Biomechanical studies have shown that as animals run faster, the body’s spring 

system is adjusted to bounce off the ground in less time by increasing the angle 

swept by the leg spring during the ground contact phase rather than by 

increasing the stiffness of the leg spring’ (Farley et al. 1996, p.181). 

And further: 

‘The stiffness of the leg spring remains nearly the same at all speeds in a variety 

of animals including running humans, hopping kangaroos and trotting horses’ 

(Farley et al. 1996, p.181). 
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In order to affect a change in leg stiffness there is some disagreement in published 

literature. Bobbert (1992, p.223) observed ‘spring-like behaviour of pre-activated knee 

flexor and knee extensor muscles’ suggesting the knee is responsible for a change in 

effective leg stiffness and Arampatzis et al comment: 

‘Running velocity influences the leg spring stiffness, the effective vertical spring 

stiffness and the spring stiffness at the knee joint. The spring stiffness at the 

ankle joint showed no statistical difference (p<0.05) for the five velocities.’ 

(Arampatzis et al. 1999, p.1349). 

However contrary to this Farley et al (1999, p.267) conclude that ‘the primary 

mechanism for leg stiffness adjustment is the adjustment of ankle stiffness’  

Regardless of which part of the leg anatomy is responsible for the alteration of 

effective spring stiffness, the available literature suggests that running can be equated 

to a spring – mass system with the musculature of the entire system combining to 

effectively form a spring. In order to run faster, the athlete is capable of stiffening this 

spring and exerting positive work to the ground plane thus affecting a larger ground 

reaction force. This additional energy allows an increased stride length with the 

contact length and stride frequency naturally lengthening at higher running velocities. 

No evidence of a decreased swing time (as running speed increases) could be found in 

the literature. 

Furthermore, following research into the stiffness of the running surface substrate 

Kerdok et al. suggest:  

‘a reduction in metabolic cost occurs as the elastic rebound provided by a more 

compliant surface replaces that otherwise provided by a runner’s leg.‘ (Kerdok 

et al. 2002, p.474). 

 This suggests that if an artificial spring were included into a leg (as in the case of a 

prosthetic running foot) the resulting elastic rebound could result in a reduction of 

metabolic cost. 
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Figure 1.4: Typical SACH (Solid Ankle Cushioned Heel) 

foot for low activity (Blatchfords) 

1.5.3   Prosthetic Comparative & Review Papers  

This category includes papers that compare different styles of feet and/or review feet 

and relevant literature. To date there have been many research projects that serve to 

pitch one style or model of foot against another. Often the merit of each of the feet is 

discussed and a testing regime defined in order to scientifically test their effectiveness 

or suitability. Commonly (and usefully) this involves the comparison of a SACH (Solid 

Ankle Cushioned Heel – figure 1.4) foot with some version of an ESR foot for both 

walking and running.  

 

 Contrary to expectation for a style of foot that has been renowned for improving 

running performance, the majority of the comparison work relating to ESR feet that is 

evident in the literature is primarily concerned with basic ambulation and self-selected 

walking speeds (Collins et al. 2005; Fey et al. 2011; Mattes et al. 1999; Thomas et al. 

2000; Yack et al. 1999). Torburn et al. (1990, P.370) noted that in their investigation 

'Gait analysis was done during self-selected free and fast-paced walking over a 10 

meter level walkway' and in perhaps the most relevant and thorough comparison of 

the ESR style of foot with a SACH foot, Lehmann et al. (1993a, P.853) wrote that in 

their testing '...a range of walking speeds was selected (ie, 73, 90, 107, and 

120m/min)'. This is perhaps a function of the relatively recent development of ESR feet 

but also suggests the limited amount of scientific research that has been undertaken in 

this field. In his review of the literature from 2005 Hafner writes: 
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'Given that more than 20 years of scientific research has examined the effect of 

prosthetic feet on amputee gait, [the]limited evidence to support prescription or 

use of prosthetic feet appears to fall short of expectations'. (Hafner 2005, P.5)   

 To compound this apparent shortage of relevant papers, those that are available and 

comment on the comparative dynamic function of ESR prosthetic feet (such as the Flex 

Run vs. SACH foot) most commonly do so with a heel component fitted, meaning that 

the only energy absorption that can take place in assisting plantorflexion (the action of 

standing on tip-toes) occurs from mid-stance through to when the toe is fully loaded 

(see figure 1.1 for a diagram explaining the running cycle). Therefore a large 

proportion of energy (resulting from heel strike) is dissipated in the heel component 

which is not present in modern running prostheses. 

Additionally Lehmann et al. suggest:  

'The timing of the release of the stored energy during unloading relates directly 

to the natural frequency of the prosthetic limb' (Lehmann et al. 1993a, P.859) 

and also note:  

'To effectively use the energy released during unloading, it must be timely to 

assist in propulsion of the body, as in a pogo stick.' (Lehmann et al. 1993a, 

P.859) 

 This suggested link between the harmonic of the foot under load and the stance-phase 

timing of the amputee is the subject of discussion in the first paper from 1993 by 

Lehman et al. whereby some dynamic testing of these feet was undertaken.  

'In order to determine if the release of stored energy due to compression of the 

foot occurred timely to assist with propulsion during walking, the natural 

frequency of oscillation was assessed.' (Lehman et al. 1993a, P.855) 
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However this testing demonstrated a natural harmonic frequency grossly higher than 

that demanded when walking and efficiency calculations performed on amputee 

subjects confirmed that no advantage was yielded from the use of an ESR foot.  

'There was no significant difference in metabolic rate or efficiency while using 

either prosthesis at any given walking speed' (Lehmann et al., 1993a, P.855). 

 Energy calculations performed by others also confirmed that no performance increase 

could be found when using an ESR foot when walking. Upon comparing an array of ESR 

prosthetic devices with a SACH foot, Torburn et al. (1990, P.369) noted that 'There 

were no clinically significant advantages of any of the feet tested' and:  

'The results of this pilot study suggest there are no advantages of the dynamic 

elastic response feet for the amputee who is limited to level walking. Further 

investigation is needed' (Torburn et al.  1990, P.383).  

It is clear from the literature that the various authors believe there to be a more in-

depth dynamic function of the feet that has yet to be understood fully. Lehman et al. 

suggest:  

'It may be possible to exploit energy storage and release within the prosthetic 

limb, but the time from compression to release should be more closely related 

to the timing of the gait cycle. This approach may serve as the basis for future 

research in the development of more effective prosthetic foot designs'. (Lehman 

et al. 1993a, P.860) 

Hafner et al. write:  

'Future research must concentrate not on analyzing which devices work, but on 

analyzing why the devices that do work are successful for the particular 

amputee'. (Hafner et al. 2002, P.6) 

 Additionally Hansen et al. (2004b) comment on the changing boundary conditions that 

exist throughout the stance phase of the gait cycle; this is to say the changing contact 
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area and load shift throughout the foot. All feet in this study were fitted with a heel 

component but this provides a further variable to measure when considering the 

dynamic function of ESR feet. Does the boundary condition of an ESR foot change 

dramatically and should this exhibit a dynamically significant effect? 
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1.5.4  Prosthetic Prescription Papers  

These are papers that discuss foot prescription, be it the effectiveness of various 

prescription processes or simply commenting on how feet are prescribed. Such 

publications include the manufacturers’ documentation and advice to the prosthetists 

for effective fitment of their specific feet. These papers are particularly useful for 

understanding the current processes employed by healthcare professionals. 

    

 

With the exception of the various manufacturers' fitting manuals that describe the 

clinical advised prescription procedure for their respective feet, only two papers were 

found that have any mention of ESR feet and are solely concerned with the topic of 

prescription. These are separate to the papers mentioned elsewhere in this report that 

touch upon the prescription process as part of a larger discussion around their 

dynamics, etc. 

In a paper by Stark (2005), 'Perspectives on How and Why Feet are Prescribed', there is 

almost no mention of ESR feet and despite the various sections of the report detailing 

the important parameters to consider, running-specific devices do not feature. An 

important observation that is made however is:  

'[This] constant innovation requires a greater knowledge of physiologic foot 

function and more descriptive terminology when recommending feet to 

patients.' (Stark 2005, P.18) 

A nod to the specificity of modern feet for the patient and their desired level of 

activity. A more comprehensive and relevant review is provided by Lechler et al. (2008) 

and describes the considerations when specifying an ESR foot for running. Despite 

being a journal authored by the employees of Ossur Ltd. and is arguably biased 

towards their products and interests, it does cite some useful papers that are also 

included in this review of the literature. Some conclusive statements are made which 

seem to simplify the area somewhat, such as:  
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'The appropriate stiffness selection can reduce the metabolic cost when the 

driving frequency matches the resonance frequency of ambulation.' (Lechler et 

al. 2008, P.231) 

However this is taken from Lehmann et al. (1993a,b) and in this specific paper it is 

more of a hypothesis than a conclusion. One piece of information that does not appear 

elsewhere is:  

'for the 100m sprint, the category is selected by weight according to the 

manufacturer's chart; for the 400-m sprint, one category lower is selected; and 

for long jump, two categories up are selected' (Lechler et al. 2008, P.231)  

Another acknowledgement of the importance of matching the driving frequency with 

natural system harmonics is: 

'During acceleration the change in cadence would require a continuous 

adaption of the prosthetic device to the resonance frequency of ambulation' 

(Lechler et al. 2008, P.231).  

These statements would suggest that Ossur as a prosthetic devices manufacturer have 

found a more direct correlation between running efficiency and system harmonics 

than were merely suggested by Lehmann et al. (1993a,b) and other authors since, but 

these findings are not in the public domain.  

If the literature available from Ossur is examined there appears to be some confusion 

regarding the intended use of their ESR prosthetic feet. The most commonplace model 

of foot is the Flex-Run and according to the 2014 products catalogue (Ossur, 2014) the 

foot is suitable for ‘high impact activities such as recreational jogging, trail running, 

distance running and triathlons’. Meanwhile the Ossur website suggests the foot is 

suitable for ‘activities involving running, track and field, sprinting, and long-distance 

running.’ (Ossur.com, 2014). Feet are offered in a range of stiffness values, divided into 

specified ‘categories’ and are prescribed according to the mass of an amputee with 

little or no consideration for their specific ability or desired activity as demonstrated by 

the stiffness prescription guide from Ossur (table1.2). 
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Table 1.2: Flex Run stiffness prescription guide (Source: Ossur.com) 

Table 1.3: Nitro stiffness prescription guide (Source: Freedom-innovations.com) 

Table 1.4: Blade XT stiffness prescription guide (Source: Endolite.co.uk) 

 

This practice is consistent with other manufacturers of ESR prosthetic feet. Freedom 

Innovations (Freedom Innovations LLC, California, USA) provide a chart to guide the 

prosthetist (table 1.3) which features a shift of one category based on the experience 

of the athlete and Endolite (Chas A Blatchford & Sons Ltd, Basingstoke, UK) suggest a 

shift of a single category based on a subjective measure of being a ‘jogger’ or ‘runner’ 

(table 1.4). It is not clear if the stiffness categories are comparable with one another 

across these different manufacturers and there are no tangible units associated with 

the various categories.  
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1.5.5   Prosthetic Dynamics Papers inc. Measurement 

Particularly key to this project, these are papers that attempt to describe the dynamic 

action of various feet from a fundamentally mechanical point of view. Some choose to 

evaluate the feet when fitted to an amputee, whilst others isolate the foot and treat 

the amputee and foot as a simple mechanical system. Also included is a summary of 

those methods used to measure and record the variables of running, whether with or 

without a prosthetic device. 

 

Numerous research projects are available that are concerned with the development of 

adaptive, active and bionic foot/ankle designs (Au et al. 2008; Hansen et al. 2004a; Herr 

et al. 2002; Holgate et al. 2008; Michael et al. 1990; Tokuda et al. 2006; Versluys et al. 

2009) but these are almost solely concerned with improving the performance of 

prosthetics for walking activities. No compelling work was found in the area of active 

running prosthetics and as such this section deals with the papers that form the vast 

majority of research in this area; passive ESR running feet. 

The most recent work that has been published on the topic of the dynamic function of 

ESR prosthetic feet is that of Noroozi et al. (2012a,b, 2014) in a series of three papers. 

Through various means including FEA prediction, mathematical modelling and rig 

testing the authors have demonstrated the link that exists between impulse timing and 

the energy return from a prosthetic foot.  

'The mathematical and experimental results demonstrates that if the impact 

frequency due to self-selected running frequency is synchronised with the 

natural bending modes of vibration, the ESR foot responds like a trampoline, 

resulting in higher take-off speed and higher potential energy storage in the 

system' (Noroozi et al. 2012a, P.113).  

Throughout the course of this work exists the comparison of an amputee and 

prosthetic ESR foot to a spring - mass system. This approach assumes the body of the 

amputee to be a rigid mass. In addition to a natural flexibility the human body also 

exhibits an infinitely variable nature of musculature control, but crucially in making this 
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assumption it allows the removal of variables that would otherwise complicate the 

equation. 

Noroozi et al. (2012a,b, 2014) are not the first authors of papers to make this same 

assumption. Able-bodied running has been effectively compared with spring-mass 

models many times (McGowan et al., 2012, Blickhan, R., 1993, 1989, Alexander, R. M. 

1992). During their defence of Oscar Pistorius prior to the 2012 Olympic games 

Weyand et al. (2009, p.903) state that: 

‘passive, elastic prostheses are designed to provide the spring-like function that 

human lower limbs do during the stance phase of each stride’. 

However the application of such a model in amputee running is relatively recent. 

Wilson notes ‘there have been no published studies to date that have used a spring-

mass model to evaluate amputee biomechanics’ (Wilson et al. 2009, p.218). 

Noroozi et al. (2012a,b, 2014) have extended knowledge in this area through 

theoretical development, simulation and physical testing utilising modern prosthetic 

devices.  However, this research has been focused heavily on the development of the 

fundamental science behind the dynamics of the foot, while little discussion has been 

made to date on the effect this will have on their prescription.   

A repetitive theme in the papers that have been published over the last 20 years is that 

of synchronisation. Synchronisation of the natural resonance of the prosthetic with 

that of some measurable of running and suggestions are made that this will enhance 

performance. Lechler et al. suggest:  

'The appropriate stiffness selection can reduce the metabolic cost when the 

driving frequency matches the resonance frequency of ambulation' (Lechler et 

al. 2008, P231) 

This view is shared by Lehmann et al. (1993a,b) and Noroozi et al. (2012a,b, 2014) 

although it has yet to be conclusively demonstrated.  

A further theme that establishes itself is that of the inconsistency in measurement 

techniques to compare various feet. Geil (2001) conducted work focused on the 
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hysteresis and efficiency of energy return of a variety or ESR feet and did so using a 

dynamic hydraulic testing machine and describes how 'Two Teflon sheets (DuPont, 

Wilmington, DE) were placed between the table and the foot to minimize friction 

during foot loading and deformation' (Geil 2001, P.71).  The resulting hysteresis loops 

are therefore more likely to have occurred as a result of the friction in the slippage 

system under load than from the damping properties of the spring itself. Such a 

technique would also potentially result in the changing boundary condition of the 

ground contact point as the foot deflects, which is not mentioned. This effect is 

discussed by Dyer who mentions that:  

'an assessment of energy return technology when loaded under dynamic 

conditions demonstrates changes in mechanical stiffness due to bending and 

effective blade length variation during motion'. (Dyer 2013, P.116) 

Other investigations have taken place using similar techniques but none have exactly 

replicated this same methodology. Repeating such an investigation in an accurate 

manner would be impractical given that the friction co-efficient (µ) between the toe 

and test machine would need to be precisely replicated.  

Buckley (2000, P.358) summarises that 'The findings in the present study, indicate that 

100% of the energy absorbed by the (Sprint-Flex or Cheetah) prosthesis was returned'; 

a direct contradiction of the work carried out by Geil (2001) who defined the efficiency 

of a Flex Foot prosthesis as 75%. Czerniecki et al. (1991) propose a value of 84% for the 

same model of foot whereas Bruggemann et al. suggest: 

‘The material behaviour of the carbon keels of the dedicated prosthesis 

provided a hysteresis of less than 10 per cent, indicating a high per cent of 

energy return.’ (Bruggemann et al. 2008. P.227) 

Wilson et al. mention this lack of parity in measurement techniques.  

'...there is often difficulty linking the quantitative results to clinically relevant 

findings. This difficulty is compounded by the inconsistency in measurement 

approaches limiting the ability for comparison between studies' (Wilson et al. 

2009, P.219) 
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All of the measurement approaches mentioned previously concern the isolation of a 

prosthetic device and subsequent analysis using laboratory equipment. However 

numerous research studies are available that observe human running and record 

specific variables. The technique chosen should reflect the parameters demanded by 

the research. 

Visual referencing systems can be used to record the positioning (in two- or three-

dimensional space) of reflective markers placed at specific locations on a participant 

and the resulting video interrogated to understand the relative movement of these 

markers (Hillery et al. 1997; Pasparakis & Darras 2009; Lehmann et al., 1993a,b; Strike 

& Hillery, 2000; Palermo et al. 2014; Riener et al. 2001; Torburn et al. 1990; Wilson et 

al., 2009). This process has been used to analyse running gait, joint kinematics, powers, 

torques, moments and velocities, but assumes an effective calibration and secure 

application of the markers. Video data is typically captured at 120Hz (Vicon, Oxford 

Metrics Inc.) to allow improved resolution if compared with regular video cameras. 

Choosing a lower frame rate will result in a poorer resolution and as summarised by 

Keogh (2011, p.239) (when commenting on the Oscar Pistorius athletics defence case 

prior to the 2012 Olympic games) ‘the use of 30Hz video footage by Grabowski et al 

(2010) is insufficient’. 

Ground force reaction, stance- and swing-phase timing and stride length can be 

evaluated using force plates that can be mounted in the floor of a controlled test area 

or on the bed of a specialist treadmill (Riener et al. 2001; Hillery et al. 1997; Pasparakis 

& Darras 2009).  

Further to these and often in consort, Electromyography (EMG) can be used to 

monitor the activity of musculature of the participant being observed (Fey et al. 2010; 

Pasparakis & Darras 2009; Perry & Shanfield 1993). This involves the insertion of 

probes into the relevant muscles and can be used to determine the timing and relative 

intensity of muscle activation although is not suitable for the definition of absolute 

values. 

On occasion researchers have chosen to develop additional measurement techniques 

and instrumentation which are specific to the task being undertaken. Examples of this 
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are foot switches attached to the feet of athletes for determining stride cadence (Perry 

& Shanfield 1993), or a series of gyroscopes and accelerometers to measure angular 

velocity of body segments and accelerations of various skeletal positions (Liu et al. 

2009). These somewhat custom techniques have the distinct advantage of allowing 

freedom from a gait laboratory environment that could prove restrictive to the activity 

in question. 

It should also be noted that for each of these measurement techniques there must 

also exist the relevant hardware and software for the recording (at a suitable 

frequency), storing and analysis of the data gathered. This could take the form of a 

standalone data logger or computer with specialist software.  
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1.6   Conclusions on the Literature Review 

It is clear from the papers reviewed that limited work has been conducted in this area 

and there is a lack of parity on the topic of the dynamics of ESR prosthetic feet. Partly 

this could be because those papers that are available are spread over more than two 

decades and designs/styles of feet have changed somewhat in this time. However it is 

more likely that this has occurred due to a basic lack of research conducted on the 

subject. The fundamentally small group of individuals that benefit from such ESR 

running feet means that their commercial value is limited and hence the funding for 

research is also limited.  

More concerning, there appears to be little or no scientific literature surrounding the 

reasons for selecting a foot, or rather foot category for a specific amputee. In their 

study of running biomechanics, Wilson et al. (2009, P.221) comment 'The exact 

stiffness categorization was somewhat arbitrary'. Hafner (2005, P.8) goes further to 

say 'limitations in the research studies conducted to date preclude the direct 

application of scientific evidence to clinical decision making.' In other words the 

prescription process used in the designation of prosthetic ESR feet is unscientific. 

Strike & Hillery (2000, P.606) comment that 'Change and development in prosthetic 

design appears to have been carried out on a trial and error basis' and Hafner (2005, 

P.8) mentions that 'There is currently little compelling scientific evidence to guide the 

clinical prescription of prosthetic foot-ankle systems.' 

It is clear and often recommended in the literature that more work should be 

conducted in the area of dynamic characterisation of ESR feet, particularly surrounding 

the prescription process with logic and reason. Much of the literature concerning the 

dynamic properties of such devices suggests a strong link between the natural 

harmonic frequency of the prosthetic and some manner of running frequency/driving 

frequency. Whether or not this link is fully understood in the private domain, it is not 

reflected in the recommendation of one stiffness category over another for a specific 

patient. No consideration is currently evident with regards to running style, distance, 

speed, cadence, height or type. The same foot is advised by the manufacturers for an 
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80kg patient no matter if they are 5 feet or 7 feet tall, or if they intend to take part in 

competitive sprinting or leisurely family jogging.  

Acknowledging the findings, conclusions and educated hypotheses of the authors in 

this review regarding synchronisation, the current prescription system appears to fall 

some way short of basic expectations and in many cases must be providing amputees 

with what can only be termed as the incorrect category of foot. It is in this area that 

the most important fundamental research must take place; putting science, logic and 

reasoning around how and why feet are prescribed. Hafner et al. write:  

'While the performance of the prosthesis will always be a vital component of prosthetic 

design, the ultimate goal will always be the optimum performance and health of the 

amputee.' (Hafner et al. 2002, P6) 

This means at the most fundamental level providing them with the correct prosthesis 

for their body and their desired activity. 

Papers that discuss and investigate the dynamics of running feet during use are few. 

Evidently this is an area of limited research, but progress appears to be hampered by 

diverse approaches to understanding the problem. Results are varied with no definitive 

questions answered to aid the prosthetist. However, strong links between driving 

frequency and the resonant modes of the prosthetic system are suggested and 

investigated on a hypothetical basis by some authors (most notably Lehmann et al. 

1993; Lechler et al. 2008; Noroozi et al. 2012a,b, 2014). 

One particular area of foot dynamics that is briefly mentioned by only a single paper 

(Dyer et al., 2013) is that of the changing boundary conditions; the shifting of the 

ground contact point along the distal portion of the foot. If a single stride is examined, 

following foot strike, the tibia (in the case of an intact limb) progresses over the foot 

(tibial progression). This motion naturally transfers the weight of the runner from the 

extremity of the heel forward to the toe, until the foot leaves the ground (toe-off). This 

is demonstrated in figure 1.5.  
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The same principle can be observed in an ESR running foot (for example with an Ossur 

Flex Foot). In this instance the lack of a heel means the initial ground contact point is 

with a posterior portion of the foot. As tibial progression occurs it is reasonable to 

suggest (and observable) that the ground contact point alters through to toe-off. This 

is demonstrated in figure 1.6. Given that the shank of the foot remains attached to the 

prosthetic socket at all times but the distal contact point changes, the spring rate of 

the foot must change as the length of the effective lever arm increases. The further 

rearwards (posterior) the contact point with the ground, the higher the spring rate 

must be. Conversely the effective stiffness decreases as the ground contact point 

progresses forward onto the toe.  

This suggests that the spring rate of a foot is dependent on the running style of an 

individual. Even assuming straight level running,  if the runner takes shorter strides or 

has a more digitgrade ('on the toes') characteristic set by the prosthetist, the ground 

contact will be different to that of a more relaxed user and thus a different spring rate 

variation will result. 

Therefore this research sets out to investigate and add new knowledge on the dynamic 

characteristics of ESR prosthetic feet. What factors are important when prescribing a 

foot, and how do these factors interact with each other and the amputee? The 

Figure 1.5: Projected ground 

contact point progression 

throughout a single stride on an 

unaffected leg.   

Figure 1.6: Projected ground 

contact point progression 

throughout a single running 

stride on an ESR running foot. 
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phenomenon of system resonance and the matching of driving oscillatory frequency is 

mentioned by a number of authors and this will be investigated in detail. 

Fundamentally, can the dynamic function of such a prosthetic device be understood, 

characterised and used to advise prosthetists when ascribing a category of foot to an 

amputee? 
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CHAPTER 2: RESEARCH METHODOLOGY & PLAN 

2.1  Research Questions 

The literature review has identified what research has been carried out to date and 

where the areas for further work exist. As a result of this a research question was 

defined with a series of following sub-questions to assist in defining the most 

appropriate research objectives. It is by asking these questions that this work aims to 

most significantly add to the available knowledge of prosthetic running feet. The 

primary research question is stated below with the sub-questions detailed in the 

following sections: 

‘Is the current method of prescribing prosthetic ESR running feet 

(based on mass alone) appropriate and are there additional 

factors that should be taken into consideration?’ 

Feet are currently prescribed according to the mass of an amputee with little or no 

consideration for other factors such as height, stride length or the intended running 

velocity of the amputee. This research intends to understand if this is an appropriate 

approach or if there are additional factors that could be taken into account that would 

benefit the prescription of suitable prosthetic devices and therefore the user 

experience of amputee athletes. 

2.1.1 Sub-question 1: What are the mechanical characteristics of a 

prosthetic running foot?  

There is a wide disparity in figures published to date surrounding the efficiency of 

energy return of prosthetic running feet. It is not understood why this disparity exists 

and which figures are to be considered accurate. This research should identify what 

has caused these discrepancies and what the most appropriate testing method should 

be for such devices. What foot characteristics are important in amputee running and 

how can these be measured/ tested such that the future design of prosthetic feet can 

be advised. 
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2.1.2 Sub-question 2: Is the claim that a foot mimics Simple 

Harmonic Motion legitimate? 

Authors have previously suggested that the action of a prosthetic foot follows the laws 

of Simple Harmonic Motion but no work has been conducted to validate this claim to 

date. If this is a realistic concept, the response characteristics of a prosthetic foot could 

be ascertained theoretically thus potentially allowing a more specific prescription for 

an amputee.   

2.1.3 Sub-question 3: Can the action of a prosthetic running foot be 

modelled mathematically? 

If the action of a foot could be modelled across a range of speeds this could be used to 

advise the prosthetist what foot is most suitable for an amputee, or advise the 

amputee how best to use a specific category of foot. Perhaps the limitations of a 

specific foot can be highlighted at an early stage rather than the ‘trial and error’ 

process that has been suggested previously (Strike & Hillery 2000, P.606). 

2.1.4 Sub-question 4: Can the prescription of feet be changed such 

that the user experience of active amputees is improved? 

The ultimate goal of any research concerning prosthetic feet is to improve 

performance and therefore user experience. If the current prescription methods 

employed by prosthetists can be shown to be lacking in any particular aspect, how can 

this be improved and what future work should be conducted to ensure a more specific 

and suitable prosthesis for an amputee? 
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2.2  Research Methodology 

2.2.1 Qualitative vs. Quantitative Research 

The research described in the literature review was carried out almost solely in a 

quantitative manner. Some studies have commented on user feedback in terms of self-

selected running speeds (Czerniecki 2005; Hansen et al. 2004; Lehmann et al. 1993a,b) 

and others use qualitative measures for judging the suitability of participants for 

testing, for instance evaluating levels of comfort (Biswas et al. 2010). However the 

overwhelming majority of research in the field of prosthetic characterisation and 

running dynamics is carried out through quantitative measurement of specific 

variables. This is often conducted using equipment such as force plates (Arampatzis et 

al. 1999; Bruggemann et al. 2008; Lehmann et al. 1993a,b; Torburn et al. 1990; Wilson 

et al. 2009), high speed video capture (Strike et al. 2000; Hunter et al. 2005, 

Bruggemann et al. 2008; Grabowski et al. 2010) and reflective marker technology 

(Bruggemann et al. 2008; Lechler 2005; Torburn et al. 1990; Wilson et al. 2009). This 

methodology is appropriate but is perhaps limited at times by the specific artificial 

environment demanded by the measurement techniques. 

To re-iterate section 1.3 the research objectives of this work are: 

- To define the mechanical characteristics of a specific prosthetic running foot 

including spring rate and energy return efficiency. 

- To measure, understand and explain the action of a prosthetic running foot 

when in use across a range of running velocities. 

- To replicate the action of an amputee runner in a laboratory environment and 

manipulate variables to demonstrate the application of Simple Harmonic 

Motion. 

- To define what limitations a prosthetic foot imposes on running performance. 

- To suggest an alternative and improved method of running foot prescription 

based on the work conducted. 
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Following on from the majority of literature studied throughout the course of this 

research, the requirements of defining and understanding mechanical characteristics 

and running action fundamentally drives a quantitative research method. The above 

objectives all involve scientific measurement of specific variables and subsequent 

evaluation/replication of these variables in a laboratory environment. It is intended 

that the laboratory work be carried out without a human participant (for instance 

using a dynamic hydraulic test machine to ascertain foot spring efficiency) and as such 

a quantitative measurement approach is valid. 

When testing with human participants (as is the intention for a portion of this research 

project) there should always be a qualitative element. This ensures suitability, comfort 

and safety of the participants and to aid this (and in line with research best practice) 

ethical approval was sought prior to testing. The approved ethics forms can be found 

in the appendix (Chapter 11, section A5.2) and considers the age, disability level, 

privacy and wellbeing of the participant.  

Hafner et al. (2005) conclude their studies of the clinical prescription methods by 

writing: 

'Researchers must consider revising the test environments under which these 

prosthetic components are evaluated' (Hafner et al. 2005, p.9) 

 

And further:  

'Propelling research to match real-world environments such as stairs, hills, and 

uneven terrain may serve to better drive clinical prescription of prosthetic feet.' 

(Hafner et al. 2005, p.9) 

 

As such, quantitative measurement techniques proposed for this research include 

those mentioned above (force plates, high speed camera apparatus) as well as 

additional fabricated measurement devices suitable for data capture of specific 

variables over uncontrolled terrain. The specific measurement devices and methods 

are detailed in the chapters that follow and focus on a purely quantitative approach. 
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To conclude, it is proposed that this research take on a purely quantitative research 

approach with the exception of that which involves the human element. It is 

imperative that the wishes, comfort and on-going wellbeing of the individual are taken 

into account before, during and after testing and qualitative appraisal must be 

conducted. However this appraisal is not anticipated to form the backbone of the 

research. Whilst subjective feedback and advice from participants will no doubt advise 

the direction of the test work (to some extent) it is the data gathered from these 

various tests that shall be used to achieve the objectives defined in section 1.3. 

 

2.2.2 Design of Experiments Methodology: 

It is intended that each of the experiments to be carried out throughout the course of 

this research project be done according to best practice and in line with the principles 

set out by Ronald Fisher (Fisher, 1935). As such, particular attention shall be paid to 

the following factors: 

- What and how many variables are being recorded? 
- What control measures should be included?  
- What resolution is required of these variables? 
- How can they be recorded or measured? 
- What frequency should they be recorded at? 
- Dependant or independent variables? 
- What external factors might affect accuracy and repeatability of the results? 
- Should the participant be blind to the variables being measured? 
- What is the sample size and is this sufficient to be representative? 

 

The literature review in Chapter 1 has highlighted the variation in both measurement 

techniques and results for comparable tests. The adoption and careful application of 

these principles as well as the control of boundary conditions during the design of the 

experiments should serve to both improve accuracy and repeatability of the various 

investigations. 
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2.3  Chapter Summary 

This thesis is split into 10 chapters and it is the purpose of this section to give the 

reader an overview of the contents of each. The chapters have been written to each 

cover a single manifold area of the research, each with clearly defined research 

objectives and conclusions that lead onto the following chapter. They are arranged in a 

logical and largely chronological order such that the story can be followed from the 

initial research questions (section 2.1) through to the final conclusions, discussion and 

suggestions of further study (Chapter 10). Contained in this section are summaries of 

each chapter and the rationale for the research contained within.  

2.3.1  (Chapter 3): Static Characterisation 

The objective of this chapter is to replicate the work conducted by previous authors in 

the field of foot characterisation, explain the disparity in results and aid in further 

understanding key factors in prostheses characterisation. This is carried out by slow-

deflection testing of an Ossur Flex Run (Cat.6Hi) (Ossur, Iceland) prosthetic device in an 

Instron hydraulic test machine with various foot contact conditions. The true efficiency 

of the foot is calculated and the spring rate & linearity is stated. A new method for 

testing feet is defined and this technique is utilised throughout the rest of the project. 

2.3.2  (Chapter 4): Dynamic Characterisation 

This chapter defines typical input conditions for foot testing at representative 

velocities by measuring the relevant variables during amputee running. A sensing 

system was developed that could be worn by an amputee and was capable of 

collecting typical running data for foot deflection (amplitude, timing, rate) and ground 

contact point (along the base of the foot). The data gathered is averaged to define a 

single, typical, stride and this information was used to replicate the characterisation 

tests undertaken in Chapter 3 but with representative input conditions (displacement 

velocity & ground contact points).  
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2.3.3  (Chapter 5): Bringing Running into the Laboratory 

If foot testing can take place in a laboratory environment without the use of an 

amputee volunteer, multiple conditions can be investigated without introducing 

variables (and the variability) associated with human participants. Therefore the aim of 

this chapter is to define, design, fabricate and calibrate a test rig onto which a 

prosthetic running foot can be mounted. The resulting rig can then be validated 

against the recorded data obtained during amputee running in Chapter 4. Using this rig 

it is possible to investigate the effects of modifying input conditions on foot response.  

2.3.4  (Chapter 6): Changing SHM Variables on the Rig 

Previous research work has suggested that a prosthetic foot dynamically mimics the 

action of Simple Harmonic Motion. This chapter aims to understand if this is legitimate 

by using a rig to simulate the action of an amputee runner. Each of the variables 

occurring in the equation for SHM (mass & stiffness) is modified in turn across a broad 

spectrum and the foot response measured.  

2.3.5  (Chapter 7): Amputee Testing & the Effect of Speed Variation 

The aim of Chapter 7 is to understand what effect running velocity has on the dynamic 

response of a prosthetic foot. All previous amputee testing was conducted at a single 

running speed and data was recorded and replicated in a laboratory. The same 

variables are again recorded (foot displacement, stride timing, ground contact 

progression) but additional information is gathered at a variety of running velocities. 

This chapter demonstrates that the stiffness of the prosthetic leg has the ability to limit 

the running speed attainable by the amputee.  

2.3.6  (Chapter 8): Characterisation of Foot Categories 

If a useful mathematical model is to be developed that describes running for a range of 

amputees, the role of the available foot categories should be understood and 

therefore characterised. The aim of this chapter is to define the meaning of the foot 

categories available for the Ossur Flex Run in a tangible manner. The entire range of 



 51 
CHAPTER 2  

RESEARCH PLAN 

these feet was tested in an identical manner to the device described in Chapter 3 thus 

characterising each of the categories in turn. 

2.3.7 (Chapter 9): Can the Action of a Foot be Modelled 

Mathematically? 

The ultimate goal of this research project was to understand if the current prescription 

process is adequate. If a mathematical model can be developed that describes 

amputee running (as defined in the previous chapters of this thesis) the output can be 

compared with the current prescription method and discussed. A flowchart is 

developed that assembles the new knowledge into a congruent concept with a 

tangible output that can be measured and understood by both the prosthetist and 

amputee; stance length. Each of the contributing elements are examined separately 

and discussed and it is shown that the response time of the foot during running should 

not be predicted using the theory of Simple Harmonic Motion alone. 
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CHAPTER 3: STATIC CHARACTERISATION 

 

3.1  Introduction & Chapter Objectives 

As mentioned in the literature review (Chapter 1) the static rating of prosthetic 

running feet has previously been conducted by authors of existing academic papers. 

The most notable work into foot dynamics has been carried out or summarised by 

Bruggeman et al. (2008), Nolan (2008), Geil (2001), Noroozi et al. (2012a,b, 2014) and 

Lehmann (1993a,b). Throughout these works particular attention was paid to the 

efficiency of energy return for the prosthetic foot on test, but figures generated vary 

dramatically. For example energy return rates for a composite ESR running foot are 

quoted as being 100% by Buckley (2000) whilst Nolan (2008) presents data suggesting 

an energy return of 63% for the same model of foot (an Ossur Cheetah). The wide 

discrepancies in these results would suggest either some degree of measurement error 

or inconsistent measurement techniques.  

If a reliable understanding of the dynamic action of a foot is to be understood, these 

static rating methods should first be interrogated and testing repeated in a reliable and 

robust manner. The principle of comparing amputee running with a spring – mass 

system is a recurring theme when the associated literature is reviewed. The stiffness of 

the spring (or in this instance the prosthetic device) is fundamental to the frequency 

response of the system. Establishing a reliable figure of energy input versus return will 

also advise future research intended to improve the efficiency of amputee running.  

The purpose of this chapter is to evaluate the work conducted previously by other 

authors, understand the reasons for the apparent discrepancies in results and to 

define an effective manner of characterising a prosthetic running foot. This test 

method can then be carried through into the following research chapters to ensure 

accurate and repeatable results. 
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3.2  Mounting Methods for Static Testing  

3.2.1  Mounting Methods Shown in Existing Published Papers 

The approach taken throughout the majority of this previous work has been to mount 

the prosthetic foot under test rigidly in a dynamic hydraulic test machine or to a sliding 

mass and exercise it vertically. The proximal end (shank) of the foot is mounted rigidly 

to the actuator or mass with the distal end free to slide on the ground surface of the 

machine. Usually this interface is aided by incorporating a low-friction material to 

allow the toe to slide against the ground plane as dictated by the geometry of the foot.  

Displacement data is collected from a linear transducer and ground force from a load 

cell located either between the proximal end of the foot and the actuator or under the 

toe of the foot. A pictorial representation of such a setup is shown in figure 3.1a and 

can be expressed as an illustration or free-body diagram (figure 3.1b).  

Load cell 

Ground plane 

Foot contact point 

Oscillation 

Typical running-specific 

prosthetic foot 

Hydraulic actuator or 

excited mass 

Figure 3.1a: Pictorial representation of ESR foot mounting strategy for 

previous investigations into static spring rate and efficiency of energy return. 
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The test engineer then has to define the maximum amplitude of displacement and rate 

of deflection for the foot on test (particularly those testing using a programmable 

forced-displacement machine such as a hydraulic test rig where these parameters are 

required by the controller). From the data collected a force - displacement curve can 

be generated for both the compression and rebound phases resulting in a spring rate 

and hysteresis loop. Some papers (Geyer et al. 2004; McGowan et al. 2012) have 

suggested testing the foot 'dynamically' but it is not explained what dynamic motion 

means in this context.  

  

dx

 
= horizontal component of displacement 

dy

 
= vertical component of displacement 

dR

 
= foot displacement 

F1

 
= Actuator force 

F2

 
= µ x F1 

F3 = (F1/dR) x dx  

F4 = Actuator reaction = F3 

T1 = F1 x dx 

T2 = F2 x dy

  

µ = coefficient of friction 

between toe and ground 

surface 

Figure 3.1b: Free body diagram of ESR foot mounting strategy for previous 

investigations into static spring rate and efficiency of energy return. 
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3.2.2  Mounting Strategy Analysis 

If the foot setup (as shown in figure 3.1a) is examined, it can be seen that the point of 

ground reaction is not in line with the input force from the actuator (or mass). This 

offset nature results in components of the force which can be defined as a function of 

foot geometry and is manifested as both a vertical and side load on the actuator.  

These two components are reacted equally and opposite at the ground contact point 

(figure 3.2). Furthermore as the foot is deflected, the geometry naturally changes (as 

the foot is progressively loaded). This change in shape is illustrated by figure 3.3.  

As the shank of the foot is traditionally limited to purely vertical motion by the 

actuator and no rotation of mounting is permitted (the shank remains parallel to the 

ground plane at all times), the geometry of the foot exerts a lateral force at the toe. 

This lateral force is reacted by the friction between the toe and the ground plane 

meaning that longitudinal tension is built up in the foot. There are then two possible 

conditions: 

Ground plane 

Unloaded position 

Deflected position 

Centreline of 

actuation force 

Shift in ground contact 

point between loaded and 

unloaded conditions 

Figure 3.3: Illustration of the change in shape 

of a typical ESR prosthetic foot when load is 

applied and the foot is subjected to deflection. 

 

Deflected 

position 
 

Ground reaction 

Resulting reaction 

from actuator 

Component of 

lateral/horizontal 

force (side load) 

Figure 3.2: Illustration of the resulting reaction 

forces of the foot once a load is applied. The 

force can be divided into vertical and horizontal 

components as a function of geometry. 
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1.  The longitudinal forcing levels at the toe exceed the friction between the toe 

and the ground plane and the toe slides, thus shifting the ground contact point 

forwards. This is described in figure 3.4. The result of this is that the side load 

experienced by the actuator will momentarily diminish but the distance from the 

centre line of actuation force and the vertical line of ground reaction is increased.  

This in turn will have two effects depending on the level of friction experienced at the 

toe.  

- If friction is high, the increased distance between reaction lines will exaggerate the 

side load that exists at the actuator (by increasing the lateral component of the force 

shown in figure 3.2 and assuming an adequate reaction at the toe). 

- If friction is low, the side load at the actuator will remain diminished. However for any 

given geometry and assuming the toe is moving freely against the ground plane, the 

foot becomes a lever arm with an effective length equal to the distance between 

Ground plane 

Resulting 

positive 

torque 

Ground reaction 

Resulting reaction 

from actuator 

Diminished 

component of 

lateral force 

(side load) 

Slide 

Effective length 

of moment arm 

Vertical component of 

ground reaction 

Vertical 

component of 

actuator force 

Figure 3.4: If the toe is allowed to slide the 

lateral component of the ground reaction 

force will be diminished according to the 

friction present between the toe and ground. 

Figure 3.5: The resulting geometry and vertical 

component of ground reaction force will 

invoke a positive torque at the foot shank 

(viewed in the sagittal plane from the right). 
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reaction lines. This exerts a torque at the shank which translates into the actuator and 

can be seen in figure 3.5. 

Most likely a combination of these two effects will occur, exerting a lateral force and 

positive torque at the actuator (when viewed in the sagittal plane from the right hand 

side). Low-friction materials have been used in previous studies in an attempt to allow 

the toe to slide freely against the ground plane (Geil 2001).  
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2.  The longitudinal forcing levels at the toe do not exceed the friction between 

the toe and the ground plane, preventing the toe from sliding. Once again the shank of 

the foot is rigidly fixed to the actuator and is only permitted a vertical motion but in 

this instance the toe is effectively fixed to its position on the ground plane. As 

described in figure 3.4 the geometry of the foot would ordinarily dictate that the toe 

position moves but in this instance the assembly is heavily constrained.  

The actuator is again subjected to a side load proportional to the lateral component of 

the force (illustrated in figure 3.6), but in this instance the side load is not diminished 

as the toe cannot slide against the ground plane (as in figure 3.4).  

In addition to this side load a negative torque (viewed in the sagittal plane from the 

right hand side) is exerted on the shank of the foot, again translated into the actuator 

that is rigidly attached. As previously mentioned and shown in figure 3.4, as the foot is 

loaded the geometry naturally exerts a force at the toe (due to the geometry of the 

foot). As this cannot occur due to friction, the ground plane reacts this force which is 

Ground plane 

Resulting 

negative 

torque 

Ground reaction 

Resulting reaction 

from actuator 

Component of 

lateral force 

(side load) Effective length 

of moment arm 

Lateral reaction of 

ground plane 

Vertical motion of 

actuator 

Lateral force of toe 

due to foot geometry 

Figure 3.6: If sufficient friction exists between 

the foot and ground plane to prevent the toe 

from sliding the ground reaction components 

will remain, according to the foot geometry. 

Figure 3.7: The friction that exists at the toe 

will provide a reaction force for the change in 

geometry of the foot (as displacement occurs) 

exerting a negative torque at the shank. 
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manifested as a negative torque at the point where the foot attaches to the actuator. 

The moment arm for this torque is of a length equal to the distance of the shank above 

the ground plane (shown in figure 3.7) and is therefore inversely proportional to the 

deflection of the foot; as the foot is progressively displaced the lever arm reduces in 

length but the friction-derived lateral forcing level at the toe increases.  

 

3.2.3  Conclusions of Foot Mounting Methods 

It is clear from examining the mounting methods used previously that the actuator is 

subjected to significant side loads and torques as the foot is displaced. Depending on 

the nature of the foot interface with the ground plane the resulting friction could 

mean a positive or negative torque at the shank of the foot, or more likely a 

combination of the two at different amplitudes of deflection. The resulting forces and 

torques described in this section are not likely to be mutually exclusive and each of the 

factors described will occur with any such foot installation. For example, even if a low-

friction substrate were located between the toe and the ground plane, a small amount 

of friction will inevitably occur. This will result in a negative torque as described in 

figure 3.7, but this will be added to a positive torque as described in figure 3.5.  

Any restriction placed on the foot that reacts against the natural geometrical changes 

that occur due to displacement (for example friction at the toe) will result in an 

abnormal shape being forced on the foot. This is particularly apparent if the friction at 

the toe is greater than the lateral force, and it is a result of the shank being rigidly 

attached to the actuator. This abnormal strain being applied to the foot will 

theoretically, to an extent dependant on the level of friction at the toe, affect the 

spring rate of the foot. In addition the force required to overcome the friction (in the 

mounting instance described in figure 3.4) will affect the spring rate in a manner that 

will only be apparent on the compression phase of a full cycle. A different level of 

forcing will be apparent on the rebound phase and this disparity has the potential to 

significantly affect the recorded hysteresis values (and therefore measured efficiency) 

of a foot being tested.  
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Furthermore, despite the contact point between the toe and the ground plane moving 

forwards relative to the ground during progressive displacement of the actuator, if the 

end of the toe is used as the reference the point of contact actually moves rearwards. 

This directly contradicts what is observable during running and what is described in 

figure 1.6. The relevance of the ground contact point (relative to the end of the toe) is 

the topic of discussion later in this report and the consequence of this point moving 

rearwards during loading in a fixture shall be addressed. 

Quantifying the discrepancies between these mounting methods is the subject of the 

following investigation. Using what is learned from these results, a practical and 

repeatable mounting method is specified for the purpose of defining the 

characteristics of prosthetic running feet. 
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3.2.4  Reproducing Previous Static Rating Test Methods 

3.2.4.1  Theory 

If a prosthetic ESR running foot were mounted in the manner described above and as 

in previous journal papers (Bruggeman et al. (2008), Nolan (2008), Geil (2001), Noroozi 

(2012a,b, 2014) and Lehmann (1993a,b)) in a dynamic hydraulic test machine (with the 

shank rigidly attached to the actuator), values for foot efficiency and hysteresis can be 

defined through collecting force - displacement data.  

However in order to understand the relevance of the ground contact condition the 

level of friction between the toe and ground plate should be modified as a variable. 

Previous studies have reported foot efficiency values of between 63% and 100%. If a 

different level of friction existed between the toe and ground plane for these various 

investigations then this could explain the disparity in reported efficiency values. It is 

not yet understood how varying the friction affects the magnitude of the efficiency 

results and if it can do so by such a large margin. This investigation serves to further 

our understanding of the effectiveness of a rigid shank-actuator mounting mechanism 

for foot testing and the possible pitfalls of such an approach. 
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Figure 3.8: Typical displacement cycle of prosthetic foot under test 

displacing 70mm at a frequency of 0.5Hz. 

3.2.4.2  Method 

An unused Ossur ‘Flex Run’ Cat6Hi prosthetic running foot was mounted in an Instron 

8872 hydraulic test machine. This was done by rigidly attaching the foot with an M12 

fixing to the load cell of the machine (attached to the actuator) and allowing the 

metatarsal region of the foot to contact the ground plane. In order to define input 

conditions for the testing, an amputee athlete was observed (subject to the relevant 

ethical considerations and approval as discussed in Chapter 2 and available in the 

Appendix) using an identical Ossur Flex Run foot to that on test. The manufacturer 

recommends that the amplitude of deflection should be between 1 and 2 inches on 

average. However when the amputee athlete was observed it was clear that the 

amplitude of deflection of his foot exceeded this maximum value, despite the foot 

having been prescribed by a qualified prosthetist in accordance with the 

manufacturer’s instructions. In order to account for this overshoot of deflection and in 

the absence of more accurate data a maximum deflection of 70mm was chosen. At this 

stage of the investigation (and given the inevitable variation in foot deflection that will 

occur for different athletes) this value was judged sufficient to establish baseline 

characterisation information. Therefore the foot was displaced 70mm in a series of 

sine-wave oscillations. An oscillation frequency of 0.5Hz was chosen to simulate a 

static loading condition and force-displacement data was collected.  

The driving oscillation wave is shown in figure 3.8 and a typical foot set up is shown in 

figure 3.9 in unloaded and at maximum deflection conditions. 
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Figure 3.9: Typical foot setup in the Instron 8872 hydraulic test machine, shown at zero and 

maximum deflection (70mm). The ESR foot is rigidly mounted to the load cell attached to the 

actuator and the metatarsal region of the foot is directly in contact with the ground plane. 

In order to further understanding of the role of ground friction, the interface of the 

foot with the ground plane of the machine was modified with solutions that varied the 

friction between the two surfaces. Each of these conditions is described in figure 3.10. 

These friction conditions are undefined in terms of their coefficient but for the 

purpose of this investigation they serve to demonstrate the trend of variability of the 

deflection results for different boundary conditions. 

Force, displacement and time data for each of these conditions was captured using 

Instron DAX software. The data was then averaged using Microsoft Excel for the centre 

three oscillation cycles of each displacement phase (as shown in figure 3.8) to create a 

single representative displacement cycle. 
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Condition 2: Medium friction 

The carbon fibre surface of the foot 

was allowed to contact the cast iron 

bed of the test machine directly. No 

lubrication was added and the bed 

was clean and dry. 

Condition 1: Low friction 

Bearing rollers were attached to the 

metatarsal region of the foot to 

simulate a virtually friction-free 

condition. 

Condition 3: High friction 

A proprietary running sole from Nike 

(Nike Inc.) designed for the foot on 

test was fitted as per the 

manufacturer's instructions to 

provide a high-friction condition. 

Condition 4: Ultra-High friction 

A sheet of ultra-high friction polymer 

material was placed between the 

foot and the bed of the machine. 

This material made slippage of the 

toe almost impossible when 

deflected. 

Figure 3.10: Description of the various foot contact conditions that were used to alter the level 

of friction between the metatarsal region of the ESR prosthetic foot and the bed plate of the 

Instron test machine. 
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Figure 3.11: Lateral force exerted through the foot threatened to destroy the fastening 

cleats of the proprietary running sole. 

COMPRESSION PHASE ENERGY 

REBOUND PHASE ENERGY 
EFFICIENCY %   =            X 100 

3.2.4.3  Results 

The force - displacement data was averaged for each test condition and a hysteresis 

curve was generated for each. Condition 3 (using the Nike proprietary running sole) 

proved problematic as the lateral force exerted through the toe threatened to destroy 

the clipping system used to attach the sole to the metatarsal region of the foot. This is 

demonstrated in figure 3.11. Given that this foot sole designed to be used with the 

specific foot on test, this serves as a demonstration of how unrepresentative these test 

conditions are of amputee running. This test was aborted and results only generated 

for test conditions 1, 2 & 4.  

The efficiency of each test condition was determined by calculating the areas under 

the respective curve of the hysteresis graphs. This was done for both the compression 

and rebound phases of the displacement cycle. The value of hysteresis is defined as: 

  

Force – displacement graphs for each test condition can be seen in figures 3.12, 3.13 & 

3.14 and table 3.1 gives an overview of the performance of each. 
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Condition 1: Low friction: 97% efficiency 

Condition 2: Medium friction: 86% efficiency 

Condition 4: Ultra-high friction: 71% efficiency 

Figure 3.12: Hysteresis curve of the low friction condition. The efficiency 

can be seen as close to 100%. 

Figure 3.13: Hysteresis curve of the medium friction condition. Efficiency is 

reduced with an exponential spring rate trend. 

Figure 3.14: Hysteresis curve of the ultra-high friction condition. Efficiency is 

dramatically reduced over conditions 1 and 2. 
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Table 3.1: Performance overview of each condition 

 

 

 

 

As can be seen in table 3.1 the efficiency values vary considerably across the test 

conditions. An interesting additional observation is the reaction force exerted by the 

foot at maximum deflection. For both of the conditions that involved restriction of the 

toe (with a friction element included in the setup) the peak force is similar at 2.8kN. 

However condition 1 was unrestricted and demonstrates a peak force of less than half 

that of conditions 2 and 4 at 1.2kN.  

The reason for this disparity in peak force is the geometry of the test setup. As the foot 

deflects, the toe region exerts a force in the anterior direction (this is described in 

figure 3.3). Condition 1 features rollers to allow the free sliding of the toe region of the 

foot against the ground plane therefore not allowing any reaction force to act against 

this anterior force. To compound this effect the geometry of the foot is such that as 

the foot deflects the rollers move away from the centreline of the actuator. This 

results in lower amplitude of deflection of the foot for any given amplitude of the 

actuator.  

A further observation is that test conditions 2 and 4 encouraged an exponential spring 

rate whereas test condition 1 demonstrated a near-linear rate. This is a result of the 

changing ground contact point of the foot relative to the toe (described in section 

3.2.3). As can be seen in figure 3.9 the contact point shifts significantly rearwards 

(away from the toe) as deflection increases therefore shortening the effective lever 

arm of the foot and progressively increasing the rate. Condition 1 features a controlled 

ground contact point in that the rollers are in a fixed position on the foot. The effective 

lever arm of the foot therefore remains static and results in a near-linear spring rate. 
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3.2.4.5  Conclusions 

This investigation has shown that mounting the foot in a variety of ways can change 

the apparent efficiency of the device. Despite identical input conditions the disparity in 

results is significant. There is a variation in efficiency of 26% and in reaction force of 

over 1.6kN by purely changing the interface condition of the toe with the ground plane 

of the test machine. 

It is clear that if the ground contact condition is not controlled, the accuracy of data 

obtained from the foot when undergoing tests of this nature can be brought into 

question. If the toe is required to slide against the ground plane, any element of 

friction will introduce a value of hysteresis. It is important to note that the inefficiency 

measured throughout this investigation is as a result of energy dissipated at the toe 

interface. Not as a result of the characteristics of the foot itself. When rollers were 

introduced (therefore effectively eliminating friction at the toe in condition 1) the 

efficiency of the foot was measured at over 97%.  

A further observation is that of the change in ground reaction force. Due to the 

geometry of the foot the toe exerts a lateral (when viewed in the sagittal plane) force 

(see figure 3.3). When a high-friction material was placed between the toe and the 

machine bed the foot was able to react against this and exert a higher load into the 

actuator (and therefore load cell). In the instance of the rollers no such reaction force 

was possible and the measured load was significantly reduced. Furthermore as 

displacement was increased this condition was exaggerated due to the geometry 

change of the foot.  

Fundamentally this effect is driven by the offset from the centreline of the actuator 

and that of the ground contact point. The greater the value of the offset that exists, 

the greater the component of lateral force meaning a smaller vertical component (if 

the toe is mounted on rollers and therefore unable to react this lateral force). In order 

to control this variable and remove any lateral component for future testing the 

centreline of the actuator and the ground contact point should be aligned, regardless 

of foot deflection. This would also eliminate any torque acting on the load cell. 
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This testing has shown that the mounting of the foot, even for a simple displacement 

test, is fundamental to achieving repeatable and reliable results. If a foot were 

mounted in such a manner as described above on two consecutive days, it is possible 

that the level of friction will be different (due to contamination, humidity in the air or 

ambient temperature) and results will not be comparable. Also the ground contact 

point is undefined and unrealistic when compared with an amputee using the foot for 

running. This investigation suggests that if further testing is to be conducted using a 

rig-mounted foot the following mounting conditions must be satisfied: 

 

- There must be effectively no friction at the mounting interfaces to dissipate energy 

- The centreline of the actuator must always align with the ground contact point  

  

The work carried out in this section is not intended to replicate running or to allow 

comparison with the action of a foot when used by an amputee athlete. It was 

designed instead to characterise the static deflection properties of a prosthetic device 

and to understand why authors conducting similar work previously came to such 

varied figures of foot efficiency.  
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Figure 3.15: Testing fixture CAD design (left) and fabrication (right) 

3.3  Development of Mounting Fixtures 

 

In order to avoid the complications of the changing boundary conditions as discussed 

in section 3.2.3 a mounting strategy was devised that allowed a single rotational 

degree of freedom at each end of the prosthetic foot (figure 3.15). Instead of the foot 

being rigidly mounted to the load cell the shank was allowed to rotate about its axis 

(when viewed in the sagittal plane) on a pair of fulcrums (figure 3.16) and the same 

was permitted of the toe interface (figure 3.17). 

 

A steel cradle was designed and fabricated with a clamping bracket that could be 

attached at any point of the metatarsal region of the foot that not only allowed the 

same single degree of freedom as the shank on a pair of fulcrums, but also allowed 

precise definition of the ground contact point (Figure 3.17).  
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Figure 3.17: Detail of the fabricated bracket that clamps to the metatarsal region of the 

foot and defines the ground contact position with a pair of fulcrums. 

ESR prosthetic foot 

Fulcrum 

point 

Attached to 
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Figure 3.16: Detail of the fabricated bracket that clamps to the shank of the foot and provides 

the upper fulcrum points for attachment to the load cell of the Instron test machine. 
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Figure 3.18: Detail of the fabricated bracket that clamps to the metatarsal region of 

the foot showing the FDM polymer cradle that supports the geometry of the foot. 

The ultra-high friction membrane is omitted for clarity. 

ESR prosthetic foot 

FDM 

‘cradle’ 

This arrangement only allows flexibility in the sagittal plane and means that any 

prosthetic ESR foot of a similar style can be attached or removed without damaging or 

affecting the structure. To further protect the composite layup and improve safety, the 

distal end of the foot was cradled in a rapid prototyped (FDM) block that located inside 

the mild steel framework of the fixture and matched the curved profile of the toe 

region (figure 3.18). Between the upper and lower surfaces of the foot and the fixture 

was also inserted a thin ultra-high friction membrane to prevent slipping. A 

visualisation of the rig installed in the hydraulic test machine can be seen in figure 

3.19. 
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Figure 3.19: Pictorial representation of foot displacement during testing, 

demonstrating the deflected position of the foot and the line of force 

superimposed through the fulcrum points.  
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As can be seen in figure 3.19, regardless of the amplitude of deflection of the foot the 

upper and lower interface points are always aligned. No lateral components of the 

force can exist and the actuator is only subjected to pure vertical loading conditions.  

Furthermore because of the rotational degrees of freedom at each end of the foot it is 

not possible to establish a torque at either of the mounting interfaces. 
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3.4  STATIC CHARACTERISATION OF A SINGLE FOOT 

3.4.1  Theory 

Following the fabrication of a fixture that allows the effective mounting of an Ossur 

Flex Run foot, the Instron 8872 hydraulic test machine could be used to generate a 

hysteresis curve. By this means an accurate figure for energy return could be derived. 

This also allowed for a static spring rate to be defined for the foot. 

 

3.4.2  Method 

The foot was subjected to an identical displacement cycle as the characterisation work 

conducted in section 3.2.4.2, driven with a sine wave of peak-to-peak amplitude 70mm 

and oscillation frequency of 0.5Hz. As before, the foot was subjected to a regime of 

four full waves and data from the centre three full cycles was averaged to generate a 

single representative displacement dataset. Data was once again collected from the 

load cell attached to the Instron test machine and the linear transducer of the 

actuator. Data was logged using the Instron DAX software (Instron) with a sampling 

rate of 100Hz.  
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Figure 3.20: Hysteresis loop of Ossur Flex Run Cat.6Hi tested @0.5Hz, 70mm displacement 

and mounted with rotational degrees of freedom at shank and toe regions. 
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3.4.3  Results 

Figure 3.20 shows the resulting hysteresis loop from the foot on test. The compression 

phase is coloured blue and the rebound phase red, but despite this the two curves are 

almost indistinguishable with an energy return efficiency of 99.4%. 

Further to this it should also be noted that the foot returned an almost entirely linear 

spring rate across the entire displacement. Figure 3.20 has a straight line 

superimposed over the compression and rebound curves and at its maximum point the 

deviation is 5.8% (800N of straight line vs. 851N of compression phase).  

It can also be observed that the force reacted by the foot at maximum displacement is 

1714N. If this figure is compared with the data collected in section 3.2.4.3 it can be 

seen that it does not align with that of any of the previous test methods (table 3.2). 

Condition 1 used rollers to virtually eliminate friction with the ground plane and offers 

figures closest to this new test regime in terms of efficiency but the peak force 

exhibited is over 500N adrift. This can be accounted for if the geometry of the test is 

examined. As discussed in section 3.2.4.5 as deflection increases in mounting condition 

1, the lateral component of the force increases and the vertical component in turn will 
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Table 3.2: Hysteresis data for all foot mounting conditions demonstrating the change in 

both peak force and efficiency (energy return) despite identical input conditions. 

decrease. Mounting condition 5 (figure 3.19) avoids this by ensuring the interfacing 

points (at the shank and at the toe) always remain aligned with the force. Therefore 

the geometry of the force cannot change. 

 

3.4.4  Conclusion 

The results in table 3.2 demonstrate the importance of controlling the boundary 

conditions during testing of prosthetic feet. All of the mounting conditions tested used 

identical inputs but both the peak forces and values of foot efficiency measured varied 

significantly.  

Mounting the foot on fulcrum points at both the medial and distal ends (at the shank 

and at the toe) means that the geometry of testing remains unchanged throughout the 

displacement cycle. The effective ground contact point remains the same both relative 

to the toe of the foot and also to the ground plane and results in an almost entirely 

linear spring rate. This is contrary to previous work conducted by other authors, most 

notably Dyer et al. (2013) (although this work was conducted with a different model of 

foot) and Geil (2001) who both present non-linear static deflection curves. 

Interestingly both of these authors conduct a similar test with the distal end of the foot 

sliding against a low-friction medium. 
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3.5  Chapter Conclusions 

This chapter has demonstrated the importance of the mounting condition if an ESR 

prosthetic foot is being tested. The peak force, spring rate and efficiency of energy 

return are all affected by modifying the ground contact condition. The revised 

mounting method for the device on test (as described in section 3.3) has confirmed, 

statically at least, that the Ossur Flex Run foot has an energy return efficiency of >99% 

with a linear spring rate. Assuming that a single ground contact point can be defined, a 

linear spring rate for the foot can be established using this method to support the 

hypothesis of a spring – mass system. 

Existing journal papers that address the efficiency of energy return from ESR prosthetic 

feet conduct their investigation with the shank of the foot rigidly attached to either the 

actuator of a test machine or to a mass that is restricted in the vertical plane. In doing 

this, as the amplitude of displacement increases and the foot is progressively 

deflected, the test geometry changes. The shape of the foot is influenced and 

according to the toe interface with the ground plate of the test machine a lateral force 

and torque is exerted on the actuator or mass. The discrepancies of historical test 

results from authors can therefore be explained and a new and novel mounting 

method is defined with which to continue the research. 

It is important to note that this testing was not intended to replicate the action of a 

runner but instead to characterise the prosthetic device as a standalone component. If 

the individual elements can be understood, the prosthetic system can start to be built 

up such that modelling can occur. 

All of the test work in this chapter has been carried out in what is referred to as a 

‘static’ condition. That is the rate of deflection was sufficiently low to represent the 

foot in a static state. A natural progression for the research is to now characterise the 

same Ossur foot at higher, more representative rates of deflection. This would provide 

an understanding of the properties of the foot when being used by an amputee athlete 

and how, if at all, this differs from the characteristics established in this chapter. 
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CHAPTER 4: DYNAMIC CHARACTERISATION 

 

4.1  Introduction & Chapter Objectives 

The term ‘dynamic’ is often misinterpreted, used as a subjective measure and as a 

loose undefined marketing term. However for the purpose of this report (and indeed 

in the case of vibration engineering) ‘dynamic’ refers to a system that is working in its 

intended manner, at the designed speed and frequency. Therefore in this instance it 

infers that the testing is being carried out at a realistic speed or, more tangibly, in a 

manner that replicates an amputee running. The previous work (chapter 3) was 

termed ‘static’ and although the actuator of the test machine was not at any time 

genuinely static, the head velocity was significantly lower than would be considered 

representative usage (previous tests were driven with a sine wave of 0.5Hz).  

The purpose of this chapter is to improve understanding of the way an amputee runs, 

measure running variables and apply this knowledge to the way feet are testing in a 

laboratory. It is intended that the characterisation tests carried out in the previous 

chapter be repeated but at an actuator velocity that could be considered ‘dynamic’. 

The values for the two test conditions (static and dynamic) can be compared which 

further characterises the prosthetic device as a component but also aids our 

understanding of the action of a runner. It assists in building a complete picture of how 

an amputee runs and therefore how this can be modelled. 

In order for this to occur, firstly amputee running has to be understood with the 

relevant parameters recorded so that they can be replicated. These include typical 

values for foot deflection, stance phase timing and ground contact point change. 

Therefore a measurement technique needs to be developed that can record these key 

variables.  

As mentioned in the literature review, dynamic analysis of gait and deflection models 

is typically performed using reflective markers and two- or three-dimensional motion 

capture systems with multiple high-speed cameras. Force plates can also be used to 

collect data of a small number of strides. Such an approach requires highly specialised 
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and expensive equipment in a controlled and unrepresentative environment within a 

large area for the setup of the apparatus. Additionally whilst such systems offer a high 

resolution this does not account for noise or the markers shifting on the subject during 

active use. 

As such, the use of reflective markers was dismissed because of the limited field of 

view of a camera and the technical challenges of observing their relative changing 

positions over anything other than smooth level ground. Data collection should be 

taken outside of the gait laboratory and the measurement system must reflect this. 

Therefore the decision was made to develop a sensing system that could be worn by 

the amputee allowing the freedom to undertake their regular exercise regime. 
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Table 4.1: List of possible variables to measure during amputee testing 

 

Variable 

Stride cadence 

Ground contact time 

Swing phase time 

Timing of maximum displacement 

Amplitude of maximum displacement 

Rate of energy storage 

Rate of energy return 

Ground contact force 

Ground contact point on foot 

4.2  Development of a Wearable Sensing System 

4.2.1  Scope & Objective 

The objective of this study is to obtain representative running data from an amputee 

athlete which can subsequently be used to advise further laboratory testing. Data shall 

be acquired from a single individual amputee volunteer and used to form laboratory 

input conditions (ground contact positions & deflection rates). The individual shall be 

chosen to be representative (be the user of a foot from within the interquartile range 

of feet available from the manufacturer), be a long-term and regular user of an ESR 

prosthetic foot and not suffer from extreme or influential pathologies such as 

restricted movement or chronic pain that might adversely affect running style or 

repeatability. Given that a single amputee is being used for data collection, every 

precaution should be made to ensure that the action of their running is not adversely 

affected by factors that could be mitigated such as excessive pain or discomfort. This 

process will be conducted following the Bournemouth University ethical approval 

process as set out in the Research Ethics Code of Practice, defined by the University 

Research Ethics Committee (UREC). Copies of the approved ethics forms can be found 

in the Appendix of this document.  

A list of variables to measure is included in table 4.1. These were chosen for their role 

in describing the dynamic nature of what is anticipated as being a spring – mass 

system; the fundamental characteristics of the system. 
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Along with basic deflection and timing data it is viewed that the changing boundary 

conditions of the foot with the ground (progression of contact point) is of significant 

importance and is something that has not been found to be fully explored in the 

literature (see section 1.6).  

4.2.2  Design 

ESR prosthetic running devices are regarded as functioning primarily in the sagittal 

plane meaning that the measurement of in-plane bending is adequate for 

understanding their dynamics. If this primary mode of operation can be observed 

accurately then many other factors can be recorded such as stride cadence, swing 

timing and rate of energy absorption/return (a complete list of measureables is shown 

in table 4.1).  

Firstly, and fundamentally, an amputee had to be found who was willing to partake in 

these studies on a voluntary basis. As mentioned in section 4.2.1 he or she should be 

an active and long-term user of prosthetic ESR running feet. They should be 

representative of the age of competitive runners (circa 20 - 40 years of age), be 

unencumbered by limiting factors such as restriction of movement or chronic pain and 

have a foot prescribed to them that exists in the interquartile range of the available 

stiffness values from the respective manufacturer. Following some local searching, a 

male uni-lateral amputee was found that matched the description and ethical approval 

was obtained in October 2012 for the research to continue. He is 30-35 years of age 

and has a left-side trans-tibial amputation following trauma more than ten years ago. 

He has been the user of a category 6Hi Ossur Flex Run foot for over ten years and runs 

for leisure and fitness every day, has retained full joint articulation and suffers from no 

long-term pain or discomfort. He has a mass of 83kg and as such uses the correct 

stiffness category of foot according to the manufacturer's literature (table 1.2)  
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 Description Manufacturer Details 

1 Displacement Sensor Hartmann Automotive GmbH Hall-effect rotary sensor 

2 Ground-Force Sensors Tekscan, Inc Piezo-resistive sensor (0-100lb) (Flexiforce) 

3 Resistive Force Signal Conditioner Bournemouth University 4 channel conditioner/amplifier (0-5v output) 

4 Analogue Datalogger MSR Electronics GmbH 4 channel 1kHz 0-5v logger 

5 Battery Pack Generic 3 x AA alkaline cells (4.5v) 

 
Table 4.2: Summary of equipment used, manufacturer and details of the device. 

 

Variable Units Chosen measurement device 

Stride cadence Hz Displacement sensor 

Ground contact time seconds Displacement sensor 

Swing phase time seconds Displacement sensor 

Timing of maximum displacement seconds after heelstrike Displacement sensor 

Amplitude of maximum displacement mm Displacement sensor 

Rate of compression mm/s Displacement sensor 

Rate of rebound mm/s Displacement sensor 

Ground contact force N Displacement sensor 

Ground contact point mm posterior of toe edge Piezo-resistive force sensors array 

Table 4.3: Summary of measurables and the specific measurement device proposed. 

Five major pieces of apparatus were used for this investigation. They are summarised 

in table 4.2 and a table detailing what piece of equipment is associated with each 

specific variable is shown in table 4.3. Descriptions of each of the pieces of apparatus 

follow with an illustration of the complete instrumented foot shown in figures 4.1a & 

4.1b. 
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SENSOR 1 

SENSOR 2 

SENSOR 3 

SENSOR 4 

Figure 4.1a: Prosthetic running foot with instrumentation attached. An angle 

indicated was included as a visual check of deflection data acquired. 

Figure 4.1b: Prosthetic running foot with instrumentation attached. Sole and 

angle/deflection sensor removed to clearly show piezo-electric sensor array. 

Deflection sensor 

Battery pack for 

deflection sensor 

A full and detailed description of the instrumentation can be found in Appendix 1 

including design and set-up criteria.  
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4.3  Overview of Methodology 

The foot used for the testing was a replica (identical model and stiffness category) of 

the foot already used by the amputee for over ten years. Therefore he was familiar 

with the device and his running on the foot was comfortable.  

It should be noted that in order to ensure parity between the new model as tested and 

the aged historic foot as used by the runner for the previous ten years, a static 

deflection test was conducted with both feet prior to the test taking place. The 

methodology mirrored that of the static spring rate testing as detailed in Chapter 3 of 

this thesis although this specific investigation is not documented any further. The two 

feet were shown to have a static spring rate of within 1% of each other up to 

maximum displacement, therefore adding validity to the substituted foot and also 

credibility to the repeatability of the foot categories from the manufacturer. 

Despite the near-identical nature of the substituted foot the amputee was allowed 30 

minutes to warm up with the foot in the test environment (a 25 metre sports hall with 

wooden floor) to ensure the additional mass of the instrumentation (148 grams) would 

not cause any notable issues.  

The testing routine consisted of the sustained running of ten lengths of the hall (250m 

with nine turns) with the entire sequence logged at a frequency of 128Hz. The runner 

was allowed to choose his own pace and cadence with which he felt most comfortable 

and familiar. Because the data logger was limited to four input channels, the deflection 

testing was conducted first followed by the ground-contact force testing. Identical runs 

were conducted and again logged.  
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Figure 4.2: Trace showing the deflection characteristics of the foot tested (averaged raw 

data from rotary transducer with output in volts. SD = 0.021). 
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4.4  Results 

4.4.1  Foot deflection 

The data acquired was filtered to avoid the portions of acceleration, deceleration and 

turning. A three-step portion at the centre of each run was isolated and the mean 

values calculated resulting in data for three averaged strides. 

This filtered data is shown in figure 4.2. Displayed is the output voltage from the 

deflection sensor versus a time trace in minutes:seconds. This value of foot deflection 

was not calibrated into millimetres because doing so would falsely simplify the action 

of the foot. The value of deflection as a function of voltage reflects the position of the 

lever arm of the deflection transducer (figure 4.1) and as such a trend of foot 

deflection as measured at the point where the link arm meets the foot keel. However 

the keel deflection at any other point is different to this attachment point; the value of 

foot deflection as a function of millimetres depends on what point along the keel is 

being tested. Retaining the deflection as a function of voltage at this stage avoids 

misinterpretation of the results.  
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Figure 4.3: Force sensor outputs for a single stride with foot deflection overlaid 
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Clearly visible is the timing sequence of the runner with well-defined stance and swing 

phases as well as the rate of deflection and energy return. The stance phase (occurring 

from heelstrike to toe-off (see figure 1.1 for definition)) occurs over a period of 242ms 

with the swing phase lasting 486ms until heelstrike for the next stride takes place.  

Worthy of note is the clear demonstration of the natural harmonic frequency of the 

unloaded foot when toe-off occurs. The trace can be seen to resonate, diminishing 

with the natural damping of the device (provided by losses in the system such as air 

resistance and friction within the foot keel). 

 

4.4.2  Ground Contact Position 

The data was once again filtered and averaged across all of the ten runs of the hall 

resulting in a single, typical, ground contact profile. Traces for each of the ground 

contact sensors can be seen in figure 4.3 with a measure of foot deflection overlaid to 

help visualise the heel strike and toe-off phases. 
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It is clear from this plot that only three of the sensors were useful (sensor 4 appears to 

represent only a baseline of contact). This is the posterior-most sensor and suggests 

that it is inheriting an input from the shoe sole attached to the foot but does not come 

into contact with the ground at any time. However the remaining sensors show a clear 

progression of the peak force with distinct and ordered outputs.  

Sensor 1 suggests an error as it has a baseline output even through the swing phase of 

the stride. However this was investigated and is a result of its position on the toe. At 

this point of the foot, the profile forces the trainer sole into a curve which inherently 

exerts a force onto the position of the foot where the sensor is attached. Following 

testing the sole was removed and the sensor output returned to zero. 

  

Table 4.4: Timing of the ground force peaks measured by piezo-resistive sensors 
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Figure 4.4: Curve demonstrating the shift in ground contact position relative to the distal end of 

the foot (toe region) 

Now that timings of the peak forces at the various positions have been defined it is 

possible to record them in a table (table 4.4) and plot them in a graph against the time 

at which these peak forces occur (relative to heelstrike, figure 4.4) to visualise the 

progression of the ground contact point. From figure 4.3 it is clear that the foot first 

contacts the ground in a position somewhere between sensors 3 and 4 (between 110 

and 130mm from the distal end of the foot) and toe-off occurs at a point forward of 

sensor 1 (within the end 20mm of the distal end of the foot). With this knowledge it is 

possible to begin to build up a more complete picture of the ground contact point 

progression and these extreme points (at the time of heelstrike and toe-off) can be 

extrapolated using the graph line and continuing the trend at either end.  
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Figure 4.5: Force sensor locations demonstrating the line of progression of 

ground contact point. 

Figure 4.5 shows a visualisation of the locations of the four sensors used and how the 

ground contact point progresses. As a validity check for the data gathered in this 

section a high-speed video was captured on the day of testing of the stance phase of a 

single stride from heel strike to toe-off. This video was captured using a Nikon Coolpix 

camera at 240 frames per second (10 times faster than standard broadcast video) at a 

resolution of 640 x 480 pixels. This was the maximum resolution that could be 

achieved by the camera without introducing significant motion blurring of the image. 
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Figure 4.6: Still frames extracted from high-speed video (240fps) taken of a single stance phase 

during data acquisition showing heel strike, mid stance and toe-off. 

 

 

This sequence is shown in figure 4.6 and shows the foot first contacting the ground in 

the region between sensors 3 and 4 (as expected) and toe-off occurs at the very distal 

end of the foot, forward of sensor 1. Whilst this video was adequate for confirming the 

trend of ground contact progression from the rear of the foot to the toe, if further 

work is done involving high-speed video capture it should be done so at a significantly 

higher resolution and frame rate to allow the detail of the foot to be more visible (for 

instance the deflection guide added to the sensor). 
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4.5  Amputee Testing Conclusions 

4.5.1  Summary 

The objective of this chapter is to define representative test conditions for further 

laboratory testing. Whilst the work completed has improved our understanding of the 

dynamic function of a prosthetic foot, more work is required to translate this data into 

useful figures that can be applied to laboratory testing. 

This investigation demonstrated profiles for both foot deflection and ground contact 

point over the duration of the stride. For the amputee on test with the specific foot 

used (an Ossur Flex Run Cat6.Hi) the foot response time (ground contact time) was 

242ms with a symmetrical deflection profile. Mid-stance (maximum deflection) was 

achieved at 141ms. However the deflection is a value of voltage which would need to 

be calibrated to millimetres to enable programming of the Instron test machine 

controller. 

The ground contact point can be seen to progress along the effective metatarsal 

portion of the prosthetic foot towards the distal end. However to translate this new 

information to a laboratory test procedure the Instron test machine (and fixture as 

described in section 3.3) requires a single ground contact point to be defined. 

It should be noted that this method was not designed to capture the ground reaction 

force but instead provide a trend of how the contact point moves. Indeed a more 

accurate picture would be difficult to achieve with this method given that the foam 

running sole that was attached the foot offered a significant degree of load spreading 

onto the carbon section. This is shown by the overlapping of traces in figure 4.3.  

There are a number of extensions to this work using the same ground force sensing 

devices and changing their locations on the base of the foot. For example if the sensors 

were placed at the extreme edges of the foot section (at the same distance from the 

distal end) some valuable gait data might emerge that could aid prosthetists with the 

lateral set-up of prosthetic devices, however it is considered that such work is outside 

of the remit of this project. 
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4.5.2  Further Work 

Further work that should be conducted to benefit the dynamic understanding of such a 

prosthetic device is to repeat a static spring rate test (as in Chapter 3) with the 

effective ground contact point (the fulcrums of the fixture) positioned at each of these 

sensor positions. This would then provide an understanding of how the static spring 

rate changes throughout the course of a single stride. This is knowledge that is not 

published to date and is not considered by prosthetists during the prescription of a 

foot, but may prove fundamental to the style of running of an amputee.  

In order to add tangible understanding to the action of the foot it would also be useful 

to calibrate the foot for a single point of ground contact. This means translate the 

voltage output of the rotary sensor to a measure of foot deflection in mm. As the foot 

effectively forms a lever, the further towards the toe the effective ground contact 

point is positioned the larger the deflection value will be for a given voltage logged at 

the sensor.  For this reason it is not possible to define an absolute value of foot 

deflection because it depends on what portion of the foot is in contact with the ground 

at any given time. However if a ground contact point is defined, the deflection at this 

point can be ascertained. 

These two further exercises are described in the following sections. 
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4.6  Spring Rate Calibration 

4.6.1  Method 

In order to define the spring rate of each of the ground contact positions the test 

method described in section 3.4 was repeated. However in this instance the lower 

fulcrum component of the fixture was attached such that the line of force acted 

through each of the locations of the three useful sensors from the ground contact 

testing in three successive tests. These were located at 20mm, 60mm and 100mm 

posterior of the edge of the toe of the prosthetic foot.  

To run the test the programmable controller of the Instron 8872 test machine 

demanded figures of maximum and minimum deflection through which to exercise the 

foot. Due to the fact that the amount of deflection of the foot changes depending on 

the location along the metatarsal section of the foot that is under test, and to avoid 

over-strain of the foot (unrepresentatively high levels of deflection that might damage 

the foot) the rotary sensor was used to define the maximum level of deflection 

achieved. Regardless of what ground contact point was being tested, the foot was 

deflected until the rotary sensor gave an output of 0.5v – a level seen during amputee 

testing and safely within the working range of the foot. The data was once again 

logged using the Instron DAX software at 100Hz. 
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Figure 4.7: Graph demonstrating the difference in foot stiffness when altering the ground contact point 

along the metatarsal region of the foot. See table 4.4 for definitions of ground contact positions. 

Position 3 : 47.5N/mm 

Position 1 : 19.1N/mm 

Position 2 : 28.2N/mm 

4.6.2  Results 

The three ground contact points were tested and the data averaged into a single 

hysteresis loop as before (section 3.4). This was then displayed on a graph (figure 4.7) 

and, assuming a straight line approximation of each resulting curve, a spring rate was 

defined. 

 

As with the previous static rate testing that was conducted the foot returned an almost 

completely linear spring rate regardless of what ground contact position was being 

characterised. Furthermore at each test position the hysteresis curves show an energy 

return of nearly 100%. However the spring rate varied from 19.1N/mm at position 1 

(20mm from the toe) to 47.5N/mm at position 3 (100mm from the toe).  
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Figure 4.8: Graph demonstrating the difference in foot stiffness when altering the ground 

contact point along the metatarsal region of the foot. A line of best fit is added and 

equation derived to describe the relationship. 

With this information, the measured stiffness of the foot can be plotted against the 

distance from the toe, theoretically allowing the stiffness of any point along this 

metatarsal region to be defined.  

From this data it is very clear that the spring rate of the foot is dependent on the 

ground contact point and, as such, as the amputee progresses through the stance 

phase of the running stride, the foot dramatically softens. This change is purely a 

function of prosthesis geometry and the angle of attack of the foot during the stance 

phase of running. The variation in foot stiffness could be increased or decreased if the 

geometry of the metatarsal region of the foot were modified, but it cannot yet be 

suggested if this would be a positive of negative modification for the amputee. 

The relevance of this phenomenon will become apparent when the action of the foot 

is being modelled mathematically. Immediately it is clear that a foot cannot behave in 

a manner that can be described using Simple Harmonic Motion (as suggested in 

previous studies and detailed in the literature review (Chapter 1)) as this equation 

assumes a single value of stiffness to establish the frequency of oscillation of the 

system. 
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4.7  Single Condition Calibration 

4.7.1  Method 

If the static and dynamic data is to be comparable it is fundamental that the toe clamp 

component of the testing fixture is attached at an identical position for each test. 

Therefore to remove any potential error the static testing was replicated (as 

conducted in section 3.4) with a newly-defined ground contact position (the position at 

which the toe-clamp should be affixed). This not only serves to provide a revised spring 

rate of the foot (at the new ground contact position) but also to generate a calibration 

curve for foot deflection in mm as a function of rotary deflection sensor voltage. 

The actual ground contact position selected was 40mm from the toe which is the 

median value between sensors 1 and 2. However it is important to understand that 

because of the transient nature of the ground contact point and subsequently the 

variation in actual foot deflection (at that specific ground contact point) the actual 

chosen position is arbitrary. As long as the same position is used for both static and 

dynamic characterisation, the exact position is unimportant at this stage of the 

investigation.  

Deflection data was gathered by logging the linear displacement of the Instron 

actuator and voltage data from the output of the rotary transducer simultaneously. 

The voltage was logged using the miniature foot-mounted MSR data logger (MSR 

electronics GmbH) at 128Hz and the linear displacement logged using the Instron DAX 

software (Instron) at 100Hz. They were then normalised to give a data rate of 100Hz. 

The setup of the foot mounted in the Instron test machine with instrumentation 

attached can be seen in figure 4.9. Also logged was a value of ground reaction force 

from the load cell of the Instron test machine. 
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Figure 4.9: Test set up of the Ossur Cat.6Hi foot installed in the Instron test machine with the 

displacement instrumentation attached prior to calibration. 

At first the crosshead of the test machine was lowered, deflecting the foot, until the 

voltage output from the rotary transducer matched that of the maximum deflection of 

the foot during amputee testing (figure 4.2). This was then used as the limit for the 

machine (to avoid over-travel of the foot) and a low frequency (0.5Hz) sine-wave 

profile was run (as conducted in section 3.4) displacing the crosshead between 0mm 

(an unloaded foot) and the maximum deflection (maximum load) as just defined.   
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Figure 4.10: Calibration curve for rotary transducer 

4.7.2  Results 

Once the data rate was normalised the resulting voltage and deflection figures could 

then be plotted together to form a calibration curve for the rotary transducer with 

voltage plotted against deflection in millimetres (see figure 4.10). 

From the calibration curve generated, it can be seen that the foot deflects from an 

unloaded 0mm (at 3.95v) to a fully loaded condition at 72mm (0.35v) in a linear 

manner. Having these figures defined, an equation for this curve can be generated and 

therefore the output of the rotary sensor can be calibrated. Any subsequent test work 

in the laboratory can be done with real-world input conditions (as a function of 

deflection in mm) assuming this same ground contact position is used. 
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Figure 4.11: Calibration curve for static spring rate of foot (hysteresis loop) with a ground 

contact point 40mm posterior of the edge of the toe. 

If the recorded trace of ground force is plotted against foot deflection a force- 

deflection curve is generated. This static deflection curve (figure 4.11) demonstrates 

once again the efficiency of the energy return from the foot at a slow crosshead speed 

and the linearity of the spring rate. A straight line is superimposed over the hysteresis 

curves and at maximum deflection (72mm) the resulting ground reaction force was 

recorded as 1648N. Therefore the resulting spring rate of this foot using a ground 

contact point 40mm from the toe of the foot is 22.9N/mm. 

 

Figure 4.8 describes the relationship between ground contact point and foot stiffness 

and includes an equation describing this relationship. If the ground contact position 

used for this calibration (40mm) is substituted into this equation it can be used for 

data verification. Using this equation the theoretical foot stiffness is 22.4N/mm at 

40mm rear of the toe; a variation of 2%.  
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4.8  Dynamic Spring Rate Testing 

4.8.1  Method 

In order to further characterise the foot dynamically the spring rate was measured in a 

similar manner to section 3.4 but with a higher crosshead speed. It is known that 

during initial data acquisition (section 4.3) the foot reached maximum deflection of 

72mm in a time of 121ms (assuming the ground contact point defined in section 4.7). 

Examining the trace of foot deflection plotted against time in figure 4.2 it can be seen 

that the deflection of a foot can be considered symmetrical. If the data is interrogated 

it is made clear that the time from heelstrike to maximum foot deflection presents as 

identical to that from maximum deflection to toe-off (at a logging frequency of 128Hz). 

During laboratory testing this equates to an average crosshead speed of 0.60m/s. 

Alternatively it is known that the entire stance phase (consisting of a single 

compression and rebound of the foot) lasts for a duration of 242ms. To replicate this 

on the hydraulic test machine a frequency of 1/0.242 = 4.1Hz is required (whilst 

matching the total deflection). To assume this is not quite correct and contains one 

large source of inaccuracy; the deflection trace generated by the rotary transducer 

during data acquisition is not a standard wave pattern. This precise shape cannot be 

programmed into the controller as it exists on the Instron 8872 machine available. 

Therefore the closest available standard wave shape was used (a triangle wave).  

A further problem was encountered when attempting to match the crosshead speed to 

the deflection speed of the prosthetic foot during running. Once the foot was mounted 

into the hydraulic test machine and a waveform programmed into the controller it was 

found that the machine capacity was insufficient to deflect the foot 72mm at a velocity 

of 0.6m/s. The desired test frequency for a triangle waveform was 4.1Hz but if 3.0Hz 

was exceeded the calibration of the waveform became impossible and the crosshead 

failed to reach the required position in time, therefore shutting down the actuator. As 

such the maximum possible testing frequency with this machine was 3.0Hz. 
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Figure 4.12: Recorded displacement waveform vs. best-case generated waveform 

A comparison of the two waveforms (as measured on the foot during data acquisition 

using a runner and the best-case generated by the hydraulic test machine) can be seen 

in figure 4.12. As such the testing that ensued was not truly dynamic as set out at the 

beginning of this section (4.1). However it is no doubt sufficient to boost the 

understanding of the nature of the foot during use. 

The foot on test (an Ossur Flex Foot Cat.6Hi) was mounted in the hydraulic test 

machine in an identical manner to that described in section 4.7.1 and subjected to a 

triangle wave of amplitude 72mm at a frequency of 3.0Hz. A total of six full phases of 

the waveform were completed following ramp-up and before ramp-down and can be 

seen in figure 4.13. 
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Figure 4.13: 'Dynamic' test procedure waveform (72mm amplitude @ 3.0Hz) 

The data was recorded using the Instron DAX software at a sample rate of 100Hz. Data 

was collected for the entire sequence and the six full-wave phases were isolated and 

averaged to create results for a single wave. Data for both force and displacement 

were collected meaning that a hysteresis loop could be plotted. 

During the generation of the hysteresis loop, at a frequency of 3.0Hz and amplitude of 

72mm the crosshead velocity was 0.432m/s; somewhat lower than the 0.6m/s 

originally specified (for a frequency of 4.1Hz). This is however markedly different to 

that used for the static spring rate testing (Chapter 3 & section 4.7) where a crosshead 

velocity of 0.0288m/s was used. Operating the machine so close to its working limits 

introduced a further error. That is the calibration of the waveform proved very difficult 

meaning that the amplitude of displacement was smaller than requested. A maximum 

amplitude of 70mm was achieved whilst maintaining an accurate waveform (see figure 

4.13). 
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Figure 4.14: Hysteresis curve for Ossur Flex Run Cat.6Hi at crosshead speed of 0.432m/s 

4.8.2  Results 

Because of the slower crosshead velocity the static testing (section 4.7) was able to 

achieve the full 72mm amplitude required from the controller and as such the 

maximum load recorded was larger (1.60kN dynamic vs. 1.65kN static) but assuming a 

straight line for each testing procedure, the spring rates are identical at this resolution 

(22.9N/mm for both static and dynamic tests).  Figure 4.14 shows the resulting 

hysteresis loop for the dynamic testing. 
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4.8.3  Conclusion 

Whilst taking these sources of error into account, it can be seen from the hysteresis 

loop generated (figure 4.14) that the foot once again exhibits a very efficient energy 

return. The compression and rebound phases of the cycle are isolated and displayed in 

different colours and even so they are almost indistinguishable for the majority of the 

working phase. The largest discrepancy can be seen at the point of maximum 

displacement where the crosshead has to come to rest and accelerate in the opposite 

direction almost instantaneously. This area can be disregarded however. It is expected 

that this discrepancy is at least in part caused by the inertial properties of the fixture (a 

mild steel construction) acting on the load cell during this brief moment of extreme 

acceleration of the crosshead. But more importantly this period of change of direction 

is grossly exaggerated in the data collected during running from the rotary deflection 

sensor. This highlights the key difference between this semi-dynamic test and the foot 

being used in genuine running. When the foot reaches maximum deflection (and is 

attached to an amputee), it acts against the mass of the runner gradually changing the 

direction of the entire system. Conversely when the foot is being tested in the 

hydraulic testing machine the proximal end of the foot is attached directly to the 

actuator and is therefore driven to a definite position.  

As such, and when observing the hysteresis loop in figure 4.14 it is apparent that the 

energy return from this specific Ossur Flex Run Cat.6Hi (being worked to a maximum 

deflection of 70mm at a shank velocity of 0.432m/s) is >99%.  
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4.9  Power Calculations 

The reaction force of the foot during testing is known from logging the output of the 

load cell of the Instron test machine. The displacement is also known and therefore the 

energy stored in the foot can be calculated.  

 

 

 

 

This figure of 112 Joules should be halved however. This is because the maximum force 

of 1601N is not applied over the entire distance. Instead it can be considered that an 

average force of half the maximum (800.5N) is applied over the full distance of 70mm 

(0.07m). Therefore during the dynamic testing phase, the foot stores a theoretical 56 

Joules of energy. 

The time taken to deflect the foot the full 70mm is also known (167ms) meaning that 

the power used can also be calculated, given that: 

 

 

 

 

 

The recorded level of energy efficiency makes sense if the power calculations are taken 

into account. Given that 335 Watts are used to deflect the foot at these speeds and 

amplitudes, any energy losses should quickly present themselves. However no audible 

emission was encountered from the foot and the surface temperature of the foot itself 

following the testing regime was not noticeably changed. Therefore the energy stored 

Energy (J) = Force (N) x Distance (m) 

Therefore: 

Energy stored in the foot = 1601N x 0.070m = 112 Joules 

 

Power (W) = Energy (J) / Time (s) 

Therefore: 

Power to deflect foot = 56J / 0.167s = 335 Watts 
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in the foot must be returned into the load cell and actuator of the test machine rather 

than being dissipated as noise or heat. 

These results contradict the work conducted by Geil (2001) whose study suggests a 

hysteresis level of nearly 25% for an Ossur Flex Foot. However as mentioned previously 

in this report, this work was conducted with little regard for the changing boundary 

conditions of the foot, in particular the ground contact point. The foot was mounted 

on slipping plates that could introduce errors into the data.  

The results of this section suggest that there is little difference between the static and 

dynamic rating of an Ossur prosthetic ESR foot. Both the tests returned an almost 

perfect energy return efficiency and identical spring rates of 22.9N/mm. 

It is clear that what can be termed ‘dynamic’ use for a prosthetic foot does not excite 

the foot at frequencies sufficient to cause a dynamic stiffening of the spring rate. Given 

the efficient nature of the foot in terms of energy return, it is also unlikely that any 

amputee is capable of driving the foot at a frequency that would cause dynamic 

stiffening and as such for the purpose of this project the stiffness of the foot shall be 

considered identical, regardless of static or dynamic use. 
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4.10  Chapter Conclusions 

 

In order to quantify what could be considered ‘dynamic’ use of a prosthetic foot a 

wearable sensing system was developed, fabricated and tested, and through this 

means, true usage data was collected. This information defined the stance and swing 

phase timing of a specific amputee at a specific speed with one single style and model 

of foot. Additional information such as ground contact position of the metatarsal 

region of the foot was collected and this drove a series of laboratory tests designed to 

understand the dynamic nature of the prosthetic device.  

 

This chapter has helped answer the research sub-question in section 2.1.1: What are 

the mechanical characteristics of a prosthetic running foot? Chapter 3 was able to 

describe how the spring rate of a prosthetic running foot is linear, but it is now known 

that the foot exhibits this same linear spring rate and energy return efficiency 

regardless of deflection speed (within reasonable limits as could be expected during 

amputee use). Further to this the ground contact point was shown to vary by over 

100mm throughout the stance phase of the stride, equating to a change in spring rate 

of the foot of 249% (from 19.1N/mm at position 1 (20mm from the toe) to 47.5N/mm 

at position 3 (100mm from the toe)). This dramatic variation in spring rate would 

suggest that the action of an ESR prosthetic running foot is not so simple to be 

described adequately by Simple Harmonic Motion, given that this equation requires a 

single spring stiffness to be defined. This starts to address the research sub-question in 

section 2.1.2: Is the claim that a foot mimics Simple Harmonic Motion legitimate? 

However more work should be conducted before any conclusions are drawn in this 

respect. 

 

Furthermore it is not yet known if the ground contact positions recorded in this 

investigation so far are typical of any amputee or usage profile, or if other factors will 

affect this value (for example mass of athlete, leg length, stride length, stiffness of 

foot, speed of running, etc).  
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This chapter has gone some way to improve understanding of the dynamic nature of 

prosthetic feet, but more work should be done to further this. The big challenge facing 

this investigation is that of the amputee athlete. If any parameters are to be changed 

(for example amplitude of oscillation or athlete mass) different amputee volunteers 

need to be found. However this introduces an infinite number of uncontrollable 

variables which is an area where previous research projects have struggled (see 

Chapter 1). Levels of amputation, limitations of individuals or even the availability of 

amputees who match the testing criteria all introduce uncertainty into the data 

produced. 

 

Therefore the objective of the next chapter is to remove the amputee athlete from the 

equation and replicate an effective running action in a laboratory environment. A rig is 

designed and fabricated that can be used to test the changing of one variable at a time 

in a reliable and repeatable manner to define the characteristics of an ESR prosthetic 

running foot. By this means, the important factors that contribute to amputee running 

can be found and effective modelling of the running process should be made possible. 
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CHAPTER 5: BRINGING RUNNING INTO THE 

LABORATORY 

5.1  Introduction & Chapter Objectives 

It was stated in the introductory chapters of this report that using amputee 

participants for the testing and analysis of prosthetic feet could be problematic, and it 

is clear that this approach has caused issues for other researchers (as discussed in the 

literature review, Chapter 1). An infinite number of uncontrollable variables are 

inevitably introduced that relate to subjectivity, repeatability, running style and the 

limitations of individuals. It was therefore deemed necessary to perform test work in a 

controlled laboratory environment at the earliest possible juncture in the project.  

The objective of this chapter is to specify, design & validate a rig capable of replicating 

the dynamic response of a prosthetic foot during amputee running. This allows the 

variables that contribute to the response of a prosthetic foot to be manipulated and 

their effect understood. The research sub-question in section 2.1.2: ‘Is the claim that a 

foot mimics Simple Harmonic Motion legitimate?’ can be investigated by the 

modification of those variables occurring in the equation for SHM (foot stiffness and 

mass) and the results compared with those anticipated and demanded by the equation. 

Previously authors (Lehmann et al. 1993a,b; Noroozi et al. 2012a,b, 2014) have 

suggested the design of a dynamic response test fixture that aligns with the 

assumption of a spring-mass system. This means that for the purpose of analysis, the 

runner and foot makes up a simple spring-mass system with the intention of 

establishing a mathematical model for predicting foot response.  
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Figure 5.1: Basic ideal spring-mass system where f= frequency of 

oscillation, k= spring stiffness and m= mass  

Figure 5.2: Equation for Simple Harmonic Motion in ideal (zero losses) conditions 

(John R Taylor 2005, Classical Mechanics, P.163) 

Where: 

ω = angular frequency (rads/s) 

f = frequency of oscillation (hz) 

k = spring stiffness (N/m) 

m = mass (kg) 

  

ω 

Which can be expanded for a 

function of oscillation frequency: 

A representation of a basic spring-mass system is shown in figure 5.1. Assuming no 

losses the action of such a system is known to act according to Hooke’s Law and thus 

the equation of Simple Harmonic Motion (SHM) as defined in figure 5.2.  

This equation can be rearranged to define the frequency (f), mass (m) or stiffness of 

the spring (k). Assuming validity to this approach, a rig was designed that replicated 

this theoretical spring-mass system capable of 'Frequency Response Testing'. This is by 

contrast to the previous regime of test work that involved an Instron dynamic 

hydraulic test machine (‘Driven Oscillation Testing’). During that series of test work the 

position of the foot was forced by a hydraulic actuator to understand the static and 

dynamic properties of the foot. A static spring rate, dynamic spring rate and hysteresis 



 111 
CHAPTER 5 

BRINGING RUNNING INTO THE LAB 

loops were defined for the single category of Ossur Flex Run foot, but this did nothing 

to understand the 'response' of the foot. That is the characteristics of the unforced 

response of the foot to known inputs. Ideally a rig would be fabricated that would 

allow the reproduction of inputs (mass, deflection amplitude, foot stiffness) as defined 

by the amputee participant and the output (frequency response) could be compared 

to that measured during the testing of the participant. Once a correlation between the 

two systems (amputee and test rig) is established the true dynamic nature of the foot 

and the legitimacy of the suggestion of Simple Harmonic Motion can be understood. 

The theoretical spring-mass system shown in figure 5.1 exhibits no losses and 

therefore purely requires an initial excitation in order to oscillate indefinitely. A rig 

would exhibit losses (by means of friction) and as such would require not only an initial 

excitation but also a source of input energy in order to maintain oscillation of the mass. 

As detailed in Chapter 1, Lechler et al. suggest:  

'The appropriate stiffness selection can reduce the metabolic cost when the 

driving frequency matches the resonance frequency of ambulation' (Lechler et 

al. 2008, P231) 

This view is shared by Lehmann et al. (1993a,b) and Noroozi et al. (2012a,b, 2014) but 

it has not been demonstrated conclusively. If the rig being designed and fabricated 

possessed the ability to record the timing and magnitude of input energy, this 

hypothesis could be proven. This could be as simple as a human interaction with the 

mass, applying a force in a timely manner to match the natural frequency of the 

system and allow the build-up of an oscillating displacement.  

In order to define the dynamic nature of this system in a laboratory an exhaustive list 

of variables was compiled and captured, as detailed below: 

Mass applied to the system (kg) Mass Displacement (distance moved) (m) 

Stiffness of the spring (N/mm)  Deflection of spring (m) 

Ground Reaction Force (N)   Excitation force (N)  
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5.2  Rig Specification 

It should be noted at this stage that to avoid confusing terms, ‘deflection’ refers to the 

change in distance between the shank and distal portion of the foot, whereas 

‘displacement’ refers to the distance travelled by the mass of either the amputee or 

test rig.  

The remit of this piece of work is to replicate the running action of the amputee 

participant, specifically the action of the prosthetic foot during the course of a single 

stride. The rig must be defined in a robust manner in keeping with engineering best 

practice. In summary, the design of the rig must allow for: 

 

- Up to 100kg mass to be applied safely.  

 The runner used in the previous investigation at the time of testing had a mass 

of 83.0kg. Therefore to replicate his running action the rig should be able to withstand 

at least this mass to be applied. However in the interest of future testing and 

examining trends above and beyond the mass of this single amputee, a maximum 

capacity of 100kg was defined. The mass must be held in a stable manner to ensure 

that the operation of the device is safe for the user. 

 

- Effective boundary conditions to be maintained. 

 In order to ensure parity with the previous test work and avoid 

unrepresentative tension build-up in the system the boundary conditions of the foot 

(specifically at the points where the foot interacts with the rig) must be controlled. This 

approach was taken for the Driven Oscillation Testing and can be found in Chapter 3.  
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Figure 5.3: Examples of posterior and pyramid-mounted feet (images source: Ossur.com)  

Posterior mounting  
Pyramid mounting  Fixings  

Fixing 

- A minimum of 200mm vertical displacement above the resting position of the foot. 

 The vertical height achieved by the mass during testing represents the height 

gained by the centre of mass of the amputee during running. It is important to 

separate this from the height achieved by the prosthetic foot above the ground as this 

is influenced by flexion of the knee. Following video examination of amputee running it 

was deemed sufficient to allow for 200mm of vertical travel of the foot (ignoring 

deflection of the foot).  

- A variety of feet to be attached. 

 Whilst the objective of this initial investigation is to reproduce the action of the 

amputee runner as defined previously, the rig should allow for future testing of other 

feet from the same and alternative manufacturers. Fortunately there appear to be only 

two mainstream foot attachment methods for prosthetic ESR running feet (pyramid 

mount & posterior mount). Examples of these are shown in figure 5.3. 

The rig should possess the flexibility to adapt to these different mounting styles but 

not adversely affect the feet on test. They should be able to be mounted in an un-

intrusive manner that does not require marking or damaging the foot. 
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- A minimum calibrated resolution of +/-1mm for displacement/deflection 

instrumentation, +/-0.1N for load instrumentation and a minimum logging frequency 

of 100Hz. 

 Any measurements taken from the system must be accurate to allow effective 

analysis following testing. All instrumentation must be calibrated before testing 

commences and a minimum logging frequency of 100Hz should be used in order to 

provide at least the same resolution as previous test work that was conducted. 

(Previously this figure of 100Hz was defined by the limitations of the data acquisition 

software of the Instron Hydraulic Testing Machine software). As previously stated 

(section 4.2.2) the action of a prosthetic running foot is understood to take place 

primarily in the sagittal plane. In addition, in order to simplify the system to be 

represented by a basic spring-mass system it was only necessary to allow the mass a 

single degree of freedom and travel in a purely vertical manner. However it must do so 

in a free and unrestricted manner in order to minimise any inefficiencies that might 

influence the results. Theoretically any inefficiency in the rig itself should be 

identifiable through the analysis of the data collected (by way of hysteresis curves 

from the force/displacement data).   

 

  



 115 
CHAPTER 5 

BRINGING RUNNING INTO THE LAB 

5.3  Rig Design 

5.3.1  Basic Design 

A rig was designed, modelled and fabricated as shown in figure 5.4.  

 

Figure 5.5 is a front view of the assembled rig and demonstrates the mode of action. 

Fundamentally this is a vertical sliding motion of a fabricated carriage that is able to 

securely retain various known cast iron masses that are commonly used in gym 

equipment, and on the lower edge a prosthetic foot can be mounted. Smooth action of 

the carriage is ensured with the use of ground linear slide rails with re-circulating ball 

bearings on each side. 

 

Welded steel 

framework 

Input handle 

Weights carriage 

Surface table 

Interchangeable 

cast iron masses 

Linear slide rails 

Prosthetic foot 

Figure 5.4: CAD render and photograph of the frequency response rig with 

key components labelled. 

Ground force 

load cell 

Input force 

load cell 



 116 
CHAPTER 5 

BRINGING RUNNING INTO THE LAB 

Fo
rc

e 
in

p
u

t 

Oscillation 

Figure 5.5: Illustration of the designed mode of action of the frequency response rig design. 

 

Oscillation occurs when an input force is momentarily applied to the input handle. 

Energy is stored in the prosthetic foot and in accordance with the natural harmonic 

timing of the system is returned as gravitational potential energy. If a significant 

enough input force is again applied in a timely manner the resulting oscillation of the 

carriage will increase in amplitude. If the input force is not re-applied the amplitude of 

oscillation will inevitably decay until movement stops. 

Although the principle of the rig is very simple there are a number of important details 

that ensure its function. Appendix 2 discusses the most important design aspects with 

information on fabrication and assembly. 
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5.3.2  Mounting of the Foot 

As described in Chapter 3, when undergoing the forced oscillation testing the method 

of mounting the prosthetic foot on test is critical to ensure meaningful data. Most 

important is to allow the foot the required degrees of freedom at either end where it 

interfaces with the rig. Over constraint of the foot would result in tension build-up in 

the rig and this has the potential of adversely affecting the data gathered.  

The correct mounting of the foot would result in purely vertical forces being applied to 

the rig in the -Y direction; this means all forces must be compressing the foot into the 

ground plane. At no point should the rig be subjected to lateral or torsional modes. In 

order to ensure this, three things must be provided: 

 

1.  All mounting points must be aligned with the vertical centreline of the rig  

2.  The interface between the rig and foot at both medial and distal ends of the 

foot must be allowed to rotate in the sagittal plane. 

3.  The distal (toe region) mounting point of the foot must be allowed to leave 

the ground plane if the energy stored in the system should be sufficient. This 

is to replicate the foot leaving the ground during amputee running. 
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Cast masses 
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Automotive 

suspension ball joint 
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prosthetic foot 

Guide rods 
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Bearing cradle 

Figure 5.6: Cutaway CAD sectional view of the foot mounting arrangement. This setup 

ensures that the foot is allowed the relevant freedom of motion and the centreline of force is 

always aligned with the centreline of the rig. 

In order to accommodate for these requirements the foot was mounted using an 

automotive suspension ball joint at the medial end (at the shank) and between a pair 

of ball bearing races at the distal end. Importantly the saddle that cradled the ball 

bearing races at the distal end of the foot was located rigidly on the centreline of the 

rig and directly below the centre of the ball joint that attached the medial end of the 

foot to the chassis of the carriage. The ball joint in turn was mounted directly in the 

centre (in both X and Y directions) of the base plate of the carriage. This ensured that 

no lateral or torsional forces could be exerted on the carriage. This arrangement can 

be seen in the CAD model shown in figure 5.6. The view is sectioned for clarity with an 

Ossur Flex Run (category 6Hi) prosthetic foot installed. 

To permit the free movement up away from the ground plane and allow the simulated 

effect of the runner's foot leaving the ground the bearing races were not captive but 

instead were cradled in machined cups. If the system possessed enough energy for the 

foot to leave the ground it was free to do so. However the distal end of the foot (and 
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Figure 5.7: Diagram demonstrating the action of the foot during testing, and how the toe 

is free to leave the ground plane but can never deviate from the centreline  

bearing races) could not deviate from the centreline of the rig because of four guide 

rods inserted into the bearing cradle, one on each side of each bearing. This 

arrangement meant that if the bearings left their respective cradles, when the foot 

dropped again the bearings would return and relocate in their original positions. This 

action is demonstrated in figure 5.7.  

The medial end of the foot could be mounted to the ball joint by simply using the 

12mm hole provided by the manufacturer for attaching the shank adapter. However 

the distal end of the foot has no features suitable for attaching any test hardware.  

As such, a similar approach to mounting the foot was taken as used in the previous 

forced oscillation testing (Chapter 3) with the toe of the foot securely held in a 

purpose-built clamp. The clamp was fabricated from steel and machined such that the 

bearings were held in place using circlips. It was profiled so not to mark the finish of 

the foot on test. The clamp with bearings and bearing cradle can be seen in figure 5.8. 

This setup also means that throughout testing the effective ground contact point of 

the foot remains unchanged. This is important because, as defined in Chapter 4, as the 

ground contact point of the foot changes so too does the spring rate of the foot. 

This approach relies on the bearing races (and associated brackets to clamp the foot) 

to be attached at the toe, adding an unrepresentative mass. During amputee running it 

is imperative that this portion of the foot is as lightweight as possible. This is because 
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Figure 5.8: Photograph of the toe clamp that un-intrusively fixes to the distal portion of 

the foot and defines the ground contact point. Also visible is the load cell that measures 

the ground reaction force.   

throughout the course of a single stride the toe of the foot is subject to acceleration 

from toe-off through the swing phase to foot strike. Additional mass at this location 

would result in additional (perhaps unnecessary) energy expenditure by the amputee. 

However adding mass at this location on the rig is theoretically irrelevant for the 

purpose of recording the response time of the foot. Firstly this is because the swing 

phase does not exist (with the foot acting in a purely guided vertical plane). The 

second reason is that the response timing of the foot is defined by the ground contact 

time. During this period of ground contact the toe (and associated hardware) is 

effectively massless, being in contact with the ground plane. The response of the foot 

is dependent on the mass attached to the shank of the foot instead. It is anticipated 

that the natural oscillation of the unloaded foot be different to that witnessed during 

amputee running (as demonstrated in figure 4.2 & 4.3 when the foot is not in contact 

with the ground plane) but this can have no effect on the response time of the foot. 

The practical result of this arrangement is that the ground contact point has to be 

defined prior to any test work being carried out. This is the topic of section 4.6 and is 

of great importance to the success of this investigation. 
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Table 5.1: List of variables to be measured and the associated piece of instrumentation apparatus  

Below the bearing cradle as can be seen in figure 5.8 is the ground force load cell. This 

load cell is responsible for providing a reading of load going through the foot and is 

rigidly attached to the bearing cradle using a single screw. More information on this 

load cell and the other measurement devices used on the rig can be found in the 

following section and in Appendix 3. 

 

 

5.3.3  Instrumentation 

In order for the dynamic response of the foot to be understood a number of variables 

should be observed. As set out in section 5.1 these are shown again in table 5.1 along 

with details of the respective piece of instrumentation. Details of each are then given 

in Appendix 3 including information on calibration and set-up. 
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5.4 Rig Validation: Can this rig be used as a valid comparison to 

amputee running? 

5.4.1  Introduction 

Before more investigative work can be conducted the validity of the rig as an 

alternative to amputee running should be evaluated. The reason for fabricating the rig 

is to allow the controlled testing of feet without the need for using an amputee. 

Variables (such as the mass applied, deflection amplitude and ground contact points) 

can be modified in a repeatable and iterative manner and the response of the foot can 

be examined. As mentioned in section 5.1 using amputees for comparative analysis has 

caused problems for researchers in the past and it is the intention of this investigation 

to avoid a repeat of such issues. However the rig makes some assumptions and the 

precise action is clearly different from a real-world environment in which no two steps 

are the same. For example the rig as described in section 5.3 can only allow a single 

ground contact point of the foot whereas it was proven in Chapter 4 that this is not the 

case in amputee running.  

The most effective and robust manner of validating the rig is to attempt to replicate 

the action of the amputee runner as observed in section 4.4. This will give a direct 

comparison between the runner and the rig and allow conclusions to be drawn as to 

the effectiveness and suitability of further study using the rig.  

As described in Chapter 4, during testing on flat level ground in a controlled 

environment the amputee runner exhibited the running characteristics (averaged 

values over 8 strides) as shown in table 5.2. This table indicates the key parameters 

that describe the running. It is these six parameters (highlighted in red) that should be 

replicated if the rig is to effectively match the amputee. Of these six parameters, three 

of them are purely a matter of using the same foot and adding mass to the carriage as 

to replicate the mass of the amputee. 
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Table 5.2: Running characteristics of the amputee athlete during testing in Chapter 4 

 

  

Height of runner 180cm 

Weight of runner 83kg 

Cadence of runner 1.08 Hz 

Time for a single stride 728ms 

Time for stance phase 242ms 

Time for swing phase 486ms 

Model of foot Ossur Flex Run 

Category of foot 6 Hi 

Maximum displacement 69.7mm 

Ground reaction force 1.70kN 

The remaining three are stance phase timing (or more appropriately in this instance 

'ground contact time' as there is no stance phase of which to speak in the absence of a 

runner), maximum foot deflection and ground reaction force. 

It is unrealistic to enter into this investigation assuming that all three of these variables 

can be matched. In reality only one can be purposefully replicated to that measured 

during amputee running. The remaining two variables will present themselves as a 

result of this first variable and the conditions of the foot and rig. For example if the rig 

were exercised with a progressively larger amplitude of the carriage until a ground 

reaction force of 'x' were achieved, the resulting ground contact time and maximum 

foot deflection could only be measured as a result of this ground reaction force. And 

the same is true if one of the other two variables were chosen as the driver. 

Of these three variables, the most practical to choose as the driver is maximum foot 

deflection. This can be easily viewed by the operator during testing without the need 

for additional instrumentation by simply marking one of the stanchions of the test rig. 

The input handle runs very close to the framework and forms an excellent visual point 

of reference for amplitude achieved.  
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5.4.2  Ground Contact Point 

One additional variable to take into account before testing can commence is that of 

the ground contact point. As demonstrated in section 4.4.2 the contact point that the 

foot holds with the ground varies throughout the stance phase of a single stride. While 

testing with the Ossur Category 6Hi foot and a single amputee athlete the contact 

point was shown to travel from over 100mm posterior of the front tip of metatarsal 

region of the foot (toe region) to the tip. However the rig is not capable of dynamically 

altering the contact point of the foot with the ground during the period of a single 

oscillation. Therefore as mentioned in section 5.3.2 a single ground contact point 

should be defined at which all testing must take place. Previously for the purpose of 

comparing static and dynamic characterisation (using the Instron test machine as part 

of the forced oscillation testing) this point was chosen to be 40mm from the distal end 

of the toe (section 4.7). However this figure should be revisited now that direct 

comparison with the amputee is being undertaken. 

The main purpose of this specific investigation is to establish if the amputee and the rig 

can be effectively compared for the basis of future work. This requires the maximum 

values to align; the maximum foot deflection amplitude, maximum ground reaction 

force, maximum deflection timing, etc. Logically therefore the ground contact point 

chosen should be that which results at this same point of maximum foot deflection (& 

displacement)/ ground force  during normal running use.  

As mentioned in section 4.8 it was found that the timing of maximum deflection of the 

prosthetic foot during amputee running occurred (within measurable limits) exactly at 

the midpoint between heelstrike and toe-off. As shown in table 5.2 the total stance-

phase time was 242ms meaning that maximum deflection must occur at 242 / 2 = 

121ms.  
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Figure 5.9: Curve demonstrating the shift in ground contact position relative to the distal end of 

the foot (toe region) with mid-stance position indicated 
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Using the graph defined in section 4.4.2 and shown in figure 4.4 (also figure 5.9) it can 

be seen that at 121ms after heelstrike the ground contact point of the foot is 50mm 

posterior of the tip of the foot. Therefore it was at this point that the toe-clamp 

portion of the rig was attached. 

This modification in ground contact point is also the reason for the change in 

maximum deflection. The amputee testing conducted in Chapter 4 (and subsequent 

single point foot characterisation (section 4.7)) defined the maximum deflection of the 

foot as 72mm at a ground contact point of 40mm from the toe. The ground contact 

point for the purpose of this test work is being changed to 50mm from the toe 

meaning that this overall deflection value of the foot is invalid. The single point 

characterisation testing (as conducted in section 4.7) was repeated but with a ground 

contact point of 50mm rear of the toe. The resulting maximum deflection value was 

69.7mm and it is this value that is to be replicated by the rig. 
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Figure 5.10: Apparatus set-up to replicate the mass of the amputee athlete. 

5.4.3  Method 

Figure 5.10 shows the test setup with the masses added to the carriage of the rig. The 

carriage has a mass of 16.0kg before any additional weights are added. Therefore to 

achieve a total mass of 83kg a further 67kg are required. A summary of the test 

conditions is shown in table 5.3.  

The logger was started and the carriage exercised up and down using the input handle. 

Force was applied downwards on the input handle and it quickly became apparent at 

what moment in the oscillation cycle the force should be applied to ensure the most 

efficient build-up of energy in the prosthetic system. This coincided with the natural 

harmonic resonance of the system and is the subject of further discussion in this 

chapter. Energy was applied in this timely manner until the target maximum foot 

deflection was achieved. As discussed previously a mark was added to the right-hand 
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Figure 5.11: Graph demonstrating the input force required to build-up the amplitude of oscillation of a 

prosthetic foot mounted on the test rig, compared with that required to maintain steady-state amplitude 
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stanchion where the edge of the handle passes at 69.7mm below the unloaded 

condition of the foot to act as a visual reference to the user.  

When the edge of the handle coincided with this mark the maximum deflection value 

had been reached. Having the required deflection been achieved it was found that the 

input force could be reduced in order to maintain the desired amplitude. This is 

demonstrated in figure 5.11 which is a trace of handle input force and foot deflection 

against time.  

After approximately 15 full-displacement oscillations of the carriage the input force to 

the handle was removed and the carriage was allowed to settle, the amplitude of 

oscillation decaying naturally. Once the carriage was stationary the logger was stopped 

and the data could be collected.  

Table 5.3: Test conditions for replicating amputee running 
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Figure 5.12: Raw data captured from all four logged channels with isolated 

oscillations (figure 5.13) shown 
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5.4.4  Results 

Figure 5.12 shows the raw data that was collected for the 15 full-displacement 

oscillations. The X-axis is the time code as generated by the data logger and the Y-axis 

is displayed in volts as collected by the data logger.  

The data displays well on the graph with few or no apparent anomalies. However it is 

difficult to interrogate when shown in this manner. In order to understand the 

dynamic action of each of the variables a smaller sample of this trace is shown in figure 

5.13 with some of the key points labelled. Shown are two full 'strides' (or complete 

oscillations) of the rig with all four channels overlaid. The X-axis is still expressed as the 

time code generated by the data logger and the Y-axis expressed in voltage as logged, 

and the important events of the stride are labelled.  
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Figure 5.13: Isolated oscillation cycles from figure 5.12 with key stride events labelled A, B, C, D. 
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Point A is the equivalent of heelstrike in amputee running (for comparison an 

equivalent trace for amputee running with labels can be seen in figure 4.2). This is the 

moment the foot first touches the ground plane and deflection begins. At this point 

the mass is moving in the -Y direction at its maximum velocity. At point A it can be 

seen that the foot deflection and ground reaction force react simultaneously and 

mirror each other in an opposing apex.  

The moment of maximum foot deflection (and maximum ground reaction force) is 

labelled as D at which point the velocity of the carriage is zero and the kinetic energy 

of point A has been converted into potential energy stored in the foot. The carriage 

changes direction and accelerates towards point B; the equivalent of toe-off in 

amputee running.  

The foot leaves the ground plane and as it does so the toe of the foot, now 

unsupported by the rig, enters its own resonance. This harmonic is visible on the trace 

of foot deflection as measured by the vario-resistive sensor mounted to the foot and is 

labelled as point C. Before the resonance has time to decay to zero the carriage returns 

towards the ground plane and once again the toe of the foot comes into contact with 

the ground reaction force load cell and is shown again as point A. 
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Figure 5.15: Trace of ground reaction force (83kg @ 69.7mm) 
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Figure 5.14: Trace of foot deflection (83kg) 
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Throughout this single oscillation the carriage displacement can be seen as a smooth 

sine wave and the trace of force input from the handle can also be seen. As described 

in section 5.4.3 the timing of the input force was entirely dictated by the operator.  

 In order to generate more meaningful data from this information the time code was 

converted into milliseconds and each channel converted into a value of its native unit 

by using the specific calibration equation as generated in Appendix 3. Additionally the 

X and Y values of each of the measured variables was split and displayed on a separate 

graph. Only the centre ten oscillation cycles were used for data analysis to ensure the 

'warm-up' (amplitude build-up) and 'warm-down' (amplitude decay) phases did not 

influence the data. The maximum value achieved by each variable for each oscillation 

during test was recorded and the mean calculated, as shown in figures 5.14 to 5.17. 
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Figure 5.16: Trace of input force (83kg @ 69.7mm) 
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Figure 5.17: Trace of carriage displacement (83kg) 
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Important to note is that due to the offset of the peaks of the various traces, the input 

force (figure 5.16) and the carriage displacement (figure 5.17) only feature 9 peaks 

instead of 10. The mean peak of each of these traces was calculated and is tabulated in 

table 5.4 where it is compared with the values obtained from the amputee athlete 

who was being mimicked. 

As shown in table 5.4, if the maximum mean values are examined, within measureable 

limits the running action of the amputee subject is identical to the oscillation of the rig. 

For the purpose of this investigation the driving variable was foot deflection; this is the 

variable that was set out to be replicated from the recorded amputee running of 
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Table 5.4: Averaged data over 10 strides for rig vs. amputee running with 

identical input conditions (values of Standard Deviation listed). 

section 4.3. As can be seen in figure 5.14 the intended value of 69.7mm was not always 

perfectly achieved (as is inevitable with a human-operated system) but over the ten 

measured oscillations the mean value is ideal. The ground force is also identical which 

stands to reason. If the foot deflection is the same, then for this given deflection the 

force exerted must also be the same as previously measured. Above all, this result 

serves to confirm the repeatable setup of the foot deflection instrumentation and the 

accurate calibration of the ground force load cell.  

It is logical to expect the recorded values of foot deflection and carriage displacement 

to align as it is the displacement of the carriage that is driving the deflection of the 

foot, but there is a discrepancy of 0.4mm. This could be a measurement or calibration 

error, but more likely it is a result of the misalignment between the medial mounting 

point of the foot to the base of the carriage and the centreline of the deflection 

transducer attached to the foot. As shown in figure 4.1 the setup of the deflection 

transducer requires the pivot of the rotary transducer to be directly below the 

centreline of the shank adapter used for attaching the foot to an amputee, but this is 

when the shank is perfectly vertical. When installed in the rig the shank is not vertical 

and indeed when the foot goes through deflection the shank portion of the foot 

rotates in the sagittal plane. The result of this is that the pivot of the rotary deflection 

transducer can never perfectly align with the centreline of the rig and as such will 

inevitably measure a small error when compared with the true vertical motion of the 

carriage. However it should be noted that for the purpose of this investigation it is the 

deflection of the foot that is more important as it is this variable that is being directly 

compared with what was measured during amputee testing.  



 133 
CHAPTER 5 

BRINGING RUNNING INTO THE LAB 

Time (ms) 

Fo
o

t 
d

ef
le

ct
io

n
 (

m
m

) 

Figure 5.18: Traces of foot deflection (83kg) for both the rig 

and amputee testing phases 

A 

B 
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Equally important is the apparent ability of the rig to replicate the timing of the 

amputee. The ground contact time between the amputee and the rig is identical (to 

the nearest 10ms). At a logging frequency of 128Hz it is impossible to differentiate 

between the two. This apparent replication of running style can be examined further 

by comparing the foot deflection data for the entire stance-phase and is shown in 

figure 5.18. Data from ten strides (in the case of the amputee)/oscillations (in the case 

of the rig) is averaged in to a single set and the two resulting curves are overlaid.  

Figure 5.18 illustrates that whilst the overall ground contact time of the foot is 

identical between the rig and the amputee there are some notable differences in how 

the deflection of the foot progresses over the period of a single stride.  

Firstly when the foot first comes into contact with the ground the rate of deflection is 

greater during amputee running than it is on the rig (labelled A in figure 5.18). This is 

particularly apparent at the very early stages after heelstrike. However at 

approximately 30mm deflection this situation changes and it appears that the 

gradients of both traces become aligned. The data shows that the foot measured 

during amputee running reaches its point of maximum deflection fractionally before 

that from the rig (labelled B), but after the apex it can be seen that the opposite is 
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true. The steeper gradient belongs to the data from the rig and as a result the two 

traces tend towards each other until they reach 0mm deflection at the same time.  

This phenomenon is a result of the ground contact point changing along the metatarsal 

region of the foot. Discussed in section 4.4.2 as the stance phase of a single stride 

progresses during amputee running the point at which the foot contacts the ground 

changes, tending towards the distal end of the foot until toe-off occurs. However the 

rig set-up uses a single effective assumed ground contact point. As such, when the 

amputee first lands (heelstrike) the portion of the foot that touches the ground first is 

posterior to that point used on the rig. This results in a decreased lever-arm ratio of 

the foot which equates to a higher relative stiffness and as such an increased rate of 

deflection. As the ground contact point progresses forward towards the anterior edge 

of the foot the reverse is true. The effective stiffness of the foot becomes progressively 

less and the subsequent rate of deflection lower. The moving ground contact point 

exhibiting itself in this way and the fact that both feet exhibit the same ground contact 

time adds validity to the assumed ground contact point used on the rig (discussed in 

section 5.4.2). 

The second notable difference is the resonance that occurs after toe-off (when the 

foot leaves the ground, labelled C in figure 5.18). Both methods of testing exhibit 

resonance at this stage of the stride but the nature of this oscillation is different. 

During amputee testing it was apparent that the toe underwent one or two 

progressively decaying oscillations. During rig testing however this changed to four 

distinct and marginally decaying oscillations at significantly greater amplitude. The 

oscillations are always arrested by the foot coming into contact with the ground plane 

once more.  

This harmonic disparity is a result of the different setup of the two investigations. 

During amputee testing every effort was made not to add mass to the distal end of the 

foot so not to influence the running action of the individual. Added mass at the distal 

end of the foot might have affected the swing phase of the stride as the amputee 

works to reposition his foot. However during rig testing the mounting of the foot was a 

critical concern and (as discussed in section 5.3.2) hardware was added to the 



 135 
CHAPTER 5 

BRINGING RUNNING INTO THE LAB 

metatarsal region in order to clamp the foot. This hardware included the two bearings 

that allowed the rotational degree of freedom in the sagittal plane as required by the 

mounting strategy that was used. The addition of the extra mass at the distal end of 

the foot serves to slow the resonant frequency of the toe in accordance with the 

equation for simple harmonic motion (figure 5.2). Furthermore this additional mass 

stores more energy than the smaller mass of the toe alone and therefore forces a 

larger deflection following toe-off. 

The third difference is that of the duration of ‘zero deflection’ following toe-off. This is 

represented by the length of each of the traces. However this is easily explained as 

what is probably the greatest difference between testing using an amputee and on the 

rig. The traces shown in figure 5.18 illustrate the duration of a single stride or 

oscillation. On the rig the foot returns to the ground plane after approximately 330ms 

to begin another cycle. However the foot of the amputee does not come into contact 

with the ground until approximately 720ms because the process is interrupted by the 

action of the contralateral leg. The foot of the amputee is in the air for a significantly 

longer time whilst the other leg is undergoing the stance phase of the stride. 
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5.5  Characterisation of Rig Efficiency 

It has been suggested that the rig operates in accordance with the equation for Simple 

Harmonic Motion (section 5.1) but this equation does not account for any losses. It has 

been established in Chapter 4 that the foot itself is >99% efficient in terms of its energy 

return, but when considering the measured response of a more complex system (such 

as the foot mounted to the rig) the entire system should be taken into account. Rig 

components are restrained with various devices (for example linear slide rails with re-

circulating ball bearings), all of which inevitably subtract from the overall efficiency by 

means of friction. 

The efficiency of the rig was ascertained using three separate methods: 

Method 1: Hysteresis curves 

Method 2: Input energy vs. stored energy 

Method 3: Carriage amplitude decay 

Detail of the methods used for evaluating the efficiency of the rig can be found in 

Appendix 4 with an overview provided in table 5.5. 

 

 

 

 

 

  

Method 1: 88.9% 

Method 2: 90.3%               Mean value = 89.4% 

Method 3: 88.9% 

 Table 5.5: Results of the three separate methods for determining rig efficiency 
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5.6  Chapter conclusions 

It has been demonstrated that the rig is capable of closely mimicking the action of an 

amputee runner during steady-state running, assuming that the following are true: 

-  The mass of the runner is equivalent to that of the carriage (with masses 

attached) 

-  The same (or an identical) foot is used 

-  The ground reaction force OR foot deflection is copied 

-  The ground contact point selected to represent the running action is equivalent 

to that achieved at the point of maximum foot deflection during amputee 

running (in this case 50mm rear of the toe tip) 

If these four conditions are satisfied this rig can effectively replicate the running action 

of an amputee runner and return the same ground contact time. This establishes a 

known and understood link between the rig and amputee, but at this stage it is not 

useful for working backwards; this means using the rig to predict how an amputee will 

run. The main reason for this is that the amplitude of deflection of the foot will vary 

depending on how much energy the amputee is exerting. For instance it has been 

shown that the ground force maintained by a runner increases at higher velocities 

(Munro et al. 1987; Keller et al. 1996). This change in load will inevitably result in a 

change in amplitude of deflection of the foot, but it is not yet understood if this change 

will result in a modified ground contact time. In other words, if the ground contact 

time changes for different values of foot deflection, the rig can only be used to predict 

one if the other is known. The ground contact time can be demonstrated if the foot 

deflection is known and vice versa. 

It has also been shown that if a small input force is applied in a timed and sympathetic 

manner to the prosthetic spring-mass system the amplitude of oscillation (and 

therefore energy stored in the system) increases. This agrees with the hypothesis 

stated in section 5.1 and the views of Lechler et al. (2008), Lehmann et al. (1993a,b) 

and Noroozi et al. (2012a,b, 2014). This baseline of energy input is required to 

maintain the amplitude of oscillation and overcome the frictional inefficiency of the rig 

(defined in section 5.5 as 10.6%). If greater amplitude is to be achieved, a greater force 
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input is required (in the same timely manner) as can be seen in figure 5.11. If the input 

force is removed the amplitude of oscillation will decay to zero according to the 

frictional losses in the system. The system can be seen as being grossly under-damped 

(more information on the efficiency of the system can be found in Appendix 4) and as 

such the frequency response contribution from the effective damping of the system is 

considered negligible and has been ignored. 

The objective of this chapter was to design and fabricate a rig that was able to mimic 

amputee running and would allow individual variables to be modified. This objective 

has been satisfied and the rig can now be used to not only improve our understanding 

of amputee running but more specifically help answer the research sub-question set 

out in section 2.1.2: ‘Is the claim that a foot mimics Simple Harmonic Motion 

legitimate?’ 

If an amputee can be compared to a spring-mass system as authors have previously 

suggested then the ground contact time will be predictable in accordance with the 

equation for simple harmonic motion (section 5.1). This states that for a given mass 

and spring rate the frequency of the system (and therefore ground contact time) will 

remain constant regardless of fluctuations in amplitude (ignoring any losses). It is 

therefore critical to the progress of this thesis that further investigations are 

conducted to understand if the equation for SHM can be applied to amputee running. 

Individual variables can be manipulated and the response time observed to establish if 

SHM is a valid trend. 

Furthermore the ground contact point assumed for this amputee athlete (50mm rear 

of the tip of the toe) could change depending on running velocity, foot deflection, 

stride length, stride frequency or even the individual set up of the prosthetic foot. 

Previously it was shown that the change in ground contact point (and therefore the 

boundary conditions) has a dramatic effect on the effective stiffness of the foot. 

Additional investigations should address this in order to understand both the 

magnitude of change of the ground contact area for different styles of running (across 

a range of speeds, stride lengths, etc) and how relevant this change would be to the 

measured frequency of oscillation. 
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CHAPTER 6: INVESTIGATING SHM VARIABLES 

6.1  Introduction & Chapter Objectives 

Previous studies (Lehmann et al. 1993a,b, Noroozi et al. 2012a,b, 2014) have suggested 

that the action of an ESR prosthetic foot can be assumed to act according to the 

equation for Simple Harmonic Motion. This equation can be seen in figure 5.2 and 

relies on the values of two variables to provide a value of frequency of oscillation of a 

spring-mass system, namely Mass (m) and Spring Stiffness (k). 

Having established a connection between amputee running and the frequency 

response rig (section 5.4.4), the rig can be used to explore how applied mass and 

spring stiffness affect the frequency response of the prosthetic foot. Investigations can 

be conducted to test the response of the foot across a range of applied masses or foot 

stiffness values to understand if the observed trends coincide with those expected and 

required by the equation for SHM.  

The objective of this chapter is to explore the relevance of Simple Harmonic Motion to 

amputee running and answer the research sub-question set out in section 2.1.2: ‘Is the 

claim that a foot mimics Simple Harmonic Motion legitimate?’ 
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6.2  Exploring the Principles of SHM 

6.2.1  The Effect of Mass Variation 

The first SHM variable explored was that of varying the mass. According to the 

equation of SHM (figure 5.2) if the mass of a spring-mass system is increased the 

frequency of oscillation will be reduced. This phenomenon is easily investigated by 

exercising the rig through a certain displacement (as conducted in previous tests, for 

example section 5.4.3) but modifying the mass of the carriage of the rig. The effective 

ground contact point (clamp position) must remain constant and the same foot must 

be used for all tests (therefore maintaining identical spring stiffness for all tests. The 

equation of SHM makes no reference to the amplitude of displacement and as such for 

the purpose of this investigation the amplitude is ignored. 

 

6.2.1.1  Method 

The rig was assembled as shown in figure 5.10 with an Ossur Category 6Hi ESR 

prosthetic foot attached to the carriage. The toe clamp was located in an identical 

position to the testing in section 5.4.2 at 50mm from the toe meaning that the data 

gathered in Chapter 5 is comparable. 

Masses were added to the rails of the carriage according to table 6.1, secured using 

the clamping beam (see Appendix 2) and the data logger initiated. The masses chosen 

for this investigation were selected as the median value of those recommended by the 

manufacturer (Ossur) for each category of their feet (table 6.2) up to the maximum 

design load of the rig (100kg). 

The rig was exercised using the input handle (see figure 5.4) at a frequency that 

subjectively matched the resonant frequency of the system until the amplitude of 

oscillation was such that the toe comfortably left the ground plane. This amplitude was 

maintained for a series of at least ten oscillations at which point the input force was 

removed and the amplitude of the carriage allowed to naturally decay. Of the data 

recorded, a series of 8 oscillation cycles were isolated and averaged to provide a single 
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Table 6.2: Flex Run stiffness prescription guide (Source: Ossur.com) 

Table 6.1: Test conditions with associated masses to be fitted to the carriage. Masses were 

chosen as the median values of those published by the foot manufacturer up to a limit of 100kg. 

 

Test condition: 1 2 3 4 5 6 7 

Mass (kg): 40.5 48.5 56 64 73 83 94.5 

typical ‘stride’. This method was then repeated for the next successive applied mass 

until all seven loading conditions had been satisfied.  
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Figure 6.1: Traces of foot deflection for each successive mass applied to the carriage plotted 

against time. The foot response slows proportionally as mass increases. 
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6.2.1.2  Results 

Figure 6.1 shows the traces of deflection plotted against time for each of the seven 

mass conditions.  

 

As the mass of the carriage increases there are two significant effects: 

1. The amplitude of displacement increases. The amplitude was controlled by the 

amount of energy applied through the input handle of the rig and as such was 

variable, but in order to establish comparability of the data, displacement (& 

deflection of the foot) was defined in each case by the toe leaving the ground 

plane. However with the increase in mass, more stored energy in the foot is 

required to enable this. Therefore a greater deflection is required. It should 

also be noted that the nominal value of foot deflection (that which occurs in a 

static loading condition) is also naturally greater with the increased load on the 

foot. 

 



 143 
CHAPTER 6  

INVESTIGATING SHM VARIABLES 

Figure 6.2: Traces of ground reaction force for each successive mass applied to the 

carriage plotted against time. The foot response slows proportionally as mass increases. 
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2. The frequency response of the foot is slower, proportionally to the increase in 

mass. This trend is expected according to the equation for SHM, but it is not yet 

known if the size of the change is congruent with the equation. 

The same trend can be seen if the same investigation is expressed in terms of the 

ground reaction force measured in kN, shown in figure 6.2. 

  

For each successive loading condition it can be seen that the ground reaction force 

increases according to the deflection of the foot (shown in figure 6.2). Given that each 

loading condition takes place with the same foot and ground contact position, this is 

exactly the trend that would be expected and suggests that the deflection data 

captured is valid. A further validity check that can be conducted is to plot values of 

force and deflection for each of the loading conditions on the same graph, therefore 

creating a force- deflection curve and a series of hysteresis loops (figure 6.3).  
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Figure 6.3: Hysteresis loops for each successive loading condition of the foot demonstrating 

the uniform linear spring rate of the foot on test, regardless of how much load is applied. 
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It can be seen that each of the loading conditions exhibit the same linear spring rate 

for the loading phase (see section 3.2.4.3 for an explanation of hysteresis curves and 

energy efficiency) and when plotted together as in figure 6.3 it is impossible to 

differentiate the individual conditions from one another.  

As discussed in Appendix 3 the load cell accuracy diminishes significantly below 0.2kN 

and this is evident in figure 6.3 where the load apparently never reaches a value of 

zero, despite the foot being airborne. The spring rates plotted in figure 6.3 show a 

margin of hysteresis (and therefore inefficiency). This is an effect of the frictional 

losses of the rig and is covered in detail in Appendix 4. 
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Figure 6.4: Hysteresis loops for each successive loading condition of the foot with the 

originally recorded spring rate of the same foot from the Instron testing phase (section 5.4.2). 
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To further add validity to this data figure 6.4 shows the same data but with the original 

spring rate data from section 5.4.2 overlaid that was measured on the Instron test 

machine for an identical ground contact position. As can be seen the spring rates are 

nearly identical. 

 

This correlation in spring rate data serves to confirm the calibration of the load cell of 

the rig versus that of the Instron test machine. 
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6.2.2  The Effect of Stiffness Variation 

The second SHM variable to explore was that of varying the stiffness of the foot. The 

equation for SHM dictates that as the stiffness of the spring rate increases, the 

frequency response time will decrease meaning that the mass will respond faster, 

resulting in a higher frequency of oscillation.  

In a similar manner to the previous investigation, this can be explored using the rig and 

prosthetic ESR foot. As discussed in section 4.6 the stiffness of the foot changes 

depending on the effective ground contact position. This is the point at which the toe 

is clamped into the rig fixture prior to testing, and figure 4.8 demonstrates how the 

stiffness alters along the length of the metatarsal region of the foot on test.  

 

6.2.2.1  Method 

In order to affect a stiffness variation for the purpose of this test the same approach 

was used, modifying the position of the toe clamp to provide three different foot 

stiffness values whilst maintaining the mass as a constant. The three positions chosen 

were identical to those used to generate the data in figure 4.7 and mirror the ground 

force sensor positions from the amputee testing phase of this report (section 4.4.2).  

A mass of 83kg was mounted to the rig and for each of the ground contact positions 

the carriage was exercised by the operator in a resonant manner using the input 

handle. Maximum amplitude of oscillation was achieved and defined as the toe 

comfortably leaving the ground. This was maintained for a minimum of ten cycles. 

Data from 8 of these cycles was then isolated and averaged to demonstrate a typical 

stride for each of the ground contact positions (effective values of foot stiffness). 
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Figure 6.5: Traces demonstrating the response time in terms of foot deflection of the Ossur Cat.6Hi 

foot with varying ground contact points. As the stiffness increases, the contact time decreases. 
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6.2.2.2  Results 

The resulting average strides can be seen in figure 6.5 with deflection plotted against 

time in milliseconds.  

 

In accordance with the expected trend for Simple Harmonic Motion, as the effective 

stiffness of the foot increases (as the ground contact point moves further rearward on 

the foot) the frequency response of the foot becomes faster.  

What can also be observed is that as the foot spring rate is diminished, the amplitude 

of oscillation increases. Given that the mass remains unchanged throughout the 

testing this is to be expected as a lower spring rate will permit a larger deflection for 

the same given loading condition. It should also be noted that the nominal deflection 

of the foot (that deflection achieved when the system is at rest and at equilibrium) was 

larger for the softer foot condition. 
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Figure 6.6: Traces demonstrating the response time in terms of ground force of the Ossur 

Cat.6Hi foot with varying ground contact points.  
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An identical trend can be seen if the ground reaction force for this testing is examined 

(figure 6.6).  

  

The timing is identical (as it is the same dataset that is being examined) but in this 

instance the ground reaction force for the stiffer foot condition (position 3) is greater 

(1.91kN versus 1.70kN and 1.45kN for the softer conditions). 

As the amplitude was not accurately controlled in this investigation (the purpose being 

to understand the trend of foot stiffness versus response timing) it is difficult to 

comment on the relevance of this increased ground reaction force. However when the 

deflection of the foot and the ground reaction force are compared with one another it 

is reassuring to observe that the stiffness of the foot is increased as the contact 

position moves rearwards. This trend aligns with the work carried out in Chapters 4 & 

5. 
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6.2.3  Variation Conclusions 

If the link between the action of a prosthetic running foot and the equation for Simple 

Harmonic Motion is valid it should be observable that: 

1. If the mass of the amputee is increased, the response time of the foot is 

increased (the foot responds slower) assuming the stiffness of the foot is 

constant. 

2. If the stiffness of the foot is increased, the response time of the foot is 

decreased (the foot response faster) assuming the mass of the amputee is 

constant. 

The previous two investigations have demonstrated that these proportionate trends 

exist when testing using the frequency response rig as detailed in sections 6.2.1 & 

6.2.2. However it cannot yet be concluded that amputee running is purely a function of 

Simple Harmonic Motion. The data gathered does not quantitatively conclude that the 

frequency of oscillation is congruent with the equation for SHM; only that the 

qualitative trends exist.  

As such, very little reference has been made to the importance and relevance of 

deflection amplitude. The equation for Simple Harmonic Motion (figure 5.2) does not 

require a value of displacement to define a value of response timing for a simple spring 

– mass system meaning that assuming no losses exist, the timing for such a system will 

be the same regardless of oscillation amplitude.  

From a dynamic response point of view, a prosthetic foot can only have three true 

independent variables: 

- Mass applied (that which it has to act against during the response phase) 

- Spring stiffness 

- Deflection amplitude (representing the energy stored in the system as a 

function of spring stiffness).  

In order to define the response time using the equation for Simple Harmonic Motion 

only the first two of these variables are required as the displacement value does not 
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affect system timing. Therefore the final test that can be conducted to confirm the 

trend for Simple Harmonic Motion is to investigate the effect of changing the 

amplitude of oscillation of the system whilst maintaining the system mass and spring 

stiffness as constant. 

If the foot returns identical values of timing (foot response) across a broad range of 

values of foot deflection, the system can truly be considered to act in accordance with 

the equation for Simple Harmonic Motion. If however the response time varies across 

a range of deflection values it can be deduced that such a link is more complex than 

academic papers have previously suggested.  
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6.2.4  The Effect of Deflection Amplitude Variation 

Assuming validity to the concept of comparing amputee running to Simple Harmonic 

Motion, regardless of the amplitude of oscillation the response timing of the foot will 

always be identical. Using the fabricated response rig (figure 5.4) this can be 

investigated by maintaining as constant the foot stiffness and mass applied to the 

carriage and observing the timing of the foot across a range of deflection amplitudes.  

6.2.4.1  Method 

Because of the qualitative nature of this specific investigation the value of mass or foot 

stiffness is irrelevant providing they are kept constant throughout the process. 

However to aid comparability and continuity an Ossur Cat.6Hi prosthetic running foot 

was mounted in the rig (in an identical manner to sections 6.2.1 & 6.2.2) with a mass of 

83kg applied as in previous tests.  The toe clamp (that defines the effective ground 

contact point and therefore ultimately the stiffness of the foot) was attached at an 

identical position (50mm from the toe). 

To provide a range of deflection values the carriage was exercised using the input 

handle in a harmonic manner until a maximum value of 70mm was achieved. Because 

of the large amount of energy required to deflect the foot 70mm (and the limited 

amount of power able to be applied by hand to the input handle in a single moment) 

the overall level of deflection builds up over a number of oscillation cycles. With each 

successive cycle, the energy applied to the input handle is added to the kinetic energy 

of the mass travelling under gravity. As a result the foot achieves a progressively larger 

deflection with each successive oscillation of the mass (less the losses inherent in the 

rig, discussed and quantified in section 5.5 and Appendix 4).  

This gradual build-up of amplitude provides a broad range of values of foot deflection 

and their corresponding response timing that can be interrogated and displayed. Foot 

deflection data was again collected at a frequency of 128Hz using the MSR data logger.  
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Figure 6.7: Trace of oscillation build-up, the values of which were used to demonstrate the 

frequency response of the foot at different values of deflection. 
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6.2.4.2  Results 

Building up the amplitude of oscillation in the manner just described to a value of 

70mm required a series of 28 oscillation cycles of the spring–mass system. A trace of 

foot deflection plotted against time is displayed in figure 6.7. deflection can be seen 

tending from a value of 28mm which is the nominal deflection value when the foot is 

at rest (and the system is in equilibrium). This is the point at which the reaction force 

of the foot (a function of spring rate multiplied by deflection) equals the force exerted 

by gravity on the mass of the system. 

 

Interesting to note is the point at which the foot begins to leave the ground at the 

upper-apex of mass travel (occurring at around 4700ms in figure 6.7). With each 

progressively larger deflection of the foot, the amount of stored energy (as 

gravitational potential, kinetic or spring potential energy) in the system increases and 

propels the foot further from the ground plate.  
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Figure 6.8: Graph displaying oscillation cycles of the rig with progressively increasing values 

of foot deflection. Foot on test was Ossur Flex Run Cat6.HI with 83kg mass applied. 
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Oscillation number: 

Each of the foot deflection cycles was isolated and plotted over one another in figure 

6.8. This is to demonstrate the frequency response of the foot across the range of 

deflections such that they can be compared with one another. In order to make the 

plotting of data more practical, every other oscillation cycle was plotted (resulting in 

28/2 = 14 individual deflection curves).  

 

If Simple Harmonic Motion is relevant to amputee running it is expected that the 

response timing of each of these deflection cycles should be identical. However figure 

6.8 shows that the response timing changes significantly across the range of 

amplitude. The graph shows the response timing expressed as the time between 

points of minimum deflection for each deflection cycle. Values for each of the 

oscillation cycles were defined and are displayed in table 6.3. 

 

1 
2 
3 
4 
5 
6 
7 
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Table 6.3: Summary of figures representing the progressively large values of deflection with details 

of response timing. Importantly, the response time changes depending on foot deflection amplitude. 

The values of foot response time can be seen to vary from 233ms to 313ms. If these 

figures are accurate they directly contradict the suggestion that a prosthetic running 

foot acts in accordance with the equation for Simple Harmonic Motion which requires 

them to be identical. 

As shown in figure 6.7 all foot deflection tends from the value of static deflection; that 

is the value of foot deflection at static equilibrium when the system is at rest. In this 

instance (for a mass value of 83kg, an Ossur Flex Run Cat.6Hi foot and an effective 

ground contact position of 50mm posterior of the edge of the toe) this static or 

‘nominal’ deflection figure is 28mm. Before the foot begins to leave the ground (at the 

greater amplitudes of oscillation) it can be seen in figure 6.7 that a sine wave of foot 

deflection is established with progressively expanding amplitude. In recognition of this 

the data displayed in figure 6.8 was rearranged such that t=0 for each trace was at this 

nominal value of 28mm deflection. Once again the resulting traces were plotted over 

one another and are shown in figure 6.9. 
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Figure 6.9: Graph displaying oscillation cycles of the rig with progressively increasing values 

of foot deflection, rearranged such that 28mm deflection occurs at t=0. 
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When the data is rearranged such that the nominal deflection value for each curve 

occurs at t=0 it can be seen that regardless of amplitude the response time of the foot 

to return to this same nominal value is virtually identical. At a logging frequency of 

128Hz the response time presents as 160ms for all but one deflection series. Further to 

this, the second half of the period reflects the first; that is the time from t=0 to the 

point the deflection returns to the nominal value (28mm @ t=160ms) is also the time 

taken to complete the second half of the deflection cycle thus confirming the sine 

wave nature. This is true up until the moment the foot leaves the ground plane and 

becomes airborne (from the 7th cycle onwards). From this moment onwards (as the 

deflection progressively increases further) the foot spends a greater period of time in 

the air and as such extends the second half of the deflection cycle before returning to 

the nominal deflection value. 
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6.3  Chapter Conclusions 

Although initially appearing not to follow the trend described by Simple Harmonic 

Motion, if the data is displayed in the correct manner (with deflection occurring either 

side of the nominal value of the loaded foot at rest) it can be suggested that the 

reverse is true.  

It was shown in sections 6.2.1 and 6.2.2 that if the mass or the stiffness of the system 

is modified (whilst maintaining all other variables as constant), the resulting response 

timing follows the trend expected of Simple Harmonic Motion. Figure 6.9 

demonstrates that the amplitude of oscillation (or foot deflection) is irrelevant to the 

frequency response of the system assuming two things: 

1. The data is viewed as beginning at the nominal value of deflection. 

2. The foot does not leave the ground. 

At the point where the foot leaves the ground the mass is no longer attached to the 

spring that was reacting against it and as such cannot be assumed to function as a 

spring–mass system.  

This is the first time in this or any published investigation that the overall ground 

contact time has not been considered as the response timing of a foot. It is clear that if 

the action or a runner is to be modelled, the ground reaction time is secondary to the 

time taken for the foot to reach maximum deflection and return to this same value of 

nominal deflection. For the purpose of this investigation this is to be known as the 

‘Half-Wave Timing’ or HWT. 

What is also clear from examining figure 6.7 is that a sine wave could be used to model 

the action of a foot up until the point where the toe leaves the ground (which of 

course it always must do during running). At this moment the action of the foot no 

longer ascribes to Simple Harmonic Motion. 

It is known from table 6.3 that the ground contact time (GCT) of the foot under test 

varies considerably with foot deflection. Given that the HWT is always the same 

regardless of deflection (assuming a constant mass and foot stiffness) this means the 
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Figure 6.10: Graph displaying oscillation cycles of the rig with progressively increasing values 

of foot deflection, rearranged such that 28mm deflection occurs at t=0. A detailed view of 

the isolated section can be seen in figure 6.11. 
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time from nominal deflection (following maximum deflection) until the foot leaves the 

ground must vary depending on foot deflection. This can be observed in figure 6.10 

and more easily in Figure 6.11 which is a detail view of the points of the foot leaving 

the ground for the various traces of foot deflection. 

 

The various points at which the foot leaves the ground plane during testing are 

displayed in figure 6.11 for the different traces of deflection. It can be seen that the 

gradient of the curve at the time it hits the nominal deflection value defines the 

ground contact time. The greater the value of foot deflection, the steeper the gradient 

of the deflection curve at the end of the HWT (at nominal deflection) and the shorter 

the period of time until the foot leaves the ground (toe-off). 

Therefore it can be concluded that the GCT of an amputee runner is directly related to 

the amplitude of deflection achieved. The greater the deflection that is achieved, the 

shorter the GCT is for that specific stride.  
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Figure 6.11: Detail of figure 6.10 showing the change in timing of when the foot leaves the 

ground plane across a range of values of foot deflection. 

If this is the case it should be understood what foot deflection occurs during a variety 

of running activities. The information gathered to date (during the amputee running 

phase of this investigation in Chapter 4) only provides data captured for a single 

running velocity with a single category of foot.   

The research sub-question set out in section 2.1.2: ‘Is the claim that a foot mimics 

Simple Harmonic Motion legitimate?’ has been answered by this new information. It 

can be concluded that a prosthetic running foot can be described by the equation for 

simple harmonic motion but providing two conditions are met: 

1. The nominal position is used as a reference for the start of the response phase 

2. A single ground contact point is defined and this does not change for the 

duration of the stride. 

Clearly these two conditions are not useful for describing amputee running. The 

nominal position is arbitrary for a prosthetist and cannot be observed during running, 

and as shown in Chapter 4 the ground contact position changes throughout the stance 

phase of the stride. However the rig was able to replicate the ground contact time of 

the runner by assuming a single median ground contact position. 
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It appears that the dynamic response of a prosthetic foot cannot be actively altered by 

the amputee and the response timing (HWT) depends on the mass of the amputee and 

the stiffness of the foot alone. Therefore it could be suggested that the amputee can 

only affect a larger ground reaction force in order to change their velocity. It stands to 

reason that this larger ground reaction force will invoke larger deflection amplitude 

and therefore a shorter ground reaction time. 

It is therefore proposed that in order to continue this investigation more should be 

learned about the effect of different running velocities on the prosthetic foot. Does a 

higher velocity mean a shorter GCT and are there any other effects that might 

influence the dynamic response of the foot? It should also be understood how an 

amputee affects a greater running velocity if the response of the foot is fixed. 
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CHAPTER 7: THE EFFECT OF SPEED VARIATION 

7.1  Introduction & Chapter Objectives 

The previous chapter has demonstrated that the action of a prosthetic running foot 

can be effectively described by the equation for Simple Harmonic Motion providing a 

single stiffness is defined. This stiffness would inevitably be an assumption of foot 

characteristics and in section 5.4 was used effectively to replicate the ground contact 

time of an amputee on the dynamic response rig (figure 5.4). The ground contact point 

of the foot (and therefore effective stiffness of the device) has been shown in Chapter 

4 to vary across the metatarsal region of the foot as the stance phase of a single stride 

progresses. What is not yet known is how this ground contact progression changes 

when a different running speed is required. This is essential knowledge if the research 

question stated in section 2.1.3: ‘Can the action of a prosthetic running foot be 

modelled mathematically?’ is to be answered.  

This chapter serves to improve understanding of the effect of running velocity on the 

dynamic response of a prosthetic foot. It is known that an amputee can alter his or her 

velocity during running but no literature has been found to describe what mechanism 

is used to affect this. This investigation has so far determined that the dynamic 

response of a prosthetic foot is fixed and governed by its properties (stiffness, mass 

applied, amplitude of deflection) but if this is the case, which of the mechanisms for 

increasing running velocity can the amputee employ? 

A series of tests were proposed that require a unilateral trans-tibial amputee to run at 

a variety of speeds. Stance length, foot deflection and ground contact data was 

collected to understand the mechanism of speed variation in amputee running and 

how this can be modelled mathematically.  



 161 
CHAPTER 7  

THE EFFECT OF SPEED VARIATION 

Figure 7.1: Image of the amputee running during one of the 400m test runs. A 

total of six runs were completed. 

7.2  Velocity Testing (Part 1) 

7.2.1  Method 

Following the relevant ethics considerations and approval (as can be seen in the 

Appendix) an investigation was carried out at a running track to determine the ground 

contact time (overall foot response time) and ground contact point progression of the 

foot across a range of running speeds. These are the same variables that were 

measured during amputee testing in Chapter 4 and an identical apparatus was used as 

described in section 4.2. The aim was to understand if the boundary conditions of the 

foot (ground contact point progression and therefore foot stiffness) change at 

different running speeds. 

During the previous amputee testing (Chapter 4) the individual was asked to run at a 

single self-selected running velocity and stride data was gathered. On this occasion the 

runner was asked to carry out a series of 400 metre runs of an established athletics 

track (figure 7.1) at subjective self-selected ‘slow’, ‘comfortable’ and ‘fast’ speeds. The 

times for these runs were recorded and an average velocity defined for each. In order 

to improve the data resolution from previous tests the ground contact data was 
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recorded at a frequency of 512Hz as a function of voltage (previous tests were 

conducted at a logging frequency of 128Hz). 

It should be noted that this testing was conducted using a different amputee athlete to 

the individual involved in the previous test work. Further to this, during the course of 

this research the manufacturer of the Flex Run model of foot (Ossur) released an 

updated design of foot, changing the detailed geometry of the toe region. More 

information on this change can be found in section 8.1. From this point onwards all 

testing conducted was done so with the newer style of Ossur Flex Run foot. 

 

7.2.2  Results 

The amputee completed the three 400m runs according to the times and speeds in 

figure 7.2. Also displayed is a graphical illustration of the ground contact profile at each 

speed. Ten strides were isolated from the steady-state portion of each of the 400m 

runs and averaged into a single dataset as displayed. For information on sensor 

position see section 4.2.2. 

Figure 7.2 demonstrates the change in stride characteristics at the three different 

velocities (11.8kmh-1, 15.8kmh-1 & 18.2kmh-1). The progression of ground contact point 

is similar to that measured in the previous amputee testing (figure 4.3, although this is 

with the previous geometry of Ossur Flex Run and these results should not be directly 

compared) for sensors 1, 2 and 3 and is consistent across the three running speeds. 

However a progressively large reading from sensor 4 can be observed as velocity 

increases. This sensor is the most posterior-mounted and these results suggest that 

the initial ground contact point moves rearward as speed increases. 

Another trend that changes as the speed increases is that of the overall stride duration 

(stance and swing phase combined). It is assumed that foot strike occurs at the 

moment of initial reading from the rear-most mounted sensors (sensors 3 and 4) and 

as such the overall stride time decreases from 692ms at 11.8kmh-1 to 576ms at 

18.2kmh-1. 
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7.2.3  Conclusions 

Whilst there is a suggestion of ground contact point change, it cannot be concluded 

that a higher running velocity means a further-rearward heelstrike position. If the 

profiles shown in figure 7.2 were equivalent and showed little or no variation in 

pressure progression it could be suggested that speed does not have a considerable 

impact on the boundary conditions of the foot, but these results serve only to justify 

more work in this area. The concept of using ground force sensors for determining the 
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'Slow' 400m time of 2:02.29 

Average speed = 11.8kmh
-1

 

'Comfortable' 400m time of 1:31.05 

Average speed = 15.8kmh
-1

 

'Fast' 400m time of 1:19.01 

Average speed = 18.2kmh
-1

 

Figure 7.2: Times and speeds for the three 400m runs completed by the amputee athlete along 

with ground contact profile curves for an entire stride (averaged data for ten individual strides). 

Sensor 1 

Sensor 2 

Sensor 3 

Sensor 4 
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ground contact position is valid, but the limitations of the data logger available (with 

four channels) means that only four sensors can be used.  

In section 4.6.2 it is demonstrated that the magnitude of stiffness change of the foot 

with a small change of ground contact point is significant. If an accurate understanding 

of foot stiffness is to be gained, the ground contact progression should be 

demonstrated in a less ambiguous manner. 

Furthermore due to the limitations of the data logger used, only the ground contact 

progression was measured for the entirety of this investigation (only four channels are 

available on the data logger used). A more comprehensive understanding of the effect 

of running velocity on stride characteristics would be obtained if the foot deflection 

were also measured (as in section 4.4.1). The nature of testing on a running track 

means that at any given point the running velocity is unknown (with the speed shown 

in figure 7.2 derived as the average speed for the entire run). Another drawback of 

testing on the track is that the runs are not repeatable. If any one of the tests was to 

be repeated the speeds obtained would inevitably be different. This work should be 

repeated in a more controlled environment and using more accurate data capture 

techniques. 
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7.3  Velocity Testing (Part 2) 

Following the suggestion that increased running speed shifts the heelstrike position 

rearward (in relation to the toe of the foot) further testing was conducted to 

understand the effects of velocity on stride characteristics.  

The fundamental principles of the test remain unchanged from that carried out in 

section 7.2. However more attention was paid to two things: 

- Accurate definition of running speed 

- Accurate measurement of foot characteristics (ground contact progression as 

well as foot deflection) 

7.3.1  Method 

In order to make the testing more repeatable and to address the points above, 

following ethical approval (as shown in the Appendix) test work was conducted using a 

treadmill. In this way the speed could be defined and assured. The use of a treadmill 

also allowed video to be captured of the event in the sagittal plane and used to 

understand the action of running, specifically the ground contact progression at the 

various test speeds instead of using the ground force sensors as previously (sections 

4.2 and 7.2). 

The foot was marked with highly visible plastic pins inserted into the Nike running sole 

at known locations (every 20mm from the toe up to a value of 180mm) such that when 

viewed on the video, the pin located nearest to the ground contact point could be 

identified. In order to determine the ground contact point the pins could therefore be 

counted from the toe. This set up is shown in figure 7.3. 
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Figure 7.3: Image showing the pins that were inserted into the foam of the Nike running sole to 

demonstrate the ground contact position when filmed in HD super-high frame rate video. 

The minimum logging frequency found effective in previous test work for all data 

collected was 100Hz (as defined by the Instron hydraulic test machine controller). 

Therefore the video footage should also demonstrate a minimum resolution of 100Hz, 

or in the case of video 100 frames per second (fps). The standard frame rate for video 

cameras used in broadcast television (and therefore the vast majority of available 

video cameras) is 24fps. Should a higher frame rate be required, the camera used 

becomes a specialist piece of equipment.  

However it is not enough to simply specify a frame rate of 100fps. Because of the 

speed of movement of the foot during running (particularly at higher speeds) blurring 

can occur when the video is paused (necessary to understand the ground contact 

points and effectively identify the pin locations relative to the ground plane). For this 

reason it could be necessary to record the action of the foot at a significantly higher 

frame rate than 100fps. The precise frame rate required cannot be accurately defined 

unless the velocity of the subject in the image is known (in this case the velocity of the 

toe of the foot, which is not known) or unless tested and calibrated on the day of 

testing. Therefore for the purpose of this test a camera was sourced that permitted a 
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Figure 7.4: Image showing set up of the Phantom camera used for recording the action 

of the running foot on test with the two 500W halogen lights attached with a tripod. 

significantly faster frame rate than could be considered practical for this manner of 

investigation whilst maintaining 1080P resolution (1080 x 720 progressive scan, more 

commonly known as High Definition).  

The camera used was a Phantom Flex model from Vision Research Inc. capable of up to 

2570fps in HD resolution. This was coupled with two 500W halogen lights to provide 

sufficient light required for the high frame rate recording. This set up can be seen in 

figure 7.4. 

 

The camera and lights were set up on a tripod on the left hand side of a treadmill such 

that the running was viewed directly in the sagittal plane on the side of the affected 

leg of the amputee. The camera was calibrated to use the lowest frame rate that still 

resulted in no visible motion blur when paused at the highest running speed (the 

treadmill had a maximum speed setting of 18kmh-1). 

Measuring rules were also added on the near and far edges of the treadmill meaning 

that a virtual line could be drawn through the equivalent measurements on each side 
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Figure 7.5: Image showing the treadmill used during testing with measuring rules set up at 

the front and rear edges (as viewed by the camera) used for establishing stance length. 

and the stance length determined. This can be seen in figure 7.5. In this instance the 

term ‘stance length’ refers to the distance travelled by the foot when in contact with 

the belt of the treadmill. In normal running, away from a treadmill, it is very difficult to 

observe this attribute and represents the distance the centre of mass of the amputee 

travels during the stance phase of the stride. Traditionally the term ‘stride length’ also 

accounts for the distance travelled by the athlete during the swing phase as well as the 

stance phase and is therefore not appropriate. 

Because the ground force sensors were not being used for ascertaining ground contact 

progression they were removed and the deflection sensor (figure 4.1) was reinstated. 

This allowed for both the ground contact progression (via video) and foot deflection to 

be recorded simultaneously. Once again the data from the deflection transducer was 

recorded using the MSR data logger at a frequency of 512Hz. 

In order to gain a complete understanding of the effect of running speed on the action 

of the prosthetic foot the amputee athlete was asked to run at a range of speeds from 

8kmh-1 to 18kmh-1 at 1kmh-1 intervals. 8kmh-1 is the speed at which walking becomes 

running for this particular amputee athlete (and as such this was the slowest possible 

speed at which running occurs) and the treadmill maximum velocity was 18kmh-1. 

Coincidentally the maximum speed the amputee could comfortably run in the previous 



 169 
CHAPTER 7  

THE EFFECT OF SPEED VARIATION 

test work (section 7.2) was 18.2kmh-1 and as such this was judged sufficiently 

representative of the amputee’s range of running speed. 

Data was captured using the Phantom camera and deflection sensor simultaneously 

for each speed and a summary can be seen in the following sections. Appendix 5 

details the statistical analysis that was conducted to understand the legitimacy and 

accuracy of this measurement technique. This includes: 

- An intra-rater reliability analysis for a single running velocity. This analysis 

demonstrates a Standard Deviation of 2.0 with a mean of 669.7 across the ten 

measurements showing a statistically insignificant variation in the data. 

 

- A t-test analysis across the entire velocity range comparing the visually 

observed camera data and the logged deflection sensor data. A P-value of 

0.9173 is generated which is regarded as statistically insignificant. 
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7.3.2  Foot Deflection 

7.3.2.1  Results 

The data gathered was expressed in terms of output voltage from the deflection 

transducer as calibration was not required; a single point of ground contact was not 

yet being interrogated as was previously the case in section 6.2.1.1. The data gathered 

at this stage serves to provide a trend of deflection when understanding the timing of 

the foot (for example the stance phase timing) and when comparing one trace of 

deflection with another. 

From the recorded data, ten steady state steps were isolated (for example in figure 7.6 

showing the data for the steps at 18kmh-1) and averaged into a single ‘typical’ stride.  
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Figure 7.6: Trace of the deflection values recorded for the ten individual strides at 18kmh-1 that were 

then averaged into a single ‘typical’ stride as shown in figure 7.7. 

18kmh-1
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From each of these sets of averaged data (for each running speed from 8 – 18kmh-1) 

the following information could be derived: 

- Stance phase timing (ground contact time) 

- Swing phase timing 

- Rate of energy absorption vs. return 

- Amplitude of deflection (when compared with similarly generated traces) 

When all of the traces for the individual running speeds are collated on a single graph 

the effect of speed on the dynamic response of the foot can be seen (figure 7.7) 
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Figure 7.7: Graph showing traces of the averaged strides for each of the speeds 

tested from 8kmh-1 – 18kmh-1.  
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Table 7.1: Summary of the response timing data of the prosthetic foot on test across the 

range of running speeds.  

It can be seen that as running speed increases there are two notable effects: 

1. The response timing (ground contact time or stance phase timing) decreases. 

Despite the stiffness of the foot remaining unchanged and the mass of 

amputee constant throughout the testing, the dynamic response timing 

changed from 275ms at 8kmh-1 to 182s at 18kmh-1. 

2. The amplitude of deflection increases. Although the value of deflection is not 

calibrated into a tangible measure (it instead is displayed as a function of 

voltage output) the amplitude of deflection can be seen increasing by 12% 

across the range of running speeds tested. 

The timing data for all of the strides was collected and can be seen in table 7.1. Mid-

stance is defined as the time of maximum deflection of the foot. 
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7.3.2.2  Deflection Conclusions 

Given that the amplitude increases it is not a surprise to see that the response timing 

has decreased. During the test work conducted using the rig (section 6.2.4) it was 

shown that the foot responds about the true half-wave timing (HWT) represented by 

the amplitude of deflection in a statically loaded condition of equilibrium. As such, as 

the amplitude of deflection increases, the overall ground contact time decreases whist 

the HWT remains identical. However the order of change is much larger than could be 

expected if this were the only factor affecting the timing.  

The increase in amplitude would suggest that as running speed increases, the ground 

reaction force also progressively increases. This would support the conclusions of 

Weyand et al. (2000) who state: 

‘We conclude that human runners reach faster top speeds not by repositioning 

their limbs more rapidly in the air but by applying greater support forces to the 

ground.’ 

In this instance it also suggests that more energy is being stored in the foot throughout 

the stance phase which is progressively released towards toe-off and stored through 

the swing phase in the body mass in the form of gravitational potential energy. 
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Table 7.2: Summary of stance length of the prosthetic foot on test across 

the range of running speeds (8 – 18kmh-1).  

Stance  

7.3.3  Ground Contact Progression 

The captured video was analysed using the specialist software supplied with the 

camera (Phantom Camera Control – PCC) and each recording was trimmed to show a 

single stance and swing phase of the affected leg. Before testing began the camera was 

calibrated to film at a suitable frame rate that eliminated visible motion blur when 

paused, achieved at 1500fps. Selecting a higher frame rate than this was unnecessary 

and served only to increase the file size of the data capture. 

7.3.3.1  Stance Length Results 

For each running speed a virtual line was superimposed onto the video at the point of 

heelstrike (aligning with the two measuring rules attached at the near and far sides of 

the treadmill) and a second line superimposed at the point of toe-off. These measuring 

rules and the superimposed lines can be seen in figure 7.8 which shows the important 

segments of the stance phase along with a measure of stance length for that particular 

speed (in this instance 18kmh-1). The values for stance length at each running speed 

were observed to the nearest whole cm (therefore +/-5mm) and can be seen in table 

7.2. 
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Figure 7.8: Series of images (still frames) capturing the progression of a single stride at 18kmh-1. 

The measuring rules used to determine the stance length can be seen on the near and far edges of 

the treadmill with lines superimposed to show the points of heelstrike and toe-off. 

1. Heelstrike 

2. Mid-stance 

(Maximum deflection) 

3. Toe-off 

 

4. Stride summary 
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Figure 7.9: Trace showing how the stance length of 

the affected leg changes at different running speeds  

St
an

ce
 le

n
gt

h
 (

m
m

) 

Speed (kmh-1) 

When this data is plotted on a graph (figure 7.9) it can be seen that a linear trend is 

established from 8kmh-1 until 16kmh-1. However above this speed the gradient 

becomes shallower, levelling off at 17kmh-1 and 18kmh-1 both with a stance length 

value of 740mm. 

 

It appears that above 16kmh-1 with the specific foot that was fitted (an Ossur Flex Run 

Cat.7Lo) the amputee under test reaches his maximum stance length (740mm).  
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Figure 7.10: Collection of images of the prosthetic foot at the moment of foot strike at each of the 

test speeds demonstrating the change in ground contact point (defined as mm rear of the toe).  

7.3.3.2  Ground Contact Progression Results 

In addition to measuring stance length the video could be paused at the moment 

heelstrike occurs and shifted (jogged) forward or backward frame by frame to 

understand the ground contact point at any moment.  

By this means (and according to figure 7.10) the ground contact point of the foot at the 

moment of foot strike could be defined. 
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Table 7.3: Summary of stance length of the 

prosthetic foot on test across the range of running 

speeds.  

Figure 7.10 shows a collection of images (still frames) from the video, captured at the 

moment of heelstrike for the range of tested running speeds. The figures located in 

each of the frames demonstrate the running speed as well as the ground contact point 

as a function of distance rear of the edge of the toe. There is a superimposed red dot 

indicating the ground contact point in each condition. As each white pin was located 

20mm apart, the ground contact position can be defined by counting the pins from the 

toe. As such the data gathered was deemed accurate to +/-1mm. 

It can be seen that as speed increases, the ground contact point at heelstrike moves 

progressively rearwards. This information was plotted and can be seen in table 7.3 and 

figure 7.11.  

 

Figure 7.11 suggests a linear relationship between the ground contact point of the foot 

at heelstrike and running speed. As the velocity increases, the ground contact point 

moves further rearward on the foot up to a value of 118mm rear of the toe at 18kmh-1; 

a change of 35mm posterior across the range of speed. It was found in section 4.6.2 

that the stiffness of the foot decreases towards the tip of the toe, meaning that as the 

running speed is increased the effective stiffness of the foot is also increased.  
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Figure 7.11: Trace showing how the heelstrike ground contact point 

of the affected leg changes at different running speeds  
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It should be noted that toe-off occurred at the same location for all test speeds at the 

tip of the toe; effectively at 0mm. Therefore the range of ground contact point for 

each speed can be considered as being from the posterior-most figure listed in table 

7.3 and 0mm.  

Using the same method of video interrogation the progression of ground contact point 

can be observed throughout the course of the stride. This will help furnish an 

understanding of how the effective foot stiffness changes throughout the stride and at 

different running velocities.  

As mentioned previously the video was filmed at 1500fps meaning that 15 frames = 

10ms. This ratio was used to generate the ground contact point data for each running 

speed. The video footage was paused at the moment of foot strike and the contact 

point read from the screen (by counting along the white markers pinned to the sole of 

the foot). The video could then be advanced 15 frames and the second ground contact 

position read before advancing the video another 15 frames. This process was 

repeated until toe-off occurred. By this method the ground contact point of the foot 
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Figure 7.12: Trace demonstrating the progression of ground contact point at 8kmh-1  
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could be ascertained for every 10ms throughout the course of the stride. It was 

repeated using video capture for each of the test speeds (8 – 18kmh-1). 

It was anticipated that the point of ground contact would progress smoothly from the 

posterior to anterior portions of the foot throughout the duration of the stride (as 

tibial progression occurs – see figures 1.5 & 1.6). However the video demonstrated 

how the geometry of the foot and most notably the deflection of this geometry meant 

that this is not the case. 

Figure 7.12 shows a trace of ground contact point (expressed as a distance in mm rear 

of the tip of the toe) plotted against time after heelstrike in milliseconds for a running 

speed of 8kmh-1. It can be seen that immediately following heelstrike up to a value of 

90ms the ground contact point actually moves posterior despite the knee of the 

amputee progressing over the top of the foot. It can be observed from the video 

capture that this phenomenon is caused by the bending of the foot and how its 

geometry interacts with the ground.  

Figure 7.13 shows two screenshots (freeze frames) selected from the video of 8kmh-1 

running (corresponding to the trace in figure 7.12 above) at heelstrike and 90ms after 

heelstrike. The position of ground contact is indicated by a red marker and it can be 
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Figure 7.13: Screenshots of the prosthetic foot during running at 8kmh at heelstrike and 

90ms after heelstrike demonstrating the contact point moving posterior (82mm – 110mm). 

seen that it moves rearwards along the base of the foot. The bending action of the foot 

as deflection occurs changes the geometry of the toe and forces the ground contact 

point rearwards.  

This change in geometry would appear to conflict with the progression of the knee 

over the foot in its effect of changing the ground contact point (the knee moving over 

the top of the foot would encourage a naturally anterior-moving ground contact 

point). It suggests that the speed at which each occurs defines the resulting moving of 

ground contact point.  

In order to demonstrate this, figure 7.14 shows the curves for both the 13kmh-1 and 

18kmh-1 tests added to the graph of 8kmh-1 displayed in figure 7.12. It can be seen that 

as running speed increases the posterior movement of the ground contact point 

reduces until, at 18kmh-1, there is no longer any posterior movement at the start of 

the stance phase. This suggests that the speed of progression of the knee over the foot 

is sufficient to counteract the effect of the foot bending and results in the contact 

point remaining static for the first 60ms of the stance phase of the stride. 
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Figure 7.14: Trace demonstrating the progression of ground 

contact point at 8, 13 & 18kmh-1  
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7.3.4  Foot Stiffness Progression 

It has been shown in section 7.3.3.2 that the ground contact point of the foot changes 

throughout the course of the stride and figure 7.14 defines a profile of this progression 

for three running speeds. Fundamentally this change in ground contact point means a 

change in foot stiffness, and it is this stiffness that interacts with the system as a 

tangible measure. If the dynamic nature of the foot is to be understood, the change in 

foot stiffness should be defined. 

If a value of stiffness could be defined for various positions along the metatarsal region 

of the foot, these could be plotted and a profile of foot stiffness vs. ground contact 

point could be generated. Using the equation generated from this curve, the stiffness 

of any specific point along the foot could be defined mathematically without the need 

for further stiffness testing. This is an identical approach as taken in section 4.6.2. 
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Table 7.4: Summary of toe clamp positions chosen to demonstrate the change of foot stiffness 

along the metatarsal region with the actuator displacement required to mimic maximum foot 

deflection at each point.   

7.3.4.1  Method 

An investigation identical in nature to that carried out in section 4.6 was conducted 

but using the newer geometry of Flex Run foot (Cat7.Lo as used for amputee testing in 

section 7.2 & 7.3). Also different were the effective positions of ground contact point 

chosen (toe clamp positions – see table 7.4).  

The foot was installed in the Inston hydraulic test machine as shown in figure 4.9 with 

the deflection transducer attached. This was used for defining the maximum deflection 

at each effective ground contact point.  

Three ground contact points were chosen for testing (defined as 15mm, 75mm and 

135mm rear of the toe). Providing that these chosen points represent a broad 

variation in ground contact point and that they were well defined and repeatable, the 

actual location of these chosen points was unimportant. This is because they would be 

used to define a curve to characterise the stiffness of the foot at any given position.  

For each clamp point the foot was deflected to the maximum value observed in 

amputee running (section 7.3) as defined by the deflection transducer (1.35 volts at 

mid-stance at 18kmh-1). Because of the change in the effective lever arm of the foot, 

the further anterior the toe clamp was attached, the higher the amplitude of 

displacement requirement of the Instron actuator to achieve the deflection transducer 

target voltage. Table 7.4 summarises the required displacement at the different 

ground contact points to achieve 1.35 volts at the transducer. 
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Figure 7.15: Graph comparing the force – displacement data for the Ossur Flex Run Cat.7Lo 

foot with three different simulated ground contact positions (defined in table 7.4).  
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As in previous test work of this nature (section 4.6) the foot was deflected in a sine 

wave at a frequency of 0.5Hz up to the maximum deflection summarised in table 7.4. 

Data was recorded from the linear transducer and the load cell of the Instron at a 

frequency of 100Hz therefore providing the necessary data to generate a force – 

displacement curve for each ground contact point.  

 

7.3.4.2  Results 

Figure 7.15 plots the force–displacement data that was recorded for the Ossur Flex 

Run Cat.7Lo foot on test for each of the simulated ground contact positions. These are 

described as ‘rear’, ‘mid’ and ‘front’ positions but are defined in table 7.4. 

As can be seen in figure 7.15 (and as previously demonstrated with the older model of 

Flex Run in section 4.6) the foot exhibits an almost entirely linear spring rate for each 

of the ground contact conditions with an energy return efficiency of >99%. The data 

shown forms a hysteresis loop with traces for both compression and rebound phases. 

However the efficiency of the foot is such that the two phases are indistinguishable. 
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Table 7.5: Summary of foot stiffness values for the three simulated ground contact positions.    

Figure 7.16: Curve of foot stiffness plotted against the effective ground contact point 

along the metatarsal region of the foot. A 2nd order Polynomial equation was derived 

from the curve and is displayed.  
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The spring rate of each of these simulated ground contact conditions was calculated by 

dividing the maximum force by the maximum achieved displacement, therefore 

providing a value for stiffness in N/m. This method of defining spring rate assumes a 

completely linear force – displacement relationship and this is the topic of discussion 

in section 3.4.3. The resulting spring stiffness is summarised in table 7.5. 

These values of stiffness were plotted on a graph against their position on the foot 

(mm rear of the toe). The resulting curve is shown in figure 7.16.  



 186 
CHAPTER 7  

THE EFFECT OF SPEED VARIATION 

Figure 7.17: Trace displaying the changing effective stiffness of the prosthetic foot 

throughout the course of a single stance phase. This curve mirrors that shown in figure 

7.12 and is based on the same data. 
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A 2nd order Polynomial equation was derived from the curve and is displayed in figure 

7.16. Using this equation the stiffness of the foot can be defined for any specific 

ground contact point and as such the change in stiffness throughout the progression of 

the stance phase of the stride can be calculated. 

Figure 7.12 shows the ground contact progression over the base of the foot during a 

single stride for the amputee running at 8kmh-1 with an Ossur Flex Rub Cat.7Lo foot. It 

is now possible to express this data in terms of stiffness instead of as a function of 

contact point from the toe (in mm). This is done by substituting each value of ground 

contact point used to generate figure 7.12 into the equation displayed in figure 7.16. 

The resulting graph is shown in figure 7.17. 

This new stiffness profile highlights the amplitude of change of the foot stiffness 

throughout a single stride. At its maximum value the foot stiffness reaches 70839N/m, 

contrasting with the stiffness of 27380N/m at the toe; alternatively expressed, the 

stiffness of the foot alters by a factor of 2.6 times throughout the course of a single 

step.  

This highlights the importance of understanding the ground contact conditions of the 

foot during running if its response is to be understood and modelled.  
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Table 7.6: Summary of stance length, ground contact conditions and the correlation 

accuracy (% variation) of these factors for each running speed tested. 

7.3.5  Data Validity Check 

In order to establish a validity check for the data gathered in this section a relationship 

between stance length, running speed and ground contact progression can be 

established. 

By definition, the stance length is the distance travelled by the ground contact point of 

the foot in the time defined by the dynamic response of the system (ground contact 

time). This ground contact time is known (table 7.1), the stance length has been 

defined through interrogation of the video (table 7.2, figure 7.8) and the change in the 

Ground Contact Point is detailed for each running speed in table 7.3. The belt speed 

was defined for each test and as such these factors can be correlated as follows: 

m/s 



 188 
CHAPTER 7  

THE EFFECT OF SPEED VARIATION 

Table 7.6 summarises the values of stance length and the ground contact conditions 

that exist for each running speed from 8 – 18kmh-1 along with values for the 

theoretical calculated stance length that should occur if all of the numbers are 

completely accurate. 

As can be seen the calculated and actual figures of stance length exhibit a maximum 

deviation of 8% from one another with an average variation of 4.2%. However it 

should be noted that the largest variations occur at the extremities of speed tested. 

The data assumes accurate measurement of the actual stance length, ground contact 

time (defined by the deflection transducer) and the shift in ground contact position 

along the metatarsal region of the foot, all of which have been measured and recorded 

throughout the course of this research. Additionally, and fundamentally, the data 

assumes the belt speed of the treadmill to be accurate. The fact that the largest 

discrepancies appear at the extremities of test speed (18kmh-1 was the highest 

achievable belt speed of the machine) suggest that this could be a factor in the value 

of % variation. 

 

7.4  Chapter Conclusions 

From the data presented it is clear that in order to run faster, an amputee will increase 

their stance length therefore covering more ground with each stride. This is 

information that has not been found in any of the literature studied to date. As defined 

in Chapter 6 the response time of the foot is fixed and governed by foot stiffness, 

amplitude of deflection and the mass acting on the foot. Therefore the amputee 

cannot demand a change in response timing and will instead alter his or her stance 

length according to the speed desired.  

The subjective feedback from the amputee at the time of testing was that he was not 

comfortable running faster than 18kmh-1, likening the feeling to trying to ride a bicycle 

in a gear that was too low. It is possible to ride the bicycle faster by spinning the pedals 

more rapidly (increasing cadence) until the point where the pedals cannot be turned 

any faster. At this time it would necessary to change gear to go faster. 
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As such there must be a maximum speed that can be achieved by an amputee with a 

specific prosthetic foot, defined by the response time and the stance length that 

amputee is capable of achieving. If a higher running speed is required, either the 

stance length must be increased further or the response time must be decreased. This 

means that for a given running speed, the foot will respond faster and thus shorten the 

stance length at that speed. The amputee regains the ability to increase his or her 

stance length and achieve a higher velocity. In the instance of the amputee athlete 

tested it appears that his maximum velocity was achieved on the treadmill at 18kmh-1 

as a function of the limitations of the foot. However simply assigning a stiffer foot 

category does not immediately mean a faster running speed can be achieved. It would 

purely mean that the response time of the foot is no longer the limiting factor and 

some other constraint is placed on the runner (leg power, ability to reposition limbs 

fast enough, fitness, etc). 

As the speed of running increased it can be seen that the initial point of ground 

contact moves posterior along the metatarsal region of the foot. In section 7.3.4.2 it 

was once again shown that the stiffness of the foot decreases towards the toe, 

meaning that as running speed increases the effective stiffness of the foot is also 

increased. It could therefore be suggested that the foot is to a certain extent self-

adjusting to the demands of a higher running speed. As mentioned previously the 

limiting factor in amputee running can be the stiffness of the foot (or lack thereof) and 

the resulting response time being slow. As the speed increases it can be observed that 

the foot effectively becomes stiffer due to its geometry and therefore the response 

time will be shorter. It could also be suggested that if the initial point of ground 

contact were not to move in a posterior direction as speed increases, the maximum 

speed able to be achieved on that specific prosthetic foot would be lower and more 

limiting to the amputee. 

Throughout testing across the entire range of running speeds the (unilateral) amputee 

was able to maintain symmetry (measured subjectively by feedback from the amputee 

and by examining video of the runs with a qualified and experienced prosthetist). This 

suggests that the unaffected leg is matching the action (timing, stance length) of the 

prosthetic leg in order to preserve symmetry.  
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This chapter has demonstrated that if the action of a prosthetic foot were to be 

modelled (in response to the research sub-question put forward in section 2.1.3: Can 

the action of a prosthetic running foot be modelled mathematically?) it is not 

sufficient to purely take into account the stiffness of the foot and mass of the 

amputee. It has been shown in this chapter that the effective stiffness of the prosthetic 

running foot varies depending on running velocity. Further to this and in response to 

the primary research question in section 2.1: Is the current method of prescribing 

prosthetic ESR running feet correct?, it can also be suggested that the desired running 

speed of the amputee should be taken into account when prescribing a running foot. 

Currently the manufacturer advises prescribing a running foot based on the mass of 

the amputee alone. However this chapter has demonstrated that without 

understanding the dynamic response of that foot, this prescription method has the 

potential to limit the maximum running speed of the amputee. It therefore can be 

concluded that whilst undoubtedly assigning a competent category of foot to many 

amputees, the current prescription has the potential of limiting the activities of 

amputee athletes.  

All of the work carried out to date (in Chapters 3, 4 & 6) has involved the 

characterisation of a single category of foot. Chapters 3 & 4 were conducted using an 

older model of Flex Run foot. If the research question in section 2.1.3: Can the action 

of a prosthetic running foot be modelled mathematically? is to be answered, a 

deeper understanding of the foot categories available should be gathered. Following a 

study of the categories, Wilson et al. (2009, P.221) comment 'The exact stiffness 

categorization was somewhat arbitrary’. Ossur currently manufacture 9 different 

stiffness categories of Flex Run foot (each with a ‘Hi’ or ‘Lo’ variant) and currently 

there is no literature available that refers to their stiffness characteristics.  

It is proposed that the following chapter be concerned with furthering our knowledge 

of the mechanical properties of these stiffness categories in anticipation of modelling 

their action mathematically. 
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CHAPTER 8: CHARACTERISATION OF FOOT CATEGORIES 

8.1  Introduction & Chapter Objectives 

As discussed in Chapter 1, Ossur as a manufacturer offer a range of prosthetic running 

feet. The most popular is the Flex Run model which has been the subject of this 

research project, but within this individual model there are a broad range of stiffness 

classifications available.  

Work to date has been concerned with amputee testing and subsequently the 

replication and investigation of this running in a laboratory environment. This has all 

been conducted with the style and category of foot that was already in use by the 

amputee athlete who was tested, therefore ignoring the majority of the available 

range of feet. The Flex Run is available in 9 stiffness categories (named Cat.1 through 

to Cat.9, the latter being the stiffest model). Within each of these categories there 

exists a ‘Hi’ and ‘Lo’ variant. Following feedback from the manufacturer, it has become 

known that this Hi and Lo denomination is a result of manufacturing tolerances. Each 

of the feet is individually rated for spring rate at the time of manufacture and if the 

foot stiffness sits within the upper half of that specific category stiffness tolerance 

band it is awarded ‘Hi’ status. The same is true for the Lo rating but for the lower end 

of the stiffness tolerance band. 

The first 12 months of work in this research project was carried out using an Ossur Flex 

Foot Cat.6Hi dating from 2003. The knowledge gained from testing with this foot has 

set the tone for the entire project and established the trends upon which the theory is 

based. However in 2012 Ossur redesigned the Flex Run foot with a modified geometry 

rendering the specific nature of the work in this project irrelevant to any newly 

prescribed foot thereafter. The trends are useful to our understanding (for example 

when comparing the function of a foot with the equation for simple harmonic motion 

in Chapter 6) but any absolute data should be updated with information obtained from 

repeat testing with the newer geometry of Flex Run. A summary of the geometrical 

changes can be seen in figures 8.1 & 8.2. 
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Figure 8.1: CAD image of the new and old style Ossur Flex Run. The geometry for every 

category is identical; the number of carbon fibre laminate layers defines the stiffness category. 

Old Flex Run model 

(pre-2012) 

New Flex Run model 

(post-2012) 

Figure 8.2: CAD image of the new and old style Ossur Flex Run overlaid with the key 

differences highlighted (viewed in the sagittal plane). 
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The feet are the same fundamental design but differ in their detail. The most 

prominent difference is that the older model (pre-2012) waists along its length from 

the toe to the shank meaning that the keel gets progressively thinner towards the toe. 

The result of this is that the strain of the foot bending is spread along the length of the 

foot. By contrast the new design appears to focus the strain on a particular region. This 

has been done by thickening the section of the keel without tapering towards the toe. 

Given that it is this area of strain that will predominantly provide the spring rate of the 

foot, it could be suggested that this has been done in order to better control the 

stiffness of the foot. 

The second most obvious change is on the toe of the foot. The older model features a 

pronounced curl which has been eliminated on the newer model. There appears to be 

no clear advantage to this feature, but it could be suggested that it better controls the 

ground contact point at which toe-off occurs. With a curl in the toe the ground contact 

point at the moment of toe-off might change depending on the speed of running and 

length of the stride, whereas this cannot be the case with the newer model. 

Alternatively the explanation could be as simple as more easily allowing the fitment of 

the Nike running sole that was designed and released at the same time as the newer 

model of foot.   

Fundamentally the designs are significantly different enough to warrant all future 

testing be conducted with the newer model. As such one foot from each of the 9 

categories was sourced from the manufacturer and all subsequent work was 

conducted with the newer model of foot. The objective of this chapter is to further 

understanding of what the categorisation means (in terms of mechanical stiffness) 

such that the research question set out in section 2.1.3: ‘Can the action of a prosthetic 

running foot be modelled mathematically?’ can be answered. If a value of stiffness for 

each of the available feet can be defined, this could be substituted into a model in 

order to understand the theoretical dynamic response characteristics. 
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Figure 8.3: Image demonstrating the disparity in toe length and shank shape when a range of 

Flex Run feet are aligned. The upper shank surfaces for all feet are parallel. 
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8.2  Category Testing 

Having access to the entire range of feet meant that an investigation could be carried 

out into what the category system means from a stiffness point of view. Do the feet 

ascribe to a regular array across the stiffness range or are their categories less 

controlled?  

8.2.1  Defining a Datum  

In order for the stiffness categories to be characterised, each of the feet needed to be 

installed in the Instron hydraulic test machine as conducted in section 3.4. The feet 

could then be deflected according to a pre-defined programme, therefore generating a 

force – displacement curve for each of them. As carried out in section 4.6 the toe 

clamp could be moved in order to simulate a change in ground contact point and 

generate a stiffness profile. The location of the toe clamp was previously defined as a 

distance from the toe of the foot, but upon inspection when the feet were compared 

with one another it quickly became clear that this was not possible. 
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Figure 8.4: Image showing the detail of the shank with hand-finished edges. The 

irregularity of the curve makes the edge unsuitable as a datum point. 

Figure 8.3 is an image of the Flex Run feet obtained from the manufacturer aligned 

next to one another. The upper surface of each shank was arranged with a straight 

edge along the line of feet and each was laid on a flat surface. However despite best 

efforts to align the feet, the length of the toe differed on each device to the order of 

6mm. In addition the shank edges did not align and upon inspection, the shape of this 

portion of the foot was irregular. It was confirmed by the manufacturer that this area 

was hand-finished during manufacturing (figure 8.4). 

 

Before any characterisation work can occur with the feet, a reliable and repeatable 

datum point needs to be established across the entire range. It is about this point that 

measurements for the attachment of the toe clamp are to be taken, but it is clear that 

there are no surfaces of the foot that are comparable from one device to another. The 

datum point needed to be in relation to the foot geometry as the precise location of 

any of the edges of the feet is irrelevant.  

The one remaining feature of the foot that could be used was the drilled hole for 

attachment of the pyramid adapter. The manufacturer confirmed that this position 

was drilled relative to the foot geometry (using a drilling jig that fastened to the foot 
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Figure 8.5: Image showing the fabricated cylindrical component attached to a generic laser 

pointer. This could be mounted to the shank of any Flex Run foot for marking the datum. 

geometry, not relying on the position of any of the edges) and as such a method was 

devised of using this as the datum point for all testing. 

Instead of physically measuring from the mounting hole around the curve of the foot 

geometry it was decided to use the mounting position to project a mark onto the keel 

of the foot. To do this a laser pointer was modified such that it attached through the 

mounting hole of each of the feet. This was complicated by the variation in drilling 

sizes of the mounting hole (categories 7,8 & 9 feature a 12mm hole whereas all of the 

lower categories feature a 10mm hole) but a small cylindrical aluminium component 

was fabricated that achieved the goals. The laser pointer device was pressed securely 

into one end and on the other were machined two threads; the first M12 and the 

second M10 with a corresponding shoulder to morph from one size to the other. This 

allowed the component to be attached to any of the feet regardless of hole size. 

Through the centre of the component was drilled a 0.5mm hole, 20mm long which 

aligned with the laser. This hole ensured that the light emitted by the laser was 

directionally accurate, aligning exactly with the cylindrical component. The device can 

be seen in figure 8.5 and the entire assembly mounted to a foot in figure 8.6.  
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Figure 8.5: Image showing assembly of the laser device and foot prior 

to marking the position of the datum.  

Figure 8.6: Image showing the projected laser datum and marking of 

this datum on the metatarsal region of the foot.  

This laser device could therefore project a point onto the upper face of the metatarsal 

region of the foot that was repeatable across all of the feet on test and irrespective of 

the hand-finished edges (but instead consistent with the foot geometry). 
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Table 8.1: Detail of the toe clamp positions for the new laser-guided datum point as 

transposed from the previous datum of the front edge of the toe for the Cat.7Lo foot. A 

negative value means posterior of the datum point. 

In order to avoid damaging the foot with a datum point, masking tape was added to 

the upper surface of the metatarsal region of the foot and using a pen the datum was 

marked (figure 8.6). 

All of the feet (9 in total) were marked with a datum including the Cat.7Lo foot (that 

was used in Chapter 7). This foot had already undergone stiffness characterisation 

testing (section 7.3.4.1) and as such the positions of the toe clamp that were used in 

this previous work were repeated. The measurements used to define the position of 

the toe clamp (table 7.4, previously values in relation to the edge of the toe) were 

converted to locations in relation to the new laser-generated datum point.  

 

8.2.2  Method  

Once the toe clamp locations (used for defining the effective ground contact positions) 

were defined the stiffness characterisation for each foot could take place. The 

methodology for this is described in section 7.3.4.1. A summary of the new toe clamp 

locations can be seen in table 8.1. 
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Figure 8.7: Graph comparing the force – displacement data for the entire range of Ossur 

Flex Run feet when tested at the ‘Mid’ position (see table 8.1). 

Fo
rc

e 
(k

N
) 

Displacement (mm) 

8.2.3  Results 

Each foot in turn was characterised in terms of stiffness versus effective ground 

contact position. As conducted in section 7.3.4.1 each foot was subjected to a force – 

displacement measurement at three separate points along the metatarsal region, thus 

producing three individual force – displacement curves. An example is shown in figure 

7.15 for the Cat7.Lo foot. 

This means that as previously completed in section 7.3.4.2 an equation describing the 

stiffness of each of the foot categories could be derived as a function of ground 

contact position. The relevance of this equation becomes apparent when trying to 

model the action of all categories of foot mathematically, predicting the dynamic 

response and is the topic of the following chapter. 

 In addition the force – displacement data for each ground contact point can be plotted 

on a single graph in order to compare the distribution of foot stiffness across the range 

(for example for the mid contact point as illustrated in figure 8.7). 
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Table 8.2: Overview of stiffness of all categories of Flex Run foot available from Ossur 

tested at three locations as described in table 8.1. 

It can be seen in figure 8.7 that the foot categories cover a range of stiffness and if the 

peak force is divided by the peak displacement a value of foot stiffness (at that specific 

‘mid’ location) can be derived. The stiffness information for all feet at all contact 

positions is shown in table 8.2. 

Interesting to note is that the feet do not appear to cover this range of stiffness in 

regular intervals. For example categories 1&2 are almost indistinguishable from one 

another, both returning nearly identical spring stiffness (a deviation of 0.1%). Likewise 

categories 3&4 share similar stiffness values (deviating 3.5% from one another). As 

demonstrated previously (in sections 3.4 & 4.7) the feet tested all exhibit an energy 

return efficiency >99% with a linear spring rate. However as described in Chapter 3 this 

efficiency and linear spring rate is as much to do with the mounting strategy of the 

foot as it is to do with the foot itself. 

Using the data in Table 8.1 and Table 8.2 it was possible to generate a graph to 

describe the stiffness of each foot at any ground contact point. This is a similar process 

to that carried out in section 4.6.2 and as displayed in Figure 4.8, the main difference 

being that on this occasion the reference point was the laser datum instead of the 

edge of the toe of the foot. An example of this can be seen in Figure 8.8 as selected for 

the Cat.7 foot.  
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Figure 8.8: Graph demonstrating the difference in foot stiffness when altering the 

ground contact point along the metatarsal region of the foot. A line of best fit is 

added and equation derived to describe the relationship (Cat. 7 example). 
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As in section 4.6.2 a 2nd order Polynomial equation was sufficient to describe this curve 

and allow the definition of the foot stiffness for any ground contact point. 
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8.3  Chapter Conclusions 

This chapter has demonstrated the variation of mechanical stiffness values across the 

range of Flex Run prosthetic foot categories, albeit for a sample size of one for each 

category. It can be seen that the categories do not sit at regular intervals through the 

stiffness spectrum, but it is likely that this occurs because of the variation in 

manufacturing tolerance.  

It was acknowledged by the manufacturer that each category of foot can exhibit a 

range of stiffness, and in response to this a ‘Hi’ or ‘Lo’ classification is added. This also 

means that the foot could sit at any point within these classifications and as such the 

foot stiffness can only be defined within a working tolerance band. It is not possible to 

generate this tolerance band by testing one foot from within each stiffness category 

and instead this would be a useful extension of this research project.  

Whilst every care was taken to ensure the accuracy of the toe clamp that was fitted for 

the testing (to define the effective ground contact point) it was assumed that the 

shank mounting hole was always perfectly aligned. However it was found that the 

mounting hole could also be in a variable position across the width of the foot and was 

not always drilled perfectly normal to the mounting face of the foot. The unrepeatable 

nature of this mounting hole could also be a source for error. 

Having defined the stiffness of each foot at three points along the metatarsal region an 

equation was defined for each that described the stiffness of the foot as a function of 

ground contact position. These equations can now be used to specify foot stiffness (as 

a value of N/m) for any ground contact point. This information can now be used to 

advise the following chapter and takes the research one step closer to answering the 

research question set out in section 2.1.3: Can the action of a prosthetic running foot 

be modelled mathematically? 

Now that the stiffness of the various feet is understood at any ground contact point, 

and Chapters 4, 6 & 7 have defined how this ground contact point changes with 

running velocity, the following chapter is aimed at understanding whether amputee 

running can be defined by a mathematical model. 
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CHAPTER 9: MATHEMATICAL MODELLING OF A FOOT 

9.1  Introduction & Chapter Objectives 

This research has been able to characterise the action of a prosthetic running foot, 

defining mechanical properties and how these properties affect the action of an 

amputee athlete. If this learning can be applied to a mathematical model that is 

capable of describing amputee running, this can be used to judge not only the 

effectiveness of the current prescription technique but also to understand if and how 

the method of prescribing feet can be changed to improve the user experience for 

amputees, thus answering the primary research question stated in section 2.1: Is the 

current method of prescribing prosthetic ESR running feet correct and could it be 

more appropriately advised by taking into account any additional factors? 

If the action of a foot could be modelled mathematically, the understanding from the 

previous chapters could be generalised and used to benefit a wide range of amputee 

athletes. For instance it was shown in Chapter 7 that as speed changes there is a 

dramatic difference in foot response (resulting from a change in ground contact 

position and therefore foot stiffness). This change in ground contact position could be 

compounded depending on other factors such as amputee leg length or available 

stance length. Currently these factors are not taken into account when prescribing a 

prosthetic foot, the process relying solely on the mass of the amputee to assign a 

category of foot. 

Furthermore it was shown in section 7.3.3 that the foot itself can provide a throttle on 

the maximum running speed available to an individual. Currently there is no method of 

understanding if a prescribed foot will allow the amputee to run in the manner that 

they desire.  

This chapter is dedicated to the task of modelling the action of a foot mathematically 

such that the dynamic response of a foot can be ascertained for any amputee and the 

restrictions of that foot be understood.   
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9.2  Theory  

Before undertaking any modelling it is important to establish what it is that is being 

defined. The ultimate goal is to assist the prosthetist in prescribing a foot, so what 

does the prosthetist need to know?  

Throughout the course of this research project it is the dynamic response time that has 

taken precedent (otherwise referred to as Ground Contact Time). It is the natural 

output of the equation for Simple Harmonic Motion and has been shown in Chapter 6 

to be a direct result of amputee mass, foot stiffness and the amplitude of deflection. If 

the response time of a foot could be defined for any amputee for any level of activity 

with any prosthetic running foot, would this help the prosthetist in making an accurate 

prescription? 

The answer is probably not. Whilst the response time of the foot is an interesting 

variable to quantify, it is not a tangible measure for those who prescribe or use the 

prosthetic device. It means little to the prosthetist and amputee. 

However it was shown in section 7.3.5 that if a running speed is specified, the ground 

contact time of the foot defines the stance length of the amputee. That is the distance 

travelled by the ground contact point of the foot in the given response time when 

using a treadmill. Stance length is a measurable that can be appreciated by the runner 

and observable by the prosthetist. It would therefore be logical if the output of any 

modelling was the resulting stance length that would need to be achieved by the 

amputee for any given running speed. This would require the amputee to specify their 

desired speed of running and providing that they or the prosthetist understands the 

limitations of the individual’s stance length capabilities, the suitability of the foot being 

modelled can be judged. 

Figure 9.1 shows a diagrammatic representation of this process, derived from the 

research carried out in the previous chapters and how each of the contributing factors 

interacts with the final output of defining stance length. Each of the criteria is 

addressed in the following sections of this chapter. 
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STANCE LENGTH 

STANCE  LENGTH (m) = velocity (m/s) x GCT (s) – Δ GCP (m) 

(See section 7.3.5) 

ΔGCP  
Δ GCP (m) = heelstrike GCP (m) – toe-off GCP (m) 
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Figure 9.1: Flow diagram of the criteria that define the stride length of an amputee athlete using a 

Flex Run foot. Elements highlighted in red are knowledge gained during this research project. 
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9.3  Contributing Factors 

9.3.1  ΔGCP  

It was shown in section 7.3.3 that the ground contact point of the foot changes not 

only throughout the course of a single stride (progressing in an anterior direction 

towards toe-off) but also for different running speeds. As amputee running speed 

increases the position of foot strike moves rearwards (and on to an effectively stiffer 

portion of the foot). 

In order for the equation that defines the stance length (section 7.3.5) to work 

effectively this change in ground contact position (from heelstrike to toe-off) has to be 

defined. This value represents the distance along the metatarsal region of the foot that 

the ground contact point progresses throughout the course of a single stance-phase of 

a stride.  

It was demonstrated in section 7.3.3 when observing amputee running that at all 

speeds the toe-off position is identical, always occurring at the tip of the toe. The foot 

strike position was defined for the amputee being tested across a range of running 

speeds (table 7.3), but it is not known how this would change for athletes of differing 

proportions.  

When observing the action of the amputee runner in section 7.3.3 it was observed that 

regardless of running speed his foot strike always occurs with a straight leading leg 

(little or no flexion of the knee is apparent). An example of this action can be seen in 

figure 7.1 which shows the amputee runner on a track, captured a fraction of a second 

prior to foot strike. The flexion in a knee when running (and particularly at the moment 

of foot strike) is a contentious issue (www.scienceofrunning.com 2014) in the running 

community but if it is assumed that the leg is straight (or has a small degree of flexion) 

at the moment of heelstrike then the ground contact point of the foot becomes a 

simple geometrical condition. The foot is still in an un-deflected state and the 

geometry of all categories of Ossur Flex Run feet is identical. This means that the 

ground contact point is a function of the angle of attack of the leading leg at the 

moment of heelstrike.  
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9.3.1.1  Foot Strike Position Simulation 

A CAD simulation was constructed using a model of the Ossur Flex Run foot and a 

virtual representation of leg and hip joint. A screenshot of this model can be seen in 

figure 9.2. The foot was marked with pins in an identical manner to the testing in 

section 7.3 and the virtual hip was constrained in a way that allowed the position of 

the foot to be moved to rest on the ground plane. In addition the virtual leg length of 

the model could be changed. This way any stance length could be represented with 

any length of leg and the ground contact point be ‘read’ from the model.  

It should be noted that the foot model was mounted to the virtual leg as best it could 

be by following the manufacturer’s instructions (Ossur Instructions for Use, 2012). 

However these instructions are vague and proved impractical to follow to the letter. 

They call for the ground contact point when standing to be 25 – 40mm anterior of the 

load line (figure 9.3). Even if the larger value of 40mm is affected the angle of the foot 

Figure 9.2: Screenshot of CAD model developed to predict in part the ground 

contact point on the metatarsal region of the prosthetic foot for a variety of 

stride and leg lengths 
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(when viewed in the sagittal plane) is unrealistic. When the manufacturer was 

consulted their advice was to align the foot with the shank parallel to the ground plane 

and so this is the approach that was taken but this results in the ground contact 

position being 124mm forward of the load line. It can only be assumed that these 

instructions were not modified when the geometry of the foot was changed in 2012. 

This foot installation was an area of confusion and is not conducive to a repeatable set 

up. The suggestion of this research is that the guidelines to prosthetists be revisited 

and updated, although a prosthetist will no doubt use their experience and amputee 

feedback to generate a more effective foot alignment. 

The model was used to define the ground contact position (GCP) for leg and stance 

lengths as detailed in table 9.1. This table was used to create a series of curves to 

represent each leg length and these can be seen in figure 9.4. The length of the stride 

was divided into two because it is only the distance forward of the static resting point 

that concerns this particular investigation. It was ascertained in section 4.4 that the 

Figure 9.3: Extract from the Ossur installation guidelines (Ossur 

Instructions for Use 2012) calling for the initial ground contact position 

to be 25-40mm forward of the load line. 
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Figure 9.4: Traces of foot strike ground contact point against stride length for a variety of 

simulated leg lengths. Each curve has a linear trendline added with R2 values quoted. 
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compression and rebound phases of the stance phase of the stride are symmetrical 

meaning that the same stance length will occur rear of the mid-stance position. 

  

Table 9.1: Summary of the foot strike positions (mm measured from the toe) 

along the metatarsal region of the virtual prosthetic foot for different leg and 

stride lengths. All dimensions are in mm. 
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Figure 9.5: Traces of ‘m’ and ‘c’ terms extracted from the straight line equations y=m(x)+c for 

the trendlines shown in figure 9.4. Equations derived from these two graphs were used to 

develop a formula capable of describing heelstrike position for any stride and leg length. 
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A linear trendline was applied to each of the curves shown in figure 9.4 as a function of 

y=m(x)+c. The terms ‘m’ and ‘c’ were split apart and the extreme values of these (from 

the 1000mm leg length trace and the 700mm leg length trace) and were used as 

boundary figures to create a trace of ‘m’ terms and a trace of ‘c’ terms plotted against 

leg length. These traces can be seen in figure 9.5. 

An equation (in the form of y=m(x)+c was developed using the output of these two 

traces (as a function of leg length) to form the ‘m’ and ‘c’ terms with ‘x’ being a value 

of stance length. Using this equation it was possible to define the ground contact point 

of a foot at foot strike by defining values of leg length and stance length.  

Table 9.2: Summary of the foot strike positions (mm measured from the toe) along the 

metatarsal region of the virtual prosthetic foot for different leg and stride lengths. All 

dimensions are in mm. Cells in green indicate the number is within the defined tolerance. 
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As a verification exercise the data from the original measurements (shown in table 9.1) 

was cross-checked with an identical table with each cell filled with output data from 

this developed equation. This can be seen in table 9.2. The cells in green are those in 

which the measured data and calculated data correlate to an accuracy of +/-2.5mm. 

It can be seen that all figures generated by the equation fall within this tolerance with 

the exception of the shortest stance length. This is the stance length generated from 

the leg at 0°, or vertical, and as such is not a realistic test condition. 

Given that the original foot setup (with the shank parallel to the ground) is unlikely to 

be used in a real-life situation, the equation had added to it a bias factor that would be 

modified by the prosthetist according to the individual set up requirements of the 

amputee. This factor simply biases the ground contact point forward or rearwards 

(inevitably this would always be rearwards due to the extreme angle of the foot at 

initial setup). For the amputee tested in Chapter 7 this value was 24mm posterior (as 

defined by the prosthetist aligning the foot) meaning that his static ground contact 

point was 100mm forward of the load line (with the shank aligned parallel with the 

ground this value is 124mm as can be seen in table 9.1).  

Table 9.3: Summary of the heelstrike GCP figures (in mm) for the amputee (as measured in 

Chapter 7) for both the measured and calculated methods with the variation defined. The 

stride length varies as running speed increases. 
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As a data verification exercise the data collected from the amputee in Chapter 7 (foot 

strike ground contact positions, stance lengths and the amputee leg length) was 

compared with that generated by the equation developed in this section. The results 

can be seen in table 9.3. It can be seen that the maximum variation is 2mm, at greatest 

a deviation of 2%. The mean deviation is 0.96%. 

 

9.3.1.2  Conclusions 

Using this method of simulation, a general equation has been developed in the form of 

y = mx+c (with the m & c terms derived from the CAD simulation exercise in section 

9.3.1.1) that describes the ground contact point of the foot for any given stance or leg 

length. The data verification exercises suggest this can be completed to an accuracy of 

+/-4.5mm (+/-2.5mm originating from table 9.2, +/-2mm from table 9.3) across the 

entire calculation range. This data was verified against that captured during the 

amputee testing phase in Chapter 7. 

In order for the calculations to work the user must enter values for leg length and 

stance length. The leg length is a simple measurement from the centre of rotation of 

the hip (head of the femur) to the base of the unloaded prosthetic foot. The stance 

length however presents complications in some circumstances. If the prosthetist (or 

user of this equation) is experienced and competent in predicting a suitable stance 

length for the amputee then a value should be forthcoming. However if the stance 

length needs to be predicted by a further element of this modelling exercise (as 

suggested in figure 9.1) there will be a conflict of values. The stance length cannot be 

defined without knowing the change in ground contact point, and the ground contact 

point cannot be defined without a value of stance length. 

It is possible that this creates a circular calculation that tends closer to an accurate 

product with a number of iterations. If this cannot be achieved an alternative method 

would be required, perhaps in the form of a look-up chart of typical values that can 

advise the prosthetist. 
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This method of calculating the ground contact point at foot strike relies on two 

assumptions that could be the subject of further study.  

1. The affected (prosthetic) leg is straight at the moment of foot strike (i.e. there 

is little or no knee flexion). This is the style of running employed by the 

amputee athlete previously tested (Chapter 7) but is by no means the only style 

of running used by individuals able-bodied or otherwise. Further study should 

be conducted that establishes the variation in running styles with a view of 

defining the variation in knee angle at the moment of foot strike. A flexed knee 

will mean that the leg length is slightly (almost certainly insignificantly) reduced 

but also exhibit a rotation in the sagittal plane of the prosthetic device. This 

rotation will serve to bias the foot strike position forward towards the toe and 

could adversely affect the accuracy of the resulting data.  

 

2. The stride is symmetrical about the point of mid-stance (in terms of stance 

length). It has been shown to be so during testing with the amputee in section 

4.4 but further investigation should be undertaken to confirm this assumption 

if additional runners are to be considered.  
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9.3.2  Foot Stiffness 

The stiffness of the prosthetic foot on test was investigated in section 7.3.4 where the 

stiffness variation along the length of the keel (metatarsal region) was defined, and in 

section 8.2 where the same exercise was conducted across the category range of 

available Flex Run feet. It was shown that the stiffness of the foot changes throughout 

the course of a single stride and the stiffness at each instance shown in table 8.2.  

What is not known at this stage is how this stiffness or rather this change in stiffness 

affects any modelling of the response time that might occur. 

Section 6.2 shows that when attached to the rig the foot and mass as a system acts 

according to the trends of Simple Harmonic Motion (if the nominal foot deflection is 

used as the reference for response timing). Crucially though, this testing was 

conducted with a single defined ground contact point and therefore foot stiffness. The 

purpose of this section is to identify the magnitude of stiffness change that occurs 

during running (as investigated in Chapter 7) and if this can be approximated to a 

single value. The mathematical modelling of the foot using the equation for Simple 

Harmonic Motion relies on a single value of foot stiffness and if this cannot be found, 

alternative modelling methods should be used. 
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9.3.2.1  Defining the True Spring Rate of the Foot 

Traditionally the rating of a spring is conducted by generating a force – displacement 

curve. The linearity of the spring can be understood, as can the level of force required 

for any specific level of deflection.  Whilst the testing did not directly produce the 

relevant data to generate a force – displacement curve for the foot, it can be 

calculated using what was captured.  

At no stage in this research project has direct force data been captured from amputee 

testing. This is because of the specialised equipment that is usually required in a 

controlled test area. Instead the deflection of the foot at a known position was 

recorded (section 8.2) and the stiffness at all locations calibrated. Figure 7.14 displays 

the results describing how the ground contact point of the foot (as being used across a 

range of running speeds by an amputee athlete) progresses throughout the stance 

phase of the stride. It provides a value of contact point rear of the toe plotted against 

time in the stride (originating from foot strike at t=0). Figure 7.16 is the resultant curve 

of a series of Instron-based testing that defines an equation describing the stiffness of 

the same foot for any given ground contact point along its length. As such, if these are 

combined the graph in figure 9.5 can be generated, defining foot stiffness against a 

value of time through the stride. For the purpose of simplifying the data, at this stage 

this exercise is only concerned with a single category of foot (Cat.7Lo) as used by an 

amputee (97.5kg) running at a single velocity (13kph). It can be seen that the effective 

foot stiffness changes from 65000N/m to 28000N/m throughout the course of the 

stride, having increased to 71500N/m at 45ms after foot strike.  
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Figure 9.5: Trace demonstrating the variation in foot stiffness throughout the course of a single 

stance phase of the stride. The change in stiffness is caused by the shift in ground contact position. 
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The deflection work that was carried out (section 7.3.2) used the deflection transducer 

mounted to a single specified location on the keel of the foot. This location is irrelevant 

providing it is constant, however it can be used as a reference for all deflection testing 

at other foot locations. 

Section 7.3.4.1 describes how three selected ground contact locations were chosen for 

calibration work and figure 7.15 displays force – displacement data for these positions. 

The middle of these three locations (defined as ‘mid’ and 75mm rear of the toe with a 

linear stiffness of 53599N/m) was used as a datum reference, it being a point with 

known characteristics. Using this ‘mid’ point as a position for the toe clamp (therefore 

defining the ground contact point) a calibration curve was generated for the foot using 

the Instron hydraulic test machine showing displacement (mm) against a value of volts 

as recorded by the MSR data logger during test. The static characterisation testing 

procedure is described in section 3.4. This curve is shown in figure 9.6. 
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Figure 9.6: Calibration curve for the ‘mid’ ground contact position (75mm rear of 

the toe) using the rotary deflection transducer as a reference. 
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An equation for the resulting straight line was generated meaning that for any given 

value of voltage measured by the deflection transducer during amputee running, a 

value of deflection in mm can be defined. It should be noted that this value of 

deflection (in mm) is only valid at this exact point along the foot (75mm rear of the 

toe). However this information can be used to generate a value of deflection at any 

point along the toe. 

The stiffness at this ‘calibration point’ is known to be 53599N/m. It is also known that 

f=kx (force = stiffness x extension) meaning that the extension at any given time 

throughout the duration of the stride can be defined by the ratio of foot stiffness 

(apparent at this specific time) and the calibrated point stiffness of 53599N/m.  

Therefore at every given time throughout the stride (every 0.00159 seconds in this 

case as the calibration work was conducted at 512Hz) the ratio of foot stiffness for the 

respective time through the stance phase of the stride (as defined in figure 9.5) and 

known calibrated point stiffness (53599N/m) was calculated. This ratio, when 

multiplied by the deflection achieved at the known calibrated point, provides a value 

of foot deflection in mm for the specific point on the foot where ground contact occurs 

at that specific moment. This resulting value of foot deflection is the only true measure 
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Figure 9.7: Curves demonstrating the disparity between foot deflections as measured at a single 

location and at the ground contact point as it progresses through the stride. 
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of foot deflection and is something that has not previously been discussed or defined 

in any academic sources. It is defined by the blue line in figure 9.7. 

This information transforms the knowledge we hold about the deflection of the foot. 

Up until this point the stride characteristics have always been considered symmetrical 

about the position of mid-stance with maximum deflection occurring equidistant 

between foot strike and toe-off. This graph demonstrates that this is true if a single 

point of measurement is used, but not if that point of measurement is the ground 

contact point (which progresses throughout the stride). Instead the red line 

(representing displacement of the single point) should be considered a trend of foot 

strain but not specific deflection. 

Further to this it can also be suggested that the form of the blue curve (representing 

specific deflection) will change depending on running velocity. Figure 7.14 

demonstrates how the ground contact point progression changes based on running 

speed, and as such the stiffness progression will also change. The specific deflection is 

based on this progressive change in foot stiffness and as such the shape will inevitably 

be altered. 
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Figure 9.8: True force – deflection curve for the Cat.7Lo Flex Run foot on test when used by a 

97.5kg amputee athlete to run at 13kph 
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Further to this, because f = kx (force = stiffness x extension) the force at the ground 

contact point can be calculated at any given moment throughout the stride by 

multiplying the stiffness of the foot at that point with the value of deflection shown in 

figure 9.7. With this new information a force – deflection curve can be generated for 

the foot using true values of force and deflection at the specific ground contact point 

employed by the foot on test. This can be seen in figure 9.8. 

The resulting force – deflection curve is unusual in that it demonstrates a high value of 

hysteresis if viewed in the traditional manner; that is the disparity between the 

compression and rebound phases of the cycle. This graph would normally suggest a 

poor level of energy return efficiency. However this is only relevant if the compression 

and rebound phases are symmetrical in their spring geometry; this is not the case. 

Furthermore the compression and rebound phases (as demonstrated in figure 9.8) are 

reversed to a traditional force – deflection curve. If a symmetrical spring (that which 

follows the same geometry in the compression and rebound phases) were to produce 

a curve of this nature it could be concluded that the spring has a high level of damping 

(and thus energy inefficiency) and the compression curve would be the lower of the 

two (indicated in red on this graph). The curve in figure 9.8 suggests, counter-

intuitively, that the ‘spring’ requires less energy to be compressed than it returns in 

the rebound phase. The spring rate is significantly lower on the rebound phase, but 
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what is not clear from this figure is that this change in spring rate is a result of 

geometrical change. The spring rate of the foot softens towards the toe and as such 

this is demonstrated in the rebound phase of the force – deflection curve. 

9.3.2.2  Conclusions 

Following this investigation two things become clear: 

1. The spring rate of the foot will vary depending on the running speed. It is 

shown in section 7.3.3.2 that as speed increases, the amputee uses a more 

posterior portion of the foot thus increasing stiffness. Further to this, and as 

shown in figure 7.14, the additional bending of the foot at higher running 

speeds means the ground contact progression forms a different profile. If a 

model were to be developed that predicts the foot stiffness it would need to 

take into account the ground contact position change at foot strike and 

throughout the stride. Both of these factors were discussed in section 9.3.1 and 

a model for the prediction of the initial ground contact point developed for any 

given leg and stance length. The ground contact progression has proven to be 

crucial for understanding the foot stiffness profile. Whilst a model of the 

information already recorded can be developed (in a manner similar to that in 

section 9.3.2.1), the effect of different users (amputees of different heights, 

weights, running styles, etc) is not understood and was considered outside the 

scope of this work. 

 

2. Traditional response models (such as the equation for Simple Harmonic 

Motion) cannot solely be used for modelling the behaviour of an Ossur Flex Run 

prosthetic running foot. This approach requires a single, linear spring stiffness 

value to be defined and although figure 9.8 demonstrates a linear compression-

phase stiffness value, the rebound phase is distinctly different. If the concept of 

Simple Harmonic Motion is to be pursued, some manner of assumption has to 

be made that takes into account the variation in foot stiffness and allows the 

definition of a single linear foot stiffness for the purpose of the model.  
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9.3.3  Calculating Response Time 

Previously authors (Lehmann et al. 1993a,b; Noroozi et al. 2012a,b, 2014) have 

suggested that the action of a prosthetic foot could be considered to mimic the 

equation for simple harmonic motion with the deflection of the foot during running 

forming half of a sine wave. 

This was discussed in Chapter 6 and was found to be incorrect. Instead the discovered 

trends suggest that the function of the foot can be compared with simple harmonic 

motion if done so about what was termed the Half Wave Timing (HWT) and if a single 

foot stiffness is assumed.  

The equation for simple harmonic motion as expressed in figure 5.2 gives a value for 

oscillation frequency for the full phase of a sine wave (in Hz). The reciprocal of this 

value provides a value of time (in seconds) to complete this oscillation. As such, half of 

this value would give the time to complete one half of one oscillation, but it was 

shown in section 6.2.4 that this one half of one oscillation can only exist from the point 

of nominal deflection (the amount of deflection achieved when the amputee is 

standing on one leg in a static state of equilibrium).  

Therefore when comparing the deflection of a prosthetic running foot as fitted to an 

amputee with simple harmonic motion, this value of static ‘nominal’ deflection should 

be defined. This task holds its own challenges: 

1. The amount of deflection under static loading changes depending on what the 

ground contact point is at that moment. It has been shown in section 4.6.2 that 

the stiffness of the foot changes along the length of the metatarsal region. 

Therefore if a load is applied at a soft region (towards the toe), the deflection if 

measured at that same point would be larger than if the same load were 

applied to a more posterior section of the foot. 

2. The amount of deflection changes depending on what position of the foot is 

measured. This is the reason that in section 4.4 and throughout this research 

project the traces of foot deflection were expressed as values of transducer 

output in volts and not calibrated into millimetres.  
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A further and perhaps much more significant challenge is that the equation for simple 

harmonic motion demands a value of ‘k’ or spring stiffness. This should therefore be 

completed with a value for foot stiffness (in N/m) but it was shown in section 7.3.4.2 

that the ground contact point (and therefore the effective stiffness of the foot) can 

change by a factor of 2.6 times throughout the course of a single stride. Additionally 

the ground contact point is not repeatable and can also be seen changing depending 

on the velocity of the amputee athlete.  
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Figure 9.9: Foot deflection as a function of transducer output voltage as raw collected data 

(above) and corrected about the nominal voltage at t=0 (below) for a 97.5kg amputee @13kph. 

The duration of half-wave timing is indicated by the red markers. 
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9.3.3.1  Method 

Nominal Foot Deflection 

In order to address the issue of defining a nominal foot deflection position, the same 

approach was taken as that in section 6.2.4.2. During amputee testing the foot 

deflection was measured using the rotary transducer, the output of which is voltage. 

This voltage if left uncalibrated demonstrates the trends of running (contact timing, 

swing phase timing, etc) but not defined figures for deflection in mm.  

This section is primarily concerned with the timing of the stride, it being this that is 

being replicated by mathematics. Therefore the uncalibrated trace of foot deflection 

was used throughout this section. The nominal position was measured by requesting 

the amputee stand still on his affected leg for a period of a few seconds, and thus the 
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Table 9.4: Tabulated figures of full stance phase (ground contact) and half-wave timing for a 

97.5kg amputee running on an Ossur Cat.7Lo prosthetic foot across a range of speeds. 

output of the rotary transducer could be recorded at nominal deflection for the 

prosthetic installation conditions specified by the prosthetist.  

The raw trace of voltage from the deflection transducer as captured during amputee 

running at 13kmh-1 is shown in figure 9.9 along with the same data corrected about 

the nominal voltage at t=0. As measured, the nominal voltage (representing nominal 

deflection of the foot) was 1.25v and this second trace shows the nominal timing (half-

wave timing or HWT) as 160ms. The overall foot contact timing was 217ms. 

This same exercise was conducted with data from all of the running velocities tested in 

Chapter 7 and tabulated as shown in table 9.3. 

It is these figures of half-wave timing that should be replicated if an effective equation 

can be developed to model the response timing of the foot. The link between HWT and 

GCT can then be established but as discussed in section 6.3 it is anticipated this link will 

be a function of overall foot deflection. 
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Table 9.5: Tabulated heelstrike positions and the resulting figures for the median ground contact point 

(GCP) for a 97.5kg amputee running on an Ossur Cat.7Lo prosthetic foot for a range of speeds. 

9.3.3.2  Assumption of a Single Foot Stiffness 

It was suggested (and tested) in section 5.4.2 that the stiffness of the prosthetic foot 

can be assumed to be the median-point stiffness. This means that if the foot strike 

position is 120mm rear of the toe and toe-off occurs at 0mm (i.e. at the toe), the 

stiffness that can be assumed to represent the range of variation is that which occurs 

at 60mm rear of the toe. This value can be defined from the information in section 

7.3.3.2 and is displayed in table 9.5. 

These values of median ground contact position were transposed into values of foot 

stiffness using the equation generated in figures 8.7 & 8.8 and these figures then 

substituted into the equation for Simple Harmonic Motion (as in figure 5.2). This is 

demonstrated in the following example for 13kmh-1:  
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42173 

97.5 
= 3.31 Hz 

Therefore: 

The reciprocal of this represents the full wave frequency response time = 0.302 seconds 

Therefore half of this value represents the halfwave response time = 0.151 seconds 

Figure 9.10: Traces of response time (median calculated and amputee measured) for the HWT 

for a 97.5kg amputee running on an Ossur Cat.7Lo prosthetic foot for a range of speeds. This 

uses median GCP data to generate a single value for foot stiffness. 
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This stiffness value of 42173 N/m can then be transposed into the equation for Simple 

Harmonic Motion (shown in figure 5.2) along with the mass of the amputee (97.5kg) to 

provide the theoretical halfwave response time, as follows: 

This process was repeated for all running velocities for the same amputee athlete mass 

of 97.5kg and the same prosthetic foot. The resulting frequency response times are 

shown in figure 9.10, plotted as time against running speed and compared with the 

measured values from table 9.4.  
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Figure 9.11: Traces of response time (average calculated and amputee measured) for the HWT 

for a 97.5kg amputee running on an Ossur Cat.7Lo prosthetic foot for a range of speeds. This 

uses mean GCP data to generate a single value for foot stiffness. 
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The figures show a maximum disparity of 24ms (at 8kmh-1); a variation of 13%. This is a 

more significant variation than would be expected from the equation of Simple 

Harmonic Motion and suggests that this method of assuming foot stiffness is not 

addressing all of the issues. Indeed this is a simple mechanical principle that is being 

applied to a very complex (perhaps infinitely complex) system. Some level of error is to 

be expected but 24ms could be considered excessive.  

Although this method of assuming the median foot stiffness is representative takes 

into account the shift rearward of the ground contact point, it does not take into 

account the profile of progression forward. No allowance is given for the amount of 

time the foot spends at the rear of the contact area (the stiffer area) versus the time 

spent at the softer areas.  

As such the next logical step is to use the mean ground contact point of the data 

presented in figure 9.5. The average value will present a foot stiffness that takes into 

consideration both the magnitude of foot stiffness and the time spent at that stiffness 

value. Similar data to that displayed in figure 9.5 was gathered for all running speeds, 

the mean value of ground contact point was defined and an identical procedure to that 

conducted above was completed. The results are plotted in figure 9.11. 
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Figure 9.12: Trace demonstrating the progression of ground contact point at 

8kmh-1 with the assumed GCP locations marked. 
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Using the mean values of foot stiffness across the range of running speed proved to be 

less accurate than the results using the median stiffness values. In this instance the 

variation was 41ms or 23%.  

To better illustrate the values of stiffness used for this testing figure 9.12 shows 

identical data to figure 7.14 but with the assumed values of stiffness (for the median 

values and average values) superimposed on to each of the three curves.  

These curves represent the progression of the ground contact point for 8, 13 and 

18kmh-1 running. To put the error into perspective figure 9.13 is identical with the 

exception of the superimposed contact points. On this occasion the equation was 

rearranged such that the output was the foot stiffness required in order to achieve 

exactly the foot response recorded during amputee running. This foot stiffness was 

converted back into a value for the ground contact point (rear of the toe) and marked 

on the traces. 
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Figure 9.13: Trace demonstrating the progression of ground contact point at 

8kmh-1 with the ideal GCP locations marked. 
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It can be seen that the ideal locations of ground contact position are varied suggesting 

there are other factors that have yet to be appreciated. Whilst the average value for 

GCP at 18kmh-1 is close to the ideal value (77.5mm versus 73mm), the values for 13 

and 8kmh-1 are progressively extreme. The GCP that provides the ideal value of foot 

stiffness required for Simple Harmonic Motion to mimic the action of a prosthetic foot 

at 8kmh-1 appears to occur at 7mm from the toe; a value at the extremity of the range 

of stiffness that the foot can provide. This appears to not take into account the portion 

of the stride that exists at the rear of the foot (the stiffer region).   



 230 
CHAPTER 9  

MATHEMATICAL MODELLING OF A FOOT 

9.4  Chapter Conclusions 

This work could support one of two possible conclusions.  

1. The foot and amputee as a system does not act in accordance with simple 

harmonic motion. Chapter 6 concluded that the foot could act in accordance 

with SHM if the nominal value of foot deflection is used to establish the timing. 

However despite this there appears to be no correlation between measured 

values and those recorded during amputee running. The trends are in the 

correct directions but when absolute figures are demanded, this approach falls 

some way short of providing useful data. To assume that SHM is capable of 

replicating the running action of an amputee is to ignore a large number of very 

significant factors and it could be these assumptions that are the root causes of 

the data disparity. For example it is assumed that: 

- the amputee and foot operate in a purely vertical motion both in terms of 

amputee motion and in-plane foot bending.  

- there is no influence from the speed of running with the exception of the 

shift in ground contact position (no braking forces on the foot, frictional 

losses, etc) 

- the body of the amputee is perfectly rigid. 

- the amputee is unable to generate power. 

- the ground contact points defined throughout the amputee testing are 

precise points. In reality the load of the ground is spread across an area of 

the foot by the soft running sole 

- the overall foot deflection is the same regardless of speed 

 

2. Using the mean or median positions for assuming a single stiffness are not 

adequate for modelling the response of the foot and a third condition exists 

that is being overlooked. All of the assumptions mentioned above are still 

present but their effect is insignificant to the generation of a predicted foot 

response time.  
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Figure 9.14: Suggested addition to the spring-mass system of an amputee using 

a running foot, where f= frequency of oscillation, k= spring stiffness and m= mass  

k1 (leg stiffness) 

k2 (foot stiffness) 

As discussed by Geyer et al. (2004, p.315) ‘The planar spring-mass model is frequently 

used to describe bouncing gaits………in human locomotion’ and Grabowski et al. (2009, 

p.201) suggest that ‘Running-specific prostheses (RSP) emulate the spring-like 

behaviour of biological limbs during human running’. Research has been carried out 

that defines leg stiffness, comparing it with a value of spring stiffness used in the 

equation for Simple Harmonic Motion. A simple explanation for the disparity in figures 

achieved in this investigation (in support of these suggestions) would be that the foot 

does act according to SHM, but it is not purely the spring rate of the foot that is in 

question; moreover the spring rate of the entire system.  

This system includes the amputee’s affected residual leg providing an effective spring 

rate, and it could be this that is influencing the results. The excessively low value of 

foot stiffness shown in figure 9.13, to achieve a theoretical response time in line with 

8kmh-1 running, could be explained if a second spring were arranged in series with the 

prosthetic foot. An illustration of this concept is shown in figure 9.14. 
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If this is the case then any modelling that takes place should concern the entire 

amputee as a system. The results shown in this section suggest that if the foot is 

viewed in isolation, any simulated response times will be variable not only across a 

range of running speeds, but also the range of feet and the infinite range of running 

styles employed by amputee athletes.  

Addressing the research question set out in section 2.1.3: Can the action of a 

prosthetic running foot be modelled mathematically? the results are inconclusive. 

Whilst the action of the prosthetic running foot alone can be modelled (assuming the 

ground contact points and representative values of stiffness are understood), when 

the amputee is introduced and the prosthetic system is examined the equation 

becomes more complex. By including the amputee, an infinite number of variables are 

introduced which will vary from one individual to another.  

Suggested further work in this area would be to use the data shown in figure 9.11 to 

understand the stiffness of the affected limb of the amputee athlete when placed in 

series with the prosthetic. The relationship between the two curves appears to be 

linear and as such a progressive spring rate for the residual limb could be defined thus 

allowing mathematical modelling. However this work could not occur without 

significantly more amputee testing to validate the concept and define the relevant 

factors to allow the various datasets to align. Therefore this exercise was deemed 

outside of the remit of this research project. 
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Chapter 10 Discussion & Conclusions   

10.1  Discussion 

In Chapter 2 (in response to the literature review) a single research question was 

defined with four sub-questions and it is around these questions that the research has 

been focused. This chapter addresses each of the research sub-questions in turn with 

reference to the chapters contained within this thesis and follows by examining the 

main research question. 

10.1.1 Sub-question 1: What are the mechanical characteristics of a 

prosthetic running foot?  

In hindsight this research question can be split into two separate components. The 

majority of the work carried out in the field of dynamic characterisation to date has 

concerned the prosthetic foot as a standalone component, ignoring the ‘system’ 

(including the amputee during running). 

Chapter 3 was concerned with the static characterisation of the Ossur Flex Run foot as 

a component and was initially aimed at understanding why previous work (as detailed 

in the literature review) had resulted in significantly different figures. (Bruggeman et 

al. (2008), Nolan (2008), Geil (2001), Noroozi et al. (2012a,b, 2014) and Lehmann et al. 

(1993a,b)) have conducted work into the efficiency of dynamic response of similar 

running feet and have published figures ranging from 63% to 100%. Through repetition 

of the work detailed in the literature but modifying the boundary conditions it was 

shown that grossly different figures of energy efficiency could be generated by 

manipulating the ground contact friction coefficient. Using this learning, a new concept 

of mounting fixture was designed such that the foot was not over-constrained. Using 

this fixture the foot demonstrated an energy efficiency >99%, a linear spring rate and 

in Chapter 4 the stiffness of the foot along the length of the keel was ascertained. 

It was found that the stiffness of a prosthetic running foot is dependent on the location 

at which it touches the ground. Therefore in a laboratory environment the foot will 
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exhibit stiffness proportional to the rig fixture that is being used to test it. However the 

amputee test work carried out in Chapter 4 suggests that the ground contact point 

changes throughout the course of a single stride, meaning in turn that the stiffness of 

the foot varies correspondingly. Further to this it was demonstrated in Chapter 7 that 

the ground contact point for a single amputee is also dependent on running velocity. 

The contact point at the moment of foot strike moves posterior as speed increases 

(section 7.3.3.2). Chapter 9 goes further and models the ground contact point of the 

foot with the ground for a range of different leg length and stance length conditions, 

demonstrating that for a given stance length the initial ground contact point at the 

moment of foot strike moves rearwards as leg length is decreased. It was also shown 

that if the prosthetist biases the foot in a posterior or anterior direction this has the 

ability to modify the ground contact point and therefore effective stiffness of the foot. 

Finally the stiffness characteristics of the foot depend on what manufactured category 

that foot belongs to. Chapter 8 demonstrates the variation in foot stiffness across the 

range of Flex Run feet available from Ossur. Each exhibits a linear spring rate with 

>99% energy return if tested in the manner described in sections 3.3 & 3.4, and each 

shares the characteristic of stiffness changing along the length of the keel.  

This research has demonstrated that whilst a prosthetic running foot is a passive 

device with fixed properties, the exhibited mechanical characteristics are a function of: 

In a laboratory during rig testing: 

- Foot category 

- Mounting condition 

- Boundary conditions (frictional losses) 

When being used by an amputee: 

- Foot category 

- Running speed 

- Leg length 

- Initial setup by the prosthetist 
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As long as these mechanical characteristics are appreciated and it is understood how 

they interact with the amputee during running, this knowledge can advise the design 

of future feet. The properties of the feet available are primarily a function of their 

geometry. The profile of stiffness progression throughout the stance phase of the 

stride is a result of the shape of the toe and how this interacts with tibial progression 

(the knee progressing over the foot).  

10.1.2 Sub-question 2: Is the claim that a foot mimics Simple 

Harmonic Motion legitimate? 

The theory of Simple Harmonic Motion replicating running (both able-bodied and 

amputee) is a recurring theme in the literature from the previous three decades, but 

no definitive answers are forthcoming when reviewing what has been published. 

In Chapter 5 a rig was designed and manufactured with the aim of replicating the 

action of an amputee in the laboratory, replacing the amputee with a series of cast 

iron masses. This allowed individual variables (stiffness, mass, foot deflection) to be 

altered and the response of the prosthetic foot to be observed. It was shown that a 

prosthetic foot aligned with the expected trends of Simple Harmonic Motion assuming 

a single ground contact point was used (resulting in a single foot stiffness) and if the 

foot deflection was expressed about the nominal point. This means the value of 

deflection occurring in a static loading condition equivalent to the amputee resting all 

of their mass on the prosthetic device in static equilibrium. It is in this condition that 

the response time of the foot was not modified by the amplitude of deflection of the 

tests (as required by the equation for Simple Harmonic Motion).  

However as discovered in Chapter 4 and compounded in Chapters 7 & 9 the stiffness of 

a prosthetic foot cannot be expected to be defined by a single figure. The stiffness of 

the foot has been shown to change throughout the course of a single stride and as 

such the equation for Simple Harmonic Motion can no longer apply. Despite the rig 

work aligning with the equation, when a prosthetic system is being considered it was 

shown in Chapter 9 that additional variables are introduced. It was concluded that 

even though the stiffness of the foot was understood at all points throughout the 
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stride, the total stiffness of the leg of the amputee was quite different and resulted in 

foot response times that did not correlate with the assumption of Simple Harmonic 

Motion.  

10.1.3 Sub-question 3: Can the action of a prosthetic running foot be 

modelled mathematically? 

The objective of Chapter 9 was to assemble the factors that were shown to affect the 

characteristics of the prosthetic foot, understand their relationship with each other 

and model each of them such that a useful output could be defined. It was suggested 

that the most productive output from a model of running is that of stance length. It is a 

tangible measure that an amputee or prosthetist can observe and as demonstrated in 

Chapter 7 has the ability to define the maximum speed the amputee can run assuming 

the dynamic response of the foot is known.  

There were two issues identified in this section that prevented the action of a foot 

from being modelled. These were: 

1. In the assembled flowchart shown in figure 9.1, stance length was a product 

of the response time of the foot. However it was shown in section 9.3 that 

an accurate response time of the foot cannot be generated without first 

defining the stance length (the ground contact point and therefore foot 

stiffness and response time depending on both the stance length and leg 

length of the amputee). It was suggested that some manner of circular 

calculation be set up such that each of the factors (stance length and 

response time) be defined in an iterative manner but this concept was not 

investigated further. 

2. Understanding the stiffness of the foot and predicting the response time 

using the equation for Simple Harmonic Motion is not sufficient to predict 

the response time of the foot when attached to the amputee. It is 

suggested that the leg stiffness and positive work done throughout the 

duration of the stance phase of the stride affects the response time.  
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10.1.4 Sub-question 4: Can the prescription of feet be changed such 

that the user experience of active amputees is improved? 

The response time of the prosthetic foot has been shown (in Chapter 7) to limit the 

speed at which an amputee can run. It was shown in Chapter 9 that the response time 

of the foot is based on the stiffness category of the prosthesis as well as other factors 

such as stance length, amplitude of deflection and leg length all of which affect the 

ground contact position of the metatarsal region of the foot, and this in turn affects 

the stiffness of the device. As such it is proposed that the following factors be taken 

into account when prescribing a running foot: 

- Amputee mass 

- Leg length 

- Desired running speed 

- Stance length  

 

Figure 9.1 describes the relationship these factors have on one another and ultimately 

on the response of the foot. Chapter 9 was able to provide mathematical models to 

describe the effects of leg length and stance length on foot response time, but fell 

some way short of predicting the ground contact time when used during running. It 

was suggested that a factor be included in the calculation to include the latent effect 

of the amputee on the overall spring rate and further work can be conducted in order 

to validate this concept (further testing with amputee athletes using alternative 

stiffness categories of feet). This tool should take into account the factors listed above 

and result in a value of stance length for that specific amputee at that specific running 

speed using the category of foot selected. A visualisation of the proposed tool is shown 

in figure 10.1. 

Boxes shown in green are completed by the prosthetist and include a bias factor that 

describes the anterior or posterior movement away from the neutral alignment of the 

foot required by that amputee.  
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Figure 10.1: Suggested flowchart tool to aid the prescription of prosthetic running 

feet. The prosthetist would be responsible for completing the boxes shown in green. 

The output (stance length) is displayed in the blue box. 

 

If this manner of tool were developed it would be capable of assigning the relevant 

foot category to an amputee based on their specific requirements and fitness regime.   
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10.1.5 Primary Research Question: Is the current method of 

prescribing prosthetic ESR running feet (based on mass alone) 

correct and could it be more appropriately advised by taking 

into account any additional factors? 

During testing in Chapter 7 it was demonstrated that the maximum achievable running 

speed of the amputee was approximately 18kmh-1. As his running speed increased, so 

too did his stance length (given the fixed response characteristics of the foot being 

used) until his maximum available stance length was reached. At this point the only 

way to affect a faster running speed was to decrease the response time of the foot by 

replacing it with a stiffer category.  

The amputee was using the correct foot as assigned by a qualified prosthetist in 

accordance with the manufacturer’s literature and current prescription practice. If the 

intended exercise regime of the amputee had involved running at a velocity in excess 

of 18kmh-1 this foot would have limited his abilities. Therefore undoubtedly there are 

instances whereby the incorrect foot stiffness is prescribed to an amputee. Currently 

the desired running speed of the amputee is not taken into account when prescribing a 

foot, the selection process instead being based solely on the mass of the amputee.  

Section 10.1.4 details the additional factors that this research has highlighted should 

be taken into account when prescribing a prosthetic running foot (Leg length, desired 

running speed, stance length) and as such the primary research question (and thus 

objective of this piece of research) has been answered. 
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10.1.6  Contribution to Knowledge 

This research has contributed to knowledge in a number of areas and this section is 

dedicated to stating this novel work. 

Influence of mounting conditions on laboratory foot testing 

Chapter 3 details the static characterisation of ESR feet and highlights the effect of 

changing the boundary conditions as a result of different mounting configurations. This 

work explains the disparity in results observed in the published literature and details a 

novel mounting configuration that ensures accurate and repeatable test results. 

Application of SHM to amputee running 

As described in the literature review authors have suggested a link between Simple 

Harmonic Motion and amputee running. Chapter 6 investigates this claim and 

demonstrates that SHM can only be used to describe the response of a prosthetic foot 

if the nominal deflection value is used and assuming a single ground contact point.  

Factors describing the dynamic response of ESR feet 

It has been hypothesised that the stiffness and mass of an amputee affects the 

dynamic response of an ESR prosthetic device. This research has shown that further to 

these, additional factors that affect response include leg length (chapter 9), stance 

length (chapter 9), posterior/anterior setup bias (chapter 9), deflection magnitude 

(chapter 6) and running speed (chapter 7). 

The ESR prosthetic limits running speed 

Chapter 7 details the effect of speed variation on foot response. It was found that as 

running velocity increases the fixed response characteristics of the ESR foot force a 

lengthened stance until the amputee loses the capability to extend further. Therefore 

the prosthetic device limits maximum running speed. As an extension to this it can be 

seen that the foot stiffness category serves to ‘tune’ the stance length of the amputee 

and this could be a method employed by prosthetists to improve the comfort of 

amputee athletes. 
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True foot stiffness profiling 

Reference to the stiffness categorisation of ESR feet can be found in the literature but 

a translation of the various categories into tangible stiffness measures does not appear 

to exist in the public domain. Further to this the characterisation of stiffness versus 

ground contact point of the foot during running was not found in the available 

literature and this is defined in chapter 3. In addition the progression of the ground 

contact point during amputee running is a novel measure that was defined in chapter 4 

and this data can be converted into a true foot stiffness profile of the foot as defined in 

section 9.3.2.1. 

True deflection & forcing data 

As an extension to the ground contact progression data captured in chapter 4, true 

values of foot deflection and ground force were defined in chapter 9. These figures are 

defined by the deflection and forcing level at the exact point of foot contact with the 

ground and can be seen in section 9.3.2.1. This information cannot be found in the 

available literature and describes the true spring co-efficient of the prosthetic foot 

when used by an amputee. This is a measure that to date has not been replicated in a 

laboratory. 
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10.2  Conclusion 

The current design of Flex Run foot from Ossur means that as the stance phase of the 

stride progresses, the foot softens. Therefore during running the amputee lands on the 

stiffest portion of the foot at the moment of foot strike. It could be suggested that  the 

opposite would be advantageous to the amputee; landing on the soft portion of the 

foot and allowing a smooth deceleration of their mass with the foot stiffening towards 

the moment of toe-off, providing a more firm platform against which to apply force.  

Contrary to this previous statement however, the geometry of the foot means that as 

running velocity increases the amputee employs a stiffer portion of the foot. This has 

the effect of increasing the overall effective stiffness of the foot, inevitably resulting in 

a quicker response time. It was shown in Chapter 7 that a slow response time of the 

foot can limit the upper speed attainable by the amputee and this slight stiffening of 

the prosthetic naturally assists in obtaining a faster running speed. 

It was also found in Chapter 7 that an amputee can run at any speed with a prosthetic 

leg up until either they reach their physiological limit (strength, fitness, etc), or their 

stance cannot extend any further at which point the foot response time can be 

considered too slow for any further acceleration. Therefore it is suggested that the 

stiffness of the prosthetic foot serves to tune the stance length of the amputee for 

their chosen running speed. If the amputee has reached their desired running speed 

but their stance length appears abnormally short, the stiffness category of the foot 

could be reduced thus increasing the ground contact time and lengthening the stance.  

This research has highlighted that the prescription of a passive prosthetic running foot 

is a very specific task. The dynamic response of the foot will dictate the stance length 

of the amputee at any given running speed and ultimately limit the speed that runner 

can achieve. Another approach to improving the prescription process could lie in the 

fundamental design of the prosthetic device. McGowan et al. (2012) conclude their 

studies of prosthetic running feet by stating: 

‘The inability to modulate RSP stiffness also likely impairs the ability to accelerate and 

reach maximum speed. Thus, an RSP that allows for stiffness adjustments within stance 
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or from step to step might allow users to attain even better sprinting performance.’ 

(McGowan et al. 2012, p.1982) 

If a prosthetic device were designed that allowed the user to modify its stiffness based 

on the activity being undertaken, the specific nature of the prescription could be 

generalised allowing more freedom with a single foot than is currently possible.  

It is the finding of this research that the current prescription method of ESR feet is 

inadequate and more factors should be taken into account if the user experience of an 

amputee athlete is to be improved. The available prosthetic devices that were tested 

proved to be highly efficient and very effective, but there are inevitably instances 

where the prosthetic foot prescribed is limiting the activity of the user, forcing a stance 

length or running speed that is undesirable. Factors such as desired activity, running 

speed and leg length should become an intrinsic part of the prescription process and 

further work should be conducted in this area.  

It should also be noted that if the prescription method were to change and advise a 

softer foot than is currently the case (as a result of the existing prescription process) 

the structural integrity should be understood.  
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10.3  Further work 

This research has highlighted a number of areas of further study that have the 

potential of improving our understanding of the dynamic action of prosthetic running 

feet. These are detailed in the following sections. 

10.3.1  Improve Understanding of the Amputee ‘System’ 

It was shown in Chapter 9 that the prosthetic foot cannot be considered solely 

responsible for the effective spring stiffness of the leg of the amputee. Further to this 

McGowan et al. (2012) comment: 

‘It is likely that the fixed stiffness of the prosthesis coupled with differences in 

limb posture required to run with the prosthesis limits the ability to modulate 

whole leg stiffness.’ (McGowan et al. 2012, p.1982) 

The effective stiffness of the affected leg appears to be variable from one individual to 

the next and depend on multiple factors including foot stiffness, running style, leg 

length and limb posture.  

If the dynamic response of the amputee (not just the foot) is to be predicted more 

work should be conducted to understand the relationship between these factors. This 

could be done by isolating variables and controlling them in a known state. For 

instance it was shown in Chapter 7 that the effective stiffness of a foot not only 

changes throughout the course of the stride but also for different speeds of running. In 

order to control the stiffness of the foot at a single value a fixture could be fabricated 

that allows the amputee to land purely on a single ground contact point along the 

metatarsal region of the foot. The change in running response could then be examined 

and the effect of the ground contact point changing can be understood. 

It is also suggested that this manner of investigation should also include modifying 

terrain (running up or down hill) and ground contact conditions (for instance cross-

country running with a soft sole versus track running with spikes). This should also take 

into account the effect of biasing the foot in an anterior or posterior direction to 

include muliti-directional loading and its influence on running dynamics. 
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10.3.2  Investigate the Suitability of Including a Modification Factor 

In section 9.4 it is concluded that the predicted response of the prosthetic foot does 

not align with that measured during amputee running and it is suggested that a 

modification factor be employed to account for the disparity. This factor would be 

derived from the measured results (as opposed to being derived from first principles as 

the response model has been) and as such appears to be a reaction to the inaccuracy 

of the original concept. It represents the intrinsic stiffness of the residual limb of the 

amputee. However if further work could be conducted to confirm the principle of such 

a factor, the result would be an accurate mathematical model of the action of an 

amputee. This model could then be used as a tool to advise prescription (as discussed 

in section 10.1.5).  

It is anticipated that this work would involve the replication of that carried out in 

Chapters 7 & 9 with a variety of amputee athletes. Their running response 

characteristics could be recorded and this data used to establish a correlation factor 

across a range of individuals using a range of stiffness categories of feet.  

10.3.3 Increase Sample Sizes of Feet Tested for Category 

Characterisation 

Chapter 8 is concerned with the characterisation of the mechanical properties 

(essentially stiffness variation) of the range of Flex Run feet available from the 

manufacturer, Ossur. It was shown in this chapter that the feet make up a spectrum of 

stiffness values, but do not occupy an equal distribution within the range. This suggests 

either a measurement error or deviation within a manufacturing tolerance within the 

categories. 

If a mathematical model could be effectively implemented to improve the prescription 

of these prosthetic devices it would need to rely on accurate values of foot stiffness. 

Therefore it is suggested that further characterisation testing (in the manner described 

in Chapter 8) is conducted to increase the sample size of tested devices and better 

define the mechanical properties of the range of feet available. 
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10.3.4  Designing the Next Generation of Prosthetic Running Foot 

Information gathered during the course of this research project has shown that the 

feet currently available can limit the activities of the athletes using them despite a 

correct prescription (according to the manufacturer’s guidelines). One approach to 

remedy this issue is to improve upon the prescription process and this has been a 

recurring theme throughout this thesis. This could mean that multiple running feet are 

prescribed, each to address a particular desired running speed and activity. 

An alternative approach would be to modify the design of the running foot such that a 

specific prescription is not required. For example if a foot were designed that had the 

capacity to have its spring rate modified, this could then be adjusted by the amputee 

to suit the specific activity being undertaken. An extension to this would be to design a 

mechanism with the ability to dynamically adjust the foot stiffness such that the 

response of the foot could be tailored from one stride to the next, or even throughout 

a single stride. Such a development could mean activities with a range of running 

requirements (for example field sports like rugby or football) could be catered for in a 

more controlled and efficient manner.  

Another issue facing amputee runners is that of dorsiflexion. The individual is not able 

to induce flexion in their ankle to raise the height of the toe during the swing phase of 

the stride and as such must raise their knee height to clear the ground with the toe of 

the foot. This is particularly evident during the acceleration phase of sprinting. In order 

to address this issue the concept of pre-loading the foot should be investigated. This 

means that the foot is held in a slight state of deflection by mechanical means thus 

allowing a greater ground clearance. At the moment of foot strike the spring rate of 

the foot will be identical to an unrestrained model but the preload will mean the 

deflection (as experienced by the amputee) will begin from a load greater than zero (as 

is currently the case). Theoretically the response time of the foot will be identical 

because the spring rate (and ground contact progression) will remain the same as the 

unrestrained version. However it is possible that this method will introduce additional 

loading into the physiology of the amputee via higher landing forces onto a preloaded 

foot. 
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Figure A1.1: Rotary displacement transducer with standard link arm. 

This arm was modified in order to suit a prosthetic foot. 

 

APPENDIX 1: FOOT INSTRUMENTATION 

A1.1   Displacement Sensor  

The primary mode of operation of an ESR prosthetic running foot is bending in the 

sagittal plane. Therefore accurate logging of this mode is fundamental to 

understanding the dynamics of the system. A majority of the required variables can be 

measured in this mode if logged at an adequate resolution (both in terms of numerical 

accuracy and logging frequency).  For this reason an automotive suspension position 

sensor (height sensor) was used (figure A1.1). This is a resistive hall-effect device with 

a rotary input that emits a variable voltage output depending on arm position and 

supply voltage. Originally the purpose of such a sensor is for detecting suspension 

displacement and quality of road surface for the control of variable damping on the 

suspension systems of luxury automobiles. It has a specified manufacturing tolerance 

(across devices) of 2%. 

The displacement sensor was attached to the proximal end of the prosthetic foot via a 

fabricated aluminium bracket. The bracket lightly clamped the carbon fibre section of 

the foot leaving it adjustable, easily detachable and non-invasive; as such it can be 

moved from one prosthetic foot to another without compromising the feet. The 

standard link arm of the sensor is specified for fitment to the original vehicle 

suspension system and as such was modified. It was lengthened in order to attach to 
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the distal end of the prosthetic foot via an adjustable threaded turnbuckle-style system 

allowing accurate tuning of the length (and therefore electrical output reading from 

the sensor) for different feet and set up conditions. As such the displacement sensor 

was able to measure any change in distance between the proximal and distal ends of 

the prosthetic device (and therefore a measure of strain energy). A picture of the 

setup of the equipment can be seen in figure 4.1. 
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SENSOR 1 

SENSOR 2 

SENSOR 3 

SENSOR 4 

Figure A1.2: Piezo-resistive sensor array on metatarsal region of prosthetic foot. 

A1.2   Ground-Force Sensors 

In order to build up a more accurate image of the dynamics of a prosthetic running 

device it was necessary to understand the ground contact point throughout a single 

stride. If the displacement of the foot is known then the force going through the foot 

can be easily derived as long as it is known where that force is being applied (i.e. what 

the ground contact point is).  

The sensors chosen for this task were piezo-resistive devices of a printed construction 

from Tekscan Inc. These units are flexible and <0.2mm thick, and therefore can be 

inserted between the carbon fibre foot and the foam of the trainer sole used, thus 

protecting the sensors from direct contact with the ground. The sensing area of this 

sensor is 10mm diameter and cannot differentiate between forces applied at various 

points within this sensing area. Therefore a linear array of these sensors was used 

(four in total) along the metatarsal region of the prosthetic foot (figure A1.2) and their 
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Figure A1.3: In-house signal conditioner for piezo-resistive sensors providing a 0-5v output. 

results interpolated. A variety of these sensors are available from the manufacturer. 

The exact variant chosen for this investigation were the 100lb 9" models. It is 

anticipated that assuming the ground contact point does indeed progress along the 

base of the foot, the peak force of each sensor in turn will dictate the contact point at 

that specific moment. These points can then be plotted on a graph and interpolated 

meaning the contact point at any given time can be ascertained. 

 

A1.3   Resistive Force Signal Conditioner 

This piece of apparatus was designed and built in-house for the specific application of 

converting the changing resistive function of the ground-force sensors to an analogue 

voltage signal that could then be logged. The circuit was designed and modelled using 

Proteus Isis and Ares software (Labcentre Electronics Ltd.) and fabricated using a CNC 

circuit cutter and a double-sided board blank. This circuit along with a battery was built 

into an aluminium case (figure A1.3) with plugged connections via two RS232 ports for 

the sensor inputs and the outputs to the logger. The device has four individual 

channels to allow the array of four separate sensors to be used simultaneously, is 
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Figure A1.4: MSR165 Data logger (MSR Electronics GmbH) 

powered from a single 9V alkaline battery and each output ranges from 0-5V 

depending on the load applied to each ground-force sensor.  

The total size of this device was 140mm x 80mm x 30mm, weighing approximately 220 

grams and throughout the course of the investigation it was stored in the pocket of the 

amputee athlete. 

 

A1.4   Analogue Data Logger 

In order to capture the data being generated by the respective sensing devices, a four 

channel analogue 0-5v data logger was used. The actual device chosen was a 

standalone 'MSR165' model from MSR Electronics GmbH (Modular Signal Recorders) of 

Switzerland (figure A1.4). It is capable of logging 4 analogue channels simultaneously 

at a selected frequency up to 1024Hz but is small and lightweight enough to be placed 

on the foot itself and not be noticed by the amputee (39mm x 23mm x 52mm, 70g). 

The logger was configured to start and stop data acquisition with the push of a button 

on the outer surface of the device. As an additional function the logger also contained 

a tri-axial accelerometer capable of recording +/-15g to an accuracy of +/-0.15g at a 

frequency of 1600Hz. The logger contains its own battery and can log for many hours 

at maximum frequency without running out of capacity. Once the data acquisition is 
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complete the logger can be attached to a PC via USB interface and data viewed in .csv 

format in Microsoft Excel.  

 

A1.5   Battery Pack 

The data logger required an analogue input of 0-5v for each of the four channels. The 

Resistive Force Signal Conditioner unit (4.2.5) contained a 9v battery for the supply 

from the Ground Force Sensors (4.2.4) but as the displacement sensor (4.2.3) was not 

internally powered, an additional battery pack was required. The output of this 

displacement sensor was purely a function of angular condition of the input arm and 

the voltage supplied to it so to ensure a practical resolution a supply voltage of close to 

5v was required. A common 3-cell AA alkaline battery case was chosen to provide an 

output voltage of up to 4.5v from the displacement sensor (subject to input arm 

angle). To ensure repeatability the state of charge of this pack was checked at the start 

of each test by measuring the output voltage. 
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Figure A1.5: Circuit diagram of the rotary displacement sensor attached to 

the data logger and battery pack. Only a single channel is used. 

A1.6  Equipment Setup  

The equipment was set up in a manner that could easily be repeated should further 

testing be required. A foot with all of the instrumentation can be seen in figure 4.1. It 

must be noted that the foot used in this series of measurements had been set up by a 

qualified and recognised prosthetist (as per ethics approval) specifically for the 

amputee volunteer and the adapter between the foot and shank adapter was not 

modified. All of the equipment was able to be fitted in a non-invasive manner so as not 

to affect or significantly influence the use of the foot.  

 

A1.6.1 Displacement Sensor 

The setup started with the proximal end of the foot (the portion that attaches to the 

shank adapter) being aligned parallel to the ground surface. The displacement sensor 

was then arranged such that the pivot of the rotary arm was directly below the 

centreline of the shank adapter. Once this was done, the link arm (one end of which 

attaches to the distal end of the rotary arm) was attached with an adhesive pad to the 

toe portion of the foot such that it bridged the space between the toe and the 
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Figure A1.6: Layout of the piezo-resistive sensors on 

acetate 

displacement sensor. This link arm featured a turnbuckle-style thumbscrew allowing 

the length to be tuned for different foot geometries. The screw could therefore be 

used to align the radial arm of the displacement sensor with 0° on the angle indicator 

(an integral part of the displacement sensor bracket) and the output of the 

displacement sensor checked with a DVM (Digital Volt Meter) to confirm the sensor 

was at the extreme end of its sensing range.  The logger could then be wired as shown 

in figure A1.5 to allow data acquisition from the displacement sensor.  

 

A1.6.2 Ground Force Sensors 

Due to their fragile nature and to make their transference from one foot to another 

practical, the sensors were mounted on a sheet of acetate using tape to secure (figure 

A1.6). They were positioned into a near-linear array with equal spacing along what was 

anticipated to be the dynamic contact patch of the foot with the ground during 

running. The front edge of this acetate sheet could then be aligned with the distal edge 

of the toe region of the foot for repeatability.  
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Figure A1.7: Circuit diagram of piezo-resistive force sensors connected to the signal 

conditioner and data logger. All four logger inputs are used. 

Once the ground force sensors were attached to the base of the prosthetic foot they 

could be wired to the signal conditioner and in turn to the datalogger. This was done 

as described in figure A1.7. As such, the system could record the output of all four 

sensors simultaneously at a frequency of up to 1024Hz.  
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Figure A2.1: Exploded diagram of the structural mainframe of the frequency response rig.  

APPENDIX 2: RIG FABRICATION 

A2.1  Framework 

The framework is of welded steel construction fabricated from 40mm x 40mm box 

section and 80mm x 40mm box section, triangulated to give an excessively stiff 

structure. All material has a wall thickness of 3mm.  

 

The style of construction means that the rig can be dismantled. Each A-frame structure 

is bolted in place with the crossbar via two sandwiching plates of 6mm steel on each 

side. The distal end of the foot is held in a structure that locates in the centre of an 'H'-

shaped fabrication.  

In order to ensure stability, the rig was assembled and clamped onto a cast iron 

engineer’s surface table weighing in excess of 300kg. The reason for this modular 

construction is to allow the carriage to be exercised through its range of motion to 

ensure correct alignment of all components before the fixings are fully tightened. 
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Figure A2.2: Exploded diagram of the weights carriage and linear motion 

rails  

Figure A2.1 shows an exploded isometric view of the framework with the carriage and 

all linear motion components removed. 

 

A2.2   Carriage & Linear Motion Apparatus 

The design requirements of the carriage are to allow smooth uninhibited vertical 

motion as dictated by the dynamic response of the prosthetic foot under test. In 

addition it must have the capacity to hold captive a range of masses (in this instance a 

selection of cast iron masses commonly used in gym equipment), although the masses 

must be easily interchangeable or removed to alter the mass applied to the foot.  

Smooth vertical motion was provided by two ground supported linear rails in 

combination with four matched 'pillow blocks' containing re-circulating ball bearings. 

These devices are designed to provide low-resistance linear motion under high load 
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applications and are commonly used in CNC or materials handling equipment. The 

supported rails were attached to the steel framework along their entire length via 

screws. This mounting method ensured a high structural stiffness with the aim of 

eradicating any low frequency harmonic modes that could have influenced the 

dynamic results of the testing. 

The carriage is of an aluminium plate construction, machined such that each 

component mechanically locates with its neighbour. The structure is then fastened 

together with M8 screws. The cast iron masses feature a slot and two rails were 

provided onto which to mount the masses.  

The prosthetic foot under test is mounted in the centre of the lower plate of the 

construction via an automotive ball joint. Information on this mounting interface can 

be found in section 3.3. Figure A2.2 shows an exploded isometric view of the carriage 

construction with detail view of the linear rail and pillow block arrangement. 

 

A2.3   Securing the Mass 

Attaching the masses in a secure manner is essential so as not to influence the results 

of the dynamic response of the foot. The mass must act as a single unit and most 

importantly in a repeatable manner. Additionally all of the force must act through the 

centreline of the carriage (demonstrated in figure A2.3) and therefore through the 

centreline of the prosthetic foot attached for testing. If the masses were offset this 

would lead to additional forces in the linear bearings which could in turn lead to higher 

resistance in vertical motion, asymmetric loading of the foot and potentially failure of 

the linear components.  

As such, the lateral placement of the masses was designed to be flexible meaning that 

the operator can effectively balance the loads on each side of the centreline of the 

carriage. The cast iron masses feature a slot for attaching them to a variety of 

equipment and a corresponding pair or rails were included in the carriage (a lower rail 

and upper rail). The lower rail formed a rigid and important structural member of the 

carriage chassis and bolted to the base and side plates as shown in figure A2.3. The 
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Figure A2.3: Exploded view of the weights carriage showing detail on how the individual 

masses are secured  

upper rail was free to move vertically in slots machined into the side places of the 

chassis and as such could be dropped into place on top of the masses located on the 

lower rail. In doing this, the upper rail served to hold captive the masses on the lower 

rail, as well as providing additional space to locate more masses. Two decks of masses 

was an important step in reducing the overall dimensions of the test rig. A single array 

of masses would result in either a very wide or very tall machine.  

 

Once the masses and upper rail are in place, the entire assembly can be secured using 

the beam as shown in figure A2.3. This is bolted into place using four M10 screws into 

the side plates. However this was not sufficient to effectively clamp all of the masses. 

Due to their manufacturing process (casting), the dimensions of the masses are un-

uniform. As such, if an accurately machined structure were used to clamp them in 
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Figure A2.4: Detail of the cork strip employed on the lower edge of the upper rail and 

beam to secure the lower masses and prevent loose components  

place it would purely hold in place the mass with the largest vertical dimension. In 

order to combat this, cork strips of 12mm x 19mm cross section were attached to the 

lower edge of the upper rail and beam. These strips were soft enough to absorb any 

deviation in the dimensions of the masses and ensure the carriage formed a single 

homogenous mass for the purposes of testing. The action of the cork strips can be 

seen in figure A2.4. 
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Figure A3.1: Example of a simple Operational Amplifier 

circuit (source: www.circuitstoday.com) 

APPENDIX 3: RIG INSTRUMENTATION 

A3.1  Processing Hardware 

Before any calibration work could be conducted the processing circuitry had to be 

designed and fabricated. The load cells used were of a strain-gauge type with a 

Wheatstone Bridge contained in each. As such the output is in the order of millivolts 

(mv), but the desired output for logging using the already available MSR165 data 

logger was 0-5 volts, meaning that a power source and amplifier circuit was required. A 

simple operational-amplifier circuit was used for each load cell, an example of which 

can be seen in figure A3.1.  



 272 

Figure A3.2: Amplifier case with output voltages displayed on the lid for each of the three 

channels requiring amplification. 

The advantage of this style of amplifier is that the gain can be adjusted by changing 

resistor values. This means that the working range of the sensor could be manipulated 

to suit the specific application. For example the ground force load cell used was of a 

10kN capacity. However the maximum force exerted by the rig is never likely to exceed 

2.5kN. Therefore in order to improve the resolution of the readings, the 0-5v output 

from the amplifier circuit could be applied over this 2.5kN range instead of the full 

10kN range of the load cell.  

The amplifier circuitry for each channel was then built into a case with a 12v power 

supply and a rectifier circuit to change the AC supply from the 12V transformer into a 

stable 12v DC supply. This case can be seen in figure A3.2. Additional circuitry for the 

linear resistive displacement transducer (to measure the distance travelled by the 

mass) was built into the case and this is discussed further in section A3.4. All three 

channels that required amplification (ground reaction force, excitement force and 

distance travelled by mass) were included in the case and each signal was manipulated 

to give an approximate 0-5v output across its working range. Digital volt meter displays 
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Figure A3.3: 10kN ground force load cell 

(Applied Measurements Ltd)  

were built into the lid of the case meaning that each channel could be monitored 

without the need for a separate voltmeter (visible in figure A3.2). 

 

A3.2  Ground Reaction Force Load Cell 

The purpose of this sensor was to define the force applied to the ground plane by the 

contact point of the foot (i.e. toe area). This could be when the system is static or 

when the mechanism is being exercised. Therefore this load cell would be able to 

record the mass applied to the carriage before testing as well as the progression of 

force into the ground plane up to the maximum value during dynamic loading. As 

mentioned previously this was a strain-gauge style load cell with a range of 10kN, 

manufactured by Applied Measurements Ltd. and can be seen in figure A3.3. 
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Figure A3.4: Calibration curve for ground force load cell 
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The calibration of the ground force load cell was conducted using an Instron 2280 

hydraulic test machine. The load cell was placed under the cross-head and 

progressively loaded up to a maximum value of 2kN at 0.1kN intervals. The load 

measurements from the Instron load cell and the voltage output from the load cell 

under test (post amplification) were recorded and a calibration curve generated. This 

process was conducted three times and the results averaged. This data can be seen in 

figure A3.4. A line of best fit was applied to this curve and its equation derived so that 

any further voltage readings from the load cell could be converted into a value of 

force. 

The load cell chosen uses a strain gauge to measure the ground reaction force. 

Therefore in terms of deflection, the difference between zero and a maximum load of 

10kN is a fraction of 1mm. When attempting to calibrate the load cell using the Instron 

machine it was necessary to insert a strong spring between the load cell of the test 

machine and the unit under test (figure A3.5). This spring serves to improve the 

resolution of the test data dramatically by allowing the load to be progressively 

increased over a much larger deflection range. Without this spring it proved impossible 

to control the amplitude of load effectively. 
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As can be seen from the curve in figure A3.4 the voltage output from the Applied 

Measurements Ltd. load cell (post amplification) is very linear. A simple linear line of 

best-fit was used to generate an equation for this curve, which was subsequently used 

for converting values of voltage output into that of force. However as is clear from the 

graph the load cell is inaccurate at low load values. The linearity stops at load values 

below 0.2kN and therefore any readings in this area should be ignored during the data 

analysis stages of this investigation.  

 

  

Figure A3.5: Spring fixture used to amplify the displacement of the Instron crosshead for 

a given load and therefore improve data resolution 
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Figure A3.6: 1kN input force load cell (Thames Side)  

A3.3  Excitement Force Load Cell 

In order to understand the true efficiency of the system under test the input energy 

should be defined. In this circumstance input energy means that energy applied to the 

system in order to build up or maintain the amplitude of the mass carriage and 

therefore deflection of the foot. As mentioned in section 5.1 the timing of this energy 

input is critical to the effective harmonic loading and unloading of the foot and 

therefore a handle was provided for the operator of the rig to use in order to build up 

the potential energy of the system. This can be seen in figure 5.5.  

The amount of force applied to the handle was monitored and logged, again using a 

strain-gauge load cell and amplifier circuit as described previously. The load cell used 

was a beam-loading style component, model T66 (100kg variant) manufactured by 

Thames Side and can be seen in figure A3.6. This style of load cell is commonly found 

in industrial weighing applications. 

The load cell was fixed to the weights carriage of the rig. In order for the force applied 

to the input handle to be transferred into the load cell, a cantilever arrangement was 

fabricated as can be seen in figure A3.7. Two cantilever beams were attached to the 

weigh carriage chassis via bronze bushes at their midpoint. This ensured that no force 

was applied to the load cell as a result of the carriage accelerating or decelerating and 

exerting a moment on the cantilever beams. Two beams were used so that they could 

straddle the A-frame structure that formed the side of the rig. This meant that the 

input handle could be outside of the framework and therefore keeping the operator 

away from the moving components of the rig.  
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Figure A3.8: Illustration of the calibration process used for the excitement force load cell. 
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Figure A3.7: Detail of the cantilever arrangement that allowed the operator to 

apply an input force to the mass carriage whilst remaining at a safe distance. 

Any force applied to the input handle would result in the same force being applied to 

the load cell attached to the carriage. In order to eradicate any 'slop' or play in the 

system, an adjustable stop was fabricated so that no knock would occur when first 

applying a load to the input handle, but the load cell was left in a completely unloaded 

state when no force was being applied. 
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Figure A3.9: Calibration curve for input load cell 
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Calibration of this piece of instrumentation was conducted by hanging known masses 

to the input handle (as shown in figure A3.8). As conducted with the ground force load 

cell, a calibration curve was generated by incrementally increasing the load to the 

handle and recording the amplified output voltage being supplied to the data logger. In 

this instance the working range of the load cell was 100kg but it is unlikely that the 

operator would ever be able to (or need to) apply this much load to the handle. The 

intended design use of the rig requires only a small amount of effort from the operator 

in a repetitive harmonic manner to build up the energy stored in the rig, and as such 

the load cell was only calibrated up to a maximum value of 15kg. The resolution of the 

amplified output was also modified by adjusting the gain of the amplifier such that the 

0 - 5 volt range occurred approximately between 0 - 15 kg. The resulting calibration 

curve can be seen in figure A3.9.    

 

The output (post amplification) of the input handle load cell is once more quite linear 

in its characteristic. A line of best fit was applied to this curve and an equation 

generated that could be applied to any further voltage data collected from this sensor.  
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Figure A3.10: Illustration showing the length of the resistance wire and nylon insulation 
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A3.4  Linear Resistive Transducer 

This piece of instrumentation was responsible for measuring the linear travel of the 

carriage and once more a 0-5 volt output was required for logging using the MSR165 

data logger. This transducer was designed and built in-house and used the principle of 

voltage drop along a piece of resistance wire, therefore forming a slide resistor. The 

length of resistance wire was stretched vertically from the base of the rig to the top of 

the stanchion on one side with a sprung pickup located on the chassis of the carriage 

component. Therefore as the carriage moved up and down, the pickup also moved 

along the length of the resistance wire.  

The wire was tensioned using a spring mounted at the top end and ,as can be seen in 

figure A3.10, insulated from the framework of the rig using small machined nylon 

bobbins and connected electrically to the conditioning and amplifier circuits using 

electrical connector blocks. 
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Figure A3.11: Slide resistor circuit diagram 

Electrically the layout of the slide resistor circuit mimicked that of a Wheatstone Bridge 

as used in both of the load cells on the rig. However the slide resistor took place of one 

of the bridge resistors as can be seen in figure A3.11. In order to establish balance in 

the bridge it was essential that R3 exactly matched the resistance of the slide resistor. 

Therefore instead of using a proprietary resistor for this component, an identical 

length of resistance wire to that used in the slide resistor was wound around a nylon 

bobbin to take the place of R3. The output of this bridge circuit was connected to the 

input of a third Operational Amplifier circuit as also used with the load cell circuits and 

as described in section A3.1. The gain of the amplifier could then again be adjusted 

such that a 0-5 volt occurred across the length of the slide resistor in order to 

maximise resolution of the transducer.  
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Figure A3.12: Calibration curve for slide resistor 
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Calibration of the linear resistive transducer was performed once the rig was 

completely assembled. The carriage was exercised along its path of travel and at 

intervals of 50mm post-amplifier voltage readings were recorded (the voltage that 

would be seen by the data logger). As previously mentioned the gain of the amplifier 

was adjusted such that at the extremity of travel the output voltage from the amplifier 

did not exceed 5 volts. The resulting calibration curve can be seen in figure A3.12.  

 

As can be seen in figure A3.12, the voltage trace starts at circa 2volts despite the gain 

of the amplifier being optimised for the working travel of the carriage. This is because 

of the balance of resistors (R1 vs. R3 in figure A3.11) in the Wheatstone Bridge 

assembly. If the value of R1 were changed then this could be situation could be 

improved. However for the purposes of this investigation the calibration resolution 

was judged as acceptable. 
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A3.5  Displacement of Foot 

As measured previously during the amputee testing phase of this investigation the true 

displacement of the foot was recorded. This was conducted using the same 

instrumentation devices as before and details of the setup and calibration can be 

found in Chapter 4 & Appendix 1.  

 

A3.6  Data Logger 

Logging of the data collected from each of the four channels was conducted using an 

MSR165 data logger from MSR Electronics GmbH. This is the same piece of equipment 

used to collect data during the amputee data acquisition phase as described in section 

4.2.6 and is capable of recording analogue 0-5 volt information at a frequency of up to 

1024Hz over four separate channels. As a result of the logger featuring four separate 

channels, each of the desired variables as set out in section 5.3.3 could be recorded 

simultaneously.  
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APPENDIX 4: RIG EFFICIENCY 

The efficiency of the rig is important to ascertain before any conclusions are drawn 

about the dynamic nature of the prosthetic foot on test. As described in Chapter 5 the 

rig was designed to replicate the mass of an amputee using a vertically sliding carriage 

with foot mounted on its underside. Rig components are restrained with various 

devices (for example linear slide rails with re-circulating ball bearings), all of which 

inevitably subtract from the overall efficiency by means of friction.  

This section describes how the efficiency of the rig was measured using three different 

methods. These are detailed as follows: 

 

Method 1: Hysteresis curves 

Method 2: Input energy vs. stored energy 

Method 3: Carriage amplitude decay 
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A4.1  Method 1: Hysteresis Curves 

Theory 

Using a similar technique to the forced oscillation testing (section 3.4) whereby the 

efficiency of the Ossur Flex Run foot was found by comparing the compression and 

rebound phases of a force-displacement curve, the hysteresis of the foot and rig 

assembly was found.  

As described in section 5.3.3 the rig contained the relevant instrumentation to provide 

a ground reaction force and a value of both foot displacement and mass displacement 

(meaning the distance travelled by the mass once ground contact with the foot had 

occurred). Both of these figures were recorded in section 5.4.4 and shown to be nearly 

identical. Therefore a force-displacement curve can be generated for a typical 

displacement cycle and the compression and rebound phases overlaid. The area under 

each of the individual curves demonstrates the energy stored in the foot. The area 

between the curves (the disparity between the two curves) is a demonstration of 

energy difference and therefore inefficiency. The hysteresis value (displayed as a 

percentage) is defined by the following equation: 

 

Hysteresis = Energy input/energy output x 100% 
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Figure A4.1: Averaged displacement data from a series of 8 oscillation cycles 
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Method  

The foot under test (an Ossur Flex Run Cat6Hi) was mounted in the rig as described in 

section 5.3 and excited vertically using the input handle. The amplitude of 

displacement was gradually increased by rhythmically applying force to the input 

handle until the value of foot displacement measured that of a typical amputee (as 

ascertained in section 4.4). The data logger was activated and a series of 8 oscillation 

cycles were recorded. These cycles were then averaged into a single typical 

displacement cycle (shown in figure A4.1) and from this the individual compression 

and rebound phases were isolated.  

Figure A4.2 show the resulting hysteresis loop when the compression and rebound 

phases are plotted together on the same force-displacement curve. The area under the 

curve represents the energy of the system and the shading represents this area for 

each isolated phase.  

It can be seen that the force exerted to the ground plane by the foot on test during the 

rebound phase of the cycle was greater at any given point than during the 

compression cycle. Therefore the rig must exhibit an efficiency of <100%. 
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Figure A4.2: Rig hysteresis for a typical averaged displacement cycle (representing one 

single stance phase of an amputee). 
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Compression Energy = 56.4J 

Rebound Energy = 63.4J 

 

The respective areas under the curves were calculated by dividing the curve into a 

number of segments and assuming a straight line between the associated points. Then 

using the equation described above, the efficiency of the rig using this method was 

ascertained. 
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Results: 

Using this method, the efficiency of the rig can be defined as: 

 

 

 

Therefore: 
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Figure A4.3: Graph demonstrating the input force required to build-up the amplitude of oscillation of a 

prosthetic foot mounted on the test rig, compared with that required to maintain steady-state amplitude 

oscillation. 
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A4.2  Method 2: Input Energy vs. Stored Energy 

Theory 

The rig as described in section 5.3 features an input handle with which the user can 

excite the mass vertically, building up the amplitude of oscillation. This handle is 

attached to a calibrated load cell and in turn a data logger, meaning that any force 

input applied to the handle can be recorded in Newtons. The recorded input force 

trace for a typical oscillation sequence of an Ossur Flex Run foot can be seen in figure 

A4.3, shown in red along with the amplitude of foot displacement in blue. 

 

If all losses were ignored, once the foot was excited to a certain value of displacement 

no additional energy input would be required to maintain the amplitude of oscillation 

and resonant steady-state motion would continue forever. However, because the rig 

exhibits losses (by the way of noise and heat generation) in order for steady-state 

oscillation to be maintained a certain amount of force must continue to be applied to 

the system in a resonant manner. Fundamentally if less force than this baseline level is 

applied, the amplitude of oscillation will reduce. Conversely if a greater force is applied 

the amplitude will increase. This is demonstrated in figure A4.3 where it can be seen 

that the energy input required to increase the amplitude of oscillation is greater than 

that required to maintain it.  
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During steady-state oscillation the system is known to possess stored energy, either in 

spring energy when at full compression, gravitational potential energy when at full 

rebound or kinetic energy during transition between these phases. If the energy 

required to maintain steady-state oscillation (through a force being applied to the 

input handle) is compared with this system energy the efficiency of the rig can be 

calculated. 
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Method: 

Energy can be defined by the following equation: 

Energy (J) = Force (N) x distance (m) 

Using this equation, both the energy stored in the system and that applied to the 

handle can be defined as follows: 

 

Where: 

GRF = Ground Reaction Force 

Nominal displacement = Amplitude of displacement when the foot is statically 
loaded and no vertical motion is occurring. 

Nominal GRF = Ground Reaction Force at nominal displacement. I.e.  

The denominator is required because otherwise this equation assumes the maximum 
load is applied throughout the entire displacement of the foot. By halving the result, 
a straight line between nominal position and maximum load & deflection is assumed. 
This method therefore assumes a linear force-displacement curve of the foot and 
therefore a linear spring rate. 

It is important to subtract the nominal values for GRF and displacement because 

it is at this position that the foot on test finds equilibrium; that is when the force 

exerted by the mass is equally opposed by the reaction of the foot. To ignore this 

would be to count energy twice. 

Where: 

Handle force = force applied to the input handle 

Displacement of foot during handle input = the effective distance travelled by this 
input force 
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In order to ensure comparable results, the data gathered during 'Method 1' above was 

used for this test. As described previously, 8 oscillation cycles were captured and 

averaged in order to provide a single 'typical' dataset for analysis. The logger used for 

this investigation was capable of capturing all four rig channels concurrently, namely 

Ground Reaction Force, Input Handle Force, Carriage Displacement and Foot 

Displacement. More information on the logger and rig equipment can be found in 

appendix 1. 

 

Results: 

Using this method, the efficiency of the rig can be defined as: 

 

 

 

 

Therefore: 

 

Therefore: 
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A4.3  Method 3: Carriage Amplitude Decay 

Theory: 

It is shown in figure A4.3 that a certain amount of energy is required to maintain the 

amplitude of displacement of the foot on the rig. Assuming constant amplitude of 

displacement, this amount of input energy must be equal to the energy lost in the 

system for each individual displacement cycle. If the input energy ceases, the losses in 

the system will result in a progressive and gradual decay in foot displacement, until the 

system once again returns to rest. 

With each successive displacement cycle (once the input energy has been removed) 

the change in displacement amplitude can be quantified using the calibrated foot 

displacement sensor. Although this reduction of displacement is relatively unimportant 

when calculating the efficiency of the rig, the energy loss that it represents is 

fundamental.  

If the energy lost as a result of the reduction in displacement for a single oscillation 

cycle were compared with the overall energy stored in the system at that time, this 

would allow the efficiency of the rig to be calculated.  

 

Method: 

The foot was excited in the manner described for methods 1 & 2 until the amplitude 

representative of the amputee testing (section 4.4) was replicated. Data logging was 

initiated and force input to the excitation handle was removed, allowing the amplitude 

of oscillation to decay until the weights carriage came to rest. Logging was then halted 

and the obtained traces could be examined. 
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Figure A4.4: Graph showing the displacement amplitude of the prosthetic foot on test, demonstrating 

the progressive decay of foot displacement once the input force is removed 
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Figure A4.5: Graph showing the peak amplitude of successive oscillation cycles following the 

removal of input force to the rig. 
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Results: 

Figure A4.4 shows the trace of foot displacement against time for the rig from the 

moment the input force was removed. As can be seen, the displacement progressively 

decays until the carriage comes to rest. 

The displacement value of each peak from this graph was extracted and plotted 

against the number of oscillations following the removal of the input force (figure 

A4.5).  
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Figure A4.6: Graph showing the energy stored in the system, decaying with each successive 

oscillation cycle. 
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Figure A4.7: Graph showing the change in energy for successive oscillation cycles 

expressed as a percentage of the residual system energy 
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The foot can be seen to come to rest at a displacement value of 28mm. This is the 

value of static deflection of the foot under the load of the carriage.  

Knowing the total displacement (above nominal value as discussed during Method 2) 

and the maximum force at maximum displacement, the energy represented by these 

peaks of amplitude could also be plotted as shown in figure A4.6. 

Following from this, the change in stored energy for each successive oscillation cycle 

was determined and expressed as a percentage of the remaining (residual) stored 

energy in the system (figure A4.7) 
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Figure A4.8: Graph showing the energy decay (expressed as a percentage of residual system 

energy) against the value of maximum displacement.  
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From this information it was then possible to produce a graph showing the percentage 

of energy lost (at each oscillation cycle) for a value of maximum displacement. This 

results in a measure of system inefficiency (importantly this is a value of inefficiency; 

to calculate efficiency this number should be subtracted from 100%) at any specific 

value of maximum deflection. This is illustrated in figure A4.8. 

As can be seen in figure A4.8 the efficiency of the system decreases exponentially as 

the amplitude of oscillation approaches that of the nominal foot displacement. It is at 

nominal foot displacement that the force exerted by the mass and the force exerted by 

the reaction of the spring are equal and opposite. This occurs at a displacement of 

28mm for this specific foot with 83kg mass (as were the set up conditions for this 

investigation). As the amplitude of displacement increases it can be seen that the 

efficiency of the system improves, levelling off at approximately 55mm. Above this 

displacement the inefficiency can be seen as constant, at a value of 10.1%. For the 

purpose of this investigation and to ensure comparable results with the previous two 

methods, it is at this maximum value of foot displacement that the efficiency should be 

defined.  
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A4.4  Rig Efficiency Conclusions 

Despite using three different techniques to determine the efficiency of the rig system, 

the resulting figures are similar with a standard deviation of 0.8%. The three figures 

were averaged to provide a final value of efficiency (table A4.1).  

 

 

 

 

 

 

It is important to remember throughout this investigation that the figures generated 

represent the efficiency of the system as a whole. This does not mean the efficiency of 

the foot or that of the rig, but both together when combined to make the 'system'. 

Inevitably if any aspect of this system were to change, this value of efficiency would be 

invalid. This includes using a different prosthetic foot or changing the mass applied to 

the carriage. Another example of how the changing conditions might affect the result 

is if a different displacement were achieved. It is demonstrated in figure A4.8 (under 

Method 3) that the maximum displacement alters the efficiency significantly, 

particularly at lower amplitudes. Above 55mm total displacement the trace can be 

seen to stabilise at 10.1%.  

 

  

Method 1: 88.9% 

Method 2: 90.3%               Mean value = 89.4% 

Method 3: 88.9% 

 Table A4.1: Results of the three separate methods for determining rig efficiency 
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A note on energy storage 

Throughout this section, reference has been made to 'energy storage'. In Method 1, 

force-displacement graphs were generated for both the compression and rebound 

phases of the oscillation cycle with the areas under these graphs being calculated and 

compared to derive efficiency. In Method 2 the energy in the system was calculated 

and compared with the energy known to have been applied through the input handle, 

and Method 3 uses the principle of energy decay versus residual stored energy. If the 

figures for energy storage are compared however, they can be seen as an order of 

magnitude different. 

Energy storage in Method 1 = 56.4J (compression), 63.4J (rebound) 

Energy storage in Method 2 = 18.49J 

Energy storage in Method 3 = 15.5J 

The reason for this is that they are not measuring the same energy storage and 

therefore cannot be compared with one another. This is explained as follows: 

Method 1 relies on a value of energy storage to define the efficiency of the rig. 

Because this is undertaken using a force-displacement curve derived from foot 

displacement, the entire displacement cycle is used for both compression and rebound 

phases (i.e. the full displacement from 0mm up to a value of 70mm). The areas under 

the respective curves provide a value of energy storage, but this is energy storage in 

the foot, not the rig. If the foot were viewed as a standalone piece of apparatus, 

energy storage begins at 0mm displacement until it is fully loaded. However if the rig 

as a system is viewed, the mass under gravity exerts a force on the foot that is only 

equalled by the foot reaction at the 'nominal' height. This is shown to be at 28mm 

deflection and at this point, assuming no movement of the carriage, the rig is in 

equilibrium. No energy is stored within the rig system. However a significant amount 

of energy at this moment is stored in the foot when viewed alone. Because of this, the 

value of energy storage provided in Method 1 is inaccurate and artificially high if 

viewed as 'system energy storage'. 
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Figure A4.9: Graph illustrating the difference between energy stored in the foot and 

energy stored in the rig as a system 
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Method 2 provides a more accurate account of true 'system' energy. The fundamental 

step taken to ensure this is to subtract the values of displacement and force found at 

the nominal position from those found at the maximum position. As explained above, 

useful energy storage does not begin to accumulate in the rig until the nominal 

displacement of 28mm has been surpassed. In doing this, the value for energy storage 

can be seen as significantly lower than that of Method 1 but this is a true value of 

system energy, not stored foot energy. This is illustrated in figure A4.9. 
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As can be seen in figure A4.9 if energy is considered to be stored (as it is by the 

standalone foot) from 0mm displacement up to the maximum displacement (in this 

case at 70mm), the value can be described as the area under the entire curve. 

However if the entire system is considered and equilibrium is achieved at a nominal 

height of 28mm (this is when the force exerted by the mass is equalled by the reaction 

force of the foot), useful energy storage only begins at this displacement value. This is 

represented by the darker shaded area of the graph and is a significantly smaller 

portion of the graph. This is the reason for the difference in measured energy storage 

between Method 1 and Method 2.  

Method 3 boasts a smaller value of stored energy purely because the first reading 

taken during this particular investigation was the first displacement cycle following the 

removal of the input force. This means the displacement of oscillation had already 

decayed for a single cycle before the measurements were considered. The maximum 

displacement used for Methods 1 & 2 was 70mm versus a value of 64mm for Method 

3.  

If a value of useful energy storage were to be defined by this investigation, the value 

obtained in Method 2 should be considered the most accurate and representative of 

the amputee testing of Chapter 4. This method uses the correct maximum 

displacement of 70mm but also considers the effect of the nominal height and nominal 

forcing levels. 
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APPENDIX 5: VIDEO-BASED MEASUREMENT ACCURACY 

& REPEATABILITY 

A5.1  Stance length intra-rater reliability investigation 

In order to generate stance length values for an amputee running at speed, high speed 

video was recorded in the sagittal plane at a variety of speeds on a treadmill. This 

required the interrogation of the video and specifically the positional relationship of 

visible markers to a matched pair of measuring reference tapes. Lines of effective 

heelstrike and toe-off positions are superimposed onto the video and the stance 

length can be read. This investigation is detailed in section 7.3.  

In order to ensure accuracy and repeatability of this captured data an intra-rater 

reliability exercise was conducted. This involved making observations of a single 

running velocity (13kph-1) in an identical manner on ten independent occasions. The 

results gathered can then be compared and the variation objectively defined. 

Table A5.1 displays the results of this comparison below. 

Measurement # Stance length 

observed (mm) 

Rounded result to 

nearest whole cm (mm) 

1 668 670 

2 668 670 

3 666 670 

4 671 670 

5 670 670 

6 671 670 

7 669 670 

8 672 670 

9 669 670 

10 673 670 

Mean 669.7 670 

Standard Deviation 2.0 0 

 Table A5.1: Intra-rater reliability data from ten independent stance length 

observations of the same single stride video. 
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A5.2  Deflection sensor vs. frame rate timing methods 

During the amputee testing phase of this investigation both high speed video (1500fps) 

and foot deflection (at 512Hz) were recorded simultaneously. Both were deemed of a 

sufficiently high resolution to record the necessary data, and both were capable of 

providing timing information about the stride being recorded. For the purpose of 

defining stance and stride phase timing (as displayed in Table 7.1) the deflection 

transducer was used. However to ensure accuracy and rule out anomalies that might 

have occurred during interrogation of the data the same timing information was 

obtained using the video footage. At 1500fps each frame represents the passage of 

0.667ms. Therefore by counting the number of frames between heel strike and toe-off 

events the stance phase timing can be ascertained and compared, as displayed in 

Table A5.2 (to the nearest ms). 

Velocity 

kmh 

Velocity 

m/s 

Stance timing (ms) 

Deflection sensor 

Stance timing (ms) 

Video frames 

8 2.2 275 274 

9 2.5 260 260 

10 2.8 246 246 

11 3.1 232 232 

12 3.3 227 226 

13 3.6 217 216 

14 3.9 209 208 

15 4.2 203 202 

16 4.4 197 197 

17 4.7 193 193 

18 5.0 182 182 

Mean - 221.9 221.5 

Standard 

Deviation 

- 29.3 29.2 

 Table A5.2: Comparison of measured stance phase timing as recorded by the deflection 

sensor (512Hz) and high speed video (1500fps) 
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A logging frequency of 512Hz (deflection sensor) can provide timing accurate to 

approximately +/-1ms whereas the video is capable of defining an accuracy almost 

three times greater. As such there is an excellent correlation in the data. If an unpaired 

t-test statistical analysis is carried out on this data (using the mean and SD values as 

quoted in Table A5.2) a P-value of 0.9713 is generated. This is regarded as statistically 

insignificant.  
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APPENDIX 6: ISPO JOURNAL PUBLICATION ABSTRACT 

Title: An Investigation of the Ground Contact Point and Sagittal Plane Displacement 

of Energy Storage and Return (ESR) Composite Lower-Limb Prosthetic Feet during 

Running 

Background: Energy storage and return (ESR) feet are designed for active amputees 

[1].  Their design appears to be carried out on a trial and error basis [2].  It has also 

been recognised there is little compelling scientific evidence to guide the clinical 

prescription of ESRs [3]. 

Aim: The aim of this study is to provide insight into the dynamic behaviour of ESR 

prosthetic feet by investigating the effect of increased velocity on the ground contact 

point and foot displacement.  

Method: Sagittal plane displacement (utilising a displacement sensor attached 

between the proximal and distal end of the foot) and ground contact point (utilising a 

linear array of four piezo-electric ground force sensors on the metatarsal region) were 

recorded from an Ossur Flex-Run ESR foot attached to a highly active unilateral 

transtibial amputee while carrying out a series of running trials.   

The data collected was analysed to provide information on and relationships between: 

stride cadence; ground contact time; swing phase time; timing and amplitude of 

maximum displacement; progression of the ground contact point. 

 

 

 

 

 

 

 

 

Results: The figure shows the average sagittal plane displacement from ten full strides 

of the Flex-Run foot while the amputee ran at velocities of 8kmh-1, 13kmh-1 and 

18kmh-1 on a treadmill.  These results show that maximum deflection of the foot 

increased minimally as the running velocity increased from 8 and 18kmh-1.  In addition, 

ground contact time (280ms@8kmh-1 vs. 180ms@18kmh-1) and stride time 
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(750ms@8kmh-1 vs. 560ms@18kmh-1) were found to decrease.  An increase of force at 

sensor 4 (the posterior sensor) was found as the running velocity increased; indicating 

that the ground contact point of the foot progressed towards the rear of the foot at 

increased velocity. 

Discussion & Conclusion: Previous studies have assumed that a prosthetic foot and 

amputee forms a spring/mass system and therefore the ground contact duration at 

different running velocities should be comparable.  This research concludes that 

ground contact duration decreases at increased velocity.  This has been found to be 

due to the measured shift in ground contact point rearwards along the metatarsal 

region at heel-strike stiffening the foot spring rate, resulting in a shorter stride 

duration.  Further research is now needed to generalise the relationship between the 

key variables to provide quantitative data to inform ESR foot prescription.     
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