
Reasoning with Contextual Requirements: Detecting Inconsistency and Conflicts

Raian Alia, Fabiano Dalpiazb, Paolo Giorginib

aBournemouth University, UK
bUniversity of Trento, Italy.

Abstract

CONTEXT. The environment in which the system operates, its context, is variable. The autonomous ability of a
software to adapt to context has to be planned since the requirements analysis stage as a strong mutual influence
between requirements and context does exist. On the one hand, context is a main factor to decide whether to activate
a requirement, the applicable alternatives to meet an activated requirement as well as their qualities. On the other
hand, the system actions to reach requirements could cause changes in the context. OBJECTIVES. Modelling the
relationship between requirements and context is a complex task and developing error-free models is hard to achieve
without an automated support. The main objective of this paper is to develop a set of automated analysis mechanisms
to support the requirements engineers to detect and analyse modelling errors in contextual requirements models.
METHOD. We study the analysis of the contextual goal model which is a requirements model that weaves together
the variability of both context and requirements. Goal models are used during the early stages of software development
and, thus, our analysis detects errors early in the development process. We develop two analysis mechanisms to detect
two kinds of modelling errors. The first mechanism concerns the detection of inconsistent specification of contexts
in a goal model. The second concerns the detection of conflicting context changes that arise as a consequence of
the actions performed by the system to meet different requirements simultaneously. We support our analysis with a
CASE tool and provide a systematic process that guides the construction and analysis of contextual goal models. We
illustrate and evaluate our framework via a case study on a smart-home system for supporting the life of people having
dementia problems. RESULTS. The evaluation showed a significant ability of our analysis mechanisms to detect
errors which were not notable by requirements engineers. Moreover, the evaluation showed acceptable performance
of these mechanisms when processing up to medium-sized contextual goal models. The modelling constructs which
we proposed as an input to enable the analysis were found easy to understand and capture. CONCLUSIONS. Our
developed analysis for the detection of inconsistency and conflicts in contextual goal models is an essential step for
the entire system correctness. It avoids us developing unusable and unwanted functionalities and functionalities which
lead to conflicts when they operate together. Further research to improve our analysis to scale with large-sized models
and to consider other kinds of errors is still needed.

Keywords: Requirements Engineering; Contextual Requirements; Goal Modelling; Consistency and Conflicts
Analysis; Adaptive Systems Engineering.

1. Introduction

The recent advances in computing and communica-
tion technology led to the emergence of novel comput-
ing paradigms which are sensitive to the changes in their
environment [1]. Examples include mobile and ubiqui-
tous systems, ambient intelligence, smart-home, auto-
nomic computing, adaptive systems, etc. Such systems

Email addresses: rali@bournemouth.ac.uk (Raian Ali),
fabiano.dalpiaz@disi.unitn.it (Fabiano Dalpiaz),
paolo.giorgini@disi.unitn.it (Paolo Giorgini)

weave together computing with humans’ living environ-
ment in order to facilitate and make more transparent the
role of technology in supporting humans’ needs. No-
tably, the environment where the system operates (its
context) is highly variable, and this can threaten the pur-
pose of the system if it is not designed to be adaptive
to context changes. Adaptation to context is a key fea-
ture of this category of systems. Many dimensions of
context—spatio-temporal, environmental, social, task
and personal—influence the requirements of a system
and how it should achieve these requirements [2].

Preprint submitted to Information and Software Technology July 10, 2012

Adaptation to context has to be planned since the very
early stages of system development; the requirements
stage. The reason is that a context affects the deci-
sion about the requirements to achieve, the choice be-
tween the alternative ways to meet these requirements,
and the assessment of the quality of each alternative.
Moreover, while acting to meet users’ requirements, the
system often causes changes in the context. In spite of
this mutual influence, context is either ignored or pre-
sumed uniform in most requirements engineering lit-
erature. It is mostly considered at the later stages of
software development (architecture [3], runtime adapta-
tion [4], Human-Computer Interaction [5], services [6]).
Requirements adaptation is essential for a comprehen-
sive and correct system adaptation and devising require-
ments engineering approaches specialized for those sys-
tems which responds to the context changes is a chal-
lenging research question [7, 8, 9]

Goal models in Requirements Engineering (i* [10],
Tropos [11, 12], and KAOS [13]) represent the stake-
holders’ desired states of the world (goals) and the pos-
sible alternative sets of tasks to reach these states. Soft-
ware comes as a means to reach users’ goals and exe-
cute tasks on their behalf. Goal models are capable to
represent the rationale of both humans and software sys-
tems [14], and they have been shown very useful for the
engineering of adaptive systems in particular. The rea-
son is that they incorporate a space of alternatives sets
of operations which gives more flexibility to meet stake-
holders’ goals in a dynamic environment [15, 16, 17].
Goal models fit the early stages of the software devel-
opment and explain the functionality a system to operate
and why to operate it.

Software are motivated by the need to reach certain
goals of users and organizations [18, 19]. Context has
a strong impact on the goals to activate and the deci-
sion about the alternatives set of operations to execute
and reach activated goals. For example, in a health-
care institute for people with dementia, a caregiver may
have the goal to “involve the patient in certain social
activities” (G1) whenever the context “the patient is
feeling bored” (C1) holds. The caregiver can reach G1
by reaching the goal “take the patient for a trip in the
city” (G2) or by reaching the goal “ask a relative of the
patient to come and chat to him” (G3). G2 is adopt-
able if the context “the city is not crowded” (C2) holds,
since people with dementia might get anxious in a noisy
place. G3 is adoptable if the context “the patient has
relatives that can come to visit” (C3) holds. A require-
ments model for a smart-home system designed to sup-
port the patients with dementia should operate to meet
the caregiver’s goals G1, G2, and G3. Also, it should

correctly represent the relation between goals and con-
text: (i) G2 ∨G3 → G1 and (ii) if C1 ∧ C2 then G2 and
(iii) if C1 ∧C3 then G3.

We have proposed contextual goal models in [20, 21]
to capture the relation between the variable context and
the space of alternatives in a goal model. The notion of
context denotes the physical and tangible environment
surrounding a system. We refer to an alternative way to
achieve a top-level goal as a variant. A contextual goal
model may incorporate a large number of interrelated
goal model variants and context specifications. This
may easily lead to modelling errors in the requirements
model which should be detected and resolved early on.
In this paper, we develop a set of automated analysis
techniques to detect and analyse modelling errors in a
contextual goal model. Our objective is to detect incon-
sistencies of the contexts specified as preconditions for
a goal model variant and inconsistencies in the changes
on the context caused by the actions (tasks) executed
in each variant. We propose an automated tool to sup-
port our analysis mechanisms. We present a systematic
process for capturing and analysing contextual require-
ments. Finally, we evaluate our framework via a case
study of a smart-home for supporting the daily life of
people with dementia.

The paper is structured as follows. In Section 2, we
articulate our research problem and contribution and po-
sition that within our own state of the art. In Section 3
we describe the contextual goal models proposed in our
previous work. In Section 4 we propose analysis mecha-
nisms to detect inconsistencies and conflicts in a contex-
tual goal model. In Section 5 we describe an automated
support tool implementing our analysis mechanisms. In
Section 6 we outline a systematic process for modelling
and analysing contextual goal models. We evaluate our
framework in Section 7, discuss related work in Sec-
tion 8, and present our conclusions in Section 9.

2. Problem Statement

There is a mutual influence between a system and
its surrounding environment (context). This is partic-
ularly true in certain emerging computing paradigms
such as ambient intelligence, ubiquitous and pervasive
computing, mobile computing, and self-adaptive sys-
tems. Theses systems should be able to continuously
monitor their context, detect relevant changes and de-
cide upon what suitable actions to perform. The per-
formed actions could lead to changes in the context as
well. Indeed, changing the context could be the purpose
of the actions performed by a system or a side-effect of
it.

2

The requirements model is the natural place where
the mutual influence between a system and its context is
captured and analysed [15, 8, 21]. The context changes
can potentially activate a requirement, enable/disable
certain system alternatives to reach the activated re-
quirements, and also affect the quality of each of the
adoptable alternatives. For example, a smart-home re-
quirement could be r1= “fresh air inside home”. This
requirement is satisfiable by applying one of two sys-
tem alternatives a1= “open the windows” and a2= “turn
on a ventilator”. r1 is activated in a context like “the hu-
midity level inside home is high”. a1 is adoptable only
if the context “it is a good weather outside” holds. Con-
sidering “minimum disturbance” as a quality attribute,
a1 could be qualified negatively when it is applied in
the context “there is some noise outside” holds. Finally,
a1 leads to changes in the context as the home windows
will be opened and the light level might increase as a
side-effect of that.

A model for contextual requirements should capture
the mutual influence between a system and its context.
Such model should be analysed to detect modelling er-
rors early on. The unfixed errors in a requirements mod-
els will spread across the next stages in the develop-
ment process and, thus, lead to a malfunctioning final
system. In this paper, we propose an automated anal-
ysis to detect modelling errors in a contextual require-
ments model which is the contextual goal model where
requirements are perceived as goals to achieve. Namely,
we propose the following two kinds of automated anal-
ysis:

• Inconsistency analysis. It concerns the detection
of inconsistent context specifications in a contex-
tual goal model. The purpose is to identify alter-
natives (variants) which may be inoperable due to
inconsistent context preconditions. For example,
suppose a system alternative preconditioned by the
context “the patient has a moderate dementia, it is
night time and there is a caregiver accompanying
the patient at the moment”. If the healthcare insti-
tute policy assigns the caregivers to patients with
severe dementia all the time and to others only dur-
ing the day hours, then in a smart-home for a pa-
tient with moderate dementia this context does not
hold. Thus, the system alternative preconditioned
by this context is inapplicable due to the fact that
its context is inconsistent. Our analysis detects the
cases where context inconsistency leads to make
certain system alternatives unadoptable. In such
cases, the system alternatives should not be imple-
mented or the context specification should be fixed.

• Conflict analysis. It concerns the detection of con-
flicts between certain system actions executed si-
multaneously to meet requirements. For example,
suppose we have two requirements r1= “fresh air
inside home” and r2= “protect home from rob-
bery”. Suppose that one of the system alternatives
to reach these two requirements is based on open-
ing the windows to let fresh air enters the home and
closing the windows to prevent any potential rob-
ber from entering. Thus, when both requirements
are active, in a context where the humidity level is
high and there is a suspicious movement outside,
then we have a conflict. This conflict becomes se-
vere if the system has no other conflict-free alter-
natives to reach the two requirements. Our anal-
ysis detects the set of system alternatives which
has conflicting tasks. It further process this set to
make sure that at certain context there is at least a
conflict-free alternative.

Context is a broad concept and could accommodate
all the facets of a system environment. Capturing all
these facets is a very challenging and, probably, im-
practical task. Our modelling and analysis framework
captures and analyses one facet of a context which is
the physical tangible environment surrounding a sys-
tem. Examples of this fact include information about
temperature, user’s age, location, breathing, heart rate,
etc. We do not capture those context facets which relates
to man-made concepts such as laws, culture and social
conventions. The context we capture is prominent and
essential in domains that exhibit a clear and direct in-
teraction between the system and its physical environ-
ment such as ambient intelligence and smart-homes and
buildings. Our framework is tailored to fit the require-
ments engineering for these domains. Other domains
such as contextual search engines and contextual com-
munication would need other contextual requirements
models expressly tailored to the nature of context they
deal with.

Our previous works creates the baseline of this work.
In Table 1, we summarize the contribution of our pre-
vious work. The purpose of doing that is to clarify the
contribution of this paper and give a holistic view of
our approach. In our previous work [9, 20], we have
observed that the dynamism of a system environment
affects whether a requirement needs to be achieved, re-
stricts the space of adoptable alternatives to achieve it,
and affects the quality of each of these alternatives. We
have advocated the need to weave together context and
requirements. We have proposed to specify context (we
called it “location” in that work) as a precondition at cer-

3

tain variation points of a goal model. We have also pro-
posed basic automated analysis techniques to (i) derive
the set of adoptable system’s alternatives for a certain
context and (ii) determine the context that supports a
given alternative. In [22, 23], we have proposed the con-
text analysis model, which includes constructs (state-
ment, fact, support, decomposition) to hierarchically re-
fine a context into a formula of monitorable facts. We
also proposed a way to derive the contextual workflow
of the tasks of a contextual goal model. In [21], we have
proposed an automated analysis to reason about con-
textual goal models and derive, at runtime, alternatives
which best fit both a monitored context and the prefer-
ences of a user expressed as ranking on softgoals. In the
same work, we also developed a design-time reasoning
for deriving a reduced set of systems’ alternatives re-
quiring minimal implementation costs.

3. Baseline: Contextual Goal Models

In this section we introduce our baseline: the contex-
tual goal model [20, 21]. We will illustrate this model
via a scenario of a smart-home designed to support the
daily life of people with dementia. The scenario is a
variant of the smart-home system described in [24] and
used in the EU sponsored Serenity project1. The smart-
home supports some of the daily tasks that a person with
dementia would forget to do, such as eating on time,
circulating the air inside the home, taking medicines,
and so on. Another requirement is to facilitate the res-
cue activities. For example, in case of health emergen-
cies the Medical Emergency Rescue Centre (MERC)
should be notified and requested to send a rescue team to
the patient place. Besides their memory impediments,
patients with dementia could suffer from anxiety at-
tacks. The smart-home should manage such situations
by smoothening events to avoid surprises and by pre-
venting the patient from getting out the home when this
is risky. The smart-home then has to calm the patient
down, and call the caregiver to come and give a treat-
ment. The smart-home supports also some other general
tasks, such as preventing potential house robberies. To
this end, it can give the illusion that the home is lived in
when the patient is out for long time.

Figure 1 shows a partial Tropos goal model for the
smart-home of our case study. Tropos goal analysis
views the system as a set of interdependent actors where
each actor has its own strategic interests (goals). Goals

1http://www.serenity-project.org/

are analysed iteratively and in a top-down way, to iden-
tify a set of more specific subgoals which can lead to
the satisfaction of the upper-level goals. Goals can be
ultimately satisfied by means of executable processes
(tasks). The actor “Patient Caregiving System” has
the top-level goal “home is managed for safety of pa-
tient”, which is iteratively decomposed into subgoals
by AND-decomposition (all subgoals must be achieved
to fulfil the top goal) and OR-decomposition (at least
one subgoal must be achieved to fulfil the top goal).
The subgoal “home is protected against robbery” is
AND-decomposed into the subgoals “give illusion of
being lived in” and “act against potential robbery”;
the subgoal “enforce routine exit procedure” is OR-
decomposed into the subgoals “patient is alerted” and
“patient is prevented of exiting”. Goals are finally sat-
isfied by means of executable tasks; the goal “fresh air
inside home” can be reached by one of the tasks “open
windows” and “turn air ventilator on”.

A dependency between actors indicates that an actor
(depender) depends on another (dependee) to attain a
goal or to execute a task. The actor “Patient Caregiving
System” depends on actor “Neighbour Assistance Sys-
tem” for the goal “a neighbour comes”. This last goal
is an alternative to the goal “police comes’’ and they
both are alternatives for achieving a higher level goal
which is the goal “assistance comes to act against rob-
bery”. Softgoals (“patient privacy”) are qualitative ob-
jectives for whose satisfaction there is no clear cut crite-
ria and they can be contributed either positively or neg-
atively by goals and tasks. The task “open windows”
contributes negatively to the softgoal “patient privacy”,
while the task “turn on air ventilator” contributes pos-
itively to it.

Let us now explain briefly the goal model shown in
Figure 1. The system is required to manage the home
and guarantee the safety of the patient. To this aim,
our smart-home is designed to achieve three main goals.
The first is to ensure that patients do not leave homes
unconsciously and is activated in the context where the
patient seems to be anxious ϕ1 (the list of context de-
scriptions is shown in Table 2). When the level of a
patient’s dementia is not severe and the patient does not
seem to be extremely anxious (ϕ3) then the smart home
could simply notify the patient about the need to stay at
home, otherwise (ϕ4) the system has to prevent the pa-
tient from getting out the home, to notify the caregiver
to come, and to calm down the patient in the meantime.
The second goal is to ensure a healthy living environ-
ment and we here take the goal “refresh air inside home”
as an example of this category of goals. The system can
refresh the air inside home by opening the windows if

4

Work Contribution
Weaving context with re-
quirements [9, 20]

- Theoretical foundations for weaving together the variabilities of both the context and require-
ments
- Defining a set of variation points on the goal models where a context condition can be speci-
fied
- A basic formalization of the model and a set of basic analyses implemented in Datalog

Context analysis [22, 23] - A systematic way to refine context and elicit its specification
- A modelling language for context refinement
- A systematic way to derive contextual workflows from a contextual goal model

Automated analysis of con-
textual goal models [21]

- Derivation of the goal alternatives which fit a context monitored at runtime and a set of user
preferences expressed over softgoals
- Derivation of a set of systems alternatives which required minimal development costs and able
to meet all goals in all analysed contexts
- A first version of our CASE tool (RE-Context) to implements these 2 checks
- Application of the proposed automated analysis on a case study of a museum-guide mobile
information system

This work - Checking the consistency of context specification at a contextual goal model
- Checking the consistency of executable tasks to avoid conflicting actions
- A second version of our CASE tool (RE-Context) to implement these 2 new checks
- A systematic process that guide requirements engineers to build and use the automated analysis
proposed in this paper and in [21]
- Application of the automated analysis proposed in this paper on a case study of a smart-home
for people with dementia

Table 1: Summary of our previous work and the contribution of this paper

the weather outside allows for that (ϕ5), while the op-
tion of turning on the ventilator to refresh air is always
adoptable. However, each of these two ways of refresh-
ing the air are evaluated differently against certain qual-
ity measures (softgoals) which are “patient privacy” and
“energy spent wisely”. The third is about protecting the
home against a potential robbery. The smart-home will
turn the light on and off iteratively when the patient is
outside and it is night time (ϕ7) to give impression that
the home is lived in. The home will act against a poten-
tial robber who is entering the home area in a suspicious
way (ϕ8) by locking all the entrances of the home and
calling for assistance of the police or neighbours.

3.1. Context and Contextual Goal Models
In goal modelling, actors should be provided by the

rationale needed to take the decision on how to reach
their goals. This includes the ability to decide what
goals to reach, how, and how well to reach them. For
example, a caregiving system is an actor that may have
the goal of acting against a potential robbery and keep
the home protected. The caregiving system has the abil-
ity to decide when to activate this goal and what to do
to reach it. The caregiving system may activate this
goal when there is a person who is trying to enter the
home area in a suspicious way. The caregiving system
may reach this goal by calling the police or one of the

neighbours.The decision between these last two options
should be taken by the caregiving system itself. The de-
cision taken by an actor may depend on the state of the
world in which the actor is living. We call such a state
context:

Definition 1 (Context). A context is a partial state of
the world that is relevant to an actor’s goals.

Contexts can be specified at a set of variation points
to precondition certain alternatives in a goal model. A
context is initially represented by a label (ϕi in the goal
model of Figure 1) and described as a sentence (Ta-
ble 2). We define different variation points on Tropos
goal model (for a precise semantic of these variation
points please see [21]):

1. OR-decomposition: the adoptability of each sub-
goal (subtask) in an OR-decomposition may re-
quire a specific context to hold.

2. Means-end: goals can be satisfied by means of
specific executable processes (tasks). The adopt-
ability of each task may require a specific context
to hold as a precondition.

3. Actors dependency: a certain context is required
for an actor to get a goal reached, or a task exe-
cuted, by delegating it to another actor.

5

G1: enforce routine exit
procedure

G4: patient is
alerted G5: patient is

prevented from
exiting

G10: calm the
patient

1
and

or

G3: home is
protected against

robbery

and

G6: give Illusion of
being lived in

G7: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock balcony
door, windows &
main entrance T4: call

caregiver
by phone

G8: actuate the
home G9: notify caregiver

T7: turn on
calm music

T5: call caregiver by
public call

T10: turn on/off
light iteratively

police is notified

G11: prevent robber
from entering

G12: assistance
comes

T14: lock
doors

and

and

T11: phone
police

T12: turn all
lights on

and

T13: turn on
security cameras

G0: home is managed
for safety of patient

G2: refresh air inside
home

2

T8: open
windows

T9: turn on air
ventilator

5

3

87

9 10

T6: give warm
light color

make
relaxation

effects

or

4

12

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11

--

6

5

0

Neighbor
Smart
home

13

Patient
Caregiving

System

SG3: less
noise

--+

Goal Task

Actor

Actor boundarySoftgoal Means-ends
link

Decomposition
link

Dependency
link

+/-
Contribution

link

Legend

G13: police
comes

G14: a neighbor
comes

or

Figure 1: A partial Tropos goal model for the smart-home case study

4. Root goals: a root goal becomes activated only in
a certain set of contexts.

5. AND-decomposition: the satisfaction (execution)
of a subgoal (subtask) in an AND-decomposition
is needed only in certain contexts. In other words,
they are not always mandatory.

6. Contribution to softgoals: softgoals are qualita-
tive objectives, i.e., there is no clear-cut criteria
for their satisfaction. Softgoals can be contributed
either positively or negatively by goals and tasks.
The contributions to softgoals can also vary from
one context to another.

Similarly to goals, context needs to be analysed and
refined. On the one hand, goal analysis provides a sys-
tematic way to discover the alternative sets of tasks an
actor is capable to adopt and execute to reach a goal.
On the other hand, context analysis should provide a
systematic way to discover the alternative sets of facts
an actor is capable to observe to verify if a context ap-

plies. Context, however, is a broad concept and would
potentially refer to all of the aspects of a system’s envi-
ronment. In our contextual goal model, we capture con-
text that concerns the tangible and visible aspects of the
environment surrounding a system. Examples include
the location, the age, the temperature, the movement,
etc. We do not treat other facets of context which can-
not be transformed to a set of tangible and visible facts
which can be verified by the system based on sensed or
stored data. We specify context as a formula of world
predicates wp; its EBNF syntax is as follows:

Form← wp | (Form) | Form∧Form | Form∨Form
We classify world predicates, based on their observ-

ability by an actor, into two kinds, facts and statements:

Definition 2 (Fact). A world predicate F is a fact for
an actor A iff F is observable by A.

Definition 3 (Statement). A world predicate S is a
statement for an actor A iff S is not observable A.

6

Description Technology

ϕ0
The home is lived in, and the patient is expected to have some dementia
problems, and there is no awaken caregiver or healthy relative at home.

Database (info about home and patient), RFID tags (care-
giver and relative)

ϕ1 The patient is at home and anxious. Smart-shirt or oxymeter, camera with motion recognition

ϕ2
The humidity level is high, or home windows and doors haven’t been
opened for a long time. Humidity sensor, magnetic sensor (open-close), database

ϕ3
The patient dementia disease is not in an advanced stage or he is mod-
erately anxious. Database (disease status), smart-shirt (anxiety)

ϕ4
The patient suffers of advanced dementia, and he seems to be extremely
anxious Database, smart-shirt

ϕ5 It is sunny and not very windy. Barometer and wind sensor
ϕ6 The patient is outside home. GPS or RFID
ϕ7 The patient is outside home since a long time and it is night time. GPS/RFID, database, digital clock

ϕ8
A person is trying to get into the yard in a suspicious way (e.g., enter
from a place different from the main gate). Surveillance camera

ϕ9 The phone is free and the caregiver is not using his phone for a call. Information from telephone provider company, phone sta-
tus sensor

ϕ10 It is not night time. Digital clock
ϕ11 The light level at the patient’s location is too low or too high. Light sensor
ϕ12 It is too dark inside home. Light sensor

ϕ13
The neighbour is healthy, is at home, and can see or reach easily the
patient’s home.

Database (health status and house location), GPS/RFID
(neighbour position)

ϕ14 The patient health turns bad or he has fallen down. Smart-shirt, oxymeter, camera with motion recognition
ϕ15 The MERC is reachable and online. Check connection
ϕ16 The home has a screen that shows the patient’s medical record. Database

Table 2: The description of Figure 1 contexts and the technology needed to monitor them

An actor has a clear way to observe a fact. That is,
it is capable to monitor the necessary data and com-
pute upon the truth value of a fact. A statement can not
be observed by an actor for different reasons, such as
(i) the inability to capture needed data to observe it di-
rectly and (ii) the abstract nature which makes it hard to
find its evaluation criteria. Some decisions that an actor
takes may depend on contexts specifiable by means of
only facts, while some other decisions may depend on
contexts that include also statements. However, a state-
ment can be refined into a formula of facts and other
statements. We call the relation between such a formula
of word predicates and a refined statement Support, and
we define it as following:

Definition 4 (Support). A statement S is supported by
a formula of world predicates ϕ iff ϕ gives enough evi-
dence to the truth of S.

Some statements are iteratively refinable to a formula
of facts that supports their truth values. In our approach,
we only allow for monitorable contexts. A context is
monitorable if it can be specified in terms of facts and/or
statements that are supported by facts. A monitorable
context, specified by a world predicate formula ϕ, ap-
plies if all the facts in ϕ and all the formulae of facts
that support the statements in ϕ are true. In Figure 2,
we analyse context ϕ1. In the figure, statements are rep-
resented as shadowed rectangles and facts as parallel-

ograms. The relation support is represented as curved
filled-in arrow. The and, or logical operators are repre-
sented as black triangles, white triangles, respectively.

The analysis of context allows us to discover the data
an actor has to collect from the world. The analysis al-
lows us to identify the facts which an actor has to ob-
serve. These facts are observable on the basis of certain
data of the world to be collected by the actor. For ex-
ample, taking the facts of the context analysis shown of
Figure 2, the analyst could develop a data conceptual
model such as the one shown in Figure 3. This model
has to be implemented and maintained by the smart-
home as a preliminary step to observe facts, judge if
the analysed contexts apply, and take decisions at the
corresponding variation point in the goal model.

We classify context into three kinds based on the in-
fluence it has on goal model. Each context kind is asso-
ciated to a set of variation points:

1. Activation context which makes it necessary to
achieve (execute) a set of goals (tasks). In con-
textual goal models, activation contexts are those
specified at the variation points (i) root goal and
(ii) AND-decomposition. These two kinds of con-
texts determine whether a goal has to be reached
or a task has to be executed. The activation con-
text of a goal model variant is the conjunction of
the contexts at the variation points of these two
kinds. When a context on an AND-decomposition

7

st1=patient is anxious

st3=moving without
target

f5= moving
randomly

f6= back
& forth

st2=physiological
anxiety

f3= sweating
abnormally

st4=can not sleep

st5=trying to sleep st6= not
sleeping

f7= lying in bed
most of time

f8= lying on sofa
most of time

f9= moves
often

f10= irregular
breathing

f4= pounding
heartf2= shortness

of breath

f1=patient at
home

1

1 applies if f1 (f2 f3 f4) f5 f6 ((f7 f8) f9 f10))

FactStatment

Support

Legend

And Or

Iff

f2 f3 f4 supports st2 f5 f6 supports st3 (f7 f8) f9 f10 supports st4

f7 f8 supports st5 f9 f10 supports st6

(f2 f3 f4) f5 f6 ((f7 f8) f9 f10)) supports st1

Figure 2: A context analysis for ϕ1

Patient

+normal pulse

Respiration

+inhalation_time
+exhalation_time

Position

+x
+y

Bed

Sofa

Is_at_time

+time

Heart_rate

+rate
+at_time

Sweating

+level
+at_time

Figure 3: The data needed to observe the facts of context ϕ1 shown in Figure 2

8

holds then the corresponding goal (task) has to be
achieved (executed), otherwise that goal (task) is
unneeded. While this is syntactically equivalent
to a contextual OR-decomposition, the semantic
is apparently different. A context on an AND-
decomposition influence the need for the reach-
ing/executing the corresponding subgoal/subtask,
while a context on an OR-decomposition is itself
needed to hold before adopting the corresponding
subgoal or the subtask. This semantical difference
is essential answer several queries about the active
requirements and the adoptable alternatives when
a context change occurs at runtime and also for
the semantic of context inconsistency which we are
going to explain in the next section.

2. Required context which is a context neces-
sary to hold before adopting a certain alterna-
tive for achieving (executing) a set of activated
goals (tasks). The contexts specified on (i) OR-
decomposition, (ii) Means-end, and (iii) Actors de-
pendency are required contexts. These contexts are
required to hold as a precondition for the applica-
bility of the corresponding goal model variant. The
required context of a goal model variant is the con-
junction of contexts at the variation points of these
three kinds.

3. Quality context which influences the quality of a
variant of a goal model. Only the contexts at the
variation point Contribution to softgoals are qual-
ity contexts. Contributions to softgoals are, indeed,
used in Tropos to capture the impact of a goal/task
on a quality attributes (i.e., the softgoal). In con-
textual goal model, the quality differs according to
context changes and it is not static.

Figure 4 shows two partial goal model variants (de-
rived from Figure 1) and the contexts associated to
them. Notice that only the subgoals G1 and G2 are ac-
tivated to reach the root goal G0. However, and since
none of the contexts ϕ7 and ϕ8 is true, there is no need
to execute any tasks to reach G3 which is already sat-
isfied in both of the variants V1 and V2. The classifi-
cation of contexts into these three categories allows us,
amongst other things, to answer questions like: “in a
given context, which are the requirements the system
has to meet?”, “which are the possible variants to meet
them?”, and “what is the quality of each variant?”. In
the rest of the paper, the term context of a goal model
variant refers to the conjunction of the activation and
required contexts of that variant.

Context is just one of the criteria to consider when
the system has to take decision on what alternative to

adopt at runtime. The decision can be based on different
other criteria such as the potential of success in meeting
a root goal, minimizing costs, or satisfying users’ pref-
erences. In our previous work [21], we allow users to
express their preferences by ranking the importance of
softgoals so that the goal model variant with the best
contribution to softgoals according to a certain ranking
will be applied. The system will monitor context and
derive the set of applicable variants and also the value
of the contextual contributions to the set of softgoals as
a preliminary step to do that.

Our modelling of contextual requirements via con-
textual goal model is in line with the principles of the
four-variable model of Parnas and Madey [25], which
is a mathematical model that specifies the function of a
software system, i.e. what should be in a software de-
sign documentation. They define four variables (input,
monitored, controlled, output) which express the rela-
tionship between the system and its environment. Then,
they specify operations on these variables: IN (from
monitored to input), REQ (from controlled to moni-
tored), OUT (from output to controlled), and NAT (from
monitored to controlled). REQ represents the require-
ments of the system, whereas NAT represents the envi-
ronmental context of the system. In our approach, we
cover the “logical world” part by expressing the REQ
function via goal modelling, and the NAT function via
context modelling.

It is important to emphasize that our contextual goal
model and context analysis capture only a certain facet
of a system context. This facet concerns the tangible
and visible facts in a system environment. These facts
can be verified based on data the system is able to cap-
ture from its environment. However, we emphasize
that there are other facets of the system environment
which are unnecessarily transformable or representable
via tangible facts. Examples of such facets include the
laws and the regulations of the system organization and
the social relationships between the different system ac-
tors, culture and conventions, etc. Our modelling frame-
work addresses just one facet of context, the tangible
one, and thus the analysis framework which we propose
in the next section detects conflicts and inconsistencies
related to this facet only. This fits well to application ar-
eas where the system and its surrounding physical envi-
ronment affect each other such as ambient intelligence,
smart-home, ubiquitous computing, etc.

4. Analysing Contextual Goal Models

In this section, we develop two kinds of analysis
mechanisms about contextual goal models. The purpose

9

G0: home is
managed for

safety of patient

T3: lock balcony
door, windows &
main entrance

T5: call caregiver
by public call

T9: turn on air
ventilator

10

4

7 8

1 2

and

G1: enforce routine
exit procedure

G2: refresh air
inside home

G3: home is
protected
against
robbery

G5: patient is
prevented from exiting

G8: actuate
the home

G9: notify
caregiver

G10: calm the
patient

0

and

T7: turn on
calm music

G0: home is
managed for

safety of patient

T3: lock balcony
door, windows &
main entrance

T4: call caregiver
by phone

T8: open
windows

9

4

7 8

1 2

and

G1: enforce routine
exit procedure

G2: refresh air
inside home

G3: home is
protected
against
robbery

G5: patient is
prevented from exiting

G8: actuate
the home

G9: notify
caregiver

G10: calm the
patient

0

and

T7: turn on
calm music

5

Variant V1 Variant V2

V1.Activation_Context = 0 1 2 7 8

V1.Required_Context = 4 9 5

V1.Context = 0 1 2 7 8 4 9 5

V2.Activation_Context = 0 1 2 7 8

V2.Required_Context = 4 10

V1.Context = 0 1 2 7 8 4 10

Figure 4: Two goal model variants and their contexts

is to detect modelling errors early in the development
process and support the construction of a well specified
requirements model and thus a correctly implemented
system. The first kind is the consistency analysis which
determines whether the formulae expressing the con-
texts of the goal model variants are consistent. In other
words, it checks if the precondition for the adoptabil-
ity of a certain variant is a state of the world that might
ever occur. For example, an inconsistent context is one
including “patient is at home” and “patient is visiting
a neighbour”. Our second proposed analysis is the con-
flict analysis which identifies conflicts between the tasks
(executable processes) of each goal model variant, in
terms of the way these tasks change the context. For in-
stance, a conflict exists when two concurrent tasks need
to exclusively use a resource or modify a resource in
different ways (e.g. task Ti opens a window to refresh
the air, while T j closes all the windows to ensure silence
when a person is sleeping).

4.1. Consistency analysis

Context analysis allows us to refine contexts at the
variation points of a goal model and discover formulae
of facts which specify these contexts (see Figure 2). In
our framework, we only allow the specification of mon-
itorable contexts, i.e., the contexts which can be refined
to formulae of facts. However, when deciding if a goal
model variant is applicable, a conjunction of these for-
mulae, which express the accumulative context of that

variant, has to be verified. A formula expressing a con-
text (or a conjunction of contexts) could be inconsis-
tent. Inconsistencies could be due to certain modelling
errors which should be fixed to get a correct require-
ments model.

To check the consistency of a formula specifying a
context, we need to take into consideration all possible
contradictions among the variables (world predicates)
of that formula. For example, in Figure 1 we have
ϕ7 = wp7.1 ∧ wp7.2 where wp7.1 =“patient is outside
home for long time” and wp7.2=“it is night time”, and
ϕ10 = wp10.1 where wp10.1 = “it is not night time”. In
this example, ϕ7 → ¬ϕ10 because wp7.1 → ¬wp10.1, so
any goal model variant whose context includes ϕ7 ∧ ϕ10
will be inapplicable. The logical relations between
world predicates formulae (contexts) can be absolute or
dependent on the characteristics of the system opera-
tional environment:

1. Absolute relations hold in any operational environ-
ment. For example, given the three world predi-
cates wp1= “caregiver [c] has never worked in
another institute”, wp2= “patient [p] is in the in-
stitute for the first day” and wp3= “caregiver [c]
was assigned to patient [p] some date before to-
day”, then wp1 → ¬(wp2 ∧ wp3) holds in any in-
stitute the system operates in.

2. Operational environment dependent relations hold
in a specific environment where the system oper-
ates in. Consider the two world predicates wp1 =

10

“the temperature is less than 15 degrees at the pa-
tient’s location” and wp2 =“patient is at home”.
If in one institute, the heating system keeps tem-
perature above 20 degrees, then wp1 → ¬wp2
holds always in that institute. Moreover, the op-
erational environment itself may assure that some
world predicates are always true or false. Thus,
we have to consider a special kind of environment
dependent relations: Env → wp f ormula. For ex-
ample, if the system operates in an institute hosting
only patients with severe dementia, then the impli-
cation Env→ ¬wp3 where wp3 =“patient has ba-
sic dementia” always holds.

We apply SAT-based techniques [26] to check if a for-
mula, expressing a context, is consistent under a set of
assumptions. Given a formula and a set of assumed log-
ical relations between its variables, a SAT-solver checks
if there exists a truth assignment for all variables that
makes the conjunction of the formula and the logical re-
lations formula satisfiable. The context specified by a
formula is consistent iff such assignment exists. In this
paper, we presume that these relations are to be pro-
vided collaboratively by the designers and the domain
experts. We still do not provide an automated support to
facilitate this task. A possible automated support could
infer new relations from the already defined ones and
also avoid the designer defining useless relations which
do not lead to discovering new inconsistencies even if
defined. The design of such an automated tool is one of
our future work directions. However, in Section 6, we
explain how an iterative consistency check could mini-
mize the amount of relations required from the design-
ers and the domain experts. The pseudo-code of the al-
gorithm (CheckSAT) is reported in Figure 5.

Input: context ϕ
Output: ⊥ (>) if ϕ is inconsistent/consistent
1: ξ := get logical relations(ξ)
2: if Is Satisfiable(ϕ ∧ ξ) then
3: return >
4: else
5: return ⊥
6: end if

Figure 5: Checking context consistency (CheckSAT)

The context associated to each variation point has to
be consistent, otherwise that context could never be-
come true. Inconsistency of a single context is caused
by a modelling error that should be fixed. The accumu-
lative contexts (activation, required, . . .) for goal model
variants could also be inconsistent. However, the in-
consistency of these accumulative contexts does not al-
ways indicate a modelling error and fixing or accepting

(tolerating) such an inconsistency is an analyst’s deci-
sion. Since goal models represent variability in a com-
pact form (a same subtree belongs to multiple variants),
inconsistencies related to a certain variant need not nec-
essarily be corrected as the variant itself may not be
indeed applicable. Moreover, the semantic of context
inconsistency depends on the kind of accumulative con-
text in which it occurs. In what follows, we illustrate
the above ideas via examples taken from the contextual
goal model of Figure 1.
Case 1 (Unneeded variant). The inconsistency of an
activation context of a goal model variant means that
the variant is not needed. In other words, it means that
the requirements represented in that variant are never
activated.

Example 1. The variant in Figure 6 has an inconsistent
activation context because of the contradiction between
ϕ1 and ϕ7. These contexts are defined as follows: ϕ1 =

wp1.1 ∧ wp1.2, where wp1.1=“patient is inside home”,
wp1.2=“patient feels anxious”, and ϕ7 = wp7.1 ∧ wp7.2,
where wp7.1= “patient is outside the home area for long
time” and wp7.2= “it is night time”. Though this variant
is inapplicable, the context inconsistency is acceptable.
Indeed, giving illusion of being lived in to protect home
from robbery is needed when patient is outside, whereas
treating his anxiety is needed when he is at home. Since
these requirements are not active together, designers
could accept the inconsistency. In other cases, the in-
consistency of activation contexts has to be fixed. Sup-
pose that ϕ0 is replaced by ϕ′0 that adds the fact “pa-
tient is at home”. Therefore, ϕ′0 ∧ ϕ7 is inconsistent and
G8=“give illusion of being lived in” will never be ac-
tivated. In such case, the designers would decide to fix
the inconsistency.

Case 2 (Unadoptable variant). The inconsistency of
the required context of a goal model variant having a
consistent activation context implies that such variant
can be activated but there is no context that makes it
adoptable. In other words, a set of requirements could
be activated but a certain variant to meet them is not
adoptable.

Example 2. Figure 7 shows an example of inconsistent
required context. In this example, the administration of
the health care institute decides that calling the care-
giver through institute speakers requires to be in a con-
text where the patient has extreme anxiety. In all other
cases, the caregiver can be called by phone. Therefore,
ϕ9 is modified into ϕ′9 that adds the fact “patient anxiety
is moderate”. This makes ϕ′9 ∧ ϕ4 inconsistent. In this

11

G0: home is managed for
safety of patient

G1: enforce routine exit
procedure

G3: home is protected
against robbery

1 2

G4: patient is
alerted G6: give Illusion of

being lived in

T2: switch on lights at
patient location T10: turn on/off

light iteratively

3
7 8

0

V.Activation_Context = 0 1 2 7 8

V.Required_Context = 3

V.Context = 0 1 2 7 8 3

1 = (wp1.1:patient is inside home) (wp1.2: patient is anxious)

7 = (wp7.1:patient is outside home for long time) (wp7.2: it is night)

The contradictions between contexts: wp1.1 wp7.1

V.Activation_Context is inconsistent

Figure 6: A partial goal model variant with an inconsistent activation context

G0: home is managed for
safety of patient

G1: enforce routine exit
procedure

G3: home is protected
against robbery

1 2

G5: patient is
prevented from exiting

4
7 8

0

V.Activation_Context = 0 1 2 7 8

V.Required_Context = 4 9'

V.Context = 0 1 2 7 8 4 9'

4 = (wp4.1: severe dementia) (wp9.3: extreme anxiety)

9' = (wp9.1: the home phone is free)

(wp9.2: caregiver phone is not being used) (wp9.3: moderate anxiety)

The contradictions between contexts: wp9.3 wp4.2

V.Activation_Context is consistent

V.Required_Context is inconsistent

G10: calm the
patient

and

T3: lock balcony
door, windows &
main entrance

T4: call
caregiver
by phone

G9: notify caregiver

T7: turn on
calm music

9'

make
relaxation

effects

G8: actuate the
home

Figure 7: A partial goal model variant with an inconsistent required context

new specification, the context required for calling care-
giver by phone never holds and designers would decide
to fix the inconsistency.

Case 3 (Incompatible contexts). The inconsistency of
the context of a goal model variant, when its activation
and required contexts are consistent separately, means
that the variant could be activated and adopted in differ-
ent contexts, but cannot be adopted in any context where
it can be activated.

Example 3. Figure 8 shows a goal model variant with
inconsistent context of this kind. In this example, the
institute assigns a caregiver to each patient except for

night time. This creates a contradiction between ϕ0 and
ϕ10 and makes the context of variant V3 inconsistent. If
T5 does not appear in other variants with a consistent
context, designers might decide to exclude it from the
implemented system.

Case 4 (Static contribution). The inconsistency in
quality contexts occurs when the conjunction of a con-
text of one contribution to a softgoal and a context of a
goal model variant in which this contribution exists is
inconsistent.

Example 4. Suppose that administration of an insti-
tute decides that calling caregivers through the institute

12

G0: home is managed for
safety of patient

G1: enforce routine exit
procedure

G3: home is protected
against robbery

1 2

G5: patient is
prevented from exiting

4
7 8

0

V.Activation_Context= 0 1 2 7 8

V.Required_Context = 4 10

V.Context = 0 1 2 7 8 4 10

0 = (wp0.1: home is lived in) (wp0.2: patient has dementia)

(wp0.3: no awaken relative) (wp0.4: no caregiver)

10=(wp10.1 : it is not night time)

In certain institute, caregivers are assigned to patients except for

night time. This implies the following contradiction: wp10.1 wp0.4

V.Activation_Context is consistent

V.Required_Context is consistent

V.Context is inconsistent

G10: calm the
patient

and

T3: lock balcony
door, windows &
main entrance T5: call caregiver

by public call

G9: notify caregiver

T7: turn on
calm music

10

make
relaxation

effects

G8: actuate the
home

Figure 8: A partial goal model variant with an inconsistent context

speakers has a negative impact on the softgoal “less
noise” at the night hours (while the impact is ignor-
able at the day hours). The negative contribution from
T5 to S G3 will be preconditioned by the context ϕx=“it
is night time”. Since T5 requires day hours time then
ϕ10 → ¬ϕx and, therefore, there will be no contribution
between T5 to S G3 and the designers could just remove
this contribution from the model.

4.2. Conflict analysis

Adaptability to context indicates that a system has a
high degree of autonomy and flexibility to chose how to
achieve users’ goals in a variety of contexts. However,
the system itself might lead to different changes over
the context as a consequence of the tasks it executes to
meet users’ goals. These changes could originate con-
flicts preventing the correct achievement of user’s goals.
Understanding conflicts is preliminary for their resolu-
tion and requires to answer questions like: (i) Why does
a conflict occur?, i.e. what are the conflicting tasks and
the goals behind them?; (ii) What is the context in which
a conflict occurs?; (iii) Is there any alternative to avoid
the conflict?; (iv) What are the core conflicts that the
system, at certain context, can not avoid?, i.e. which
conflicts are severe?

Most conflicts arise due to contradicting actions on
objects in the environment wherein the system oper-
ates [27]. In this paper, we focus on two kinds of con-
flicts:

• Conflicting changes: two or more system exe-
cutable processes (tasks in a goal model) try simul-
taneously to change the same object in the system
environment into different states. For example, the
task T8: “open windows to circulate air” and the
task T3: “lock balcony door, windows, and main
entrance to prevent patient of getting out” aim to
change an object, that is the windows, into two
contradictory states, “closed” and “open” respec-
tively. If these two tasks execute in parallel, a con-
flicting change occurs.

• Exclusive possession: two or more executable
processes need an exclusive possession of an ob-
ject in the environment. For example, both tasks
T11: “phone police” and T4: “call caregiver by
phone” need an exclusive possession of the land-
line phone in the patient’s home. If these two tasks
execute in parallel, an exclusive possession conflict
occurs.

4.2.1. Detecting conflicts
To identify the two kinds of conflicts that we have

listed, we need to enrich contextual goal models with
additional information:

• The effect of tasks execution on the system opera-
tional environment: similarly to the contradictions
between contexts, tasks can be also contradicted
in terms of inconsistent changes they cause on the

13

system environment. To infer such relations be-
tween tasks automatically, we require the designer
to specify explicitly the effect of tasks execution on
the objects in the system environment. This will
avoid the designer the time-consuming activity of
defining these relations directly over the space of
tasks of a goal model. For each object with which
the system interacts, the designer needs to define
if the execution of a task changes the state of that
object or requires exclusive possession on it. In
Table 3, we show the influence of some of tasks in
Figure 1 on the patient’s home objects.

Object States
External doors (balcony, main entrance) open, closed, locked
Windows (living room, bedroom) open, closed, locked
Lights (living room, bedroom, balcony) on, off, soft
Siren, security camera, ventilator on, off

Task Object State Exclusive
T1 Home speakers true
T5 Institute speakers true
T2 Lights on
T3 External doors locked

Windows locked
T4,T11 Landline true
T8 Windows open
T5 Institute network false

Table 3: Objects in the patient’s home, and the tasks impact on them

• The sequence/parallelism operators between tasks:
we need to specify if two tasks, in each goal model
variant, execute in parallel or in sequence. Specify-
ing this information for each pair of tasks is a time-
consuming and error-prone activity. For this rea-
son, we adopt the goal model extension proposed
in [28], where business process operators are intro-
duced to represent the process carried out to reach
goals. Out of these operators, we use the paral-
lelism (||) and sequencing (;) operators. This way,
we can infer if two tasks may execute simultane-
ously. In Figure 9, we annotate the smart-home
contextual goal model, shown in Figure 1, with
these two operators.

The algorithm reported in Figure 10 processes a con-
textual goal model and enriches its variants with infor-
mation concerning adoptability and conflicts. For each
variant (line 1), the algorithm checks the consistency of
its context (line 2), and excludes inconsistent variants
from further processing as they are unadoptable (line 3).
Each variant with consistent context is checked for con-
flicts between its tasks (lines 5-14). The set of tasks in
each variant is extracted (line 6) and partitioned based

on the parallel execution (line 10). Each partition of
tasks is checked to know if it includes tasks changing
an object in the system environment into different states
(line 11) or to exclusively posses it (line 12). Each vari-
ant is enriched with information about conflicts happen-
ing between its tasks (line 13). This algorithm detects
not only the conflicts between tasks, but also identifies
the goals behind the tasks originating the conflicts and
the context in which such conflicts happen.

We emphasize here that conflicts do not necessarily
happen in every instance of the conflicting goals. That
is, when two goals are activated simultaneously and
the variants to achieve each of them contain conflicting
tasks, this does not necessarily mean that a conflict must
occur . For example, T4= “call caregiver by phone” and
T11= “phone the police” could take place at different
moments where both goals G1= “enforce routine exit
procedure” and G7= “act against potential robbery” are
active and the tasks make part of the variants to achieve
them.

We also emphasize the role of activation contexts in
deciding what goals to achieve and thus what conflict
might occur. For example G0= “home is managed for
safety of patient” is a goal to maintain. To keep this goal
maintained, certain goals might need to be achieved and
other goals might need to be maintained as well. The de-
cision is based on the values of the activation context of
those goals. For example, to maintain G0, we may need
to achieve G1 only when the context ϕ0 and ϕ1 are true
and the contexts ϕ2 and ϕ7 and ϕ8 are false. In this case,
there will be no possibilities of having conflicts between
T4 and T11. When none of the contexts ϕ1 and ϕ2 and
ϕ7 and ϕ8 is true, then G0 does not require the system to
execute any task to maintain it satisfied. When the con-
texts ϕ0 and ϕ1 and ϕ2 are all true then there could be
a conflict between T3 and T8 in the case that these two
tasks are selected as part of achieving G1 and G2. That
is to say, the truth values of contexts decide whether to
activate certain goals and tasks and thus some variants.
A conflict potentially occurs if a variant containing two
conflicting tasks is activated and adopted.

4.2.2. Detecting core conflicts
Conflicts in one goal model variant can be resolved

by adopting another variant that is conflict-free and ap-
plicable in all the contexts where the conflicting one
is applicable. In some cases, there could be no such
conflict-free variant and a resolution has to be provided
by designers. In this section, we develop a reasoning
framework to discover when a conflict belongs to this
kind, i.e. when it is core. We first give some basic def-
initions and then devise an algorithm that processes a

14

G1: enforce routine exit
procedure

G4: patient is
alerted G5: patient is

prevented from
exiting

G10: calm the
patient

1 ||

or

G3: home is
protected against

robbery

||

G6: give Illusion of
being lived in

G7: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock balcony
door, windows &
main entrance T4: call

caregiver
by phone

G8: actuate the
home G9: notify caregiver

T7: turn on
calm music

T5: call caregiver by
public call

T10: turn on/off
light iteratively

police is notified

G11: prevent robber
from entering

G12: assistance
comes

T14: lock
doors

||

||

T11: phone
police

T12: turn all
lights on

||
T13: turn on

security cameras

G0: home is managed
for safety of patient

G2: refresh air inside
home

2

T8:open
windows

T9: turn on air
ventilator

5

3

87

9 10

T6: give warm
light color

make
relaxation

effects

or

4

12

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11

--

6

5

0

Neighbor
Smart
home

13

Patient
Caregiving

System

SG3: less noise

--+

G13: police
comes G14: a neighbor

comes

or

Figure 9: Goal model annotated with parallelism (||) and sequence (;) operators

Input: S : the set of all goal model variants; E: the set of environment objects
Output: S enriched by adoptability and conflicts information

1: for all V ∈ S do
2: if CheckS AT (V.context) = ⊥ then
3: V.adoptability := ⊥
4: else
5: V.adoptability := >
6: T := V.tasks
7: V.con f licts := ∅
8: while |T | > 1 do
9: ti := pop element(T)

10: Tti‖ := {t j : t j ∈ T ∧ parallel(ti, t j)}
11: Tti‖con f licting changes := {〈ti, t j, o, ti.o.state, t j.o.state〉 : t j ∈ Tti‖ ∧ o ∈ E ∧ ti.o.state , t j.o.state}
12: Tti‖exclusive possession := {〈ti, t j, o, “exclusive′′〉 : t j ∈ Tti‖ ∧ o ∈ E ∧ ti.o.exclusive ∧ t j.o.exclusive}
13: V.con f licts := V.con f licts ∪ Tti‖con f licting changes ∪

Tti‖exclusive possession

14: end while
15: end if
16: end for
17: return S

Figure 10: Detecting conflicts in contextual goal models

contextual goal model to detect core conflicts.

Definition 5 (Core variant). A variant Vi with a con-
text specified by a formula ϕi is core iff ϕi is consistent
and @ variant V j with a context specified by a consistent
formula ϕ j: (ϕi → ϕ j) ∧ ¬(ϕ j → ϕi).

This definition says that any variant that is non-core
has a set of core variants applicable in all contexts where
it is applicable, but not vice-versa. However, non-core
variants are not to be discarded: in certain contexts they
might assure better quality than core ones. The core
variants are grouped, on the basis of the equivalence of

15

their contexts, in core groups of variants.

Definition 6 (Core groups set). A core groups set is a
set of core variants partitioned on the basis of context
equivalence.

Definition 7 (Core group of variants). A core group
of variants is an element of a core groups set.

Example 5. In Figure 11, we show two partial goal
model variants {V1,V2}. These two variants are two
alternatives to satisfy goal G5, each in a specific con-
text. The contexts of these two model variants are con-
sistent and V1.context → V2.context ∧ ¬(V2.context →
V1.context). This means that V1 is non-core since there
is variant V2 that can replace V1 in all the contexts
where V1 is applicable.

Having a conflict-free variant in a core group of vari-
ants means that any conflict in the other variants in the
same group is non-core. If all the variants in a core
group of variants have conflicts, then we face a core
conflict and a resolution has to be crucially provided for
one, at least, of the variants in that group.

Definition 8 (Conflicting core group of variants). A
conflicting core group of variants is a core group of
variants that does not include any conflict-free variant.

The algorithm reported in Figure 12 returns the core
groups of variants in conflict from a contextual goal
model. It calls the algorithm shown in Figure 10 to
enrich each variant with information about adoptability
and conflicts (line 1). The algorithm excludes unadopt-
able variants, i.e., variants with inconsistent contexts,
as they are obviously non-core (line 2). Then, the core
groups of variants are identified (lines 4-11). To this
end, the algorithm partitions the set of variants based
on context equivalence (line 6). The algorithm Check-
SAT, shown in Figure 5, can be used to check the equiv-
alence between boolean formulae expressing contexts.
Given the logical relations (implications) (ξ) between
the variables of two formulae ϕ1 and ϕ2 then ϕ1 → ϕ2
iff ¬(ϕ1 → ϕ2) is inconsistent under the assumptions ξ.
Then the algorithm checks if each group is core (line
8) and keeps it for further processing if it is like that
(line 9). The algorithm then checks each core group of
variants to decide if it contains at least one conflict-free
variant. If this occurred, then the group is not conflict-
ing and it is excluded from the output set (line 12–16).

Example 6. As shown in Figure 13, the assumption is
that the subgoals of the root goal “home is managed

for patient safety” are not dependent on each other and
may need to be reached in parallel when their corre-
sponding contexts hold (notice the notation ‖). The vari-
ant V1 includes a conflict between tasks T3 and T8 for
the environment object “windows”. Each task changes
the state of this object differently, as specified in Table 3.
Variant V2 can replace V1 in all of its contexts since
V1.context → V2.context, which means that V1 and its
conflict are non-core. An example of a core conflict is
that occurring in V3 because of the exclusive use of the
environment object “phone” between the two tasks T4
and T11 and the absence of variants that are adoptable
whenever V3 is adoptable and that are conflict free.

5. Automated Support Tool

To support the analysis mechanisms proposed in Sec-
tion 4, we have developed a prototype automated tool
called RE-Context. This tool takes as input a contex-
tual goal model expressed as an input file for DLV2, a
disjunctive Datalog [29] implementation. The tool has
been developed to demonstrate the usefulness of our
reasoning techniques when applied in practice. Cur-
rently, we do not provide a graphical goal modelling
editor and automated translation to the DLV input for-
mat. We also remind the reader that the first version of
the tool was proposed in our previous work [21]. That
versions implemented to two analyses proposed in that
work as we already mentioned in Section 2.

Figure 14 (a) shows a sample contextual goal model;
part (b) represents its translation to the DLV input for-
mat. The top-level goal G1 is AND-decomposed to G2,
G3 and G4, and the decomposition to G2 is subject to the
context ϕ1. The mapping is shown in the first four lines
of code: whenever G1 has to be achieved (the predi-
cate ach is used for non-leaf-level goal achievement):
(i) either G2 should be achieved or context ϕ1 should not
hold; (ii) if G2 should be achieved, then ϕ1 should hold;
(iii) if G1 should be achieved, then the leaf-level goals
G3 and G4 have to be done (the predicate todo is used for
leaf-level goals achievement). The OR-decomposition
from G2 to G5 and G6 is shown in lines 5-7. If G2 has to
be achieved, then either G5 or G6 should be done. If G5
is chosen, then context ϕ2 should hold; if G6 is chosen,
then context ϕ3 should hold. The last line states that
goal G1 is an active requirement.

The first task of our tool is to derive all variants, and
what RE-context does is to run the DLV reasoner using

2http://www.dbai.tuwien.ac.at/research/project/dlv/

16

G5: patient is prevented
from exiting

G10: calm the
patient

T3: lock balcony door,
windows & main

entrance

T4: call
caregiver by

phone

G8: actuate the
home

G9: notify
caregiver

9

T6: give warm
light color

manage light
and music

11

..

and

V1.context= 9 11 V2.context= 9

G5: patient is prevented from
exiting

G10: calm the
patient

T3: lock balcony door,
windows & main

entrance

T4: call
caregiver by

phone

G8: actuate the
home

G9: notify
caregiver

9

T7: turn on
calm music

manage light
and music

..

and

Figure 11: An example of a non-core variant: V1 is non-core as V1.Context→ V2.Context

Input: S : all goal model variants set
Output: S ′′:the set of all core groups of variants with conflict

1: S ′ := Detect Con f lict(S)
2: S ′ := S ′ \ {V ∈ S : V.adoptability = ⊥}

3: S ′′ := ∅
4: while |S ′| > 0 do
5: V := pop element(S ′)
6: temp := {V} ∪ {V ′ ∈ S ′ : CheckS AT (¬(V.context ↔ V ′.context)) = ⊥}

{i.e. Check if V.context↔ V’.context}
7: S ′ := S ′ \ temp
8: if @ V ′ ∈ S ′ : V.context → V ′.context then
9: S ′′ := S ′′ ∪ {temp}

10: end if
11: end while
12: for all U ∈ S ′′ do
13: if ∃V ∈ U : V.con f licts = ∅ then
14: S ′′ := S ′′ \ U
15: end if
16: end for
17: return S ′′

Figure 12: Extracting the conflicting core groups of variants

it as a planner on the goal model: the output consists
of all the valid models that satisfy the rules in the input
file, i.e. the goal model variants. In particular, we are
interested in the set of tasks to be carried out (the todo
predicates) and the contexts that should (not) hold (the
phi predicates).

The next step is to check context consistency for each
variant, which corresponds to run the CheckSAT algo-
rithm described in Figure 5. To verify the consistency of
a context, RE-Context uses an external tool (MathSAT3)
that is based on MiniSat SAT solver4. In order to carry

3http://mathsat4.disi.unitn.it
4http://minisat.se/

out this step, RE-Context loads the definition of contexts
from a separate file (contexts.msat), which contains the
representation of all contexts as boolean formulas ex-
pressed over a set of variables. The relations between
contexts/variables are defined in another MathSAT in-
put file called relations.msat. In order to check an incon-
sistency, RE-Context takes the contexts that refer to the
analysed variants from contexts.msat and merges these
formulas with the relations between contexts, then runs
the SAT solver to determine the formulae consistency.

The inconsistency of individual contexts at variation
points is, obviously, a modelling error to be fixed and
not subject to design decisions. RE-Context checks
each individual context for inconsistency and alerts the

17

T8:open
windows

5

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1

T3: lock balcony
door, windows &
main entrance

G8: actuate the
home

G0: home is managed
for safety of patient

G2: refresh air
inside home

T9: turn on air
ventilator

2

4

0

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1

G3: protect home
against robbery

G7: act against
potential robbery

T4: call
caregiver
by phone

G9: notify caregiver

police is notified

G12: request
assistance

T11: phone
police

and

G0: home is managed
for safety of patient

8

9

4

0

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1

T3: lock balcony
door, windows &
main entrance

G8: actuate the
home

G0: home is managed
for safety of patient

G2: refresh air
inside home

2

4

0

.

...

.

.

.

Variant V1 Variant V2 Variant V3

.

|| ||
||

Figure 13: Non-core variant with conflict (V1), its conflict-free alternative (V2), and variant with core conflict (V3)

G1

1 and

G2 G3 G4

G5 G6

or2 3
1= (a b) c
2= d e
3= f

1 ach(g2) v -phi(1) :- ach(g1).
2 phi(1) :- ach(g2).
3 todo(g3) :- ach(g1).
4 todo(g4) :- ach(g1).
5 todo(g5) v todo(g6) :- ach(g2).
6 phi(2) :- todo(g5).
7 phi(3) :- todo(g6).
8 ach(g1).

(a) (b)

Figure 14: Sample goal model (a) and its representation as an DLV input file

analyst when it is inconsistent. As explained in Sec-
tion 4.1, fixing or accepting inconsistencies of the ac-
cumulative contexts of goal model variants is a design
decision. To minimize interaction with the analysts, this
activity propagates a design decision for one variant to
the others when possible. If an inconsistency in one ac-
cumulative context is discovered, RE-Context asks the
analyst to fix or accept it showing the variant, the con-
text, and the contradictions. If the inconsistency is ac-
cepted, RE-Context scans the rest of the variants and
marks the inconsistency of those containing the pro-
cessed one (i.e. containment of tasks) as accepted. In
order to further minimize the interaction with analysts,
variants with less tasks are examined first.

The third phase consists of identifying conflicts in
variants. In order to achieve this result, we need to ex-
press information concerning resources. Code 1 shows
how we express that a task changes a resource (lines 1-
3) and that a task requires a resource (lines 4-6).

Line 1 declares r1 as a resource; line 2-3 say that
task G6 (G4) changes G1 to value1 (value2). Line 4

Code 1 Expressing the link between tasks and resources
1 resource(r1).
2 changes(g6,r1,value1).
3 changes(g4,r1,value2).
4 exclusiveUsage(r1).
5 requires(g4,r1).
6 requires(g3,r1).

states that r1 requires exclusive usage; lines 5-6 say
that task G4 (G3) requires resource r1. In our exam-
ple, a variant containing both G6 and G4 would imply
a conflicting change, whereas a variant with both G3
and G4 would entail an exclusive usage conflict. More-
over, we also need to express information about the se-
quentiality of tasks and goals: conflicts concerning re-
sources exist only in case of tasks executing in parallel.
In our formalization, we make usage of the parallel

and sequence predicates in the DLV input file. The se-
quentiality predicates are then propagated top-down in
the goal trees, in order to identify which tasks should be
executed in sequence and which have to be executed in
parallel. If the code in Code 1 included the predicate

18

sequence(g4,g3), there would not be the exclusive
usage conflict for resource r1. The last step our tool
currently supports is the discovery of core conflicts. In
order to carry out this analysis, we implemented in RE-
Context the algorithm of Figure 12.

6. A Systematic Modelling and Analysis Process

In this section, we propose a systematic process for
constructing and analysing a contextual goal model.
The overall picture is depicted in the activity diagram
in Figure 15. Four macro-activities are identified: goal
analysis, context analysis, reasoning about contextual
goal models, and identifying monitoring requirements.
We emphasize here that the activities “Context consis-
tency” and “Conflict detection” concerns the automated
analysis and the extension to RE-Context tool proposed
in this paper. The activities of “Minimal-cost analy-
sis” and “Contextual goal model validation” concern the
automated analysis and the first version of RE-Context
proposed in [21]. The other activities are modelling
activities meant as guidelines for the analyst on how to
model contextual goal models and data to capture and
monitoring infrastructure to deploy.

1. Goal analysis: the high level goals need to be
elicited and analysed. Goals can be iteratively
identified through scenarios [30, 31]. Moreover,
an intentional variability taxonomy [32] can guide
variability acquisition when refining a goal/task to
discover alternative ways of reaching/executing it.
Each refinement step is followed by a context anal-
ysis.

2. Context analysis: it weaves goal modelling with
context, so that to link the requirements, at the goal
level, to the context in which they are activated and
adoptable. Context analysis is composed of three
sub-activities:

(a) Contextual variation points identification:
for each variation point in the goal model, a
decision has to be taken on whether context
plays a role in the selection of variants at that
point. In other words, the analyst has to de-
cide if a variation point is contextual or not.
When a contextual variation point is identi-
fied, a high level description of the correspon-
dent context has to be made. As a result of
this activity, the contextual variation points at
the goal model are annotated as shown in Fig-
ure 1 and the contexts associated with them
are described as shown in Table 2

(b) Context refinement: the contexts at each con-
textual variation point are analysed. The
analysis aims at identifying how contexts can
be verified. In other words, it is to define
the facts of the environment the system has
to capture and the way these facts are com-
posed to judge if an analysed context holds
(as shown in Figure 2). Moreover, the ana-
lyst has to deal with different views of differ-
ent stakeholders about the analysed contexts.
Stakeholders may define context differently,
and even in contradictory ways. In case of in-
consistency between stakeholders on context
refinement, the analyst has to reconcile their
viewpoints through a consensus session.

(c) Specifying logical relations between con-
texts: after the refinement of each context, the
logical relations (implications and contradic-
tions) between it and the previously refined
contexts need to be specified. These relations
are essential for the forthcoming reasoning
about contextual goal models. In some cases,
defining these relations at the level of con-
text analysis is possible, i.e. defining that the
context C1 at the variation point VP1 is con-
tradicted with C2 at VP2, as we could do in
our case study. For larger contexts, we may
need to specify these relations at a more fine-
grained level (e.g. between facts).

3. Reasoning about contextual goal models: this
activity is supported by our automated reasoning
tool RE-Context. The tool enables different rea-
soning on contextual goal models. It analyzes
a contextual goal model in order to detect in-
consistencies in contexts specified on it and po-
tential conflicts among its executable processes
(tasks). Moreover, it is possible to check whether
the model reflects stakeholders’ requirements. To
this end, this reasoning derives and shows to stake-
holders the goal model variants that reflect a given
context and user priorities. Three kinds of reason-
ing can be performed:

(a) Reasoning about context consistency: this
reasoning checks if a context can eventually
hold. First, it has to be done for the con-
texts defined at each variation point. If a con-
text of this kind is inconsistent, the analyst
must either fix the inconsistency or remove
the context and mark the variation point as
context-independent. The inconsistency of
accumulative contexts of goal model variants

19

Figure 15: The modelling and analysis process for contextual goal modelling

are subject to design decisions as explained
in Section 4.1. When an inconsistency in this
kind of context is discovered, the tool asks
the analyst to decide whether to fix the in-
consistency or accept it and therefore exclude
the correspondent goal model variant. When
an inconsistency in one goal model variant is
accepted, the tool (RE-Context) excludes the
rest of variants that include the one being ex-
amined and marks their inconsistency as ac-
cepted as well.

(b) Reasoning about conflicts: to enable the au-
tomated discovery of conflicts in a contex-
tual goal model, the analyst has to enrich the
model with further information. This infor-
mation includes: (i) the objects in the sys-
tem environment and the impact of the ex-
ecution of goal model tasks on them, and
(ii) the sequence/parallel operators between
goals/tasks in AND-decompositions. Adding
this information, RE-Context is able to de-
tect conflicts and classify them into two cate-
gories: core and non-core. The analyst needs
to resolve core conflicts crucially as this kind
of conflicts leads to situations where there is

no way to meet some requirements.
(c) Minimal-cost analysis: a goal model incor-

porates a space of alternative behaviours (al-
ternative sets of tasks) to reach a goal. The
implementation of all these tasks may be im-
practical due to the time and costs required
for that. In [21], we proposed an automated
analysis that elects the set of tasks which re-
quires the minimum-cost set of resources to
implement and which enables at least one
way to reach all goals in all the analysed con-
texts. This activity can use our RE-Context
tool to derive this set of tasks. The reasoning
is implemented in the version of RE-Context
proposed in [21].

(d) Validating contextual goal models: this rea-
soning is to ensure that the contextual goal
model reflects stakeholders’ expectation of
the system in different contexts and in com-
pliance with their priorities. To this end, the
analyst can ask stakeholders to specify a con-
text and then show them the correspondent
goal model variants. Alternatively, the an-
alyst may ask stakeholder to specify a vari-
ant for a given context and compare it with

20

the ones obtained by our automated analysis.
This test might be done for the whole goal
model or parts of it. Moreover, user prioriti-
zation might be considered to select between
goal model variants when more than one is
adoptable in a given context. User prioriti-
zation can be specified over softgoals as pro-
posed in [33, 34, 21]. The version of RE-
Context which we proposed in [21] already
supports the activity of deriving goal model
variants for a given context and prioritization.

4. Identifying monitoring requirements: after con-
text analysis and reasoning, the analyst can identify
the monitoring requirements. Monitoring require-
ments are fundamental to develop systems adaptive
to context. We identify these requirements in terms
of the data to collect from the system environment
and the equipments needed to collect them.

(a) Identifying the data to collect: by analysing
the facts obtained by context analysis, the an-
alyst can identify the data needed to verify
them as shown in Fig 3. We suggest to keep
track of the relation between each facts and
the fragment of the data conceptual model
needed to verify it. This link is important
to promote re-usability and modifiability of
the contextual goal model. In case a part of
the context refinement is reused/modified, we
will be able to identify which fragments of
the data model are to be reused/modified. Al-
though we have used class diagrams to rep-
resent the data conceptual model, more spe-
cific models can be exploited. Several models
have been proposed to represent the data to
monitor in context-aware systems (e.g. [35,
36, 37]).

(b) Identifying the monitoring equipments: for
systems operating in and reflecting varying
context it is important to specify the equip-
ments to install and to use in order to en-
able data collection. This activity defines the
equipments needed to capture the data identi-
fied in the previous activity. For example, the
analyst needs to specify the kinds of sensors
to use, the topology of sensor distribution,
the interval of data sensing, and so on. To
achieve such specification, expertise in new
technology is needed. In Table 2, we have
given a brief description of the equipments
needed for each of the contexts at the goal
model. This specification becomes more ac-
curate after knowing the data to monitor in

the environment, i.e, after the previous activ-
ity.

RE-Context supports the activity “reasoning about
contextual goal model”. This activity requires the an-
alyst to provide manually some input, namely the rela-
tion between contexts and the influence of tasks on the
environment objects. RE-Context tool can be used iter-
atively in order to minimize the involvement of the ana-
lysts in specifying the contextual goal model and allow
the automated reasoning. We here list two guidelines of
such a usage:

• Upon refinement. After each refinement of the goal
model, i.e., a step down in the hierarchy, the an-
alyst should define the new context relations and
the influences on the environment objects if appli-
cable. After doing so, the RE-Context can be run
to detect if a conflict and/or inconsistency are in
the current version of the model. This will help us
fixing modelling error at an earlier step of the mod-
elling and enables us to minimize the size of input
the engineer has to provide which does not lead to
different results. If the partial goal model is incon-
sistent or having conflicts then the complete one
will still have that. The iterative checking after re-
finement enables us to fix the problems where and
once they emerge and thus minimize the analyst’s
effort and time.

• Upon relation specification. After each specifica-
tion of a relation between contexts or the influence
of tasks on the environment objects, the designer
can run the RE-Context tool. That is because, a
newly specified relation or influence can lead to re-
move a variant of the goal model or marking it as
conflicting. Thus, defining new relations and influ-
ences in that variant will not change the decision
about it and the designer will be relieved of defin-
ing useless new relations.

7. Evaluation

We evaluate our analysis framework by applying it
on a case study concerning a smart-home for supporting
the life of patients with dementia. We want to assess
whether our new analysis mechanisms support consis-
tency and conflicts checking of contextual requirements
expressed via contextual goal models. To this end, we
address the following evaluation questions:
Q1. Are our automated analysis techniques able to
identify inconsistencies and conflicts which are not no-
table by the requirements engineers?

21

This question is concerned with the usefulness and
efficacy of our automated analysis, implemented in RE-
Context, as a designer-support tool, i.e., if it is capable
to identify non-trivial inconsistencies and conflicts in a
contextual goal model.
Q2. Is the modelling extension required by our analy-
sis framework understandable by the requirements en-
gineers and does it require them much time to capture?

We want to get feedback from requirements engi-
neers about the modelling extension to contextual goal
models which we proposed in this paper. This exten-
sion consists of the relations between contexts, the in-
fluence of goal model tasks on the environment objects,
the specification of sequence and parallel operators on
goal model. We are also interested in the overhead—in
terms of time—this extension puts on the engineers.
Q3. Does our automated analysis scale well in terms of
reasoning time?

We need to investigate how our automated analysis
scales when processing contextual goal models of dif-
ferent sizes. This affects how practical our analysis is in
terms of time complexity.

7.1. Study settings

In order to answer our evaluation questions, we in-
volved five requirements engineering researchers in the
modelling of contextual goal models and in the inter-
view we did afterwards. Figure 16 illustrates the work-
flow of our case study. The subjects are academics
working at the Department of Information Engineering
and Computer Science of University of Trento: three
are junior researchers (Ph.D. students), two are senior
researchers (one post-doc and one professor). We chose
subjects having no prior expertise with our proposed
analysis framework. All the subjects have research
expertise in requirements engineering and are familiar
with goal modelling.

Concerning the object of the study, we focussed on a
scenario taken from a research project the subjects were
already involved in. The project involves a direct inter-
action with industrial partners with whom the subjects
interacted heavily. This means that all subjects have
comparable level of expertise in the topic. The scenario
is about a smart-home which is autonomously able to
support the life of old people who suffer from demen-
tia problems. It is taken from the EU-funded project
Serenity5, a consortium of both academic and industrial
partners.

5http://www.serenity-project.org/

After choosing and inviting the subjects to partici-
pate in the case study, the process proceeded as follows.
First, a domain expert with a practical experience in the
health-care system has explained in details the scenario
to all of the participants and answered their questions.
Moreover, a video demo has been shown to the partici-
pants to describe an example of the desired behaviour of
the smart home. This phase took us one hour. Second,
we gave a one-hour presentation about our modelling
and analysis framework. We briefly explained Tropos
goal modelling as the subjects are already familiar with
(10 minutes), then we explained the variation points on
goal model where context can be specified (15 min-
utes), then we explained conflicts and inconsistencies
in contextual goal model and gave examples about that
(20 minutes) and, in the rest of the hour, we explained
what modelling extension is needed to enable the au-
tomated detection of inconsistencies and conflicts. Af-
ter that, we asked the subjects to practice our modelling
framework and answered their questions which emerged
while practising it. This lasted for an hour and half.

After a break, the participants were asked to cap-
ture the smart-home requirements using contextual goal
models and define the input needed for the automated
analysis. We asked the participants to ensure that the
final model does not have harmful inconsistencies and
conflicts. The reason is that we need to see if our analy-
sis framework is helpful in detecting cases which were
not recognized by the requirements engineers. This task
took the participants three hours to accomplish. After
that, we have formalized the model which was deliv-
ered to us by the participants and applied our analysis
framework to detect and deal with inconsistencies and
conflicts. The formalization took us 3 hours,

The day after, we showed the participants the results
obtained by applying our automated analysis and got
their confirmation that the detected cases are indeed
harmful inconsistencies and conflicts. We have con-
ducted a semi-structured interview in which we asked
the subjects to answer our questions in a written way
and then we had an individual meeting with each of
them to clarify the answers. The goal was to gain their
feedback about the extension to contextual goal models
which is required to accomplish our automated analy-
sis implemented in the RE-Context tool. We asked the
subjects to write their answers after they tried to model
the requirements of smart home using contextual goal
model. The face-to-face interview with each participant
took around 25 minutes. The interview form consisted
of the following questions:

1. How would you evaluate the ease-of-

22

A domain expert

explains the smart

home scenario

[1 hour]

Subjects draw a

contextual goal model

& extension [3 hours]

Choosing

and inviting

the subjects

Authors explain the proposed framework to subjects

Tropos goal

modelling

[10 min]

Variation

points +

Context

[15 min]

Conflicts +

Inconsistency

[20 min]

Modelling

extension

[15 min]

Authors formalize the model

and apply the automated

analysis [3 hours]

Authors interview

subjects

[5 * 25 = 125 min]

Authors test

scalability

Discussion

+ Practice

[1.5 hour]

Figure 16: The evaluation workflow

understanding of our extension to the contextual
goal model? [1: very difficult, . . ., 5: very easy]

2. How difficult is it to specify the effects of goal
model tasks on the systems environment objects?
[1: very difficult, . . ., 5: very easy]

3. How difficult is it to specify the sequence and par-
allel operators? [1: very difficult, . . ., 5: very easy]

4. How difficult is it to specify the relationships be-
tween contexts? [1: very difficult, . . ., 5: very easy]

5. Do you have any concerns and suggestions to im-
prove our framework?

Finally, we conducted a scalability analysis. We
took chunks of the goal model provided by the partic-
ipants and artificially constructed goal models of dif-
ferent sizes by cloning these chunks (following an ap-
proach similar to that proposed in [38]).

7.2. Study results

In the following we try to answer the three questions
we raised in the beginning of this section. To answer
Q1, we discuss the results of applying our automated
analysis, implemented in RE-Context tool, on the model
developed by the subjects. To answer Q2, we discuss
the results of interviewing the subjects. Finally, and to
answer Q3, we present and discuss our scalability test
where we applied our automated analysis on goal mod-
els of different sizes.

7.2.1. Answering Q1
Q1 stands for the usefulness of our proposed auto-

mated analysis in detecting conflicts and inconsisten-
cies which are not notable by requirements engineers.
Table 4 summarizes the results concerning the contex-
tual goal model constructed by the participants and the
results of applying our automated analysis on it. The
goal model size is described in terms of the number of

actors (A), goals (G), tasks (T), softgoals (SG), varia-
tion points (VP), and variants (V). The next columns
relates to the results of applying the automated analy-
sis. First, we report the results of inconsistency anal-
ysis: how many times we have been asked to fix or
accept an inconsistency (Iterations), how many times
we needed to fix inconsistency and considered it unac-
ceptable (Fixed), and how many variants with accept-
ably inconsistent contexts were left without fixing and
removed from the model (VwAccInc). After inconsis-
tency checking, the tool processes the variants with con-
sistent contexts to detect conflicts. We present the num-
ber of detected conflicts (C), the number of variants with
conflicts (VwC), the number of non core variants which
always have replacement variants (NonCV), the num-
ber of core groups of variants (CGV), and the number
of conflicting core groups of variants(CCGV).

As the table indicates, our proposed automated analy-
sis detected considerable amount of inconsistencies and
conflicts which have not been recognized by the partic-
ipants who developed the model. The number of in-
consistencies which were detected was 27. This corre-
sponds to the number of iterations where the automated
analysis asked us to decide whether to accept or fix an
inconsistency. Out of this, we needed to fix 3 cases
which indicated harmful inconsistency. Moreover, the
automated analysis detected 29 conflicts between tasks.
A conflict emerges when two tasks executes in parallel
and each requires an exclusive possession of an object
in the system environment or changing it to different
states. These conflicts caused 184 core groups of variant
to be conflicting out of the total number core group of
variants which is 192. In these conflicting core groups
of variants, the system is unable to resolve the conflicts
by switching to a conflict free variant. These results,
considering the fact that we asked the participants to
ensure that the model is free of harmful inconsistencies
and conflicts and the fact that they confirmed that the

23

Goal Model Size Context Inconsistency Conflicts
A G T SG VP V Iterations Fixed VwAccInc C VwC NonCV CGV CCGV
5 35 50 5 25 25560 27 3 11556 29 13789 1908 192 184

Legend:
A: nr. actors Fixed: nr. times the inconsistency was fixed
G: nr. goals VwAccInc: nr. variants with accepted inconsistency
T: nr. tasks NonCV: nr. non-core variants
SG: nr. softgoals C: nr. conflicts
VP: nr. variation points VwC: nr. variants with conflicts
V: nr. variants CGV: nr. core groups of variants
Iterations: nr. iterations to fix/accept context inconsistency CCGV: nr. conflicting core groups of variants

Table 4: The results of applying our automated analysis on the contextual goal model of smart-home scenario

detected cases are true during the interview, answer our
question Q1. That is, our automated analysis discovers
harmful inconsistencies and conflicts which are not rec-
ognizable by the requirements engineers who develops
a contextual goal model.

7.2.2. Answering Q2
Now we discuss the interviews which we made with

the participants to answer our question Q2. Concerning
the easiness to understand, all the participants agreed
that the modelling extension is easy to understand and
quite intuitive (three subjects gave 4 and two gave 5).
Concerning the easiness to specify and the time required
for that, the participants found that specifying the influ-
ence of tasks on the environment objects is easy (four
subjects gave 4 and one subject gave 5) and that specify-
ing the sequence and parallel parameters is also straight-
forward and does not require much time (three subjects
gave 5 and two gave 4). However, they all agreed that
specifying of the relations between contexts is not an
easy task and is a time consuming one as it requires a
high number of comparisons between contexts and their
combinations (three subjects gave 2, two subjects gave
1). Therefore, two of the modelling extensions were
found easy to understand and also easy to capture and
one extension was found easy to understand but hard
and time-consuming to capture. Indeed, these answers
were not surprising and we anticipated that based on the
observation we made while the subjects were doing the
modelling activity.

Here we summarize the main concerns and concerns
suggestions raised by the participants when answering
the third question of the interview:

• The specification of the relations between contexts
shall be supported by an automated tool. It is time-
consuming and could be incomplete (5 subjects).

• For complex contexts, there could be a disagree-
ment (viewpoints) regarding the way to refine con-
text. This, consequently, affects the definition of
the relations between contexts and, thus, limits the
discovery of inconsistency and conflict cases. We
still need to develop a systematic management of
such disagreement via techniques like voting or do-
main expert consultation (3 subjects).

• The usage of temporal relations between contexts
is important as this would help to discover more
inconsistencies and conflicts (2 subjects).

• A richer ontology of the effect of tasks on the envi-
ronment objects would help for a broader discov-
ery of conflicts. For example, the effect of a task
on an object may be indirect as it can result from
its effect on another object (2 subjects).

7.2.3. Answering Q3
To answer Q3, which concerns the scalability of our

proposed automated analysis, implemented in our RE-
Context tool, we executed it on a varying sizes of goal
model. We ran our tool RE-Context on a machine with
two CPUs AMD Athlon(tm) 64 X2 Dual Core Processor
5000+ and 4 GB of RAM. Figure 17 reports the results
of the performance analysis with respect to the time
needed (in milliseconds) to perform reasoning. The first
two columns represent the size of the goal model as
number of nodes (goals and tasks) and number of vari-
ants; then, the table reports the time needed to derive
all variants (T Deriv), to identify inconsistency (T Inc),
to get the core groups of variants (T CGV). The time to
compute the core groups of variant with conflicts is neg-
ligible in comparison to T CGV. RE-Context scales well
for medium-size goal models, e.g. it took us 30 minutes
to process the goal model developed by the participants

24

Size of goal model T_Derive T_Inc T_CGV

NN NV

18 3 62 3 5

30 12 79 18 10

42 108 273 53 288

49 540 582 195 3826

64 2565 1224 1351 23076

79 4275 2484 2009 59221

90 15300 7553 3926 100339

90 25560 10424 12006 1819126

150 104976 21861 63868 2348941

Legend

NN: the number of nodes in the processed model.

NV: the number of variants in the processed model.

T_Derive: time to derive all variants (in ms).

T_Inc: time to get all variants with inconsistent context.

T_CGV: time to get the core groups of variants.

Figure 17: Scalability of our automated analysis implemented in RE-Context tool: tabular and graphical representations

in our study which contained 90 nodes and 25,560 vari-
ants.

To obtain goal models of different sizes, we adopted
an approach similar to the one used in [38]: we cloned
the original goal model that was delivered by the par-
ticipants in our study. RE-Context needed 40 minutes
for a goal model of 100,000 variants. As shown in Fig-
ure 17, the derivation of goal model variants and the in-
consistency check scale quite well, whereas the identi-
fication of core groups of variants has scalability limita-
tions for large-scale goal models. The number of nodes
is not a critical factor for scalability, whereas the num-
ber of variants and the relations between contexts are
critical. Since our framework applies at design-time,
we can conclude that the tool is adequate till medium-
sized goal models. However, we still need to optimize
our algorithm to make reasoning with larger goal mod-
els faster. Thus, as an answer to Q3, our scalability test-
ing indicates that our automated analysis scales well for
small- and medium-sized goal models, such as the one
developed or our smart-home scenario, while it needs
further optimization to deal with goal models of large
size.

To improve scalability, we might benefit from two
techniques. The first is the iterative check of the model
during construction. We can analyse consistency and
conflicts while constructing the goal model instead of
treating the entire final goal model at once. This way,
problems are identified as soon as they arise and can
fixed immediately. The second is by using divide-and-
conquer techniques. Computing the core groups of vari-
ants could be complex due to the high number of invok-

ing SAT solver. A way to reduce this complexity, is by
dividing the model into parts, reasoning about each part
separately, and then combining the results. For exam-
ple, for an AND-decomposed goal, we can compute the
core groups of variants of each subgoal and then com-
bine the results by Cartesian product.

7.3. Threats to validity
We discuss the main threats to validity related to our

evaluation. As suggested by relevant literature in em-
pirical software engineering [39, 40, 41], we distin-
guish between internal, external, reliability and con-
struct threats. We could identify threats related of the
first three kinds and we summarize that in Table 5.

The first internal threat to validity (Th1) relates to the
fact that it was difficult for us to isolate issues related to
goal modelling from those related to the extensions in-
troduced in this paper. For example, the specification of
the relation between contexts relies on the understand-
ability of the goal model and its relationship with con-
text as well. We assumed that all participants were fa-
miliar with goal modelling and focused their effort and
comments on the extension itself.

The second internal threat to validity (Th2) relates to
the fact that the participants in the study are academic
researchers who have already good expertise in require-
ments engineering and particularly the use of goal mod-
els. Moreover, they are familiar with the smart-home
system as they all working on and EU project which
uses it as a case study. We needed to train the partici-
pants on only an extension to the goal model (the con-
text and the analysis input) which was easily understood
and applied. However, communicating the principles

25

Id Type Related to Short description
Th1 Internal Q2 Difficulty in assessing if issues relate to goal modelling or to our extensions
Th2 Internal Q2 Participants in the study are researchers with good expertise in goal modelling
Th3 Internal Q1, Q2 Participants were aware of the purpose of the study
Th4 External Q1, Q2 Generalizability to different application domains is limited
Th5 External Q2, Q3 The medium-size scenario used in the case study does not reveal all limitations
Th6 External Q1 Our analysis detects limited kinds of conflicts and inconsistencies
Th7 Reliability Q3 Scalability of automated reasoning assessed on a single domain
Th8 Reliability Q2 Participants carried out only one modelling activity, no re-testing

Table 5: Threats to validity related to our evaluation

and guidelines to novice practitioners might raise other
concerns and limitations related to the understandabil-
ity and the acceptability of our entire modelling frame-
work.

The third threat affects internal validity (Th3), as it
relates to the fact that the participants were aware of
the overall purpose of the study. This would influence
(bias) their specification of the models and the analysis
input. We had to explain the purpose to the participants
as a preliminary step to ask them to specify the relations
between contexts and the objects affected by each task.
Future work includes conducting studies in real-world
settings where participants focus on the modelling and
rely on the tool interactively to detect errors.

The fourth threat affects external validity (Th4), as
it concerns the generalizability of our modelling and
analysis to other applications domains. Indeed, we
conducted our study on a single application domain
which exhibits a clear and visible interaction (sensing
and actuation) with the physical tangible environment
surrounding it. Our modelling framework allows to
specify such tangible and visible context and the ef-
fect of requirements on tangible objects in the environ-
ment. However, in other application areas, such as con-
textual communication and contextual search engines,
this might not be the case. In such domains, context
concerns a less visible world and thus the specification
of contextual requirements might be problematic and
the consistency and conflict check will be consequently
error-prone. We still need to adjust, and probably ex-
tend, our modelling and reasoning framework to fit a
range of applications domains where the nature of re-
quirements and context is different.

A second threat to external validity (Th5) concerns
the medium size of our used scenario. This has several
implications on the feasibility of specifying contextual
requirements. As we mention in the paper, the specifi-
cation of the relations between context is still not sup-
ported by automated means which would predict cer-

tain relations and infer some other relations from the
already defined ones. Defining these relations for the
goal model from the size of this study (shown above)
was reasonably hard task and did not require extremely
long time. However, more complex models may result
in incomplete and/or inconsistent specifications of con-
texts and their relations. This leads to incomplete and/or
incomplete analysis of consistency and conflicts.

Another threat to external validity (Th6) concerns
the expressiveness of our adopted model, the contex-
tual goal model. Our context analysis allows captur-
ing context which is tangible, i.e., monitorable based
on concrete facts in the system environment. However,
context in its broader sense could include things which
does not have a tangible nature such as laws and regu-
lations, users preferences, etc. These context could also
be preconditions on the various system alternatives and
could also change as a consequence of the actions per-
formed by the system. As a result of the limitation of the
model we are adopting, our automated analysis detects
limited set of inconsistencies and conflicts and should
not be treated as comprehensive analysis.

Reliability threats affect the stability, accuracy, and
precision of the measurements. In general, these threats
concern the repeatability of the study. A threat to valid-
ity of this type concerns the scalability of our automated
reasoning (Th7). Our tests were conducted by cloning
parts of the contextual goal model created by the par-
ticipants in the case study on the smart-home scenario.
A different scenario could create different types of rela-
tions between the elements and threaten the scalability
of the automated reasoning. That is, different scenarios
might require larger amount of input or input of differ-
ent nature which lead to different performance results.

Another threat to reliability (Th8) arises because par-
ticipants carried out the modelling activity only once,
immediately after being trained. No further re-testing
was performed, e.g., in the subsequent few days. It
could be the case, for example, that in further modelling

26

activities the participants would have a different under-
standing of the concepts, or would have taken more (or
less) time to complete the modelling.

8. Related Work

Several authors studied the automated checking of the
consistency of requirements specification. Heitmeyer
et al [42, 43] analyse requirements specifications ex-
pressed in the SCR (Software Cost Reduction) tabu-
lar notation for detection of errors, such as type er-
rors, non-determinism, missing cases, and circular def-
initions. van Lamsweerde et al [44] study the manage-
ment of conflicts in goal-driven requirements engineer-
ing. The work focuses on the case of conflicting formu-
lations of goals and requirements and provide formal
techniques and heuristics for detecting and resolving
conflicts. Consistency checking for Tropos goal models
[11, 12] is discussed in [45]. Following the specifica-
tion of certain relations between the constructs of goal
model, the proposed algorithm finds out if a configura-
tion of goals is a consistent way to satisfy a higher-level
goal. Our work enriches these works in two ways. First,
we study the consistency of the specification of the con-
text, i.e., the world in which requirements are situated.
Second, we study the conflict of actions (tasks) per-
formed to reach the requirements , i.e., we compliment
the study of conflicted intentions by studying the con-
flicted actions. However, our work still does not provide
mechanisms for resolving our kinds of conflicts and in-
consistencies, and we aim to benefit from the mecha-
nisms proposed in [44] to accomplish that.

Research about feature interaction (for a survey
see [46]) concerns predicting scenarios in which an in-
teraction between system features occurs, and judging
if an interaction is harmful and providing resolution
mechanisms if this is the case. Recently, Nhlabatsi et
al. [27] observed, following a large survey of the litera-
ture, that the feature interaction problem is essentially a
problem about shared context; i.e. there is no interaction
without a subject that is an object in the system environ-
ment. In line with this observation, our model supports
an explicit notion of context and captures how context
influences, and how it is influenced by, the requirements
at the goal level. We develop reasoning mechanisms
that use the model to detect and provide essential in-
formation about the conflicts occurring between system
executable processes (tasks). This information includes
the goals for which and the context in which a conflict
happens, the alternatives the system has to avoid con-
flicts, and so on.

Requirements engineering for adaptive systems raises
several challenges [47, 48]. These challenges cover a
wide spectrum of topics such as requirements monitor-
ing, requirements models uncertainty and flexibility and
requirements-driven adaptation at runtime. In the next
three paragraph we discuss how our modelling and anal-
ysis framework aligns to each of these three areas.

Requirements monitoring is about the injection of
code into a running system to gather information,
mainly about the computational performance, and rea-
son if the running system is always meeting its design
objectives, and reconcile the system behaviour to them
if a deviation occurs [15]. The objective is to have
more robust, maintainable, and self-evolving systems.
In [49], the GORE (Goal-Oriented Requirements Engi-
neering) framework KAOS [13] was integrated with an
event-monitoring system (FLEA [50]) in an architecture
that enables runtime automated reconciliation. The de-
veloped reconciliation is between the system goals and
the system behaviour with respect to a priori anticipated
or evolving changes in the system environment that is
mostly technical. In our work, we start earlier and cap-
ture the influence of context on users goals. Such con-
text concerns the environment, not necessarily techni-
cal, of the user and the system. Moreover, we provide a
conceptual modelling language that supports an explicit
notion of context and a systematic way to analysed it in
conjunction with goal model. Our work could be inte-
grated with FLEA towards more holistic reconciliation
between system and user goals from one side and sys-
tem and user contexts from the other.

Qureshi and Perini [51] emphasize on uncertainty
and flexibility of requirements refinement and provide a
method that supports the runtime refinement of require-
ments artifacts as a repetitive activity performed collab-
oratively between the users and the application itself.
Sawyer et al. [52] discuss that runtime representation
of requirements model, synchronizing the model with
the architecture, dealing with uncertainty, multiple ob-
jective decision making, and self-explanation are areas
need to be considered in realizing a requirements-aware
system. Our framework presumes certainty while spec-
ifying the relation between context and requirements.
Thus, we still need to investigate how to deal with situa-
tions when designers are not fully certain about it. Ben-
como et al. [53] advocate that adaptation is planned ei-
ther in a pre-defined way at design time or via an evolv-
able and reflexive response to some monitored parame-
ters at runtime. In line with our work, they advocate that
the gap between goals and the system has to be bridged
so that the system adaptation is guided by goals and
the adaptation correctness is judged by the fulfilment

27

of goals (requirements reflection).
Several authors studied requirements-driven adapta-

tion at runtime. Souza et al. [54] note that the (par-
tial) un-fulfilment of requirements triggers adaptation.
They introduce awareness requirements to refer to suc-
cess, failure, performance and other properties of soft-
ware requirements (i.e. meta-requirements) and pro-
pose to monitor changes in these properties and de-
cide when adaptation should take place. Baresi et al.
[55] propose FLAGS (Fuzzy Live Adaptive Goals for
Self-adaptive systems) for requirements-driven adapta-
tion at runtime. FLAGS extend KAOS [13] mainly with
adaptive goals which incorporate countermeasures for
adaptation. When goals are not achieved by the cur-
rent course of execution, adaptation countermeasures
are triggered. The ultimate target is to alter the goal
model at runtime and enforce adaptation directives on
the running system. Our framework has the potential to
enrich these two works by the consideration of another
trigger of adaptation at runtime which is the changes of
context perceived as the environment surrounding the
system.

In a recent work [56], we have argued that user’s
judgement of the quality of each software behaviour
is a main driver for adaptation. This feedback has to
be engineered and captured in a systematic and struc-
tured way so that software can make use of it. We
have classified feedback into quality feedback reflecting
users’ judgement on the degree of excellence of a be-
haviour and validity feedback reflecting their judgement
whether a behaviour is a valid means to reach certain
requirements. We have also proposed that users can act
as monitors for contextual attributes which are unmon-
itorable when we rely on automated means solely [57].
This means that users act as software collaborators
rather than acting as pure consumers of the software
functionalities. In our other recent work [58] we have
proposed analysis mechanisms to optimize the monitor-
ing requirements in adaptive systems by deriving the
minimum amount of contextual data to capture with
minimum costs.

Contextual requirements research studies an early in-
fluence of context on the adaptive systems. Research
in context modelling (e.g., [37]) concerns finding mod-
elling constructs to represent software and user’s con-
text. Contextual requirements research reduces the gap
between the context model and the requirements model,
i.e. between context and one of its usages. In our ap-
proach, we reduce such gap at the goal level and allow
for answering questions like: “how do we decide the rel-
evant context?”, “why do we need context?” and “how
does context influence requirements?”. Salifu et al. [8]

apply the Problem Frames approach to analyse differ-
ent specifications, that can satisfy the core requirements,
under different contexts. The relationship between con-
texts, requirements, and the specification (machine) are
represented by a problem description. Alternative prob-
lem descriptions corresponding to different contexts are
elicited to identify variant problems. Variant problems
are variations of the original problem adapted for a par-
ticular context. Hartmann et al. [59] suggest studying
the relation between context and features to support the
engineering of software supply chains. Their approach
allows for more systematic derivation of a product that
fits with the environment wherein it operates. In our po-
sition paper [60], we suggested the integration of our
work with the above works that considered adaptabil-
ity to context and we showed, theoretically, how such
integration could help for holistic software production.
In another position paper [61], we advocated the role of
user’s collective judgement on the quality of each fea-
ture configurations as a main factor to drive the dynamic
configuration process of a product in a product line.

In our previous work, we have proposed to weave to-
gether the variability of the system and the variability
of its environment. Our argument is that the environ-
ment changes can activate certain requirements, restrict
the space of applicable alternatives to reach activated re-
quirements and influence the quality of each alternative
as [9, 20]. We have proposed context analysis model
which included constructs to analyse context to reach
visible facts the system can monitor and judge upon if
a context holds [22]. We have also provided several
mechanisms to exploit and reason about this relation
at design and runtime [21]. This includes a runtime
derivation of alternatives compliant with contexts and
user priorities expressed via ranking the importance of
softgoals, and deriving alternatives with minimized de-
velopment costs. Similarly to contextualizing require-
ments, we have investigate the contextualization of busi-
ness process so that a business process is adaptive to
context changes [62, 63]. The execution course will be
context-dependent so that the correctness probability of
business process is maximized. However, we still miss
a multi-factor decision making that leads to a compro-
mise between different adaptation drivers (priorities, de-
velopment costs, effort, privacy, ..) either at design time
or at runtime.

Software variability modelling, mainly feature mod-
els [64, 65], concerns capturing a variety of possi-
ble configurations of software functionalities. This al-
lows for tailoring a product depending on stakeholders
choices. However, there is still a gap between each
functionality and the context where such functionality

28

can or has to be adopted. We have tried to solve this
problem at the level of goals. Furthermore, our work is
in line, and has the potential to be integrated, with the
work in [66] and the FARE method proposed in [67] that
show possible ways to integrate features with domain
goals and knowledge to help for eliciting and justifying
features.

Customizing goal models to fit to user skills and
preferences was studied in [34, 68]. The selection be-
tween goal model variants is based on one dimension
of context, i.e. user skills, related to the atomic goals
(executable tasks) of the goal hierarchy, and on user
preferences expressed over softgoals. Lapouchnian et
al. [69] propose techniques to design autonomic soft-
ware based on an extended goal modelling framework,
but their approach does not focus on the relation with
context. Liaskos et al. [32] study variability modelling
under a requirements engineering perspective and pro-
pose a classification of intentional variability that origi-
nate goal satisfaction alternatives. We focused on con-
text variability, i.e. the unintentional variability, that
highly influences the applicability and quality of each
goal satisfaction alternative.

9. Conclusions and Future Work

In this paper, we have extended our goal-based con-
textual requirements engineering framework (proposed
in [21]) with novel mechanisms for (i) context consis-
tency analysis; and (ii) conflict analysis. Both tech-
niques are supported by our tool RE-Context, which
supports analysts by checking consistency of and con-
flict in requirements models. In addition to these tech-
niques, we proposed a methodology for contextual goal
modelling and its associated reasoning techniques. The
first reasoning technique is designed to detect inconsis-
tencies between contexts specified on a goal model. We
have discussed the semantics of different kinds of de-
tected inconsistencies and illustrated each inconsistency
type. The second reasoning mechanism is designed to
detect and assess the severity of conflicts originating
from changes in the context (produced by the system
itself).

We have evaluated our framework from three per-
spectives. The first is about the usefulness of our de-
signed techniques in detecting inconsistencies and con-
flicts which are not easily recognizable by requirements
engineers. Our automated analysis detected a consid-
erable amount of such cases and proved to be useful
in that sense. The second is the ability to understand
and capture our extension of goal model which we pro-
posed in this paper. Most of our modelling extension

constructs were found easy to understand and easy to
capture. Only one construct, the relation between con-
texts, were found hard to capture and time-consuming
and, thus, further automated support to the specifica-
tion of these relations is still needed. The third perspec-
tive concerns the scalability of our automated reason-
ing. Our analysis was proved to scale well with small
and medium sizes of goal model while it needs further
optimization to cope with large-size ones.

In future work, we plan to address various problems
in the area of contextual requirements engineering, such
as:

• Reasoning about monitoring requirements: the
system at runtime needs to collect environmental
data to judge if a certain context holds and adapt
to it by adopting a suitable behavior. This raises
a new category of requirements called Monitoring
Requirements, i.e., what data the system has to cap-
ture from its environment and the way these data
are logically composed to judge if a certain con-
text holds. Monitoring requirements need specific
analysis. An example of such analysis is the opti-
mization of monitoring requirements, i.e., finding
the less expensive set of data to capture required
to verify if a given context holds. For example, a
context specified as (ϕ1 ∧ ϕ2) where ϕ1 = “patient
is inside home” and ϕ2 = “it is cold at the patient’s
location” can be reduced into (ϕ1) if the health-care
institute regulates temperature inside homes in way
that prevents going lower than a certain level. A
positioning system would suffice to verify if con-
text ϕ1 holds, for the system need not verify ϕ2.

• Lifelong contextualization: context-aware sys-
tems need to monitor context at runtime and adapt
to it. It is desirable that the system evolves over
time and enhances the way it satisfies user’s needs
in different contexts. Indeed, not all decisions can
be fully specified at design time. A running sys-
tem might collect data and learn which require-
ments and which alternatives fit better to particu-
lar environments. For example, patients could pre-
fer remote communication with caregiver in one
context and in person in some other context. This
knowledge is typically unavailable at design time,
for considered patients might change their habits
and unknown patients might use the system. The
system can therefore evolve choosing the best way
of communication benefiting of the history of the
patient’s behaviour in different contexts.

• Automated support of modelling activities: a

29

CASE tool is needed for supporting all the mod-
elling activities proposed in this paper. For exam-
ple, we still transform the graphical representation
of contextual goal models into Datalog manually.
Moreover, we presume that the logical relations
between contexts, i.e., contradictions and implica-
tions, are also manually specified by the design-
ers. Defining these relations for small-medium size
systems could be doable manually. For larger sys-
tems, manual specification is error-prone and time
consuming.

Acknowledgement

This work has been partially funded by the EU Com-
mission, through the ANIKETOS and FastFix projects
and by Science Foundation Ireland grant 10/CE/I1855.
We also thank Jaelson Brelaz de Castro, Bashar Nu-
seibeh, John Mylopoulos, Sarah Beecham, Alberto
Griggio, Anders Franzen, Yijun Yu, Armstrong Nhla-
batsi, and Amit K. Chopra for the helpful discussions
that enriched the ideas in this paper.

References

[1] M. Weiser, The Computer for the Twenty-First Century, Scien-
tific American 265 (1991) 94–104.

[2] J. Krogstie, K. Lyytinen, A. L. Opdahl, B. Pernici, K. Siau,
K. Smolander, Research Areas and Challenges for Mobile In-
formation Systems, International Journal of Mobile Communi-
cations 2 (2004) 220–234.

[3] J. Kramer, J. Magee, Self-Managed Systems: an Architectural
Challenge, in: Proceedings of the 29th International Conference
on Software Engineering (ICSE 2007), IEEE Computer Society,
2007, pp. 259–268.

[4] P. Oreizy, N. Medvidovic, R. N. Taylor, Runtime Software
Adaptation: Framework, Approaches, and Styles, in: Compan-
ion of the 30th International Conference on Software Engineer-
ing (ICSE Companion ’08), pp. 899–910.

[5] A. Schmidt, Implicit Human Computer Interaction through
Context, Personal and Ubiquitous Computing 4 (2000) 191–
199.

[6] S. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny,
Y. Berbers, Easy: Efficient Semantic Service Discovery in Per-
vasive Computing Environments with QoS and Context Sup-
port, The Journal of Systems & Software 81 (2008) 785–808.

[7] J. Krogstie, Requirement Engineering for Mobile Information
Systems, in: Proceedings of the 7th International Workshop on
Requirements Engineering: Foundations for Software Quality
(REFSQ’01).

[8] M. Salifu, Y. Yu, B. Nuseibeh, Specifying Monitoring and
Switching Problems in Context, in: Proceedings of the 15th In-
ternational Conference on Requirements Engineering (RE’07),
pp. 211–220.

[9] R. Ali, F. Dalpiaz, P. Giorgini, Location-based Variability for
Mobile Information Systems, in: Z. Bellahsene, M. Léonard
(Eds.), Proceedings of the 20th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’08), volume
5074 of LNCS, Springer, 2008, pp. 575–578.

[10] E. S.-K. Yu, Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, University of Toronto, Toronto,
Ont., Canada, Canada, 1996.

[11] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. My-
lopoulos, Tropos: An Agent-Oriented Software Development
Methodology, Autonomous Agents and Multi-Agent Systems 8
(2004) 203–236.

[12] J. Castro, M. Kolp, J. Mylopoulos, Towards Requirements-
Driven Information Systems Engineering: The Tropos Project,
Information Systems 27 (2002) 365–389.

[13] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed Re-
quirements Acquisition, Science of Computer Programming 20
(1993) 3–50.

[14] J. Mylopoulos, L. Chung, E. Yu, From Object-Oriented to Goal-
Oriented Requirements Analysis, Communications of the ACM
42 (1999) 31–37.

[15] S. Fickas, M. S. Feather, Requirements Monitoring in Dynamic
Environments, in: Proceedings of the 2nd IEEE International
Symposium on Requirements Engineering (RE’95), IEEE Com-
puter Society Washington, DC, USA, 1995, pp. 140–147.

[16] D. Sykes, W. Heaven, J. Magee, J. Kramer, From Goals to Com-
ponents: a Combined Approach to Self-Management, in: Pro-
ceedings of the 2008 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2008), pp.
1–8.

[17] G. Brown, B. H. C. Cheng, H. Goldsby, J. Zhang, Goal-Oriented
Specification of Adaptation Requirements Engineering in Adap-
tive Systems, in: Proceedings of the 2006 International Work-
shop on Self-Adaptation and Self-Managing Systems (SEAMS
’06), ACM, New York, NY, USA, 2006, pp. 23–29.

[18] A. van Lamsweerde, Goal-oriented Requirements Engineering:
A Guided Tour, in: Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (RE 2001), pp. 249–
263.

[19] E. Yu, J. Mylopoulos, Why Goal-Oriented Requirements En-
gineering, in: Proceedings of the 4th International Workshop
on Requirements Engineering: Foundations of Software Qual-
ity (REFSQ’98), pp. 15–22.

[20] R. Ali, F. Dalpiaz, P. Giorgini, Location-based Software Mod-
eling and Analysis: Tropos-based Approach, in: Q. Li, S. Spac-
capietra, E. Yu, A. Olivé (Eds.), Proceedings of the 27th Interna-
tional Conference on Conceptual Modeling (ER 2008), volume
5231 of LNCS, Springer, 2008, pp. 169–182.

[21] R. Ali, F. Dalpiaz, P. Giorgini, A Goal-based Framework for
Contextual Requirements Modeling and Analysis, Require-
ments Engineering 15 (2010) 439–458.

[22] R. Ali, F. Dalpiaz, P. Giorgini, A Goal Modeling Framework
for Self-Contextualizable Software, in: Proceedings of the 14th
International Conference on Exploring Modeling Methods in
Systems Analysis and Design (EMMSAD 2009), volume 29 of
LNBIP, Springer, pp. 326–338.

[23] R. Ali, F. Dalpiaz, P. Giorgini., Goal-based Self-
Contextualization, in: In the Forum of the 21st International
Conference on Advanced Information Systems (CAiSE 09 - Fo-
rum), volume Vol-453, CEUR-WS, 2009, pp. 37–42.

[24] S. Campadello, L. Compagna, D. Gidoin, S. Holtmanns,
V. Meduri, J.-C. R. Pazzaglia, M. Seguran, R. Thomas, Serenity
Deliverable A7.D1.1: Scenario Selection and Definition, 2006.

[25] D. L. Parnas, J. Madey, Functional Documents for Computer
Systems, Science of Computer Programming 25 (1995) 41–61.

[26] A. Biere, M. J. H. Heule, H. van Maaren, T. Walsh (Eds.), Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial In-
telligence and Applications, IOS Press, 2009.

[27] A. Nhlabatsi, R. Laney, B. Nuseibeh, Feature Interaction: the
Security Threat from within Software Systems, Progress in In-

30

formatics (2008) 75–89.
[28] A. Lapouchnian, Y. Yu, J. Mylopoulos, Requirements-Driven

Design and Configuration Management of Business Processes,
in: G. Alonso, P. Dadam, M. Rosemann (Eds.), Proceedings of
the 5th International Conference on Business Process Manage-
ment (BPM 2007), volume 4714 of LNCS, Springer, 2007, pp.
246–261.

[29] T. Eiter, G. Gottlob, H. Mannila, Disjunctive Datalog, ACM
Transactions on Database Systems 22 (1997) 364–418.

[30] C. Rolland, C. Souveyet, C. B. Achour, Guiding Goal Modeling
using Scenarios, IEEE Transactions on Software Engineering
24 (1998) 1055–1071.

[31] J. Kim, M. Kim, S. Park, Goal and Scenario Based Domain
Requirements Analysis Environment, Journal of Systems and
Software 79 (2006) 926–938.

[32] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J. Mylopoulos, On
Goal-based Variability Acquisition and Analysis, in: Proceed-
ings of the 14th IEEE International Requirements Engineering
Conference (RE 2006), IEEE Computer Society, 2006, pp. 76–
85.

[33] F. Dalpiaz, P. Giorgini, J. Mylopoulos, An Architecture for
Requirements-Driven Self-Reconfiguration, in: Proceedings
of the 21st International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’09), volume 5565 of LNCS,
Springer, 2009, pp. 246–260.

[34] B. Hui, S. Liaskos, J. Mylopoulos, Requirements Analysis
for Customizable Software: A Goals-Skills-Preferences Frame-
work, in: Proceedings of the 11th IEEE International Confer-
ence on Requirements Engineering (RE 2003), IEEE Computer
Society Washington, DC, USA, pp. 117–126.

[35] X. H. Wang, D. Q. Zhang, T. Gu, H. K. Pung, Ontology Based
Context Modeling and Reasoning using OWL, in: Proceedings
of the 2nd IEEE Annual Conference on Pervasive Computing
and Communications Workshops (PERCOMW ’04), pp. 18–22.

[36] S. S. Yau, J. Liu, Hierarchical Situation Modeling and Reason-
ing for Pervasive Computing, in: Proceedings of the 4th IEEE
Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS ’06), pp. 5–10.

[37] K. Henricksen, J. Indulska, A Software Engineering Framework
for Context-Aware Pervasive Computing, in: Proceedings of
the 2nd IEEE International Conference on Pervasive Computing
and Communications (PerCom’04), pp. 77–86.

[38] Y. Wang, S. McIlraith, Y. Yu, J. Mylopoulos, An Automated
Approach to Monitoring and Diagnosing Requirements, in: Pro-
ceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE’07), ACM New York,
NY, USA, 2007, pp. 293–302.

[39] R. K. Yin, Case Study Research: Design and Methods, vol-
ume 5, Sage publications, 4 edition, 2008.

[40] P. Runeson, M. Höst, Guidelines for Conducting and Report-
ing Case Study Research in Software Engineering, Empirical
Software Engineering 14 (2009) 131–164.

[41] C. Wohlin, Experimentation in Software Engineering: an Intro-
duction, volume 6, Springer, 2000.

[42] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, Automated Con-
sistency Checking of Requirements Specifications, ACM Trans-
actions on Software Engineering and Methodology 5 (1996)
231–261.

[43] C. Heitmeyer, B. Labaw, D. Kiskis, Consistency Checking of
SCR-style Requirements Specifications, in: Proceedings of the
Second IEEE International Symposium on Requirements Engi-
neering, pp. 56–63.

[44] A. Van Lamsweerde, R. Darimont, E. Letier, Managing Con-
flicts in Goal-driven Requirements Engineering, IEEE Transac-
tions on Software Engineering 24 (1998) 908–926.

[45] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani, Rea-
soning with Goal Models, in: Proceedings of the 21st Inter-
national Conference on Conceptual Modeling (ER 2002), pp.
167–181.

[46] M. Calder, M. Kolberg, E. Magill, S. Reiff-Marganiec, Feature
Interaction: a Critical Review and Considered Forecast, Com-
puter Networks 41 (2003) 115–141.

[47] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, R. de Lemos,
Software Engineering for Self-Adaptive Systems: A Research
Road Mapre, in: Software Engineering for Self-Adaptive Sys-
tems, pp. 1–26.

[48] B. H. C. Cheng, J. M. Atlee, Research Directions in Require-
ments Engineering, in: 2007 Future of Software Engineering,
FOSE ’07, IEEE Computer Society, Washington, DC, USA,
2007, pp. 285–303.

[49] M. S. Feather, S. Fickas, A. van Lamsweerde, C. Ponsard, Rec-
onciling System Requirements and Runtime Behavior, in: Pro-
ceedings of the 9th International Workshop on Software Specifi-
cation and Design (IWSSD’98), IEEE Computer Society Wash-
ington, DC, USA, 1998, pp. 50–59.

[50] D. Cohen, M. S. Feather, K. Narayanaswamy, S. S. Fickas, Au-
tomatic Monitoring of Software Requirements, in: Proceedings
of the 19th International Conference on Software Engineering
(ICSE 1997), ACM New York, NY, USA, 1997, pp. 602–603.

[51] N. A. Qureshi, A. Perini, Requirements engineering for adaptive
service based applications, in: Proceedings of the 2010 18th
IEEE International Requirements Engineering Conference, RE
’10, IEEE Computer Society, Washington, DC, USA, 2010, pp.
108–111.

[52] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein,
Requirements-Aware Systems: A Research Agenda for RE for
Self-adaptive Systems, in: Proceedings of the 2010 18th IEEE
International Requirements Engineering Conference, RE ’10,
IEEE Computer Society, Washington, DC, USA, 2010, pp. 95–
103.

[53] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, E. Letier, Re-
quirements Reflection: Requirements as Runtime Entities, in:
Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ICSE ’10, ACM, New
York, NY, USA, 2010, pp. 199–202.

[54] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, J. My-
lopoulos, Awareness Requirements for Adaptive Systems, in:
Proceeding of the 6th international symposium on Software en-
gineering for adaptive and self-managing systems, SEAMS ’11,
ACM, New York, NY, USA, 2011, pp. 60–69.

[55] L. Baresi, L. Pasquale, P. Spoletini, Fuzzy Goals for
Requirements-Driven Adaptation, in: Proceedings of the
18th IEEE International Requirements Engineering Conference
(RE’10), IEEE Computer Society, Washington, DC, USA, 2010,
pp. 125–134.

[56] R. Ali, C. Solis, I. Omoronyia, M. Salehie, B. Nuseibeh, Social
Adaptation: When Software Gives Users a Voice, in: the pro-
ceedings of 7th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’12).

[57] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh,
W. Maalej, Social Sensing: When Users Become Monitors, in:
the proceedings of the joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE 2011),
pp. 476–479.

[58] R. Ali, A. Griggio, A. Franzen, F. Dalpiaz, P. Giorgini, Op-
timizing Monitoring Requirements in Self-Adaptive Systems,
in: the Proceedings of 17th International Conference on Explor-
ing Modeling Methods in Systems Analysis and Design (EMM-
SAD’12).

31

[59] H. Hartmann, T. Trew, Using Feature Diagrams with Context
Variability to Model Multiple Product Lines for Software Sup-
ply Chains, in: Proceedings of the 12th International Software
Product Line Conference (SPLC’08), IEEE Computer Society,
2008, pp. 12–21.

[60] R. Ali, Y. Yu, R. Chitchyan, A. Nhlabatsi, P. Giorgini, Towards a
Unified Framework for Contextual Variability in Requirements,
in: Proceedings of the 3rd International Workshop on Software
Product Management (IWSPM09).

[61] R. Ali, C. Solis, F. Dalpiaz, W. Maalej, P. Giorgini, B. Nuseibeh,
Social Software Product Lines, in: the Proceedings of the 1st
international Workshop on Requirements Engineering for Social
Computing (RESC 2011), pp. 14–17.

[62] J. L. De La Vara, R. Ali, F. Dalpiaz, J. Sánchez, P. Giorgini,
Business Processes Contextualisation via Context Analysis, in:
Proceedings of the 29th international conference on Conceptual
modeling (ER’10), Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 471–476.

[63] J. L. De La Vara, R. Ali, F. Dalpiaz, J. Sánchez, P. Giorgini,
COMPRO: a Methodological Approach for Business Process
Contextualisation, in: Proceedings of the 2010 International
Conference on On the Move to Meaningful Internet Systems -
Volume Part I (OTM’10), Springer-Verlag, Berlin, Heidelberg,
2010, pp. 132–149.

[64] K. Pohl, G. Böckle, F. van der Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques,
Springer, 2005.

[65] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM:
A Feature-oriented Reuse Method with Domain-specific Refer-
ence Architectures, Annals of Software Engineering 5 (1998)
143–168.

[66] Y. Yu, J. do Prado Leite, A. Lapouchnian, J. Mylopoulos, Con-
figuring Features with Stakeholder Goals, in: Proceedings of
the 2008 ACM Symposium on Applied Computing (SAC 2008),
ACM New York, NY, USA, pp. 645–649.

[67] M. Ramachandran, P. Allen, Commonality and Variability Anal-
ysis in Industrial Practice for Product Line Improvement, Soft-
ware Process: Improvement and Practice 10 (2005) 31–40.

[68] S. Liaskos, S. McIlraith, J. Mylopoulos, Representing and Rea-
soning with Preference Requirements using Goals, Technical
Report, Tech. rep. CSRG-542, Computer Science Department,
University of Toronto, 2006.

[69] A. Lapouchnian, Y. Yu, S. Liaskos, J. Mylopoulos,
Requirements-driven Design of Autonomic Application
Software, in: Proceedings of the 2006 Conference of the Center
for Advanced Studies on Collaborative research (CASCON’06),
ACM Press New York, NY, USA, 2006.

32

