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Abstract

The rapid increase in the number of ageing population brings major

issues to health care including a rise in care cost, high demand in long-

term care, burden to caregivers, and insufficient and ineffective care.

Activity recognition can be used as the key part of the intelligent sys-

tems to allow elderly people to live independently at homes, reduce

care cost and burden to the caregivers, provide assurance for the fam-

ilies, and promote better care. However, current activity recognition

systems mainly focus on the technical aspect i.e. systems accuracy

and neglects the practical aspects such as acceptance, usability, cost

and privacy. The practicality of the system is the vital indication

whether the system will be adopted. This research aims to develop

the activity recognition system which considers both practical and

technical aspects using multiple wrist-worn sensors.

An extensive literature review in wearable sensor based activity recog-

nition and its applications in healthcare have been carried out. Novel

multi-sensor activity recognition utilising multiple low-cost, non-intrusive,

non-visual wearable sensors is proposed. The sensor fusion is per-

formed at feature and classifier levels using the proposed feature se-

lection and classifier combination techniques. The multi-sensor ac-

tivity recognition data sets have been collected. The first data set

contains data from accelerometer collected from seven young adults.

The second data set contains data from accelerometer, altimeter, and

temperature sensor collected from 12 elderly people in home environ-

ment performing 10 activities. The third data set contains sensor

data from accelerometer, gyroscope, temperature sensor, altimeter,

barometer, and light sensor worn on the users wrist and a heart rate



monitor worn over the users chest. The data set is collected from 12

elderly persons in a real home environment performing 13 activities.

This research proposes two feature selection methods, Feature Com-

bination (FC) and Maximal Relevancy and Maximal Complementary

(MRMC), based on the relationship between feature and classes as

well as the relationship between a group of features and classes. The

experimental studies show that the proposed techniques can select an

optimum set of features from irrelevant, overlapped, and partly over-

lapped features. The studies also show that FC and MRMC obtain

higher classification performances than popular techniques including

MRMR, NMIFS, and Clamping. Two classifier combination tech-

niques based on Genetic Algorithm (GA) are proposed. The first

technique called GA based Fusion Weight (GAFW), uses GA find the

optimum fusion weights. The results indicate that 99% of classifier

fusion using GAFW achieves equal or higher accuracy than using only

the best classifier. While other fusion weight techniques cannot guar-

antee accuracy improvement, GAFW is a more suitable method for

determining fusion weight regardless which fusion techniques are used.

Another algorithm called GA based Combination Model (GACM) is

proposed to find the optimal combination between classifier, weight

function, and classifier combiners. The algorithm does not only find

the model which has the minimum classification error but also select

the one that is simpler. Other criteria e.g. select the classifier with

low computation can also be easily added to the algorithm. The re-

sults show that in general GACM can find the optimum combinations

automatically. The comparison against manually selection revealed

that there is no statistical significant in the performances.

Applications of the proposed work in home care and decision support

system are discussed The results of this research will have a significant

impact on the future health care where people can be health monitored

from their homes to promote healthy living, detect any changes in

behaviour, and improve quality of care.
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Chapter 1

Introduction

This chapter presents the background and motivation of the research. The chal-

lenges on wearable sensor based activity recognition are identified and discussed.

This is followed by the research questions and hypotheses, and contributions and

novelty arises from the study. Finally, the structure of the thesis is presented.

1.1 Background and motivation

Over the past decades, there has been a significant increase in the number of

people aged 65 years and over worldwide. Population ageing phenomenon is

enduring and expected to continue (Figure 1.1). This is the result of the de-

mographic transition from high to low levels of fertility and mortality [45]. In

2010, the percentage of the ageing population globally is 7.58% and is expected

to rise to 16.25% by 2050. It is estimated that the population of older persons is

rising by 2.6% each year which is considering faster comparing to 1.34% of the

population as a whole. By 2050 nearly 1.5 billion people will age 65 years and

over which are more than double of the elderly population in 2010.

The rapid growth of the ageing population has an impact on humans life

in many aspects. In economic area, issues such as economic growth, taxation,

pensions, labour market, etc. will be affected. In social area, population ageing

will have an impact on family composition and arrangement, housing and migra-

tion. In political area, voting pattern and representation will be influenced by the
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Figure 1.1: Population of persons aged 65 and over worldwide from year 1950
2050 [45].

change of the demographic [44]. Importantly, population ageing will have major

impacts on health and health care as the health of older persons normally become

deteriorate with increasing age. Long-term care will be more demanded. Issues

such as increasing in health care expenditure, burden to carers and insufficient

and ineffective care are more likely to arise.

Research studies show that the expenditure on long-term care provision in

Germany, Italy, Spain, the United Kingdom (UK) and United States of America

(USA) is projected to increase significantly [42, 43]. In USA, it is projected that

between 2010 and 2040, the median share of household income spent on health

care will increase from 10% to 19%. A steady rise in health care cost threatens to

bankrupt Medicare and strain the federal budget and may potentially swarming

out other government priorities [42]. Similarly, as depicted in Figure 1.2, the

health care expenditure in the UK in 2009 is £119.81 billion and is expected to

rise to £138 billion in 2015 [41]. It is estimated that an average cost of a four-year

stay in a care home is going to double from £112,312 to £223,476 in the next 20

years [40].

The number of older people admitted to the hospital also rose at much faster

rate over the last decade. A rapid increase in the number of older persons indicates
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£

Figure 1.2: Health care expenditure in the UK during 2000 and 2015.

added burden to the carers as older persons require more intensive cares. Under

general practice, the ratio of nursing home staff to patient is set to one nursing

home staff to a maximum of 10 patients and the average care hour per patient per

day is 3.4 hours [39]. As the number of ageing population increases, the nursing

staff to patient ratio will be affected and set to increase. Also, with increasing

loads for the carers, the provided care may be insufficient and inefficient or below

the standard.

Due to the effects arisen from the increase in ageing population, a new model

of care which supports preventive care should be encouraged. This will help

prevent acute illness or delay entry into institutional care e.g. nursing homes and

hospitals. The quality of life for people remaining in their own homes is generally

better than for those who are institutionalised. Furthermore, the cost of care for

a patient at home is also lower than the cost for institutional care [78]. Activity

recognition (AR) can be used as the key part of the intelligent systems to allow

elderly people to live independently at homes, reduce care cost and burden to the

carers, provide a mean of assurance for family members, and promote a better

care.

AR can be used to monitor elderly people from their own homes allowing

them to remain at home as long as possible. It can help promote healthy living

as well as detect early sign of deterioration so that earlier treatment and care
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can be given. Also, AR in home can be used for monitoring patient care, judging

independence of elderly people, detecting changes in behaviour over time and

human-computer interfaces can motivate healthy behaviour [163].

Prior works in AR are usually performed through visual sensing [86, 87, 88,

89, 160]. However, this is not practical for elderly care application due to privacy

violation resulting from the use of cameras. Due to this reason, a non-visual based

i.e. sensor-based AR approach is more suitable. There are two main approaches

used in sensor-based AR for assisted living applications i.e. object-based and

wearable sensor-based. In the object-based approach [79, 80, 81, 82, 83, 166, 173,

174], the activity is inferred from the object the user used, and changes in the

environment. This approach can provide a detailed activity detection, however it

suffers limitations in term of practicality such as feasibility, cost, and acceptance.

For example, the object-based approach requires a vast number of sensors to be

deployed in home, a sensor needs to be changed over times for some objects,

specialised sensor and retrofitting may be required, in the system which uses

RFID, a user needs to wear RFID glove which may not be easily accepted by the

elderly people. In wearable sensor-based [85, 101, 108, 117, 135, 145], activity

is determined from the sensors worn over a user’s body. In some prior studies,

the sensors needed to be worn over several parts of the body which may not

be suitable for elderly people in term of usability and acceptance. Some studies

only use sensors at a single location such as chest and waist. This reduces the

issue of sensors interrupting with daily activities. However, not every location

is practical to use in reality, also some locations may have higher usability and

acceptance than others. The disadvantages of the single location approach are

that the classification accuracy for the system which uses a single location is

normally lower comparing to the system which uses sensors at multiple locations

and the activities studies are still limited, often these are postures and transition

activities.

Existing works in sensor-based AR for assisted living application often focuses

on the technical aspect i.e. systems accuracy. However, in order to develop an

activity recognition system which will be used in reality, practical issues such as

acceptance, usability, and cost need to be realised. The main goal of this research

is to develop the AR which takes both technical and practical aspects into account
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so that the system can be used in reality. Nowadays, small and inexpensive

sensors are available universally due to the advance in sensor technology. In this

research, small, low-cost, non-intrusive, non-stigmatise wrist-worn sensors will be

used to provide a richer set of data for determining an activity of a human while

reducing the number of sensors required for AR. This will allow the system to be

affordable for general population and increase its acceptance and usability which

is important to the elderly persons where sensors should not obstruct their daily

activities and cause stigmatisation.

A summary of the major motivations to conduct this research are as follows:

• The rapid increase in the number of ageing population brings major issues

to health care including a rise in care cost, high demand in long-term care,

burden to caregivers, and insufficient and ineffective care. The development

of AR can be used as the key part of the intelligent systems to allow elderly

people to live independently at homes, reduce care cost and burden to the

caregivers, provide ensuring for the families, and promote better care.

• AR will provide an instrumental tool to support preventive and home-based

care. This will have a major impact on the future health care where the

aim is to promote preventive care. People can be health monitored from

their homes to promote healthy living as well as to be able to detect any

changes so that earlier treatment and care can be given.

• At the present, sensor technologies have been advanced and are available

prevalently at a lower cost. This research investigates several low-cost sen-

sors for AR. The development of a low cost AR system will allow general

population to be able to afford the technology and use to improve their life.

• The current AR systems mainly concerns the technical aspect i.e. systems

accuracy and neglects the practical aspects such as acceptance and usability.

The practicality of the system is the key factor which indicates whether the

system will be used in reality or not. This research aims to develop the

AR system which considers both practical and technical aspects so that the

acceptance and usability are increased allowing the system to be used in

reality.
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In this research, multiple sensors are used to detect activity of an elderly

person. Several challenges need to be overcome in order to successfully develop

the AR method.

1. Sensor fusion

As this research will employ several sensors, the challenges in sensor fusion

are arisen. Sensor fusion can be performed at two levels: feature and clas-

sifier level [182]. At the feature level, features are calculated from different

sensors and used in a classification algorithm. In wearable sensor-based

AR, majority of sensor fusion are performed at feature level as it is easy to

implement [79, 84, 101, 107, 117, 124, 129, 139, 152, 155, 177]. Sensor fusion

at feature level is suitable when a sensor cannot be used for classification

on its own or provide low classification rate. Fusing sensor at the feature

level creates data-rich information for the classifier. However, sensor fusion

at feature level may be difficult to perform for noncommensurate data i.e.

data that are not comparable [73]. Different sensors may generate data in

different form and size. For example, data obtained from camera is an image

which represents in pixel, while data from accelerometer is an acceleration

respective to the axis. Also, sensor may have different sampling rates or

is deployed on different platforms, therefore make the sensor fusion more

complicated. Another issue of feature level fusion is that it may generate a

large feature space. This can lead to a common problem known as the curse

of dimensionality. Also a large feature space may contain irrelevant and re-

dundant features which directly impact the classification performance, and

computation cost.

On the contrary, fusion at the classifier level, features from each sensor

are calculated and used in an individual classifier. The result from each

classifier is then combined to give the final result. A few studies in wear-

able sensor-based AR employed this approach [146, 175, 182]. For example,

two microphones and two accelerometers worn on wrists and arms are used

[182]. The data fusion is performed at classifier level. The sound features

are generated from microphone and used in Linear Discriminant Analysis

(LDA) for classification. The features generated from accelerometers are
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used in Hidden Markov Model (HMM) classifier. Each classifier generates

class rankings which are combined to give a final prediction. The result

from each classifier can be combined using three approaches: hard, soft,

and semi-soft fusion. In the hard fusion approach, the decision is compared

against each other. In case of the disagreement, the result is discarded.

In the soft fusion approach, the combination is based on class probabil-

ities. Stochastic approaches such as Dempster-Shafer (DS) or statistical

techniques such as product, maximum, minimum, and sum are used. In the

semi-soft approach, the class probabilities are converted into rank before

combination. Sensor fusion at classifier level is convenient for noncommen-

surate data [73]. However, if a sensor fails to detect the signal, the full

benefit of sensor fusion will not be achieved. The combination of the deci-

sions can also be difficult and complex.

2. Large feature space

A multi-sensor activity classification system normally contains a large num-

ber of input features generated from different sensors. Using high dimen-

sion feature space increases the activity recognition models complexity and

computational cost. Also, a large number of features can deteriorate the

classification performance as irrelevant or redundant features might overfit

the classification model or even confuse the learning algorithm [72]. There-

fore, it is necessary to perform feature selection which helps to select the

optimum set of features. The aim of feature selection is to identify the

smallest subset of input features which explains the output classes. Feature

selection can help reduce the size of feature space which leads to a reduction

in computational cost and complexity in the classification system. In a large

feature space that contains irrelevant and redundant features, feature selec-

tion can be used to identify a relevant feature set leads to an improvement

in classification performances.

In wearable sensor-based AR which has a large feature space, feature selec-

tion or feature reduction is performed. For example, Boosting technique is

used to select features [107]. Features are selected by analysing its principal

component [79, 139]. In some studies, manual analysis of features using bar
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chart, visualisation, or Receiver Operating Characteristic (ROC)is also car-

ried out to select the features [124, 155]. However, these approaches have

some limitations. Firstly, the manual analysis is not suitable for a large

number of features. Secondly, these techniques such as Boosting, Principal

Component Analysis (PCA), and Clamping only concern the relationship

between the feature and the classes. They do not concern the relationship

between features which may result in the selection of redundant features. In

other popular feature selection techniques such as Maximal Relevant Mini-

mal Redundant (MRMR) and Normalized Mutual Information Feature Se-

lection (NMIFS), the relationship between features is considered. However,

they only consider the one-to-one relationship i.e. feature to feature, but do

not consider the relationship between a group of features to the classes. In

the wrapper approach such as forward selection, backward selection, etc.,

only a relationship between a group of features and the classes is considered.

3. Classifier combination

In wearable sensor-based AR, the sensor fusion at classifier level usually

performed in a way that one sensor is associated with one classifier and the

final result is obtained from the combination of the decision. This is, how-

ever, difficult when applying to sensors that are not useful on their own. In

this research we propose to firstly fuse the sensor data at feature level then

use the selected features in multiple classifiers. Classifier combination can

improve the performance of activity recognition when different classifiers

are superior in different classes. The main challenge is how these classifiers

should be combined. Using the hard fusion approach, information regard-

ing the posterior probability or confidence probability of classes is lost. Soft

fusion using DS uses a high computational cost and counterintuitive result

may occur if high conflict between evidences exists. Statistical techniques

use lower computation cost, however it cannot guarantee to improve the

classification performances in every case. Also, the combination model gen-

erated from the statistical technique cannot be applied to different data

sets. For example, a combination model of classifier 1 and classifier 2 using

product combination function on one data set may not be suitable for the
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other data sets.

1.2 Aims and objectives

The main aim of this research is to develop a novel method for multi-sensor based

activity recognition of Activity of Daily Living (ADL) of an elderly for an intel-

ligent assisted living system. Although there are many works in this area, there

still exist unsolved problems. Especially in elderly care applications, in which fac-

tors such as cost, usability, acceptance, and privacy need to be taken into account

for practical usage. The main problem this research deals with is how to recog-

nise activities of daily living of an elderly person using non-intrusive, inexpensive

wearable sensors. In this work, seven types of sensors are investigated: accelerom-

eter, temperature sensor, altimeter, heart rate sensor, gyroscope, barometer, and

light sensor. The research is focused on the study of activities that are commonly

occurred in independent living situation i.e. basic ADL i.e. brushing teeth, feed-

ing, walking, using stairs, and sleeping and instrumental ADL i.e. sweeping floor,

washing dishes, ironing, watching television, scrubbing, wiping, reading, and ex-

ercising. The main questions that will be addressed in this research are:

• How to detect the interested activities of an elderly person using multiple

wearable sensors worn on wrist?

• Does using multiple sensor improve classification accuracy? Does the heart

rate sensor help increase the classification accuracy of the wrist-worn sensor

based AR?

• How to select the features using the relationship between feature and classes

as well as the relationship between a group of features and classes?

• How to combine classifiers by utilising class probabilities and are generalise

enough to be apply in other data set?

The following objectives are set in order to help achieve the above aim:

1. To carry out literature reviews in wearable sensor based AR and its appli-

cation in assisted living and to identify research gap (Chapter 2).
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2. To design and develop hardware for sensor data collection (Chapter 3).

3. To collect sensor data in a real home setting (Chapter 3).

4. To carry out a feasibility study on using wrist worn sensor to detect ac-

tivities and to identify features and techniques for data pre-processing and

segmentation for multi-sensor based AR (Chapter 4).

5. To investigate and evaluate techniques for feature selection and to propose

novel feature selection techniques for multi-sensor based AR (Chapter 4).

6. To investigate techniques for activity classification and to evaluate classifi-

cation results generated from different techniques (Chapter 5).

7. To investigate and evaluate techniques for classifier fusion and to propose a

novel classifier fusion technique based on Genetic Algorithm (GA) (Chapter

5).

8. To investigate the contributions of sensors for AR (Chapter 4).

9. To discuss the application of the proposed multi-sensor AR in assisted living

(Chapter 5).

1.3 Contributions and novelty

The main contributions of the research are as follow:

1. The extensive literature review has been conducted on wearable sensor-

based activity recognition and its application in assisted living. Classifica-

tion regarding the approaches in AR and sensor fusion in wearable sensor-

based AR has developed based on the analysis of literatures. The limitations

regarding the use of wearable sensor-based AR in assisted living have been

identified.

2. The multi-sensor AR data sets have been collected. This contribution is

significant and valuable for other sensor-based AR works. Three data sets

are collected from wearable sensors. The first data set contains data from

10



Chapter 1: Introduction

accelerometer collected from seven young adults performing five activities

including walking, standing, sitting, running, and lying down. The second

data set contains data from accelerometer, altimeter, and temperature sen-

sor collected from 12 elderly people in home environment performing 10 ac-

tivities including brushing teeth, dressing, sweeping floor, feeding, walking,

walking upstairs, walking downstairs, sleeping, watching TV, and washing

dishes. The third data set contains sensor data from accelerometer, gyro-

scope, temperature sensor, altimeter, barometer, and light sensor worn on

the users wrist and a heart rate monitor worn over the users chest. The

data set is collected from 12 elderly persons in a real home environment

performing 13 activities of daily living including brushing teeth, exercis-

ing, feeding, ironing, reading, scrubbing, sleeping, using stairs, sweeping,

walking, washing dishes, watching TV and wiping. This contribution is

significant as the process in collecting activity data is time consuming and

difficult for some activities. Especially in supervised learning where labelled

data and experienced annotators are required. The data sets will provide

valuable resources for other sensor-based AR works and machine learning

society. Another contribution from the data collection is the design and de-

velopment of multi-sensor instrument which is used to collect data. A part

of sensors are developed using Microsoft Gadgeteer microcontroller board

and sensors. The software is implemented using Matlab and C#.NET to

collect the sensor data.

3. Two feature selection methods are proposed and evaluated. One of the re-

search questions is how to select the features using the relationship between

feature and classes as well as the relationship between a group of features

and classes. The first feature selection method called Feature Combina-

tion (FC) is based on Clamping and forward selection. It emphasises on

the performances of a combination of features rather than single feature.

Experimental studies are conducted using two multi-sensor AR data sets.

The results show that the proposed feature selection method can achieve

higher classification accuracy comparing to Clamping, MRMR, and NMIFS

methods. The second feature selection method called Maximal Relevance
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Maximal Complementary (MRMC). It is based on the criteria of maxi-

mum relevance and maximum complementary of the feature. The method

employed Multi-Layer Perceptron for the calculation of the relevance and

complementary score. The experiments are carried out against Clamping,

MRMR, and NMIFS using two well-defined problem and four benchmark

classification data sets including iris, breast cancer, cardiotocography, and

chess which are obtained from UCI Machine Learning Repository and one

multi-sensor activity data set. The results show that MRMC is able to se-

lect relevant features in a very noisy data set containing irrelevant, highly

redundant, and partly redundant features.

4. Three classification algorithms including Multi-Layer Perceptron (MLP),

Radial Basis Function network (RBF), and Support Vector Machine (SVM)

are investigated for multi-sensor activity recognition. An analysis of the

performances of each algorithm for different activities is carried out.

5. In this research, seven classifier fusion methods including majority vot-

ing, product, summation, minimum, maximum, ranking, and weight av-

erage, and six fusion weight functions including simple average, variance-

covariance, discounted mean square forecast error, unit weight, and weighted

accuracy are investigated. Also, the use of GA to determine classifier fusion

weight is studied. GA was employed to determine fusion weight [92, 93, 103],

however the following factors were not included. Firstly, GA performance

was not compared with all possible classifier combinations. Therefore it

is not possible to conclude that GA could improve classifier combination

accuracy as all possible combinations have not been tested. Secondly, fit-

ness functions such as a function which reflects on the classifier combination

function such as summation, minimum, maximum, product, ranking, and

weighted average have not yet been investigated. Finally, their results are

often compared with the mean accuracy of a set of classifiers rather than

the best classifier. This may give misleading results as the mean accuracy

is always equal or less than the accuracy of the best individual classifier.

Therefore, this research extends previous studies in using GA for fusion

weight by proposing a new technique called Genetic Algorithm based Fu-
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sion Weight (GAFW). The results indicated that 99% of classifier fusion

using GAFW achieves equal or higher accuracy than using only the best

classifier. While other fusion weight techniques cannot guarantee accuracy

improvement, GAFW is a more suitable method for determining fusion

weight regardless which fusion techniques are used.

6. The classifier fusion based on GA is proposed to select optimum model of

classifier, weight functions and classifier combination function called Ge-

netic Algorithm based Combination Model (GACM). This technique is

based on previous study [103] which used GA to find a combination model

between features, classifiers, and classifier combiners. However, using the

previous approach [103], the selected classifiers maybe not optimised for

the selected features. Also, it is not clear from the study that the obtained

model is the optimum comparing to manual selection. In addition, based

on experiments it is found that using weight function improve classifica-

tion accuracy. Therefore, a combination model between classifier, weight

function, and combiners is proposed. The algorithm does not only find the

model which has the minimum classification error but also select the one

that is simpler i.e. use less number of classifier. The proposed technique

can be extended so that other constraints maybe added such as use less

classifier with high computational cost, complex weight function, etc. The

results indicate that in general GACM can find the optimum combinations

automatically. The comparison against manually selection revealed that

there is no statistical significant in the performances. In addition, GACM

allows other criteria for model selection to be added e.g. a simpler model

is preferred.

7. A novel multi-sensor based AR is proposed. The AR utilises multiple low-

cost, non-intrusive, non-visual wearable sensors. The sensor fusion is per-

formed at two levels i.e. feature and classifier level using the proposed

feature selection and classifier combination techniques. Using the sensors

on wrist increases the acceptance and usability of the system. Also, the cost

of the selected sensors is low which make it affordable for general popula-

tion. The results of the study also indicate that high classification accuracy
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can be achieved. The proposed multi-sensor based AR will provide an in-

strumental tool to support preventive and home-based care. This will have

a significant impact on the future health care where people can be health

monitored from their homes to promote healthy living, detect any changes

in behaviour, and improve quality of care.

1.4 Organisation of thesis

This thesis contains six chapters and two appendixes. Chapter 2 presents the

literature reviews in wearable sensor-based AR and its application in assisted

living. It covers the existing works and details in the field including approaches,

sensor types, sensor location, and sensor fusion as well as technical detail such as

pre-processing, segmentation, feature extraction, feature selection and reduction,

classification algorithms, and classifier combination. A variety of applications

of AR has also been reviewed. In particularly, an application in assisted living

where current works are reviewed and the required properties of assisted living

in term of practicality and technicality are discussed.

Chapter 3 presents the strategy and approaches used to carry out the research

and the system architecture of the multi-sensor AR. It covers the strategy used to

collect data and characteristics of the data sets that are collected and used in the

research. This chapter also explains the characteristics of sensors and platform

used to develop the multi-sensor activity recognition hardware. This is followed

by the techniques that are used to measure the performance of the algorithms

and strategy used for comparing the results of the study with other works.

In Chapter 4, the results of a feasibility study of using the wrist-worn sensor

for activity recognition are presented. Next, the results of the feature and feature

selection study are presented. In this Chapter, two feature selection techniques

i.e. FC and MRMC are proposed. The chapter presents the results and analysis

of the proposed algorithms against the other popular feature selection techniques

including MRMR, NMIFS, and Clamping on two multi-sensor activity data sets

and benchmark data sets. This chapter also includes the study of contribution of

each sensor for AR.

Chapter 5 presents the classification and classifier combination study. In the
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first part, the results of the study of three classification algorithms including

MLP, RBF, and SVM are presented. This includes the analysis of the perfor-

mances of each algorithm on different activities. The study is carried out on two

multi-sensor AR data sets. In addition, this study also tests the hypothesis that

using multiple sensors can improve classification accuracy. The second part of

the chapter presents the classifier combination study. In this research, GAFW

is proposed to use GA to determine the classifier fusion weights. The proposed

technique extends previous studies such that all possible combinations are inves-

tigated and compared. Also, different fitness functions are investigated. In this

chapter, GACM algorithm for selecting classifier, classifier fusion weights, and

classifier combiners is proposed. The algorithm is designed to be adaptive for the

new data set. The proposed method is compared with manual selection, and the

results and analysis are presented. This chapter also presents the application of

the proposed multi-sensor AR system. It describes how the proposed method can

be used in a home monitoring and decision support systems.

In chapter 6, all the objectives stated at the beginning of the research are

revisited. A discussion on how each objective is achieved throughout the re-

search study. A summary of the main findings which are linked with the research

questions is presented. This is followed by the research limitations as well as

suggestions on how this research can be expanded into new research directions.

Appendix A shows the Barthel Index used for evaluating the independence

of the participants. Appendix B shows the informed consent used to obtain the

permission from the participants.
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Literature reviews

This research investigates wearable sensors for AR in assisted living application.

An extensive review has been carried out on wearable sensor-based AR and its

application in assisted living domain with the aim of identifying the research

gaps in this particular field. In this chapter, a review on existing researches and

state of the art in wearable sensor-based human AR field are presented. This is

then linked with how AR are used in assisted living applications and what are

requirements of such systems. The chapter is divided into two sections. The first

section presents a review in wearable sensor-based AR. Topics reviewed including

AR approaches, sensors, features used in AR system, classification algorithms,

and AR applications. The second section presents applications of AR in assisted

living system.

2.1 Wearable sensor-based activity recognition

The study of human AR has been carried out over the past few decades. The

aim is to recognise, classify, or detect a movement, posture, or activity of a

human being. Due to its advantages of applications in several domains such as

surveillance, health care, security, multimedia, etc., attention on this field has

been increasing. Various approaches have been investigated in order to recognise

human activities. Based on the literatures, these approaches can be divided into

two main categories: visual based and non-visual based AR. Visual based AR
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mainly focus on interpreting image information to predict activities [86, 87, 88,

89, 160], whereas the non-visual based approach utilises other type of information

e.g. body movement, environment, location, etc. Non-visual based AR approach

can be further divided based on how the activities are inferred: object-based

[163, 165, 166, 170], location-based [172], and wearable sensor-based [85, 139,

152, 155, 177] AR. The classification of AR approaches is depicted in Figure 2.1.

Activity Recognition

Visual based Non-visual based

Object based Location based Wearable sensor based

Figure 2.1: Approaches used for recognising human activities

2.1.1 History of human activity recognition

In prior studies, human AR is usually performed using visual sensing i.e. cameras.

For example, a hierarchical action decision tree algorithm was proposed for video-

based elder care monitoring [160]. A comprehensive review on human AR using

visual sensing can be found in [161] and recently in [162]. However, visual signal

interpretation can be complicated and may not be suitable in some applications

i.e. health monitoring as it may perceived as intrusive and violation of a users

privacy.

Over the past decade, Micro Electro Mechanic Systems (MEMS) technology

has been advanced leading to an availability of small, inexpensive and low power

consumption sensors. Sensor-based activity recognition has received much re-

search attention as using sensors with sensor network and wireless technologies

would allow unobtrusive and non-intrusive activity detection. A wide variety of

sensors have been investigated and used as inputs for modelling human activities.
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Examples of these sensors are accelerometer, microphone, gyroscope, magnetome-

ter, Radio Frequency Identification (RFID), pressure sensor, temperature sensor,

compass, heart rate monitor, Global Positioning System (GPS), etc. The ap-

proach used in sensor-based AR can be divided into three main categories based

on the location of the sensors and how activities are inferred: 1) object-based,

2) location-based, and 3) wearable sensor-based AR. Table 2.1 provides a general

taxonomy of approaches in sensor-based AR, showing the main concept, sensors

and techniques used in each approach, as well as their prominent advantages and

disadvantages.

Table 2.1: A taxonomy of approaches used in sensor-based AR

Approach Main idea Example sensors Classification Advantages Disadvantages
Object
based

Infer activity
from detected
objects, or
changes in
objects status

RFID, state
change sensor,
binary sensor

Rule-based, log-
ical, reasoning,
probabilistic
techniques

Activities model is
constructed in a
semantically way

– Require installa-
tion of large set
of sensors

– Sensor uncer-
tainty

– Unable to detect
activities which
are not involved
the use of ob-
jects

Location
based

Predict ac-
tivity based
on changes
in subjects
location and
activity-location
constraint

Wifi, RFID Bayesian net-
work, Decision
tree

Good at detecting
transition activities

– Cannot de-
tect detailed
activities or
activities which
can possibly be
performed at
several locations

Wearable
sensor
based

Predict activ-
ity from body
sensor data
occurred from
changes in
movement

Accelerometer,
gyroscope, heart
rate monitor

Statistical and
machine learn-
ing techniques,
hierarchy, prob-
abilistic tech-
niques

High accuracy on ac-
tivities with repetitive
motion

– Sensors need to
be worn on body

– Difficult signal
interpretation

1. Object-based AR

infers activity from data collected from sensors installed on every objects

such as cup, tooth brush, dish, etc., furniture, appliances, and also in habi-
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tant area e.g. rooms. The sensors used are often binary sensors such as

reed switch, contact switch, motion sensor, etc. For example, more than 77

state-change sensors are installed on objects such as door, cupboards, food

container, etc. within a home [163]. These sensors record a binary state

of an object and the time that the objects state has changed. Information

such as which sensor fired and temporal information i.e. before, after and

duration are used for classifying activities such as preparing lunch, listen-

ing to music and taking medication etc. Another type of sensors is RFID

which are normally attached to objects in order to identify the objects that

a user encounters with. RFID tags placed on forks, plates, pencils, etc. are

used to infer meeting, eating and working activities [164]. Similar idea are

also found in [165, 166, 167, 168, 169]. Sensors such as temperature sensor,

light sensor, pressure sensor are used to detect changes in environment. For

example, 15 minutes differential temperature is used to identify the use of

shower [170]. Other sensors include analogue sensor to monitor appliances’

usage, pressure mat on a floor or chair to determine user’s location. Recent

works using object and environment sensors include [180, 181, 183].

The object-based AR approach exploits the semantic relationships between

objects and activities to automatically classify activities. Firstly, the object

is given its basic concept and associated with a higher concept using ontolog-

ical technique. Based on the objects shared properties, the structure can be

organised in a hierarchy manner to form super-classes and sub-classes [171].

For example, an ontology is used to represent underlying concept of objects

e.g. pencil and writing tools [164]. The relationship between ’MakeTea’

and ’MakeHotDrink’ activities through ’DrinkType’ property are defined

[171]. After the concept and relationship between objects, locations, and

activities are defined, the classification can be done through logical and rea-

soning methods such as rule-based technique, probabilistic techniques e.g.

Näive Bayes (NB), or others techniques e.g. DS, Decision Tree (DT), and

sequential pattern search. A survey on an object-based activity recognition

can be found in [156].

The advantage of the object-based AR approach is that the classification is
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done in a semantically way in which the information of how each activity

model is constructed from associated objects is described. The drawbacks

are firstly, the approach requires a large number of sensors attaching to ob-

jects which is infeasible and time consuming process. Secondly, uncertainty

of sensors such as false start and unable to detect object etc. could result

in poor recognition rate. For example, RFID tags may not be able to de-

tect in some environments e.g. metal, liquid, or other tags not related to a

particular activity can be detected by the reader because the corresponding

object is accidentally close. Finally, this approach cannot detect activities

which not involve the use of objects e.g. standing. Nevertheless, the last

shortcoming may be overcome by adding more sensors. For example, an

accelerometer is added to the AR system in [166]. They are able to com-

bine posture activity with activity which interact with objects e.g. taking

picture standing, toothbrush standing, etc. However, their system requires

a user to wear RFID glove all the time which may reduce user acceptance

of the system.

2. Location-based AR

The location-based approach utilises the location of a user to infer activities.

Sensors used in this approach are sensors which can identify the location

such as wireless access point, RFID tags, pressure mat, and motion cap-

ture system. For example, in one study [172], the received signal strength

indication (RSSI) received from wireless access point is used. Based on

the location of a user, activities such as Office-to-Print-in-Room, Office-to-

Seminar-in-Room, etc. can be inferred. Another study [184] uses the RFID

tags placed on the objects. Instead of using only the tag ID as commonly

found in the object-based AR approach, the estimated distances relative to

the antenna, and the area in which the objects are using RSSI, are calcu-

lated. DT is used to learn activities such as take and return. In [179], a user

wears a mobile sensor and wireless transceivers are deployed on furniture in

the bedroom. They also used RSSI as input to detect bed activities e.g. lie

on bellies with head turned to the side, sleep on right side with both arms

down, etc.
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The location-based approach is sometimes used to complement the object-

based approach such as in [174, 175]. By cooperating location information,

AR accuracy is improved [173]. This approach can be used to detect transi-

tion activities well. However, in the case of detailed activities e.g. reading,

brushing teeth, a large number of tags or transceivers are required which

would increase calculation complexity.

3. Wearable sensor-based AR

This approach is the most popular in sensor-based AR [85, 139, 152, 155,

177]. Sensors are attached directly to the person being monitored. For

example, accelerometers are used on wrist, arm, thigh, and ankle to detect

daily activities such as walking, running, bicycling, etc. [177]. The glove

with magnetic sensors is used to detect activities which involved the use

of hand e.g. brush teeth, use hair dryer, vacuum, shave, etc. [178]. The

sensors used normally have the capability of reflecting changes in different

movement. Statistical techniques are often employed for classification in

this approach. An activity is expressed as a set of statistical measurements

which often referred as features. These features come from the statistical

calculation e.g. mean, standard deviation, etc. of the collected sensor data

and expressed in an m-dimensional feature space. Classification of an ac-

tivity is achieved by firstly establish decision boundaries that will separate

a feature space into classes regions. By studying the distribution of these

features and the statistical properties of the classes, a decision on classi-

fication can be made regarding the possibility of belonging to each class

[176]. Mathematic and statistic theories such as probability, distance func-

tion, etc. are utilised in the development of the classification functions.

Classification models include generative models i.e. NB, HMM, etc., dis-

criminative functions i.e. Logistic Regression (LR), SVM, etc. and Neural

Network (NN).

This approach can provide a good recognition for activities with repetitive

motions [163] and high accuracy activity detection can be achieved provid-

ing sensors are installed at suitable locations. The disadvantages of this

approach are such as difficulties in signal interpretation of activities with
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vary motions i.e. cooking and that sensors are required to be worn at all

time which may interrupt or reduce mobility of a user or even obstruct daily

activities routine. In some cases such as in elderly people, these sensors may

be perceived as stigmatisation. Due to the appropriateness in the elderly

care application studied in this research, the review will be focusing only

on wearable sensor-based AR approach.

2.1.2 Multiple VS single sensor location

The approaches used in wearable sensor-based AR can be divided into two cate-

gories based on the number of location of the sensor. In earlier study of wearable

sensor-based AR, multiple sensors are used in different locations of human body.

This includes both the use of one type e.g. accelerometer and multiple types of

sensors e.g. accelerometer and gyroscope, etc. The data collected from different

parts of the body would yield a large information used for activity classification.

Examples of previous works are shown in Table 2.2.

The advantage of the multiple sensor location (MSL) approach is high clas-

sification accuracy can be achieved given appropriate sensors are used in the

appropriate locations. Nevertheless this approach is mainly focus on the classi-

fication accuracy, overlook practicality issues such as acceptability, cost, etc. In

order for the AR to be used in reality, practicality issues need to be taken into

account. The approach which uses sensors in various location of human body

could obstruct or prevent the way human perform daily activities normally. Sen-

sors worn on many parts of body may not look appealing and not easy to be

accepted by a user. Hence, in later years, some of researches aim to overcome

these limitations by focusing on using sensors on a single location. Majority of

the studies using the single sensor location (SSL) approach used only one type

of sensor i.e. accelerometer. Table 2.3 presents some of previous studies using

this approach. Although, the SSL approach overcome the disadvantages in the

MSL approach, some limitations still exists. Firstly, the activities recognised us-

ing this approach are still limited to mainly posture e.g. lie down, sit, stand and

transition activities e.g. sit-to-stand, stand-to-sit. Secondly, the accuracy of the

single location approach is still lower comparing to the MSL approach.
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Table 2.2: Wearable sensor-based AR studies which use sensors in multiple loca-
tions of human body.

Author Sensor # Sen-
sor

Sensor location Recognised activities Accuracy

Lee et al.
[84]

Biaxial accelerometer,
digital compass sen-
sor, angular velocity
sensor

3 Waist and leg Sitting, standing, Different styles of
walking

86.7%

Bao et al.
[177]

Accelerometer 5 Arm, wrist, hip,
thigh, and ankle

walking, running, climbing stairs,
standing still, sitting, lying down,
working on a computer, bicycling and
vacuuming (N=20)

80%-
95%

Ward et al.
[182]

Microphones and ac-
celerometer

4 Wrist and upper
arm

Wood workshop activities (N=21) 63% -
98%

Parkka et
al. [155]

Accelerometers, com-
pass, temperature,
GPS, heart rate,
audio, altitude, hu-
midity, light, pulse,
EKG, skin resistance,
SaO2

- - Lying, sitting/standing, walking,
Nordic walking, running, rowing,
cycling (N=7)

82%-
86%

Junker et
al. [186]

Inertial sensors 5 Upper arm, up-
per torso, wrists

Case1 (light button, hand shake, phone
up, phone down, door, coin) Case2
(cutlery, drink, spoon handheld)

Case 1
98.4%.
Case 2
97.4%

Yin et al.
[85]

Light, temperature,
microphone, two-axis
accelerometer, two-
axis magnetometer

5 Shoulder, waist,
leg

Sitting down, walking, walking down
stairs, walking upstairs, running, slip-
ping on the ground falling down back-
wards, falling down forwards (N=7)

98.5%

Ermes et
al. [124]

Accelerometer and
GPS

3 Hip, wrist, ruck-
sack

Lying, rowing (with a rowing machine),
cycling (with an exercise bike), sitting,
standing, running, Nordic walking, and
walking

89%

Amft and
Trster
[146]

Inertial sensors, Ear
microphone, stetho-
scope microphone,
Electromyogram

6 Ear, neck, arms,
wrists

eating meat lasagne with fork and
knife, fetching a glass and drinking
from it, eating a soup with a spoon,
and eating slices of bread with one hand
only

80%-
90%
recall

Luštrek et
al. [117]

Radio tags 12 Shoulders, el-
bows, wrists,
hips, knees and
ankles

Falling, lying down, sitting down,
standing/walking, sitting and lying

Over
95%

Györb́ıró
et al. [152]

Accelerometer, a mag-
netometer, gyroscope

3 Wrist, hip, ankle Resting, typing, gesticulating, walking,
running, and cycling (N=6)

79.76%-
81.63%

Altun et
al. [139]

MTx 3-DOF ori-
entation trackers
equipped with tri-
axial accelerometer, a
tri-axial gyroscope, a
tri-axial magnetome-
ter

5 Knee (2), chest
(1), wrist (2)

Sitting, standing, lying on back and
on right side, ascending and descend-
ing stairs, standing in an elevator still
and moving around, walking in a park-
ing lot, walking on a tread mill, run-
ning on a tread mill with a speed of
8km, exercising on a stepper, exercising
on a cross trainer, cycling on an exer-
cise bike in horizontal and vertical po-
sitions, rowing, jumping, and playing
basketball (N=19)

99.2%
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Table 2.3: Wearable sensor-based AR studies which use sensors in single location
of human body

Author Sensor # Sen-
sor

Sensor location Recognised activities Accuracy

Najafi et al.[101] Piezoelectric gy-
roscope and two
accelerometers

3 Chest Lying down, walking, as well as SiSt
and stand-to-sit (StSi) transitions us-
ing different types of chairs (standard
wooden chair, armchair, and uphol-
stered chair), with and without arm-
rests (N=6)

-

Karantonis et
al.[108]

Accelerometer 1 Waist Sit-to-stand, stand-to-sit, lying, lying-
to-sit, sit-to-lying, walking (slow, nor-
mal, fast) fall (active, inactive, chair),
circuit (N=12)

90.8%

Maurer et al.
[75]

Light, 2D accelerome-
ter

3 Wrist, the belt,
shirt pocket,
trouser pocket,
backpack, and
necklace

Sitting, standing, walking, ascending
stairs, descending stairs and running
(N=6)

78.6%–
87.0%

Yang et al. [157] Accelerometer 1 Wrist Walking, running, scrubbing, stand-
ing, working at a computer, vacuum-
ing, brushing teeth and sitting (N=8)

93%

Pawar et al.
[135]

Electrocardiogram
recorder

1 - Sitting still, arm movement, walking
and climbing down stairs, climbing up-
stairs, twisting movement at waist.
The arm movement is a combined class
of three separate movements of left
arm, right arm, and both arms

92.44%

Yang et al. [116] Accelerometer 1 Wrist Walking, running, scrubbing, stand-
ing, working at a computer, vacuum-
ing, brushing teeth and sitting (N=8)

95.24%

Choudhury et
al.[107]

Electret microphone,
Visible light pho-
transistor, 3-axis
digital accelerometer,
Digital barometer
temperature, Digital
IR and visible+IR
light, Digital hu-
midity/temperature,
Digital Compass,
3D magnetometers,
3D gyros, and 3D
compass

10 Waist Walking, sitting, standing, taking
stairs up and stairs down, taking ele-
vator up and down, brushing teeth

93.8%

Chen at el. [130] Accelerometer 1 Wrist Standing, sitting, walking, running,
vacuuming, scrubbing, brushing teeth,
and working at a computer

92.86 ±
5.91%

Zhang et al.
[158]

Accelerometer 1 Wrist Eating and drinking 8̃8.139%

Bonomi et al.
[106]

Accelerometer 1 Lower back Lie, sitting or standing (Sit-Stand), ac-
tive standing (AS), walk, run, and cycle

91.67%

Khan et al. [129] Accelerometer 1 Chest Sitting, sit-stand, standing, stand-lie ,
lying, lie-stand, walking, walk- stand,
walking-upstairs, walking downstairs,
stand-sit, sit-lie, lie-sit (N=15)

97.65%

Han et al. [105] Accelerometer 1 Waist Standing, walking, running, falling, ly-
ing and jumping (N=6)

93.05%
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2.1.3 Type of sensor

A variety of sensors have been investigated in wearable sensor-based AR research.

These sensor can be separated into three categories: movement, environment, and

bio sensors. Movement sensors are used to capture the changes caused by move-

ment. The sensors should be able to react changes quickly and reflects different

type of activity well. These sensors are such as accelerometer, gyroscope, angu-

lar velocity sensor, magnetometer, RFID, and orientation sensor. Environment

sensors are used to measure changes in surrounding environment near the user.

Examples of such sensors are light sensor, temperature sensor, humidity sensor,

altimeter, proximity sensor, barometer and GPS. Bio-sensor are sensors which can

be used to measure users’ biological data. These sensors are such as heart rate

monitor, pulse, electrocardiogram (EKG, ECG), skin resistance, electromyogram

(EMG) [146], and respiratory sensor [147].

The most popular sensor used for AR is an accelerometer. Accelerometer is

an instrument that measures the applied acceleration acting along the sensitive

axis [14]. It is widely used for human AR purposes because of its capability to

respond to both frequency and intensity of movement, and measure tile as well as

body movement [13, 83, 177]. Accelerometers are relatively small and inexpensive

which makes them appealing to real-life applications. There are many types of

accelerometer for example, piezoresistive, piezoelectric, magnetoresistive, capaci-

tive etc. in which different key technologies are used to measure acceleration [11].

Conceptually, a variation of the spring mass system is used. In this system, when

acceleration is applied, a small mass inside the accelerometer responds by apply-

ing force to the spring, causing it to yield or compress. Measurement of the dis-

placement of the spring is used to calculate the applied acceleration. Some studies

[157, 158, 159, 185] use only accelerometers, while others e.g. [149, 151, 152, 155]

use accelerometers in conjunction with other types of sensors. Accelerometer

is shown to be the most information-rich and most accurate sensor for AR as

it reacts fast to activity changes and reflects well the type of activity [155]. It

has advantages over other sensors in quantitatively measuring human movement

[150].

Gyroscope and magnetometer sensors are often used with accelerometer to
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provide additional movement information in term of rotation angle and direction.

Gyroscope can be used to estimate the orientation and rotation of the move-

ment. Work by [38] shows that after gyroscope and magnetometer are used with

accelerometer, the accuracy of their system is increased by 17%. In wearable sen-

sor based AR, movement sensors are the most important. Environment and bio

sensors are used to provide additional information to improve accuracy in AR.

For example, microphone and accelerometer are used to detect assembly-related

activities [182]. The data from microphone can be used to detect surrounding

noise caused by different action such as grinding, using hammer, sanding, etc.

Accelerometer, microphone and light sensors are used in the AR systems [37].

Barometer can be used to collect information about pressure and temperature

of the environment. Accelerometer and barometer (air pressure differential) are

used to detect ambulatory movements considering vertical position shifts [35].

Combining barometer and accuracy can improve classification accuracy in child

activities [36]. Temperature could be used to indicate changes in environment

when performing certain activities. For example, washing dishes and brushing

teeth involve a use of water, or when ironing, the temperature maybe higher than

normal. Several works such as [79, 155] use the temperature sensor as part of

their AR systems e.g. the difference of temperature of 15 minutes is used to de-

termine the use of a shower [79]. Accelerometer with heart rate monitor and GPS

are used in detecting work, leisure time, exercise, entertainment activities [148].

It has been shown that there is a relationship between heart rate and physical

activity. Heart rate can be used to measure physical activities indirectly because

heart rate is proportional to the intensity of movement and oxygen supplied to

skeletal muscles [154]. For example, a subject specific regression model is used

to measure the activity intensity level [34, 153]. A study in [143] show that by

combining acceleration and heart rate improve accuracy of estimation of energy

expenditure by 1.4%. However, the study concluded that the use of the heart

rate monitor is difficult it as the users are required to wear the heart rate monitor

at all times.

The choice of sensor depends on the type of activity being recognised. Using

prior knowledge on the domain can improve the success of AR. For example, for

detecting activities which occur in different location, environment sensors such
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as light, temperature, microphone can provide useful information. In detecting

smoking activities as in [147], respiratory sensor which is used to detect gas

exchange will provide valuable information for classification.

2.1.4 Sensor location

Studies in wearable sensor-based AR have been carried out investigating the

use of sensors on different body locations. These locations include waist, leg,

arm, wrist, upper arm, upper torso, shoulder, hip, ankle, chest, hand, thigh,

trunk, shank, shin, feet, abdominal, and lower back. Waist is one of the popular

locations when whole-body movement AR is desired. This is due to the fact

that the waist is near to the center of mass of a human body, and the torso

occupies the most mass of a human body therefore can better represent most

of human motion [150]. The discriminatory power of different sensor locations

is studied [177]. The findings indicate that thigh is the most powerful location

in recognising 20 common everyday household activities e.g. running, bicycling,

scrubbing, etc., followed by hip, ankle, wrist, and arm. Wrist and arm is better

at discriminating activities using upper body movements. The results from their

study also showed that using sensors on thigh, hip, ankle, wrist and arm gave

the highest classification accuracy. Nevertheless, they suggested that effective

recognition of certain everyday activities can be achieved using at least one sensor

on the lower and upper body i.e. wrist and thigh or wrist and hip.

The choice of the sensor location is very important for the practical application

of the activity recognition system. The location of the sensor is linked with the

user acceptance of the system. In wearable sensor-based AR, a user is required

to wear the sensors all the time. Certain sensor locations may prevent users from

performing activities normally or may cause discomfort. Also, in certain applica-

tions such as in elderly care, these locations may be perceived as stigmatisation.

Another consideration is how to attach the sensor to human body e.g. using belt

clip, wrist band, strap, embedded in glove, etc. Loose attachment or unsecured

fit causes vibration and displacement of sensors may produce extraneous signal

artefacts therefore degrade sensing accuracy [150].
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2.1.5 Sensor fusion

Many wearable sensor-based AR systems use more than one sensor to obtain

information of human physical activities. This is known as sensor fusion which

is when data from different sensors are integrated to extract more information

[113]. It is believed that using multiple sources of information would increase

recognition accuracy. Fusion of sensors can be as simple as to concatenate all

data together and treat it as one single source or more complicated by associate

different sources using probability theory. According to [182], there are two com-

monly used approaches for fusing sensor data, namely feature fusion and classifier

fusion. Table 2.6 and Table 2.7 shows the level of sensor fusion of the existing

works in sensor-based AR.

In feature fusion level, data from different sensors are combined and fed into

a single classifier. The advantage of this approach is that more information is

obtained thus recognition accuracy may be improved. However, sensor fusion at

feature level may be difficult to perform for noncommensurate data i.e. data that

are not comparable [73]. Different sensor may generate sensor in different form

and size. For example, data obtained from camera is image which represents in

pixel, while data from accelerometer is acceleration respective to the axis. Also,

sensor may have different sampling rate or is deploy different platform which

make the fusion more complicated Also, system complexity is increased due to

larger input dimensionality [113]. An appropriate pre-processing technique e.g.

data normalisation and feature reduction or selection needs to be carried out to

normalise and reduce the size of the feature space. This approach is normally

employed due to its simplicity. Also, this approach is suitable when the sensors

are not useful on its own.

A majority of wearable-sensor based AR performed sensor fusion at feature

level. For example, biaxial accelerometer, digital compass sensor, angular ve-

locity sensor worn over waist and leg are used to detect basic activities such as

sitting, standing, and different styles of walking [84]. Sensor fusion is performed

at feature level where features from different sensors such as a standard deviation

over 50 samples of the forward acceleration, upward acceleration, and the thigh

angle, etc. are calculated and used for classification. Hierarchy based approach
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is used to classify the activity. For example, if thigh angle is more than 16 and

the thigh angle difference is more than 70 and acceleration at x axis is more

than 0.7 G, then the current activity is sitting. Fuzzy logic is used to classify

different speed of walking. Kinematic sensor which is composed of one miniature

piezoelectric gyroscope and two miniature accelerometers is used in [101]. The

sensor is worn over the chest. The data fusion is performed at feature level where

features from gyroscope and two accelerometers are calculated and feed into their

hierarchy-based classification. Accelerometers at hip, wrist, arm, thigh, and an-

kle are used in [177]. Data fusion is performed at feature level. Features such

as mean, energy, entropy and correlation from each accelerometer are calculated

and fed into machine learning-based classifier. Multiple sensors worn over body

is used in [155]. The sensor fusion is performed at feature level. They calculate

several features based on priori information and literatures. The features are

selected based on visual and statistical analysis. Machine learning-based classi-

fiers are used in this study. Accelerometer, gyroscope, and magnetometer on five

body locations are used in [139]. The sensor fusion is performed at feature level.

Firstly, they calculate a large number of features from the sensors, and then use

PCA to reduce the size. The features are then used in machine learning-based

classifier. Based on the analysis of literatures, sensor fusion at feature level se-

lects features based on two strategies. (1) The features are selected based on the

analysis of the features. The number of features studied from this approach is

small and prior knowledge or hypotheses of which feature would be useful for the

activities are required. Each feature goes through analysis to discover the distinct

characteristic of different activities e.g. changes in acceleration value in X-axis in

certain activities, etc. This approach is normally associated with hierarchy-based

classification. (2) The features are chosen based on previous studies. The number

of features selected varies in size. If the feature set is small, then no selection

process is carried out. Otherwise, the feature reduction technique such as PCA

to reduce the feature dimension, or feature selection algorithm to select a smaller

set of features is employed. In some cases, analysis using visualisation, bar chart,

ROC are also used to select the features. Machine learning-based classification is

often used with the second approach. Table 2.4 summarises how the features are

calculated and selected in previous studies.
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Table 2.4: Strategies used for sensor fusion at feature level
Feature
calculation

Feature
size

Feature selection Classification Example studies

Analysis Small None Hierarchy [84, 101]
Literatures Small None Machine learn-

ing
[152, 177]

Literatures Large None Machine learn-
ing

[117]

Literatures Large Feature selection us-
ing Boosting, forward-
backward search, Cor-
relation based Feature
Selection/Feature re-
duction using PCA

Machine learn-
ing

[75, 79, 107, 129, 139]

Literature
+ prior in-
formation

Large Analysis using visu-
alisation, bar chart,
ROC curve

Machine learn-
ing

[124, 155]

Another level in sensor fusion is at the classifier. The classification results

based from different sources of information using independent classifiers are com-

bined for final prediction. This approach suggests that there may be one classifier

performs better for specific classes thus, by suitably combining multiple classi-

fiers, accuracy could be improved. This approach is employed when it is clear

how each sensor will be contributed to the classification. A limited number of

wearable-sensor based AR studies performed sensor fusion at classifier level. For

example, two microphones and two accelerometers worn on wrists and arms are

used in [182]. Their system perform data fusion at classifier level. The sound

features are generated from microphone and used in LDA for classification. The

features generated from accelerometers are used in the HMM classifier. Each

classifier generates class rankings which are combined to give the final prediction.

An accelerometer and motion capture system are used in [175]. The sensor fusion

is performed at classifier level. The accelerometer is used to obtain the motion

information while the motion tracker system is used to provide the location in-

formation. The information is combined using the Bayesian technique. Inertial

sensors, ear microphone, stethoscope microphone, and EMG worn on ear, neck,

arm, and wrist are used [146]. The data fusion is performed at classification level.

They calculate features from each sensor, and then feed to the classifier based on

the feature similarity technique. Fusion strategy such as cooperative and com-

petitive, and linear regression is used to combine events. The study evaluates
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three combination methods: comparison with the highest confidence (COMP),

agreement of the classifiers (AGREE) and re-weighting the classifiers using LR.

They present a study on two comparison schemes: competitive and supportive

fusion. The results show that for competitive fusion, LR shows a better result

than COMP. LR reduces more insertion errors and has fewer deletions. For sup-

portive fusion, AGREE is better than LR as it achieves higher recall and improves

precision.

There are three basic approaches in sensor fusion at classifier level [182]. The

first approach simply compares the result of each classifier, discarding any result

where there is disagreement. The disadvantage of this approach is that it does

not take into account if one classifier may be expertise in particular classes. Sec-

ond approach employs soft fusion using class probabilities. The assumption that

classifiers produce continuous outputs such as class likelihood or class distances

is assumed in this approach. Combining continuous results create richer sources

of information for final decision making. An example of stochastic approaches

appropriate for this fusion approach is DS theory which is a mathematical theory

of evidence. It combines several sources of evidences associating with different

probabilities and based on that predict final decision with a degree of belief. One

drawback of DS is that a counterintuitive result is involved if high conflict be-

tween evidences exists. This approach has a disadvantage of high computation.

Another technique is to use simple classifier combination rules such as product,

summation, maximum, and minimum. The details of this technique are pre-

sented in Section 2.1.10. The third approach is a compromise between the first

and second approach where class probabilities are converted into class ranking.

Computational cost is reduced in this approach without discarding any speciali-

sation that one classifier may have over another. However, some information may

be lost during the conversion.

A sensor fusion can also be performed at both feature and classifier levels.

However, this concept is only found in [166]. The object-based and wearable

sensor-based approach are combined for AR. Accelerometers on thigh, wrist, and

waist, and a RFID glove are used. The data fusion is performed at both feature

and classifier level. The waist and thigh sensor data are fused at feature level

where they calculate the features and feed to the DT to obtain the body state.
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The wrist sensor data is used to determine hand state while an RFID sensor

is used to detect the touched object. All information is later combined at the

classifier level using a decision box. It is noticed that majority of wearable-

sensor based AR performed fusion at feature level. Otherwise if there is a clear

indication that each sensor used is capable of AR, then fusion at classifier is

performed. When two AR approaches i.e. object-based and wearable-sensor are

used, data fusion at classifier level is also suitable. Table 2.5 summarises the

advantages and disadvantages of the sensor fusion at feature and classifier level.

Table 2.5: A summary of key advantages and disadvantages of fusion at feature
and classifier level

Level Advantages Disadvantages

Feature
Suitable when a sensor is not useful on
their own

Difficult to perform for noncommensu-
rate data

Create data-rich information for the
classifier

May generate a large feature space

Easy to implement

Classifier
Convenient for noncommensurate data
i.e. data that are not comparable due
to form, size, sampling rate, platform,
etc.

If a sensor fails to detect the signal, the
full benefit of sensor fusion will not be
achieved.

Suitable for combine sensors used in
different approaches

If soft combination approach e.g.
Dempster-Shafer is used, classifier com-
bination can become complex

2.1.6 Pre-processing and segmentation

AR is composed of several subsystems as depicted in Figure 2.2. In each subsys-

tem, a sub-problem is defined and has to be solved individually. Each subsystem

is connected to each other and to develop a pattern recognition system, all sub-

problems need to be solved. Acquisition or sensor acquisition or sensing is the

first step in wearable sensor-based activity recognition. The collected sensor data

is then passed to the pre-processing stage. Pre-processing makes modification

to raw sensor data in order to improve them for facilitation of activity recog-

nition. For example, raw sensor data are normally contaminated by noise. By

pre-processing data, the noise is removed allowing true data to be used for clas-

sifier modelling. Several techniques can be used for pre-processing e.g. weighted
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average, weighted moving average, low-pass filter, high-pass filter, etc. The choice

usually depends on the type of sensors.

Acquisition

Segmentation

Pre-processing

Feature extraction

Classification

Figure 2.2: Basic AR components

Next, the processed data is passed through segmentation process where the

stream of inputs is separated into a single pattern. Segmentation requires iden-

tifications of starting and ending points of a pattern which is considering one of

research areas in AR. The challenging problems with segmentation are how to de-

termine patterns starting and ending points and when to segment. Determining

the beginning and end of an activity is difficult as naturally activity is interleav-

ing and overlapping. In wearable sensor-based AR, a fix-length window based

segmentation called sliding window is often used e.g. [145, 149, 155, 177]. This

technique is used for separating time series data into the input vector without

losing information. Given a sensor data stream, the data is divided into windows

consisting of an l elements without overlapping data. The overlapping sliding

window is also often used where it divides the data into windows using overlap-

ping data from previous window. Given a sensor data stream, the window is

consisted of [l−∆t, l+∆t] points. Majority of wearable sensor-based AR studies

employed 50% data overlapping as it is believed to reduce the edge conditions

that occur when dividing the data into independent sequential windows [143].

The length of the window is a trade-off between information and resolution

[144]. Normally, a short window length is more preferred. Long window may be
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suitable for recognising a single activity carrying out over a long period, however

this does not resemble how activities occur in reality. The effect of different win-

dow length ranging from 64 – 2048 data points or 1.4 to 91 seconds using the

C4.5 DT on 2 features calculating from accelerometers are studied [143]. The

findings indicate that the best window length is depending on the activity be-

ing recognised. A long window length is preferred for periodic activities such as

walking, riding, etc. and household activities with high motion variability such as

weeding, making bed, etc. A Short window length is preferred in posture activi-

ties and short duration activities such as walking up/down the stairs, crunching,

sit-up, etc. The 5.6 second window length or 256 data points is used as it al-

lowed good performance in recognising short time and posture activities and fast

interventions could be generated as soon as the activity is recognised. The choice

of window length also depends on the resolution of the selected sensor. Sensor

with a low resolution would require a long window length to ensure that enough

information can be captured in that window.

The activity can also be segmented using activity-defined windows. In this

technique, the start and the end of activity is identified by observing the changes

in sensor data. For example, segmentation is performed using sound from mi-

crophone [182]. However, this technique may only be suitable for activities with

apparent characteristic difference e.g. sound, movement, etc. so that the seg-

mented data is correctly identified.

2.1.7 Features

After the data is segmented, the features can be extracted from the raw sensor

data. The goal of feature extraction is to find the distinctive characteristics

of an activity whose values are similar for the same activities but different for

others. These characters should remain invariant to irrelevant transformations

of the input [141]. These distinctive characteristics are referred as features in

AR domain. Features are usually extracted from input by simply selecting some

measurements e.g. temperature, pressure, etc. or by calculating some functions

on the measurements e.g. mean, variance of body temperature.

A large set of different features have been studied in wearable AR researches.
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Examples are mean, number of peak, standard deviation (STD), angle, energy,

entropy, correlation, SMA, peak frequency, median, variance, intensity, pitch, roll,

speed, zero crossing rate, etc. These features can be separated into 4 categories:

heuristic, time-domain, frequency-domain, and time-frequency domain features.

Heuristic features are derived from an intuitive, fundamental understanding

or prior knowledge of how a movement, posture, or activity will produce a charac-

teristic signal. Example of these features are the difference, zero-crossing, angle

and angular velocity, Signal Magnitude Area (SMA), signal vector magnitude,

etc. [140]. The difference which calculates differences between sensor data can

be used to distinguish activities where it is believed that different activities have

noticeable strength in one or more accelerometer axis. SMA can be used to distin-

guish between static and dynamic activities using triaxial accelerometer signals.

Different dynamic activities, e.g., running and walking, have different SMA val-

ues [145]. Intensity is used as input in the activity classification system [152].

The intensity is defined as a proportional to the variation of acceleration [152].

The study shows that the intensity of accelerometer on different location of body

i.e. wrist, ankle and hip are different among resting, typing, gesticulating, walk-

ing, running, and cycling activities. Euler angles is used to describe rotations or

relative orientations of the arm to identify arm movement to detect eating and

drinking activities [158].

Time domain techniques use mathematic and statistic function to analyse

signal data with respect to time. Using the time domain technique, the basic

signal information which represents key signal characteristics can be extracted

from the raw sensor data. Because of its small computational complexity cost

and memory requirements, time domain techniques are often used in practical AR

systems. The most popular time-domain features are mean, correlation, variance,

standard deviation, kurtosis, maximum, skewness, minimum, range, and root-

mean-square (RMS), respectively. The mean can be used to detect posture and

discriminate type of activity i.e. static from dynamic [140]. A study by [177]

shows that mean acceleration can be used to classify postures such as sitting,

standing still, and lying down. The variance and standard deviation features

representing variability and probability distribution of a data are also common

features used in several AR systems [138, 139, 146, 155]. Standard deviation
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represents the amount of motion presented in the signal which can be used to

differentiate activities with a very different pattern such as walking and running

[136]. The range, minimum and maximum features are used where different

activities possess large differences in signal such as running and standing. Signal

correlation is also one of popular techniques used in AR system in which a linear

relationship of two signals is expressed. It is very useful for discriminating between

activities that involve translation in a single dimension [140]. For example, while

both walking and running exhibit similar acceleration pattern in all dimensions,

climbing stairs has a very different pattern in two dimensions [136].

The frequency domain technique is an analysis of mathematical functions

on signal data with respect to frequency rather than time [137]. Information

containing at different frequencies can be used to differentiate between different

activities. Frequency domain techniques have been used extensively to capture

the repetitive nature of a sensor signal which often correlates to the periodic

nature of a specific activity such as walking and running [140]. A Fourier series

such as Fast Fourier Transform (FFT) is often used to transform signal sensor

data from function of time to function of frequency. A Fourier series takes a

signal and decomposes it into a sum of sines and cosines of different frequencies.

Fourier analysis lets certain frequency ranges to be cut off which allows intensive

investigation on those frequencies we are interested. For example, the energy of

accelerometer signal between 0.3 Hz and 6 Hz includes most of the information

found in daily activities signal [144]. The energy of the signal can be used to

represent the dynamics of the motion [136]. Hip acceleration energy can be

used to classify ambulatory activities and bicycling [177]. Summation of the

accelerometer signal coefficients from 0.5 Hz to 3 Hz can discriminate between

activities like running and walking [140].

Frequency entropy and correlation can be used to separate activities with

similar energy e.g. biking and running. Biking involves a nearly uniform circu-

lar movement of the legs, an entropy of hip acceleration in the vertical direction

would be low as it contains only a single dominant frequency component at 1 Hz.

Running, on the other hand, may show higher entropy as it contains more FFT

frequency components between 0.5 Hz and 2 Hz [177]. In [177] work, bicycling

shows low entropy hip acceleration and low arm-hip correlation while running
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showed higher entropy in hip acceleration and higher arm-hip movement correla-

tion. Frequency-domains features commonly used in wearable sensor-based AR

include spectral energy, information entropy, coefficient sum, dominant frequency,

amplitude, and peak frequency.

As frequency-domain techniques cannot extract changes in spectral informa-

tion in respect to time, using time-frequency domain techniques allow both time

and frequency information to be extracted. To extract time-frequency informa-

tion, a wavelet transform is carried out. Filter bank is a common technique used

for Discrete Wavelet Transform (DWT) [142]. It decomposes the original signal

into a detailed coefficient using a high pass filter and an approximation coefficient

using a low pass filter. The higher frequency resolution, the more level the signal

is decomposed allowing the signal to be decomposed into different coefficients.

Wavelet features have been used in some studies. Daubechies wavelet decompo-

sition which is a type of DWT is used in the hierarchy classification algorithm to

classify posture and transition activities [101]. The study shows that DWT is a

powerful technique to detect posture and walking period even when the subject

is using walking aids such as a cane or walker. Other recent works which use

DWT include [185] and [118].

2.1.8 Feature space manipulation

Normally in wearable sensor-based AR studies, researchers select a set of features

they believe are essential for classification e.g. from previous studies or intuition.

Therefore, many of the studies does not employ the feature dimension reduction

or feature selection process in their systems. Nevertheless, in some systems where

several sensors are used, there is a need to perform such process as the feature

space becomes large. The aim of feature dimension reduction is to reduce the size

of the feature space while feature selection aim to select important and relevant

features for classification. This process would allow effective classification and

reduce computational cost.
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2.1.8.1 Feature dimension reduction

There are two popular techniques for feature dimension reduction in wearable

sensor-based activity recognition: PCA and LDA. PCA is a process to reduce

the variable dimensionality when correlated variables exist. These correlated

variables are converted into principal components by a orthogonal transforma-

tion process. A principal component contains a linear combination of optimally-

weighted of the interested variables. The first component always have the largest

variance of the interested variables, followed by the second component and so on.

The number of the component is less than or equal to the number of the inter-

ested variables. PCA has been used in wearable sensor-based activity recognition

studies such as [132, 133, 134, 135, 136, 139]. However, PCA has shortcomings

such as it only tries to preserve the data variance without cindering the discrim-

inant ability. Other techniques e.g. Generalised Discriminant Analysis [119], are

proposed to overcome this.

LDA tries to reduce the feature dimensionality while still preserving the sep-

arability of the classes. It projects the interested variables on to a line with the

highest separability. There are two approaches when projecting the variables

into a new space: class-dependent transformation and class-independent trans-

formation. Class-dependent tries to maximise the ratio of between class variance

to within class variance while class-independent maximises the ratio of overall

variance to within class variance [131]. Wearable sensor-based AR studies which

employ LDA include [127, 128, 129, 130, 136, 145, 157]. The difference between

PCA and LDA is that in the process of transformation, the shape and location

of the variable are changed in PCA, but only the shape in LDA [131].

2.1.8.2 Feature selection

There are three main approaches in feature selection found in wearable sensor-

based activity recognition applications: intuition, filter, and wrapper. Intuition

based feature selection requires a domain knowledge or understanding in what is

required in the classification of the interested activities. This approach is often

used in conjunction with visual inspection, statistical analysis of the features e.g.

histogram, distribution graph, or observation made during activity occurrence.
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Examples of studies which employed this approach are [155] and [182]. Filter

based-feature selection measures the relevance between features and the outputs

by using techniques such as information theory, distance, correlation, ROC, etc.

Each feature is evaluated for its relevance then given a ranking score. For ex-

ample, features which have the best performance in discriminating the interested

activities using ROC are used [124, 125]. Many of the statistical tests are used

with this approach e.g. Chi-square, T-test, etc. Mutual information (MI) is also

another popular measurement used for measuring the relationship between two

variables. Feature selection techniques which use MI are such as Mutual Informa-

tion Based Feature Selection [20], Maximum Relevance Minimum Redundancy

[62], Normalized mutual information feature selection-feature space 2 [65], etc.

Some techniques are based on NN to rank the features e.g. Neural Network Fea-

ture Selection (NNFS) [19], Clamping technique [18], Constructive approach for

feature selection [58], etc. The main advantages of the filter approach are simplic-

ity, fast and independence of the classification algorithms [126]. However, most

of the techniques in this approach usually consider two variables i.e. a feature

and class output, thus ignoring dependencies among a set of features. This may

lead to a selection of redundant features resulting in low classification accuracy.

Wrapper based-feature selection is the most popular technique for feature se-

lection in wearable sensor-based AR. In this technique, various set of feature sub-

sets are generated and evaluated using classification algorithms. The most opti-

mum feature subset is selected using search techniques. Examples of this approach

are forward selection [121, 122, 123], backward selection, forward-backward selec-

tion [129], exhaustive search [120], etc. In forward selection, one feature is added

into a feature subset at a time and the subset is evaluated for its performance. On

the other hand, backward selection removes one feature from the feature subset

at a time and evaluates the subset performance. Forward-backward selection em-

ploys both directions where forward selection is carried out first then the subset

is refined using backward selection. The wrapper approach is computationally

extensive than the filter method, however it can provide a better result as it

take into account the features dependency and interaction with the classification

algorithm.
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2.1.9 Classification algorithms

Majority of classification algorithms used in wearable sensor-based AR is based on

statistic such as LDA or machine learning techniques such as SVM, DT, NN, NB,

k-Nearest Neighbour (k-NN), HMM, etc. SVM is one of the popular techniques

used. The main concept of this technique is to find non-linear decision boundaries

which separate the data with the largest margin as possible. In order to help

discriminate data easier, SVM maps inputs into a new higher dimensional space

using some kernel functions such as linear kernel, Gaussian kernel and polynomial

kernel, etc. It then finds a hyperplane with maximal margin to separate the data.

The advantages of SVM are that it can produce a global optimal solution and

work well on small data set [115]. [117] carries out AR using RFID tags on human

body such as on shoulders, elbows, wrists, hips, knees and ankles. They perform

classification using eight machine learning techniques such as DT, NB, SVM,

Random Forest, etc. Their results showed that SVM achieved the highest result

of on classifying falling, lying down, sitting down, standing/walking, sitting and

lying activities. [139] studies human activity classification using accelerometer,

gyroscope, and magnetometer. They compare different classification algorithms

such as SVM, Bayesian decision making (BDM), Rule-based algorithm (RBA),

Least-squares method (LSM), etc. The activities studied are mainly toward on

exercise related such as exercising on a stepper, exercising on a cross trainer,

playing basketball, etc. Their results show that SVM produced high accuracy

in leave one subject out validation, however SVM requires longer time to train.

They show that in general BDM achieve the best result and LSM is the most

appropriate for online learning.

Bao et al. [177] carried out experiments on different classification techniques

such as DT, decision table, instance-based learning and NB on 20 daily activities

using accelerometer on arm, wrist, thigh, ankle and leg. They found that overall

DT performed best. DT is a hierarchical model that uses divide-and-conquer

strategy to recursively separates the input space into class regions. It composes

of decision nodes and leafs in which each node has a test function. Given a node,

a test function is applied to the input and depending on the output one of the

branches is taken. This process is repeated until the one of the leaves is reached.
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DT has several advantages over other classifiers such as easy to understand and

interpret the rules, allow both numerical and discrete features to be used, quick

classification for a large data set, and etc. DT and Artificial Neural Network

(ANN) are compared on classification of lying, sitting/standing, walking, Nordic

walking, running, rowing, cycling activities using a variety of sensors such as

compass, temperature, GPS, heart rate, etc. [155]. The study shows that DT

performance is better than ANN and that ANN is easily overfit due to the noisy

nature of sensor data. However, DT performance degrades in live experiments

[152].

ANN has also been used extensively in wearable sensor-based AR. ANN em-

ploys the structure of a neuron system where several input nodes (dendrites) are

connected to several output nodes (axons). The basic processing unit in ANN is

perceptron which has inputs that are associated with connection weights. The

output of the network is calculated from an activation function of the weighted

sum of the perceptrons that are linked to the output plus a bias weight. An acti-

vation function is usually a sigmoid function such as hyperbolic tangent, algebraic

function, arctangent function, etc. The NN can be trained so that it can auto-

matically adjust its weights to model the relationship between given inputs and

outputs. The weights are updated in order to minimise the error of the output.

ANN has advantages of its fast execution and work as a universal approximator in

which anything learnable could be taught to the network. The drawback is that it

can be slow to train however techniques such as momentum and adaptive learning

can be used to improve the performance of the gradient descent. Feed-forward

ANN is used to classify 15 postures and transition activates from accelerometer

worn on chest [129]. ANN is used for classifying 8 ADL e.g. working at PC,

vacuuming, brushing teeth, sitting, etc. from acceleration data [116]. The study

shows that the model using ANN outperforms k-NN. Prior knowledge from DT

and ANN are combined for classifying exercise related activities [124]. The results

show that a combination of DT and ANN improves classification accuracy.

Other algorithms have also been applied in wearable sensor-based AR. [182]

employs HMM for acceleration classification. Gaussian mixture is used for the

observation probabilities. They modify the number of mixtures and hidden states

for each class model. The activity is predicted based on the model that produces
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the largest log likelihood. A fuzzy basis function classifier is used for AR [130].

Hierarchical Temporal Memory which is normally used in image processing is

used in [158]. Rotations or orientations of the arm from accelerometers worn on

wrists are calculated as AR inputs. The idea of this technique is to construct a

coincidence matrix which discovers meaningful coincidence in training data. The

activity can be inferred by comparing the unknown input and the coincidence

matrix.

2.1.10 Classifier combination

As it can be seen from previous section, different classification algorithms have

different advantages and disadvantages. Also, due to different sensor type, sensor

location, features used, some techniques may be superior to others. The hypoth-

esis is that by combining classifier result, the performance of classification model

can be improved. Although this observation seems apparent, to the best of our

knowledge, work in wearable sensor-based AR has not yet been investigated on

this.

A construction of classifier for combination can be carried out in several ways

such as using different feature sets, training sets, classification algorithms, classifi-

cation architectures, or parameter values. Classifier combination methods can be

divided into different categories depending on criteria used. For example, based

on output type, the combination methods can be separated into three approaches

as presented in Section 2.1.5. Using type of combination criteria, the method can

be divided into two approaches: static and dynamic combination. Static combi-

nation employs a rule to combine output from the classifiers. Popular classifier

combination rules are product, summation, maximum, minimum, majority vot-

ing, and weighted average. The majority vote combines all the votes given by

each model and selects the class which has the highest vote. Using the product

rule, the classifiers’ outputs are combined using a vector product. The product

rule is more sensitive to objection than support where the class with low prob-

ability has more influence to the decision than the class with high probability.

Using the summation rule, the classifiers’ outputs are combined using the sum

function and the class which has the highest maximum of the average output is
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selected. The summation function generates the result of the average decisions

of all classifiers. This is similar to the majority voting function however contin-

uous output i.e. class probabilities can be used in sum function. The maximum

function decides the result based on the most confident classifier where it selects

the class with the highest output from all the models. The minimum function

combine classifiers results by selecting the class which is least objection by all the

models.

The static combination approach is simple, easy to apply, and uses low com-

putation. The disadvantage is that optimum result cannot be guaranteed and

over-confidence classifier could affect the overall accuracy. For dynamic ap-

proaches, the combination can be trained so that optimum combination can be

achieved. Example techniques used are such as NN, linear regression GA, etc.

The dynamic approach requires higher computation cost than a fixed rule, how-

ever better performance is normally expected. For example, a method to find

a combination model between features, classifier, and combiners using GA was

proposed [103]. The method was evaluated on two data sets and the results show

that the method outperforms other methods including single best classifier, GA-

optimised weighted soft linear combiner, GA-optimised class independent soft

linear combiner, and GA-based classifier selection only. However, this approach

[103] has some limitations. First, since the features are determined on the fly,

the optimal parameters for that features and classification algorithms may not

be able to obtained. For example, C and γ parameter need to be determined

before constructing the SVM classifier in order to obtain best results. Second,

this method may not be suitable for the classification algorithm that requires

longer time to train. Thirdly, the method may suffer high computation when

involve with a large feature space and complex classification algorithm. Fourth,

although the study compares the performance of the method with several other

methods, it does not compare with all possible combination to demonstrate that

the combination model selected by the method is optimum.

Classifier combination can be enhanced by cooperating weights. Weights can

be defined so that a classifier with better performance is associated with a higher

weight. Weights can be calculated using by simple techniques such as simple av-

erage, weighted accuracy, or some techniques from other domains e.g. forecasting
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such as variancecovariance and discounted combination methods [104]. Simple

average gives the average weights to all classifiers. Variance-covariance (VACO)

uses the mean square error to calculate the weights. Discounted mean square

forecast error (DMSFE) is the modified version of VACO where an additional β

parameter is introduced to discount the factor of the error. DMSFE is suitable

for error that is associated with time such that the recent error has higher weight

than the older error. Accuracy of the model can be used as weight where higher

weights are given to the classifier that are more accurate.

Weights can also be obtained by learning from data set using techniques such

as NN or from search techniques e.g. GA. Studies [92, 93, 103] indicate fusion

weight determined by GA improve the classifier fusion accuracy. For example,

classifier combination using 8-10 ensembles generated from different techniques

was studied [92]. A weight combination using GA was investigated for combining

several Bayesian classifiers [93]. However, some factors were not included in

these studies. Firstly, the investigations were not complete as all combinations

were not investigated [92, 93]. For example, six classifiers are produced, then

GA is used to combine all classifiers’ results. Based on this, the conclusion that

GA improves classifier combination accuracy is not always true as all possible

combinations have not been tested. Secondly, the weights determined are often

from optimising the accuracy or error of the weighted average fusion technique

i.e. f(w) = w1x1 + w2x2 + ... + wKxK . Other fusion functions which reflect on

the combination function e.g. summation, minimum, maximum, product, etc.

have not been applied before. Finally, some of these results are often compared

with the mean accuracy of a set of classifiers rather than to the best individual

classifier. However, the mean accuracy is always equal or less than the accuracy

of the best individual classifier (equal accuracy is only occurred if and only if all

classifiers have the same accuracy). For example, if there are three classifiers with

accuracies of 90%, 85%, 95%, the mean accuracy is 90% which is less than the best

individual (95%). This weakens the conclusion that the classifier combination is

better than a single classifier.
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2.2 Activity recognition approaches discussion

Tables 2.6 and 2.7 classify the approaches, sensors, fusion level, classification

techniques, application used in previous studies. From the tables, it can be seen

that a variety of approaches have been employed. From the tables, it can be

seen that using location approach for activity recognition is not popular. This is

due to the difficulty in determining the exact location of a user indoor. Also, the

RSSI can be impacted by furniture, objects, and layout of the house. Due to these

limitations, using location approach is not practical for assisted living application.

The object approach can provide good activity recognition, providing that enough

sensors are installed in homes. However, this approach is not popular due to its

feasibility in deploying and maintaining a large set of sensors in homes. If this

approach were to used, it is recommend to perform fusion at feature level, and

employ machine learning technique such as DT or reasoning technique for AR.

Using wearable sensor is the most popular approach for AR. Sensor fusion using

this approach can be done at feature and/or classifier level. This is depend on the

nature of the sensors as discussed in Section ??. Machine learning techniques are

often used with this approach and have been shown to provide high classification

accuracy. In term of assisted living application, it is suggested that wearable

sensor-based at single location should be used to increase the acceptance and

usability of the system.
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Table 2.6: A classification of sensor-based AR works regarding their approach,

sensor, fusion, classification, and application.

Approach: WS = Wearable sensor-based at single location, WM = Wearable sensor-based at

multiple location Ob = Object-based, L = Location-based, V = Visual-based. Sensor: MT =

Multiple type, ST = Single type. Fusion level: F = Feature level, C = Classifier level.

Classification: H = Hierarchy, ML = Machine learning and statistical, L = logic reasoning,

PM = Pattern matching, O = Other. Application: P = Postures, T = Transition, B = Basic

activities such as walking, running, etc., ADL = Activities of daily living, F = Fall, S = Specific
Author Approach Sensor Fusion level Classification Application #Participants Elderly?

Ward et al. [66] WM MT C ML S (Kitchen) - -

Lee et al. [84] WM MT F H B + P 8 N

Najafi et al. [101] WS MT F H P+T 11, 24, 9 Y

Bao et al. [177] WM ST F ML ADL 20 N

Tapia et al. [163] Ob MT F ML ADL 2 Y

Wilson et al. [67] Ob MT F ML N/A 1-3 N

Karantonis et al. [108] WS ST - H T+F 6 N

Maurer et al. [75] WM MT F ML B 6 N

Maurer et al. [74] WM MT F ML B 16 N

Ward et al. [182] WM MT C ML S (Workshop) 5 N

Yang et al. [157] WS ST - ML ADL 7 N

Yamada et al. [164] Ob ST - L S (Work) - -

Pawar et al. [135] WS ST - O B 23 N

Junker et al. [186] WM ST F ML S (Gesture) 4 N

Yang et al. [116] WS ST - ML ADL 7 N

Chen et al. [130] WS ST - ML ADL 7 N

Sanchez et al. [68] Ob N/A - ML S (Hospital) 15 N

Yin et al. [172] L ST - ML T - -

Choudhury et al. [107] WS MT F ML ADL 15 N

Ermes et al. [124] WM MT F ML S (Sport) 12 N

Yin et al. [85] WM MT F ML B + F - -

Landwehr et al. [165] Ob ST - L ADL 12 N

Amft et al. [146] WM MT C PM S (Dietary) 4 N

Luštrek et al. [117] WM ST F ML B + F 3 N

Diermaier et al. [83] Ob MT F Manual ADL 2 Y
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Table 2.7: A classification of sensor-based AR works regarding their approach,

sensor, fusion, classification, and application (cont.).

Author Approach Sensor Fusion level Classification Application #Participants Elderly?

Szewcyzk et al. [69] Ob MT F ML ADL 2 N

Zhang et al. [158] WS ST - H S (Dietary) - -

Cook et al. [174] Ob MT F ML ADL 60 N

Györb́ıró et al. [152] WM MT F ML ADL - -

Lu et al. [173] Ob MT F ML ADL 11 N

Hong et al. [82] Ob MT F L N/A - -

Bonomi et al. [106] WS ST - ML B 15 N

Hong et al. [166] WM+Ob MT F+C ML ADL 15 N

Khan et al. [129] WS ST - ML P+T 6 N

Khan et al. [145] WM ST F ML ADL 8 Y

Sarkar et al. [71] Ob MT F ML ADL 1-2 N

Iglesias et al. [70] Ob MT F ML ADL 24 N

Han et al. [105] WS ST - ML B - -

Altun et al. [139] WM MT F ML S (Sport) 8 N

Cheng et al. [80] Ob N/A - ML ADL 1 N

Zhu et al. [175] WS+Ob MT C ML B 1 N

Martine et al. [168] V ST - O S (Care) 2 Y

Fleury et al. [79] WS+Ob MT F ML ADL 13 N

2.2.1 Activity recognition application

2.2.1.1 Elderly care applications

Due to the strength in providing personalised support, AR has been used in many

healthcare-related applications especially in elder care support, long-term health

monitoring and assisting those with cognitive disorders [107]. AR enables new

model of care that is a home-based preventive system which will allow people

to age in their own home. The quality of life for people remaining in their own

homes is generally better than for those who are institutionalised. Furthermore,

the cost for institutional care can be much higher than the cost of care for a

patient at home [78]. AR in home can be used for monitoring patient care,

judging independence of elderly people, detecting changes in behaviour over time

and human-computer interfaces can motivate healthy behaviour [163]. More-

over, other monitoring sensors data such as heart rate, temperature, pressure,

etc. would allow patient to be monitored at home without disturbing their daily
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activities.

Figure 2.3: Autominder architecture [78]

A research by [78] investigates AR in order to help the elderly recognise and

cope with the cognitive decline associated with illness and aging by sending adap-

tive personalised activity reminders. Their Autominder architecture is depicted

in Figure 2.3. The system helps older persons adapt to cognitive decline and

continue the satisfactory performance of their routine activities and potentially

enabling them to remain in their own homes longer. In addition, automatic AR

also can allow older people to live at home safely by detecting abnormal activities.

If a safe and smart house can be instrumented with a sensor network, the occu-

pants would have a better chance to live safely and independently, especially for

those who suffer from severe illnesses e.g. Parkinsons or Alzheimers. Detection

of unusual activities can also be used as a first indicator when the elderly develop

cognitive decline or symptom of illness or even injury. Some work such as by

[179] specifically investigates bedside activities in order to prevent bedsores.

In elderly care where falls are major health hazard, activity classification can

be very useful for fall detection and prevention. An issue such as patient falling

from their hospital beds could be prevented. The early detection of fall is a cru-

cial step to alert and protect the person, so that serious injury can be avoided

[27]. AR also allows patients who are at higher risk of falls to be identified

offering an opportunity to intervene early to help prevent fall events from occur-

ring, thus improving patients quality of life, increasing survival, and cutting the
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staggering costs related with falls and fall-related complications [28]. A number

of researches including [27, 28] investigate specifically on fall detection by using

small, non-invasive sensors which allows practical, inexpensive way for monitoring

ambulatory movement of elderly people.

AR is used in robot applications. In elderly care domain, robots can work

as companions of elderly living alone in their homes. Also, robots can provide

services e.g. make a phone calls, tele-monitoring, etc. to older persons in home.

An example is a robot-assisted living system introduced in [31]. AR is applied in

robot system to determine users activity and intention and goal is then inferred

in order that the robot can respond in an appropriate way. Also, interaction and

communication between elderly people and robot can be achieved by AR. AR has

a major advantage in facilitating intelligent elderly care. The activity monitor-

ing system can be used to intelligently monitor the elderly living independently,

providing a peace of mind for their relatives and friends. It can facilitate a new

model of care in which ageing in home is encouraged. It can also benefit nursing

home or any care institutes by providing real-time monitoring so that care can

be done in a more effective and efficient way.

2.2.1.2 Physical health and fitness applications

In physical health and fitness applications, knowing a person is currently working

out, information of energy expenditure, activity intensity level, etc. could be

calculated and used to provide further health and fitness guidance which suits

the user. Wearable sensors based AR is used to detect several sport activities

such as rowing, cycling, etc. [124]. In this study, the authors suggest that a more

detailed analysis of physical effort can be obtained by detecting the exact form

of activity the subject is performing. A feedback can be provided to the user

about his/her lifestyle regarding physical activity and sports therefore promote a

more active lifestyle. An automated method of updating the exercise diary was

proposed in [77]. Their method can detect various sports including racket sports

i.e. tennis, team sports i.e. football, Nordic walking, gym training and aerobics

etc. The diary recoding sport exercises and personal training activities can help

motivate people to exercise more regularly and actively.
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2.2.1.3 Assembly and maintenance application

Another application of AR is in the domain of industrial production. The cap-

tured information of workers activities can be used to provide guidance and sup-

port on the tasks. The information can help to perform intricate, tedious or

critical tasks and improves productivity, decreases error rates, reduces labour

cost [30]. Thus, works can be done in an effective and efficient way. A wearable

computing prototype which enables a context-sensitive provision of necessary

information is developed to the training workers supporting training and qualifi-

cation activities at the SKODA production facilities in Czech Republic [29]. The

experimental results of their system show that the performances of workers have

improved. The assembly tasks are completed faster and with less error. Moreover,

the system provides autonomous relevant information to the preformed activity

resulting in elimination of dispensable movements when workers need to check

assembly information. Similarly, AR is used on assembly of the front lamp of a

car i.e. mounting and adjusting the lamp as depicted in Figure 2.4 [30].

Figure 2.4: Application of AR in industrial domain. AR on assembly tasks [30].

AR has also been applied in maintenance tasks. In critical maintenance such

as in an aerospace industry, missing a verification step is always possible and

could be avoided by tracking workers activities [30]. Example of work can be

found in [30] research.

2.2.1.4 Dietary-related applications

Another interesting application of AR is in the dietary-related area. Balanced

nutrition intake is important part of a healthy life. Automatic detection of food-
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related behaviour can be used in the development of an intelligent system to

promote better health and well-being. AR with ubiquitous technologies can pro-

vide a mean for individuals to proactively monitor their food as well as water

intake and act upon it, leading to a better food selection and sensible eating [24].

A dietary-aware dining table proposed in [24] is an intelligent table that can au-

tomatically track what and how much the individual eats from the dining table

over a course of a meal. The system can detect activities such as transferring food

among containers and eating food into individual mouths as well as the amount

and type of food consumed. The system provides effortlessly way for individu-

als to quantify and acknowledge their dietary intakes. Moreover, understanding

current users dietary behaviour can help improve customer service satisfactory in

restaurants. An innovative research called Future Dining Table which can recog-

nise users dining activities in order to provide recommendation on food which

is related to the users current dining status [23]. The system stores information

such as dining action history and current dining status and uses it to recommend

the dishes that would fit the current meal in the right timing for additional order

(See Figure 2.5). The system can be used in a restaurant to help waiters when

human resources are limited.

Figure 2.5: An innovative research, Future Dining Table, by [23].

2.2.1.5 Robotic applications

AR is an essential part for a personal service robot [21]. These robots must

have the ability in detecting and recognising human activities in order to decide
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next appropriate actions. It is important for a service robot which offers help

to a person to be able to detect and understand the user’s intentions and infer

his goals. This is particularly important when the robots confront with humans

who are not acquainted with service robots and their behaviour. For example,

AR allows the robot to be able to detect if the person needs help or guidance

and approach him in a proper way and also able to recognise normal activities

thus not interrupting a user in current activity. In addition, understand human

activity would allow robot to successfully communicate with human.

2.3 Applications in assisted livings

2.3.1 Activities of daily living

A variety of activities have been investigated in wearable sensor-based AR re-

search. This research is focused on the application in assisted living domain.

The activities recognised can be divided into two categories namely ambulatory

activities and ADL. Ambulatory activities are activities that related to walking

including static postures e.g. standing, sitting, transition activities e.g. sit-to-

stand, stand-to-sit, and dynamic activities e.g. walking. Examples of works which

used wearable sensors to recognise ambulatory are such as [101, 106, 108, 129].

ADL, on the other hand, cover a broader range of activities often found in daily

living. ADL is more complex than ambulatory activities and normally contain

several movements. ADL activities can be divided into two types which are basic

ADL and instrumental ADL (I-ADL). The basic ADL are activities necessary for

self-care while IADL are other activities which involved the use of an instrument.

Basic ADL include feeding, bathing, dressing, grooming, stairs, toilet use, bowel,

bathing, bladder, transfer, mobility and stairs. Examples of I-ADL are such as

using telephone, house work, doing laundry, watching TV, typing, vacuuming,

cooking, etc. Majority of wearable sensor-based AR aim to recognise ADL as it

has wider applications in various domains.
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2.3.2 Activity recognition for assisted livings

General speaking, any AR system could potentially be applied in assisted living

applications. This depends on the types of activities that the system can recog-

nised whether they are suitable for assisted living applications or not. However,

in this section only AR studies that are focused on applications in assisted living

are reviewed. Tables 2.8, 2.9, 2.10, and 2.11 present descriptions such as sensor,

sensor location, features, activities and algorithms about these studies. Based

on the sensor type, these works can be classified into two main groups i.e. (1)

on-object sensor, and (2) wearable sensor. The studies which use (1) on-object

sensors in their AR system are [79, 80, 81, 82, 83, 166, 173, 174]. This approach

predicts the activity of a person by using information from the status of objects

and surrounding environment. The sensors are placed on objects or environment

around home to monitor their status. The main sensors used are binary sensors

which are used for detecting objects status. For examples, RFID is used to detect

whether the object is touched by the user, contact switch to detect objects status

i.e. open/close, motion sensor to detect the presence of a user, pressure mat,

and door entry sensor. More specialised sensors such as sensors to monitor the

use of water and stove burner, and phone usage have also been used. Sensors

which are used to monitor changes in environment including temperature, light,

and vibration are often used with binary sensor in the on-object sensor based

approach. Using this approach, a detailed activity can be detected e.g. using

PC, using microwave, hand washing, making oatmeal, put on etc. Also, the

on-object sensor based approach shows high classification accuracy. However, in

order to detect very fine detailed activities using the approach, a vast number of

sensors need to be installed in home. Some objects also need to be replaced over

times e.g. toothpaste, skin lotion, etc., therefore the sensors attached to them

must also be replaced. Some systems i.e. [83, 173], require specialised sensors

e.g. floor sensor, to be instrumented throughout the house. This could make the

system more expensive as these sensors cannot be simply deployed and require

retrofitting. Normally in a system that objects are attached with RFID tags, a

user needs to wear or hold an RFID reader in order to detect the object status.

For example, a user is required to wear an RFID glove all the time [166]. This
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would make the system impractical to use and not easy to accept by the elderly

people.

The (2) wearable sensor based approach use information from the sensors

which are worn over human body. The studies which use wearable sensors in-

clude [85, 101, 108, 117, 135, 145]. This approach uses sensors which can detect

changes due to movement such as gyroscope, accelerometer, magnetometer, and

ECG, and sensors that can detect surrounding environment such as light, tem-

perature, and microphone. The wearable sensor based approach is focused on

detecting activities that involve movement such as posture e.g. standing, sitting,

transition movement e.g. sit-to-stand, stand-to-sit, repetitive movement e.g. run-

ning, walking, and ambulatory movement such as fall. The wearable sensor based

approach can be further divided into sub-categories based on the number of sen-

sors locations i.e. multiple and single location. The multiple location approach

involves using sensors on top and bottom parts of the body. For example, sensors

are used on shoulder, waist, and leg [85]. Radio tags are used on 12 locations

over the body e.g. shoulders, elbows, wrists, etc. [117]. However, this approach

may not be suitable for elderly people in term of usability and acceptance. A

single location approach, on the contrary, uses sensors on a single location such

as waist[108] and chest[101, 135]. This approach helps reduce the possibility of

sensor interrupting with daily activities. Nevertheless, not all locations are suit-

able for AR and some locations may have higher usability and acceptance than

others. The disadvantages of the single location approach are that the accuracy

for the multiple location approach is normally higher and the activities studies

are normally posture and transition.
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Table 2.8: Studies in AR for applications in assisted livings

Author Sensor #

Sen-

sor

Sensor lo-

cation

Features Classification

method

Recognised activities Accuracy

Najafi et

al. [101]

Piezoelectric gy-

roscope and two

accelerometers

3 Chest Discrete Wavelet

Transform fea-

tures

Hierarchical Lying down, walking,

as well as SiSt and

stand-to-sit (StSi)

transitions using dif-

ferent types of chairs

(standard wooden

chair, armchair, and

upholstered chair),

with and without

armrests (N=6)

-

Karantonis

et al. [108]

Accelerometer 1 Waist Low pass, filter-

ing, signal mag-

nitude area

Hierarchical Sit-to-stand, stand-to-

sit, lying, lying-to-sit,

sit-to-lying, walking

(slow, normal, fast)

fall (active, inactive,

chair), circuit (N=12)

90.8%

Pawar et

al. [135]

Electrocardiogram

recorder

1 - Mean of ECG

beats

Proposed

Body Move-

ment Analyse

classifier

Sitting still, arm

movement, walk-

ing and climbing

down stairs, climbing

upstairs, twisting

movement at waist.

The arm movement

is a combined class

of three separate

movements of left

arm, right arm, and

both arms

92.44%

Yin et al.

[85]

Light, temper-

ature, micro-

phone, two-axis

accelerome-

ter, two-axis

magnetometer

5 Shoulder,

waist, leg

- SVM and

Kernel Non-

Linear Re-

gression

Sitting down, walking,

walking down stairs,

walking upstairs, run-

ning, slipping on the

ground falling down

backwards, falling

down forwards (N=7)

98.5%

Luštrek et

al. [117]

Radio tags 12 Shoulders,

elbows,

wrists,

hips, knees

and ankles

Coordinate and

angle from the

reference points

SVM falling, lying down,

sitting down, stand-

ing/walking, sitting

and lying

Over

95%
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Table 2.9: Studies in AR for applications in assisted livings (cont.)

Author Sensor #

Sen-

sor

Sensor lo-

cation

Features Classification

method

Recognised activities Accuracy

Diermaier

et al. [83]

Accelerometer,

reed contact

switch, light

sensor and

temperature

sensor

13 Floor,

door, envi-

ronment

Discretised data Manually

analysis of

data

Laying down, getting

up, being absent from

the flat, being present

in certain rooms of the

flat and eating, etc.

(N=151)

-

Cook et al.

[174]

Motion and

temperature

sensors, ana-

logue sensors

that monitor

water and stove

burner use,

VOIP captures

phone usage,

contact switch

sensors to moni-

tor usage of the

phone book, a

cooking pot, and

the medicine

container

- Objects in

homes

room location of

the individual,

on/off status

of the water

and burner,

the open/shut

status of the

cabinet, and the

absent/present

status of the

item sensors, as

well as the num-

ber of seconds

that elapsed

since the pre-

vious sensor

event

Markov

Model

Telephone Use, hand

washing, meal prepa-

ration, eating and

medication, cleaning

-

Lu et al.

[173]

Current sensor,

flood sensor,

contact sen-

sor (reed switch,

mercury switch),

pressure mat,

3D accelerom-

eter, motion

sensor, vibration

sensor, RFID

- Objects in

home

Mean, variance,

area under

curve, max-

imum, and

minimum, fre-

quency domain

features

Bayesian Net-

work

Using PC, using

phone, studying,

listening to music,

watching TV, using

microwave, using

refrigerator, making

tea, using printer,

using other appliance

with RFIDs, walking,

sitting

92.43%

(with

loca-

tion)

88.43%

(With-

out

loca-

tion)

Hong et al.

[82]

Movement de-

tectors, contact

switches and

pressure mats

- Objects in

home

Binary sensor

data

Ontology +

Dempster

Shafer

- -
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Table 2.10: Studies in AR for applications in assisted livings (cont.)

Author Sensor #

Sen-

sor

Sensor lo-

cation

Features Classification

method

Recognised activities Accuracy

Hong et al.

[166]

Accelerometers

and RFID

- Thigh,

wrist,

waist and

objects in

home

Mean, energy,

entropy and

correlation

DT (body

motion), DT

(movement of

hand), object

used

Sitting, brush hair

standing, standing,

phone calling sit-

ting, walking, taking

picture standing,

lying, reading sitting,

running, wiping with

cloth standing, hand

shaking, running a

vacuum cleaner, rope

jumping, put on an

umbrella standing,

put on skin condi-

tioner, toothbrush

standing, pushing a

shopping cart, cutting

standing (N=18)

95%

Khan et al.

[145]

Accelerometers 5 Chest

pocket,

front left

trousers

pocket,

front right

trousers

pocket,

rear

trousers

pocket,

and inner

jacket

pocket

Spectral en-

tropy, Autore-

gressive, Signal

magnitude area

ANN Resting (ly-

ing/sitting/standing),

walking (along the

corridor), walking

upstairs, walking

downstairs, run-

ning, cycling, and

vacuuming

94%

Cheng et

al. [80]

RFID - Objects in

home

Sensor ID Adaptive

Learning Hid-

den Markov

Model

Initial state 6 Mak-

ing tea, Using the

bathroom, Making or

answering a phone

call, Making oatmeal,

Taking out the trash,

Making soft-boiled

eggs, Setting the ta-

ble, Preparing orange

juice, Eating break-

fast, Making coffee,

Clearing the table

89%

(preci-

sion)
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Table 2.11: Studies in AR for applications in assisted livings (cont.)

Author Sensor #

Sen-

sor

Sensor lo-

cation

Features Classification

method

Recognised activities Accuracy

Fleury et

al. [79]

Infrared pres-

ence sensors,

door contacts,

temperature

and hygrome-

try sensor in

the bathroom,

microphones

and a wearable

kinetic sensor

(accelerometers

and magnetome-

ters)

- Objects in

home and

environ-

ment

% of time spent

in postures and

walking, number

of events per

class, number

of event per

microphone,

% of time in

each room, % of

time open and

predominant

position in the

time frame,

differential mea-

sure for the last

15 minutes for

temperature and

hygrometry

SVM Hygiene, toilet use,

eating, resting, sleep-

ing, communication,

and dressing or un-

dressing

86.2%

2.3.3 Requirements of assisted living systems

The goal of assisted living solution is to enable elderly people to live longer in

their preferred environment, to enhance the quality of lives and to reduce costs

for society and public health systems [112]. Especially with the population ageing

phenomenon, assistive technology will be the key component of care of elderly

persons who require help with their daily activities within their own homes. A

report by [100] shows that majority of elderly people prefer to remain in their

own homes for as long as possible. Also, the cost of care home can be expensive

comparing to assisted living facilities. At the present, there are a number of off-

the-shelve products available in the market e.g. fall monitoring system on mobile

phone, emergency alarm, etc. Usually they are closed, stand-alone systems with

limited ability to describe actual situation, often too difficult for elderly people

to use and useless in emergency situations [112]. There is a need for the assisted

living solutions to become intelligent in order to actively assist elderly people.

58



Chapter 2: Literature reviews

There are three major requirements for assisted living systems which need to be

met in order to fulfil its purpose and potential to assist vulnerable people [112].

Firstly, the system needs to be ambient and unobtrusive for high acceptance

purpose. Secondly, the system must adapt themselves to changing situations or

capabilities of the individual and environment to fulfil individual needs. Finally,

the system must provide services in an accessible way. To sum up, the assisted

living system must have these characteristics: adaptive, accessible, high usability,

and high acceptance.

However, some of the currently available solutions only focus on the techni-

cal solution neglecting user acceptance and usability issues, especially for elderly

people who are the most demanding stakeholders for IT development [112]. For

example, a system which requires users to wear special equipment may be per-

ceived as stigmatisation or too complicated to use resulting in low acceptance.

For example in a mobility aid system [99], user interface is critical requirement

as it has direct physical interaction with the users. An interview-based investiga-

tion by [102] also shows that elderly people are concerned about privacy violation,

visibility and accuracy of the assisted living systems. Even if the systems could

deliver the best services for assisting people but unless they are easily accessible

and usable and address the real need and concerns of the users, they will not be

accepted.

Another issue in current assisted living systems is lack of human and social

interaction [96]. Over-using technology could reduce interaction between elderly

people and outside community. Many of the Ambient Assisted Living reports

emphasised on the importance of bridging distance and preventing loneliness and

isolation of elderly people and combining services with formal and informal care

[94]. Some assisted living systems [96] have taken this issue into consideration by

combining support from patients family, friends and all care team e.g. doctors.

By utilising human participation, effective assisting services could be achieved.

Simulation results revealed that informal care helps reduce the social resources

and provide timely assistance [98]. Elderly people social connection strength-

ened while the dependence on social resources is reduced when they are actively

involving in group activities [97].

The cost of an assisted living system is another important issue [95]. The
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cost of current assistive technology equipment varies from £6 (Talking medicine

label) to £3299 (Special magnifier). For a practical solution in assisted living,

the systems need to be cost-effective to make it affordable for general population.

With current sensor technology, small and low-cost sensors can be embedded in

everyday objects such as cloth, watch, etc. to provide cost-effective assisted living

solution. The assisted living domains are still in an immature state, nevertheless

with population ageing it will soon be a huge market and in order to compete

in such market, the cost will be a vital factor. There remain many issues and

challenges in activity recognition for applications in assisted living other than

technical perspective. These include user acceptance, usability, privacy, visibility,

systems accuracy, lack of human and social interaction and cost.

2.4 Identified research gap

This section discusses and identifies the gaps attained from the analysis of liter-

ature reviews in sensor-based AR for assisted living. It also discusses how the

research is different from previous studies.

Earlier approaches in AR have been through visual sensors. However, this

may not be practical for home-based care due to privacy concerns. Later, the

research in AR moves toward using non-intrusive sensor for AR. However, the

works in early years are mainly focused on the technical aspect of the system, that

is, to recognise the activity. Usually they are closed, stand-alone systems with

limited ability to describe actual situation, often too difficult for elderly people

to use and useless in emergency situations [112]. Factors such as location of the

sensor, number of sensors are linked with the acceptance and usability level of an

assisted living system. Certain sensors location or multiple sensor locations may

prevent elderly people to perform activities normally or may cause discomfort.

Also, some sensor types may be perceived as stigmatisation or too complicated

to use resulting in low acceptance. In a system which distributes sensors in

environment normally requires a larger number of sensors. This approach may be

time consuming and not feasible to set up. For example, RFID tags are attached

on numerous objects in homes [76, 166]. Similarly, home objects e.g. cups, fridge,

tea, etc. must be equipped with contact switch sensors in [82]. Cost of the system
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is also another important factor. The AR system needs to be affordable in order

it to be useful to improve health care of general population.

Therefore, in this research, a wrist-worn sensor is proposed and developed to

detect activity of an elderly person. Wrist is an ideal location which should not

interrupt normal activities. Earlier studies such as [116, 130, 157, 158] inves-

tigated the use of wrist-worn sensors to detect activities. Some limitations are

persisted in these studies. Firstly, the activities are limited to mainly posture

e.g. lie down, sit, stand and transition activities e.g. sit-to-stand, stand-to-sit.

Secondly, the classification accuracy is lower than systems which use sensors at

multiple locations. Thirdly, these studies only use one sensor i.e. an accelerome-

ter. To overcome these limitations, multiple sensors worn on wrist will be used.

A rich data can be acquired by using more sensors which will help improve the

classification accuracy.

A study which is closely related to this research is the work by [75] where light

and two-axis accelerometer embedded on wrist watch is used. Activities include

walking, sitting, standing, taking stairs up and stairs down, taking elevator up

and down, and brushing teeth are studied. The sensor fusion is carried out at fea-

ture level where several features are calculated then a Correlation based Feature

Selection algorithm is used to select a subset of features. The study investigates

the classification performances of the sensors used in different body locations

such as wrist, the belt, shirt pocket, trouser pocket, backpack, and necklace. The

study shows that sensor worn on wrist location achieved the highest accuracy

of 87%. The results of the study indicate the feasibility of using multi-sensor

on wrist for AR. Also, the results show that combining light and accelerometer

increased classification accuracy. However, this study only concentrates on basic

activities such as sitting, standing, walking, ascending stairs, descending stairs

and running.

Another related study is the one by [107] where multiple sensors worn over the

waist are used. Their sensor fusion is done at feature level. Around 600 features

are generated and feature selection based on Boosting technique is performed. In

Boosting technique, each feature is associated with one classifier. The classifier

is then trained for all features and the feature which is associated with the best

model is selected. The weak feature is associated with a lower weight. The
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study shows that accelerometer and microphone yield the most discriminative

information for the activities studied. The results also indicate automatic feature

selection helps in recognising activities, and information of users context can

improve the inference. The study [107] differs from this research in term of

sensor location. In addition, their work is concentrated on the use of Conditional

Random Field for AR. It is unclear how their feature select method can be applied

with other classification techniques.

Another important aspect of the multi-sensor based AR is the sensor fusion.

Based on the review, it is found that a majority of wearable-sensor based AR

performed sensor fusion at feature level. Using this strategy, the features from

different sensors are concatenated together and fed to the classifier. Techniques

such as manual analysis, feature selection, and feature reduction are used to select

and reduce the feature space. However, manual analysis is not suitable for a large

feature space. Also, some feature selection techniques such as Boosting, PCA,

and Clamping only concern the relationship between the feature and the classes.

The relationship between features are neglected which may result in the selection

of redundant features. Although, in other popular feature selection techniques

such as MRMR and NMIFS, relationship between features is considered, it is

only one-to-one relationship i.e. feature to feature. There is still a gap regarding

the feature selection technique which also taken the relationship between a set of

features and the classes into account.

Sensor fusion can also be done at classifier level. A limited number of wearable-

sensor based AR studies performed sensor fusion at this level. Features from each

sensor are used in each classifier and the final prediction is the combination of

the predictions generated from each classifier. However, this method requires

that each sensor is capable of activity recognition with good accuracy. This

method is not suitable the choice of sensors in this research, the . In contrast, the

research will use different classifiers to generate different predictions and combine

them for the final prediction. Two main approaches i.e. static and dynamic can

be used for classifier combination. The static approach is simple and uses low

computational cost. However, the optimum result cannot be guaranteed and over-

confidence classifier could affect the combination result. Also, the combination

model generated from this approach may not be suitable for different data sets.
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A previous study [103] used GA to find combination between features, classifiers,

and classifier combiners. The study shows an interesting idea of using GA to

find the combination model. There are some gaps which can be extended from

this study. First, other combination criteria can be added when selecting the

combination. For example, less number of classifiers or different classifiers is

more preferable, etc. Secondly, feature and classifier selection is performed in

this study which may not be suitable for classification algorithms which require

different values of parameters depending on the features e.g. SVM. Although

this can be solved by integrating the process of determining parameters into the

algorithm, it will require more computational cost. Thirdly, adaptive algorithm

can be added so that the combination model is periodically adapted to the new

data.

Classifier can be associated with weight to improve the combination result.

Section 2.1.10 reviews some weight strategies. The review indicates that static

and deterministic weight methods cannot guarantee the improvement in classifi-

cation accuracy. Other technique e.g. GA is used to find weights [92, 93, 103].

However, there are still some limitations regarding these studies. Firstly, the per-

formance of GA is based on the combination of all classifiers. Based on this, the

conclusion that GA could improve classifier combination accuracy is not always

true as all combinations have not been tested. Secondly, the accuracy or error of

the weighted average fusion technique i.e. f(w) = w1x1 + w2x2 + ... + wKxK is

the only fitness function studied. Other fusion function which reflects on different

combination function e.g. sum, minimum, maximum, product, etc. have been

studied before. Finally, combination results are often compared with the mean

accuracy of a set of classifiers rather than to the best individual classifier. The

mean accuracy is always equal or less than the accuracy of the best individual

classifier. Equal accuracy is only occurred if and only if all classifiers have the

same accuracy. This weakens the conclusion that the classifier combination is

better than a single classifier.

To summarise, the following identifies the main gaps in sensor-based AR for

assisted living:

• Practical aspect
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– acceptance, usability, cost and privacy -

• Technical aspect

– Sensor-based AR at single location

∗ Limited activities

∗ Low recognition accuracy

∗ Multi-sensor fusion for AR

– Sensor fusion at feature level

∗ Analysis of feature manually is not suitable for a large number of

features.

∗ Some feature selection techniques only concern the relationship

between the feature and the classes. They do not concern the

relationship between features or group of features and classes.

– Sensor fusion at classifier level

∗ Using static techniques cannot guarantee the improvement in clas-

sification performances of the combination model

∗ The combination model generated cannot be applied to different

data set.

Due to time constraint in this research, only technical aspects will be focused.

2.5 Summary

This chapter presents a state of art in wearable sensor-based AR research. Previ-

ous researches mainly focus on the investigation of the possibility of recognising

human activities using wearable sensors. The literatures have shown that using

wearable sensors for AR is possible. A number of sensors and classification tech-

niques have been investigated. However, there is still a gap due to the lack of

practicality concern in the development of AR model. This is particular impor-

tant especially in the assisted living application. Based on the review, there are

two aspects that need to be met in order to fulfil its purpose and potential to
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assist vulnerable people. These are practical e.g. acceptance, cost, privacy and

technical i.e. accuracy aspects. Even if systems could deliver the best services for

assisting people unless they are easily accessible and usable and address the real

needs and concerns of the users, they will not be accepted. The practical issues

can be overcome by the use of appropriate sensors and location. In this research,

small, low-cost, non-intrusive non-stigmatize wrist-worn sensors are investigated.

Previous studies which use wrist-worn sensor only covered limited activities e.g.

mainly ambulatory and transition activities and only single sensor i.e. accelerom-

eter is often used. From the literatures, it can be seen that multiple sensors can

yield more information. This research is interested in using a multiple wrist-worn

sensor for AR of an elderly person with the aim of achieving practicality in term

of user acceptance, privacy (non-visual) and cost and high accuracy.
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System architecture and

approach

Chapter 2 provides a review of prior studies in wearable sensor-based activity

recognition and identifies the shortcomings on previous activity recognition for

assisted living applications. To overcome the practicality issues in term of cost,

privacy (non-visual), and acceptance, and to extend the types of recognised activ-

ities and improve classification accuracy, an investigation on multi-sensor activity

recognition is carried out. The aim is to develop an activity recognition model

which is practical with high accuracy. This chapter presents overviews of research

design, research approach and system design. The design and development of

wearable sensors and justification of sensor location and choices of activities are

presented. This is followed by the details of sensor data set acquisition. The

chapter also describes the multi-sensor activity recognition framework proposed

in this research. followed by the descriptions of how the proposed work is assessed

and compared with other studies.

3.1 Research design

There are two main aspects of the research gaps in sensor-based AR for assisted

living as discussed in Section 2.4. The first gap is related to a practical aspect

including cost, usability, acceptance and privacy. The other gap is related to a
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technical aspect including classification accuracy and sensor fusion. To overcome

these limitations, the research on how to recognise an older persons activities

using non-visual, non-intrusive, small, and low cost wrist-worn sensors is carried

out. The results of the study can help identify the activity recognition method

suitable for a practical assisted living application. This section discusses the

research design. Firstly, to understand the process of sensor-based AR and check

the feasibility of the proposed concept, a feasibility study needs to be carried

out. It was decided to follow the methodology proposed by ?? as the paper

is very related to the proposed method in the research, and the methodology

is explained in great detail. The results of the feasibility will help preliminary

identify features and techniques, and limitations of activity recognition. Next,

the sensor data generated from older adults performing activities are required to

investigate and understand their characteristics. Based on the literature review,

sensor data can be obtained from either data collection, or public data set. In

this research, it was decided to collect the data as it was not possible to find a

suitable data set which contains a variety of sensor types and activities. From

the literature review, there was only one study which used wrist-worn sensors,

and their number of sensor types and studied activities were very limited. The

sensor types must be selected to use in the system. The sensor selection can be

identified based on the literature review e.g. sensors which are successfully used

by other studies, and sensors which can potentially provide useful information for

activity recognition. Also, due to the limitation of electronics skills, the sensors

and their platforms should be easy to implement, and/or ready-off-the-shelve.

After the data are collected, a series of experiments can be carried out to answer

research questions. Tools including Matlab and SPSS are used for data analysis,

and model evaluations. The reason of software choice are Matlab is a popular

platform which can be used for exploring, visualising, and modelling data, and

SPSS is a popular platform for statistical analysis. The choices of techniques

used and investigated in the research are selected based on literature reviews e.g.

techniques that are successfully applied and popularly used in related problems.

As part of this research is concerned on the practicality of the AR, the evaluation

and comparison will be carried out such that issues such as cost, usability, privacy,

and acceptance are considered.
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3.2 Research approach

The methodology used in carrying out the research can be separated into three

main tasks. (1) First, three activity data sets were collected to develop and

test the activity recognition algorithm. The first data set were collected from a

group of young participants which is used for a feasibility study on using a wrist-

worn sensor to detect human activity. The activities collected from this group are

basic activities such as walking, standing, sitting, etc. in both indoor and outdoor

environments. The second data set were collected from a group of elderly people

at a residential home to develop, train, and test the activity recognition algorithm.

The participants wore three wrist-worn sensors and performed 10 daily activities

such as brushing teeth, feeding, dressing, etc. under natural settings. The final

data set are also collected from a group of elderly people. However, seven sensors

were used in this data collection. The participants performed 13 activities such

as wiping, reading, exercising, etc. (2) Once the data were collected, a series of

experiments were carried out to develop an activity recognition algorithm that can

detect a range of activities of daily living, practical (use non-visual, low-cost, low-

profile, wrist-worn sensors) and high accuracy. These experiments were performed

to determine parameters for the algorithm e.g. the sliding window length, features

to extract, sensors, classification algorithms parameters as well as to develop and

evaluate the proposed feature selection and classifier combination techniques.

(3) Finally, the completed activity recognition model was evaluated on several

criteria in term of performance and practicality. The design and justification

on the choice of sensors, sensor location, and activities recognised are described

in detail in Sections 3.3. Then, data analysis was carried out with the aim of

identifying suitable features and activity recognition model development.

3.3 System design

In this research, a practical activity recognition method which uses wrist-worn

sensors is proposed to recognise activities of daily living of an elderly person.

The activities cover basic daily routines, and household activities. Six wrist-worn

sensors are investigated namely accelerometer, temperature sensor, altimeter, gy-
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roscope, light sensor, barometer. Also, a heart rate monitor is investigated and

evaluated if its usage justifies the reduction in term of the wearability of the

system. The following sections describe the wearable sensors used, software and

hardware implementation, the sensor locations, and data collection procedures

used to collect necessary data for the development of a multi-sensor based activ-

ity recognition algorithm.

3.3.1 Wearable sensors

This research involves the use of multiple wrist-worn sensors to detect daily activ-

ities. It can be seen from previous chapter that there are various sensors available

for activity recognition. Therefore, the following criteria has been set in order to

select suitable sensors that meet the research’s aim.

1. The sensor must be able to capture human movement or changes in envi-

ronment necessary for activity recognition.

2. The sensor must be inexpensive, and easy to acquire (preferably off-the-

shelve).

3. The sensor must be easy to implement and/or develop and/or integrate

and/or extend on an existing wrist-worn sensor board or system.

4. The sensor must be low power consumption.

Based on the above criteria and literatures, seven sensors are selected for

activity recognition in this research. The selected sensors and their justifications

are presented in Table 3.1.
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Table 3.1: Sensor choice justification

Sensor Justification

Accelerometer Accelerometer has a capability to respond to both frequency and

intensity of movement, and measure tile as well as body movement

[13, 83, 177]. Its capability in activity recognition has been proved

in many systems [157, 158, 159, 185].

Temperature

sensor

Temperature sensor measures temperature of the environment or

human body (depending on the sensor location). It can be used to

indicate changes in environment which may occur when performing

certain activities. Studies have used temperature sensor in conjunc-

tion with other sensors [79, 155].

Altimeter Altimeter measures the altitude of an object from a fixed level. The

information can provide information for detecting certain activities

which involve changes in heights e.g. using stairs, using lifts, etc.

Gyroscope Gyroscope are often used with accelerometer to provide additional

movement information in term of rotation angle and direction. It

can measure the orientation and rotation of the movement. A study

has shown that a combination of accelerometer and gyroscope can

improve activity classification’s accuracy [38].

Barometer Barometer is used to measure information about pressure and tem-

perature of the environment. Studies have indicated that using

accelerometer with barometer can improve activity classification’s

accuracy [35, 36].

Light sensor Light sensor measures the intensity of the light in the environment.

It can provide additional information for activity recognition of

certain activities which have changes in lighting condition. A study

has used light sensor in conjunction with other sensors to detect

activities [37].

Heart rate

sensor

A study has shown that there is a relationship between heart rate

and physical activity which can be used to measure physical activ-

ity indirectly [154]. Some studies has combined accelerometer and

heart rate sensor data to recognise activities [34, 153].
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These sensors are presented into three different platforms including (1) EZ-

430 Chronos watch, (2) Gadgeteer sensors, and (3) BlueRobin heart rate monitor.

The following sections describe these platforms and their implementations in

further details.

3.3.1.1 EZ-430 Chronos watch

The EZ-430 Chronos watch is developed by Texas Instrument. It is a fully func-

tional sport watch which has integrated accelerometer, temperature, pressure and

altimeter sensor, and battery and voltage sensor on board. The watch is light,

small, and easy to wear which will not disrupt the elderly persons movement or

create stigmatisation. The EZ-430 Chronos is based on the CC430F6137 Micro-

controller with the MSP430 CPU which is the industrys lowest power MCU. The

watch also contains 8 KB of flash memory available for data logging of altitude,

temperature, and heart rate. The on-board accelerometer can measure acceler-

ation in three dimension at a range of up to ±2G (G = 9.81 m/s2) with 8-bit

resolution and the sensitivity of 56 count/G. The accelerometer sampling rate is

100 Hz. However, to reduce the energy consumption, the watch only transmits

the third data set. Thus, the accelerometer sampling rate is set to 33 Hz. For

continuous acceleration measurement, the watch consumes about 166.0 µA. The

altitude sensor has 30 kPa - 120 kPa measuring range with 19 bits resolution.

For continuous altitude measurement, the watch consumes about 18.0 µA. The

temperature sensor can measure the range of -20 to 70 degree Celsius with 14 bits

resolution. For continuous temperature measurement, the watch consumes about

10.0 µA. In this research, the sample rate of temperature sensor and altimeter is

set to 1 Hz. The EZ-430 Chronos watch uses a CR2032 battery. For continuous

temperature measurement, the watch would last 25.0 months. For continuous

altitude measurement, the watch would last 13.8 months. For continuous acceler-

ation measurement, the watch would last 1.5 months. The EZ-430 Chronos watch

has an integrated 868 MHz wireless transceiver which allows communication be-

tween the computer through a USB RF access point wirelessly. In this research,

an application is implemented using Matlab to collect accelerometer data in real

time. It recorded date, time, acceleration in X-axis, acceleration in Y-axis, and
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Figure 3.1: The EZ-430 Chronos watch. The watch and its module is compared
to a pound coin. This figure also illustrates when the watch is worn by a person

acceleration in Z-axis. The watch flash memory is used to log date, time, tem-

perature, and altitude data. The data in the flash memory are later transferred

to the computer via radio frequency using a DataLogger Software provided by

Texas Instrument.

3.3.1.2 Gadgeteer sensors

The Gadgeteer platform is an open-source toolkit for building small electronic

devices developed by Microsoft. It has a wide variety of hardware modules which

can be programmed using the .NET Micro Framework and Visual Studio/Visual

C# Express. In this research, the data is collected from three Gadgeteer sensors

namely gyroscope, barometer, and light sensor. The gyroscope can measure up

to ± 2000 ◦/s with 14.375 LSBs per ◦/s sensitivity and 16-bit ADC. The sampling

rate of gyroscope is set to 33 Hz. The barometer is based on piezoresistive sensor.

It can measure between 300 and 1100 hPa absolute Pressure Range with 14 Bit

ADC resolution. The sampling rate of light sensor and barometer are set to 1
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Hz.

The barometer, gyro and light sensors are implemented on Gadgeteer FEZ

Cerberus board as shown in Figure 3.2. The FEZ Cerberus is 168 MHz 32-bit

Cortex M4 processor with 1 MB FLASH and 192KB RAM board. The sensor

data including date, time, rotation X-axis, rotation Y-axis, rotation Z-axis, light

intensity, barometric pressure, and barometric temperature are sent via I2C bus

and recorded on a SD card. The data are later transferred to the computer via

SD card reader. The board is powered using an 800 mAh power bank for a light

weight application. The board is placed on the power bank which is placed on

top of the wrist watch. Figure 3.3 shows the developed wearable sensors used in

this research.

3.3.1.3 BlueRobin heart rate monitor

The heart rate monitor is developed by BlueRobin. It has built-in 868 MHz radio

frequency which can transmit a range up to 800 meters (depending on environ-

ment). It has a built-in data collision prevention allowing multi-user systems with

up to 200 chest straps and provides a 24-bit ID to uniquely identify each chest

strap. The heart rate monitor uses a CR2032 battery. The chest strap is made of

elastic rubber and is waterproof. The heart rate monitor sampling rate is set to

1 Hz. The heart rate monitor can communicate with the EZ-430 Chronos watch.

The heart rate data is transmitted to the watch and logged in the watchs internal

flash memory which is later transferred to the computer via radio frequency.

3.3.2 Locations of sensors

As the aim of this research is to propose a practical activity recognition method

for detecting an elderly person ADLs in term of user acceptance, privacy and

low-cost, it is decided that the sensors should be worn at a users wrist. The

justification of the system design on this work has been based on the literatures

and innovative ideas. For example, the justification that using the accelerometer

on the wrist is due to the practicality issue that, from literatures, wrist is the

optimum location for wearable sensors as it does not interrupt daily activities.

Also, the literatures indicate that it is possible to predict activities based on a
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Figure 3.2: The design of the multi-sensor hardware based on Microsoft Gad-
geteer. The FEZ Cerberus board is connected with barometer, gyroscope, and
light sensor. The SD card is used to log the data. The board is powered by a
USB power bank.
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Powerbank

EZ-430 Chronos watch

Gadgeteer platform

Figure 3.3: The gadgeteer sensor board is powered by a power bank through a
USB. The gadgeteer platform is mounted over the EZ-430 Chronos watch.

Figure 3.4: Heart rate monitor. The heart rate monitor is worn over the chest
using chest strap.
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wrist-worn accelerometer.

However, due to hardware and time limitation, it is not possible to implements

all the sensors on the single watch. Therefore, it is decided to separate the sensors

between two wrists. We separate the sensors in a way that it should not interfere

with the activity recognition. The sensors which are related to the movement i.e.

accelerometer and gyroscope are worn on the dominant wrist in order to capture

the users movement. Also, barometer and light sensors are also worn on the

dominant wrist as they are parts of the Gadgeteer platform. The temperature

sensor which captures the body temperature and altimeter are worn on the non-

dominant wrist. In a real application, it is expected that all the sensors will be

implemented on a single watch and worn on the dominant wrist of the elderly

person. This location will not disrupt a user from performing an activity and/or

cause discomfort in wearing sensors. The heart rate monitor needs to be worn

over a users chest using a chest strap. Figure 3.5 shows the location of the sensors

on a participant. Although the chest strap is made from elastic fabric, wearing

the sensor for a continuous time might cause discomfort. The study will evaluate

the trade-off between discomfort and the obtained accuracy.

3.4 Choice of activities

The choice of activities depends on the objective of a particular system. In

the context of this research which is assisted living, a recognition of ADL is of

interest. Recognised ADL can be used for evaluating elderly independence [91]

to make sure that the elderly can carry out basic activities in their daily life.

This research investigates both basic ADL and I-ADL activities in attempt to

cover majority of activities occur in independent living situation. For the basic

ADL, five activities from Barthel Index [90] are selected namely feeding, grooming

(brushing teeth), dressing, mobility (walking) and stairs. Note that activities that

are not selected are due to the difficulty in data collection in term of privacy. In

addition, sleeping activity is also selected as it is common activity in everyday life.

For I-ADL, housework activities i.e. washing Dishes, ironing, scrubbing, wiping

and sweeping and leisure activities i.e. watching TV, reading, and exercising are

studied.
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EZ-430 Chronos watch

+ Gadgeteer

Heart rate chest strap

Figure 3.5: The location of the sensors. The gyroscope, barometer, and light
sensor on Gadgeteer board are mounted over the Chronos watch. The participant
wore two watches and a heart rate monitor on her chest. The participant’s face
has been blurred to preserve the anonymity.
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3.5 Data set acquisition

Three different data sets are collected and used during the development of the

activity recognition algorithm in this work. The first one, referred as the Young

activity data set, is a small data set consisting of accelerometer data of five ac-

tivities collected from seven young participants (aged less than 65 years). This

data set is used to validate the feasibility of using wrist-worn sensor for human

activity recognition and investigation on features for activity recognition. The

second data set, referred as the Multi-sensor activity data set, consists of the

data collected from three sensors including accelerometer, temperature sensor

and altimeter. This data set is collected from 12 older adults performing 12 ac-

tivities to develop the feature selection and activity recognition algorithm. The

third data set, referred as the Wearable-sensor activity data set, consists of data

collected from seven sensors including accelerometer, temperature sensor, altime-

ter, gyroscope, barometer, light intensity sensor, and heart rate monitor. This

data set is collected from 12 elderly people performing 14 activities. The data

set is used for developing the feature selection and activity recognition algorithm.

Five benchmark data sets including Iris, Breast Cancer-1992, Breast Cancer-1995,

Cardiography, and Chess are used for the evaluation of the feature selection al-

gorithm. These data sets have been used extensively in feature selection and

pattern recognition literatures. The data sets are obtained from UCI Machine

Learning Repository available at http://archive.ics.uci.edu/ml. Next, the details

of each of the data collection session are discussed.

3.5.1 Ethics and participant evaluation

This research study involve the studies with human participants, ethical issues

regarding human participation are taken into consideration. Before the data col-

lection sessions, the participants are given brief introduction about the study and

an explanation about the data collection processes and written informed consents

are obtained from all participants and they are informed they could withdraw at

any time from the study. An example of the informed consent used is presented in

Appendix A. This research project is approved by the Faculty of Computing, En-

gineering and Technology Academic Ethics Team, Staffordshire University, UK.
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The participants are also asked about their personal health issues and evaluated

using the Barthel Index [90] to assess if they are suitable for participation. The

score sheet of Barthel Index is available in Appendix B.

3.5.2 Young activity data set

This is a data set consisting of acceleration data of five activities including sitting,

standing, lie down, walking, and running. The descriptions of these activities are

presented in Table 3.2.

Table 3.2: Descriptions of the activities collected in the Young activity data set

Activity Description Goal used

Sitting Sitting on a chair Walk to the notice

board and read one of

the posters.

Standing Standing still Walk to the garden

and sit on a bench.

Lying Lying down face up Running to the Oc-

tagon building.

Walking Walking at subjects normal speed -

Running Running at subjects normal speed -

The participants are asked about their gender, age, weigh, and height prior

the data collection. The data set is collected from seven young participants aged

between 27 and 35 years. Two participants are females and five are males. The

characteristics of the participants are presented in Table 3.3. This data set is

used to investigate the feasibility of using a wrist-worn sensor for human activity

recognition and identify a set of features used for activity recognition.
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Table 3.3: Participants characteristics for the Young activity data set

Gender Age (year) Weight (Kg.) Height (m.) BMI(kg/m2)

Mean Std. Range Mean Std. Mean Std. Mean Std.

female 27.00 1.41 2.00 49.00 8.49 1.66 0.849 17.69 1.27

male 29.00 1.87 4.00 61.20 7.92 1.67 0.043 21.86 2.91

all 28.43 1.90 5.00 57.71 9.45 1.67 0.050 20.67 3.17

The participants are asked to wear the EZ430-Chronos watch which has an

on-board accelerometer on their non-dominant wrists. The accelerometer charac-

teristic and detail are discussed in Section 3.3.1. The data collection is conducted

outside in natural setting at Staffordshire University, UK. As some of the activi-

ties collected in this data set are postures, a goal based strategy is used in order to

collect the data as realistic as possible. For example, a goal to read a poster from

a notice board is used for collecting standing activity. The goal used in this data

collection is shown in Table 3.2. The participants are allowed to complete these

goals in their own times to allow the activities to be carried out naturally. The

participants were firstly explained about the overall process of the data collection,

and given the list of goals that they had to carry out. The participant had time

prior the data collection to ask any questions regarding the goals. Before the

start of each goal, the participant informed the research the goal they wished to

carry out. The researcher marked down the name of the activity, date, and time.

The sensor data are sent to the laptop wirelessly via 868 MHz radio frequency.

The data set contains the participant ID, date, time, X-axis acceleration, Y-axis

acceleration, Z-axis acceleration, and activity name. The total amount of data

collected is 35 minutes containing 69,400 items of acceleration data. The distri-

bution of the data are sitting 21%, standing 26%, walking 18%, lie down 27%,

and running 9%.

3.5.3 Multi-sensor activity data set

This data set is collected from three sensors including accelerometer, temperature

sensor, and altimeter. A total of 12 elderly participants aged ranging between

65 and 78 years old are recruited through advertisement by the representative
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Figure 3.6: Example of a data collection session for the Young activity data set.
The participant wore the Chronos watch and performed several activities indoor
and outdoor.
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of Watket Elderly club. Their characteristics including age, weight, height, and

body mass index (BMI) are shown in Table 3.4.

Table 3.4: Participants characteristics for the Multi-sensor activity data set

Gender Age (year) Weight (Kg.) Height (m.) BMI(kg/m2)

Mean Std. Range Mean Std. Mean Std. Mean Std.

female 72.11 4.54 13.00 48.26 10.13 1.53 0.060 20.53 4.10

male 71.00 3.61 7.00 51.80 12.51 1.64 0.070 19.18 4.14

all 71.83 4.20 13.00 49.14 10.28 1.56 0.079 20.19 3.96

The data collection is carried out in a real home in Chiang Mai, Thailand in

order to replicate a natural living environment. This process is carried out over

several different days. The participants are asked to wear two EZ430-Chronos

watches on their wrists as shown in Figure 3.5. Each watch has three sensors

on board including accelerometer, temperature sensor and altimeter. One of the

participants is left-handed, while the others are right handed. The watch on the

dominant wrist is set to transmit acceleration data while the other watch recorded

temperature and altitude. The participants are asked to perform 12 activities.

The list of the activities and their descriptions are shown in Table 3.5.
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Table 3.5: Descriptions of the activities collected in the Multi-sensor activity data

set
Type Activities Activity and independence description

BADLs

Feeding Feeds self without assistance (using spoon and

fork)

Brushing teeth Brushes self-teeth without assistance, including

the use of toothpaste

Dressing Gets clothes and dresses without any assistance

except for tying shoes

Walking Walks from one place to another without assis-

tance

Walking upstairs Walks up the stairs without assistance

Walking downstairs Walks down the stairs without assistance

Sleeping/lie down Sleeps or lies down on a bed

IADLs

Washing dishes Washes dishes, glasses

Ironing Irons shirt, trousers, pillow case, etc.

Sweeping Sweeps floor using broom

Watching TV Sits and watches television

The participant is asked to perform each activity for 5 min except for brushing

teeth, dressing, walking downstairs and walking upstairs which had no time limit

(See Figure 3.7). The participant is allowed to perform these activities in any

order and they could take breaks between activities. Before the data collection,

the watches had been calibrated and paired with the computer. The researcher

marked down the start, stop time and name of each activity. In order to reduce

the strain caused by the appearance of the researcher during the data collection

process, the participants are left to perform activities at their own paces without

direct supervision. The acceleration data is collected using software developed

on MatLab. Temperature and altitude data are recorded on the watches inter-

nal memory which is later transferred to computer using the provided software

from Texas Instruments. The data collected from accelerometer are date, time,

acceleration on X, Y and Z axis. The data collected from temperature sensor

and altimeter are date, time, temperature and altitude. In total, 19.2 hours of

sensor data are collected. The classes’ distribution are brushing teeth 8.59%,

dressing/Undressing 4.51%, feeding 12.11%, ironing 11.90%, sleeping 14.95%,

sweeping 11.12%, walking 10.99%, walking downstairs 1.02%, walking upstairs
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0.97%, washing dishes and/or glasses 11.85%, and watching TV 11.99%.

Accelerometer

Temperature

Altimeter

Figure 3.7: Example of a data collection session for the Multi-sensor activity
data set. The participants wore two Chronos watches and performed activities
in homes.

3.5.4 Wearable-sensor activity data set

This data set is collected from 12 elderly participants aged between 66 and 79

years. The data set contain data from seven sensors which are accelerometer,

temperature sensor, altitude, gyroscope, barometer, light sensor, and heart rate

monitor. The advertisement is used to recruit the participants with the collab-

oration from the representative of Watket Elderly club, Chiang Mai, Thailand.

Table 3.6 shows the characteristics of the participants including their age, weight,

height, and BMI. The data collection session is carried out in a real home in Chi-

ang Mai, Thailand over several days.
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Table 3.6: Participants characteristics for the Wearable-sensor activity data set

Gender Age (year) Weight (Kg.) Height (m.) BMI(kg/m2)

Mean Std. Range Mean Std. Mean Std. Mean Std.

female 72.70 4.76 13.00 50.80 10.75 1.58 0.039 20.44 4.48

male 74.50 2.12 3.00 47.00 14.14 1.58 0.035 18.83 4.85

all 73.00 4.41 13.00 50.17 10.72 1.58 0.037 20.17 4.36

The participants wore heart rate monitor strap over their chests for moni-

toring their heart rate and other sensors are worn on their wrists as shown in

Figure 3.5. The temperature and altimeter are collected on the non-dominant

wrist, while accelerometer, gyroscope, light, and barometer are collected on the

dominant wrist. The participants are asked to perform 13 activities of daily living

including brushing teeth, exercising, feeding, ironing, reading, scrubbing, sleep-

ing, using stairs, sweeping, walking, washing dishes, watching TV and wiping (See

Figure 3.8). For exercise activity, the participants are asked to perform exercise

using elastic stretching band. Nine of the activities are similar to the activities

collected in the Multi-sensor Activity Data set (See Table 3.5 for descriptions).

The descriptions of the other four activities are shown in Table 3.7.

Table 3.7: Descriptions of the additional activities collected in the Wearable-

sensor activity data set

Activities Activity and independence description

Scrub Scrubbing floor using cloth or scrubbing brush

Wipe Wipe table using cloth or sponge

Read Read a magazine/book/newspaper

Exercise Exercise using an exercise elastic band for stretching

For each activity, the participants are asked to carry out the activity for 10

minutes. They could perform the activity in any order and are allowed to have

breaks between activities. In total, 33.75 hours of activity data is recorded. The

12 raw data including 3 axes of acceleration, heart rate, temperature, altitude,

light, barometer temperature, barometer pressure, 3 axis of rotation are recorded.

In total there are 64,084 patterns and the classes’ distributions are 7.55% brush-

ing teeth, 8.11% exercising, 7.39% feeding, 7.13% ironing, 7.56% reading, 8.11%
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scrubbing, 8.64% sleeping, 6.71% using stairs, 7.82%sweeping, 7.02% walking,

7.53% washing dishes, 8.76% watching TV, and 7.66% wiping.

Temperature

Altimeter

Accelerometer

Gyroscope

Light

Barometer

Figure 3.8: Example of a data collection session for the Wearable activity data
set. The participants wore two Chronos watches and a heart rate monitor over
their chests. Their faces have been blurred to reserve the anonymity.

3.5.5 Benchmark data sets

In this research, benchmark data sets are used to evaluate the proposed feature

selection algorithms. The four benchmark classification data sets are used includ-

ing iris, breast cancer, cardiotocography, and chess which are obtained from UCI

Machine Learning Repository [64]. These data sets have been used extensively

in pattern recognition literatures. The following sections give details about these

data sets.
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Table 3.8: Characteristics of the benchmark data sets
Data set # Features # Classes Data type # Sample

Iris 4 3 Real 150

Cancer-1992 9 2 Integer 699

Cancer-1995 30 2 Real 569

Cardiotocography-fetal 21 3 Real 2126

Cardiotocography-morp 21 10 Real 2126

Chess 36 2 Categorial 3196

1. Iris data set

This data set has been widely used in classification literatures [60, 61].

The data set contains three type of Iris plant i.e. Setosa, Versicolor, and

Verginica. There are 50 samples per each class. One class is linearly sepa-

rable from the others. Two classes are not linearly separable. Four features

in this data set are sepal length (cm), sepal width (cm), petal length (cm),

and petal width (cm).

2. Wisconsin diagnostic breast cancer data set

This data set has been used extensively in previous works [58, 59]. The

breast cancer data set is obtained from the University of Wisconsin Hospi-

tals, Madison [57]. This data set is collected in 1992 which shall be referred

as Cancer-1992. It contains 9 integer-valued features such as clump thick-

ness, uniformity of cell size, uniformity of cell shape, bland chromatin, etc.

The values for each feature are range between 1 and 10. There are 699

samples with 65.5% benign and 34.5% malignant cases. There are 16 sam-

ples with missing attribute values. In this study, 0-value is used to replace

any missing values. Another breast cancer data set which is collected in

1995 is also used in the research which shall be referred as Cancer-1995. It

is composed of 30 real-valued input features computed from a digitalized

image of cell nucleus such as radius, texture, smoothness, mean, standard

error, etc. to determine whether the cell is malignant or benign. The data

set contains 357 benign and 212 malignant samples.

3. Cardiotocography data set

This data set has been used previously by [10]. It contains the measurement
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of fetal heart rate (FHR) and uterine contraction features e.g. minimum

FHR histogram, percentage of time with abnormal long term variability, etc.

on cardiotocograms classified by expert obstetricians. The data set contains

21 input features which can be classified into 10 types of morphologic pat-

terns or 3 fetal states. The data set has unbalanced class distribution.

4. Chess data set

The chess data set contains sequences of chess-description for chess end

game. This data set has been previously used by [55, 56]. The data set

consists of 36 categorical-input features to classify if the White can win or

cannot win. The class distribution is 52% win and 48% cannot win. The

data set uses a string to represent the board-description e.g. f, l, n, etc.

therefore these are converted into integer values e.g. f=1, l=2, n=3, etc.

3.6 The proposed multi-sensor activity recogni-

tion framework

This section describes the proposed multi-sensor activity recognition framework

(See Figure 3.9). The framework is consisted of nine subsystems including 1)

sensor acquisition, 2) pre-processing, 3) segmentation, 4) feature extraction, 5)

feature selection, 6) classification model construction, 7) classification, 8) classifier

combination model construction, and 9) classifier combination.

3.6.1 Sensor acquisition

The framework uses seven different sensors input including accelerometer, tem-

perature sensor, altimeter, heart rate sensor, gyroscope, barometer, and light

sensor. The sensor data are wirelessly transmitted from the watch worn on the

dominant wrist of the elderly person. The accelerometer and gyroscope data Acc,

Gyro are consisted of accelerations and rotations from three axes i.e. X, Y, and

Z. The barometer data is consisted of barometric temperature and barometric

pressure. The sensor data X received at any time t is:
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Figure 3.9: The proposed multi-sensor activity recognition framework for assisted
living.
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Xt = {AccUb, T empUb, AltUb, HRUb, GyroUb, BaroUb, LightUb}

AccUb = {Accx, Accy, Accz}Ub

GyroUb = {Gyrox, Gyroy, Gyroz}Ub

BaroUb = {BaroT emp,BaroP ressure}Ub

where Ub denotes the sensors sampling rate. For example, in this research,

Ub of the accelerometer and gyroscope are set at 33 Hz, while the other sensors

are set at 1 Hz. Figure 3.10 shows an example of raw data collected from the

sensors.
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Figure 3.10: An example of acceleration and heart rate data collected from wiping
floor activity.
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3.6.2 Pre-processing

The sensor data is often noisy e.g. a sudden spike, especially for accelerometer

and gyroscope data which may lead to the construction of a poor classification

model. Therefore, to smooth the graphs and remove the outlier, the acceleration

and rotation data are pre-processed using the Weighted Moving Average (WMA)

technique. The WMA assigns different weights on data at different points, specif-

ically higher weights are given to more recent data. For any set of n sensor data,

the pre-processed data at time t can be calculated as:

Xt =
n∑

i=1

wiXt−i+1

n∑
i=1

wi = 1

In this research, two weight orders are used i.e. wt = 0.8 and wt−1 = 0.2. Figure

3.11 shows the sensor data before and after applying WMA.

3.6.3 Segmentation

In order to prepare the input from the sensor data, the Sliding-window technique

is used. This technique is commonly used for separating time series data into the

input vector without losing information. An experiment on the different window

length including 64, 128, 256 time frames, is carried out where it is decided to

use a window of 3.88 seconds (128 time frames). All sensors are divided into

128-window length with 50% overlapping. For a window size l, the segmented

data are:

X =


1 2 · · · l

l
2
+ 1 l

2
+ 2 · · · l

2
+ l

...
...

. . .
...

i−1
2
l + 1 i−1

2
l + 2 · · · i−1

2
l + l


where:

0 ≤ i ≤ 2× Alldata

l
− 1

91



Chapter 3: System architecture and approach

Data no.
100 200 300 400 500 600 700 800A

cc
el

er
at

io
n 

Y
-a

xi
s 

(m
G

)

0

0.5

1

Before apply Weighted Moving Average

Data no.
100 200 300 400 500 600 700 800A

cc
el

er
at

io
n 

Y
-a

xi
s 

(m
G

)

0

0.5

1

After apply Weighted Moving Average

Figure 3.11: An example of acceleration data before and after applying the
Weighted Moving Average.
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Figure 3.12 shows an example of the sensor data before and after the segmen-

tation using 128 window length and 50% data overlapping.

3.6.4 Feature extraction

After the segmentation, the multi-sensor input i can be represented as X =

{(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn)} where yi is the activity associated with

data xi. The input X is then passed to the feature extraction system which

calculates information from the input in both time and frequency domain. These

information are referred as features f . For example, f1 is the mean of X. In

total, a set of N features, F , is obtained where F = {f1, f2, . . . , fN}. The study

of the features which are extracted from the multi-sensor input is presented in

Chapter 4.

3.6.5 Feature selection

The strategy used in the proposed multi-sensor activity recognition is to extract

as much information from the sensors as possible, then apply feature selection

algorithm to select the optimum set of features S which explain the studied

activities. The feature selection process is carried out offline to determine the

selected feature set S where S ⊆ F . The feature set F obtained from the previous

stage. During online process, the feature set S will be extracted from the multi-

sensor input X.

In this research novel feature selection techniques which uses the concept of

feature complementary which to the best of the knowledge have not been ex-

plored before. Normally, feature selection technique employs concepts of feature

relevancy and feature redundancy to select a subset of features. Instead of using

these concept, it is believed that by exploring the relationship of how a feature

complements other features, a more suitable subset of features can be selected.

Two feature selection algorithms are proposed which are Feature Combination

(FC), and Maximal Relevancy and Maximal Complementary (MRMC). FC em-

phasises on the performances of a combination of features rather than single

feature. It uses Clamping and forward selection to find the best combination of

feature for each data set and monitor the network accuracy along so that over-
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Figure 3.12: An example of acceleration data before and after apply segmentation
using 128 window length and 50% overlapping.
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lapped features are not selected. MRMC selects the feature based on the criteria

of maximum relevance and maximum complementary. Clamping technique is

employed to measure the feature relevance. A new measurement to calculate the

complementary of the feature to the already selected feature set is introduced.

The feature is selected based on the criteria of maximum relevance and maxi-

mum complementary. The main difference between the proposed technique and

the other algorithms are that the complementary measurement is used instead

of the redundancy measurement. Feature redundancy can be detected through

the complementary measurement such that the redundant feature should give

low complementary score. The proposed feature selection techniques are further

investigated in Chapter 4.

3.6.6 Classification model construction and classification

This research investigates three classification algorithms namely RBF, MLP, and

SVM. Given the input X = (x1, y1), . . . , (xi, yi), . . . , (xm, ym) where xi contains

the selected features S selected from previous stage and yi is the activity associ-

ated with xi where y ∈ {c1, c2, . . . , cK} for K activities. The input X is passed to

the classification algorithm which learns the input using different techniques to

produce the decision boundaries. For example, SVM maps input into a high di-

mensional space using kernel functions such as linear, Gaussian, etc. and finds the

decision boundary that separates two classes with the maximum margin. MLP

uses the concept of connectionist where inputs and outputs are connected with

weights. It contains 3 layers i.e. input, hidden, and output layer. MLP finds the

optimum associated weights by trying to minimise the classification error func-

tion. It uses backpropagation technique to learn and adjust the weight. RBF is

similar to MLP, however it uses the radial basis function, which is a function that

depends on the distant from some point to the centre, as the activation function.

The construction of classification models is done offline. In online stage, after

unknown input x̂ is applied to the classification model, the probability of that

input belongs to each class ci, P (C = ci|x) are returned. The classification result

is the class ci that has the maximum probability, maxK P (C = ci|x̂). The study

on these classification algorithms for activity recognition is presented in Chapter

95



Chapter 3: System architecture and approach

5.

3.6.7 Combination model construction and classifier com-

bination

From the study and literature review, it is found that there is no best classifier

which is suitable for all data sets. With this in mind, the idea is to combine several

classifiers in order to improve the classification accuracy. Given the input received

from previous stage from a model,Mi = {P (C = c1|x), P (C = c2|x), ldots, P (C =

cK |x)}, is a set of the probabilities that input x belongs to class c1 to cK . The aim

of classifier combination is to combine these probabilities together using weight

and combiner functions. Given m classification models, the combination model

can be expressed as Com = w1M1 ⊗ w2M2 ⊗ wiMi . . . wmMm where wi is the

combination weight calculated from a weight function for classifier Mi and ⊗ is

the combiner function. The classifier combination model is carried out offline. In

this research, the use of Genetic Algorithm (GA) to find the optimum weights

for classifiers combination is investigated. Also, the combination model based

on GA is proposed where GA is used to find the optimum combination between

classifiers, weight functions, and combiner functions. These combinations are

represented in a three-dimensional chromosome. For each bit in the chromosome,

value 0 indicates absent and 1 indicates presence of each incident i.e. classifiers,

weight functions, and combiner. For example, if there are 3 classifiers, 3 weight

functions, and 3 classifier combiners, and the combination model M uses the

first and second classifiers with the third weight function, and the first combiner

function, then the combination chromosome can be represented as:

M =

1 1 0

0 0 1

1 0 0


The GA tries to find the combination that minimise the mean combination error.

The proposed technique also adds the classifier combination selection criteria

such that the model with less number of classifiers is preferred. The details of the

study on classifier combination are presented in Chapter 5. During online stage,

96



Chapter 3: System architecture and approach

the combination model produces the probabilities of the input belongs to each

class and the final output is the class with the maximum probability.

3.7 Assessing classifier performance

Usually in activity recognition research, the performance of different classifier is

assessed by calculating how well it performs in recognising target activities. The

measurements commonly used for evaluate activity recognition algorithms [143]

are such as accuracy, confusion matrix, F-score, true positive rate, false positive

rate, true negative rate, false negative rate, precision, recall, area under ROC

curve, and other methods such as one defined by [182]. The results of these

measurements must be examined carefully as sometimes it can be deceitful e.g.

increase in overall performance but decrease in particular classes. Moreover, other

techniques such as cross-validation maybe needed to ensure non-overfitting model

achieve a better result.

3.7.1 Cross-validation

In this study cross-validation technique is used to evaluate the performance of the

proposed algorithms. Normally, for cross-validation, the dataset is separated into

K sets. This is called K-fold cross-validation. Firstly, the dataset is separated

equally into K sets. For each K time, keep one of the K sets out as the validation

set, and one of the K for testing set, while the remaining K-2 sets are used as

training set. Throughout this research, 10-fold cross-validation is used, otherwise

stated.

3.7.2 Standard quantitative measurements

As mention earlier, there are many measurements used for assessing classifier

performance. An informative table which can be used for calculating other mea-

surements is called the Confusion Matrix. The confusion matrix is composed of

information regarding the True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN). Example of a confusion matrix is Table 3.9.
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Table 3.9: Confusion matrix
Predict

+ -

Actual
+ TP FN

- FP TN

1. Accuracy

Accuracy is often used as main measurement in activity recognition. It mea-

sures the percentage that the algorithm can correctly detect the samples.

It can be easily calculated from the confusion matrix as follow:

Accuracy =
Number of correctly classified samples

Total number of samples

=
(|TN |+ |TP |)

(|FN |+ |FP |+ |TN |+ |TP |)

2. Error rate

If in our application we consider all error to have the same effect, error rate

can be calculated as:

Error rate =
(|FN |+ |FP |)

(|FN |+ |FP |+ |TN |+ |TP |)

3. Misclassification type

In a multi-class classification problem, the confusion matrix can be used to

pinpoint what types of misclassification occur i.e. if there are any classes

that often confused.

4. ROC curve

Confusion matrix can also be used to draw the ROC curve. ROC curve

shows a hit rate versus false alarm rate which is |TP |
|TP |+|FN | VS |FP |

|FP |+|TN |

[113]. According to ROC curve, it can be seen that by increasing hit rate,

false alarm also increases. Using this information, we can decide a point on

this curve to suit our application.
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5. Precision and recall

Precision and recall are measurements used for evaluating the correctness

of a classifier. Recall measure emphasises on finding true class accuracy

while precision measure how correctly of that positive prediction.

Recall =
|TP |

|FN |+ |TP |

Precision =
|TP |

|FP |+ |TP |

6. F-score

F-score measurement is seen as an extended measurement of accuracy.

While accuracy ignores the false positive results which means that it can-

not differentiate if the classifier is being discriminative to a particular class,

F-score does not.

F − score =
2× Precision×Recall

Precision+Recall

3.7.3 Statistical test

In this research, statistical tests are employed to test the hypotheses e.g. to

compare the performances between algorithms. All statistical tests are carried

out using 95% confidence interval. This section presents the general work flow

used to decide the appropriate statistical tests. Firstly, the data is tested whether

it has normal distribution using the Shapiro-Wilk test. If the data has normal

distribution, then we determine if the data are related. For example, if the data

set is the classification accuracies using three sensors on different algorithms,

then the data are related. If the data is related, then we look at the number

of variables. For the data set with two related variables, the paired T-Test is

used. For the data set with more than two variables, the Analysis of Variable

(ANOVA) with repeated measures is used. If the variables are independent, then

the T-Test is used if there are two variables or the ANOVA if there are more

than two variables. If the data is not normal distribution, then a non-parametric
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test should be used. Similarly to the parametric tests, first we determine if the

variables are related. For testing two related variables, the Wilcoxon test is used.

For more than two related variables, the Friedman test is used. For independent

variables, the Mann-Whitney U is used if there is only two variables, otherwise

the Kruskal-Wallis H should be used. Figure 3.13 summarises the flow how the

statistical tests should be selected.

Paired T-Test

Normal 

distribution ?

Related ?

# Variables >2 ?

Mann-Whitney U

Wilcoxon

Kruskal-Wallis H

FriedmanANOVA

T-Test

# Variables >2 ?

ANOVA

Related ?

# Variables >2 ?

# Variables >2 ?

Yes Yes

Yes

No

NoYes Yes No

NoYes Yes No

No No

Figure 3.13: The flow chart shows how the statistical tests are chosen in this
research.

3.8 Comparison challenges

It is difficult to compare between different activity recognition systems. This

is due to variability in system components such as sensor, number of sensors,

approach, recognised activity, number of participants, and data set. This section

discusses how these factors affect the performance of the activity recognition
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system.

1. Number of sensor

According from the literatures, usually the more sensors used in the system,

the higher classification accuracies. This is because more information is

given to the classifier. Also, sensor type and sensor location can influence

the accuracy of the system. Certain sensor types and locations may be

more difficult to model human activity than others.

2. Approach

There are two main approaches in activity recognition which are object

based and wearable sensor based. The object-based approach normally

obtains higher classification accuracy. This also linked with the number of

sensor factor as the object-based approach normally uses a vast number of

sensors deployed in the environment.

3. Activity

The system which recognises complex activities e.g. ADL will normally

have lower classification accuracy then the system which recognises simple

activities e.g. postures. This also linked with the approach used for activity

recognition. For example, to use the wearable sensor-based approach to

recognise detailed activities will be more complex than using the object-

based approach. The number of the recognised activities is also important

as it is more difficult to recognise a more number of activities.

4. Participant

The number of participants in the data set can influence the classification

accuracy. The activity recognition model developed based on a limited

number of participants i.e. one or two persons will be less generalise and

reliable comparing to the model which is based on a larger group of par-

ticipants. Especially if the model is based on a single person, the expected

classification accuracy will be very high as it is a dependent model.

5. Data set

In reality, the activities data set is unbalanced. However, in term of classi-

fication accuracy, the model developed from an unbalanced data set could
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have a higher classification accuracy comparing to balanced data set. How-

ever, the result obtained from the unbalanced data set is misleading. For

example, if the unbalanced data set contains two classes i.e. normal and

abnormal with 98% and 2% class distribution, respectively. The model can

achieve classification accuracy of 98% without needing to recognise abnor-

mal activity. This result is misleading as the model should be able to detect

both classes.

6. Evaluation method

There are many techniques which are used to evaluate the activity recogni-

tion models performances e.g. cross validation, hold out, subject-dependent,

subject-independent, etc. as well as different classification measurements

e.g. accuracy, specificity, precision, recall, error, F-score, etc. Due to these

varieties, the comparison between different activity recognition systems can

be a challenging task. In order to fairly compare the systems, they should

use similar evaluation techniques and measurements.

3.9 Comparison strategy used in this research

It can be seen from the previous section that different activity recognition can be

varies from several factors. This makes it difficult to compare between different

activity recognition systems fairly. This section explains the strategies that will

be employed in this research to compare results against other activity recognition

systems. The following performance measures that can be computed from the

confusion matrix will be used to evaluate recognition algorithms: overall accuracy,

accuracy per activity, F-Measure per activity, and the confusion matrix itself.

These standard performance measures have been explained in Section 3.7.2. The

results of the experiments are also compared against other activity recognition

studies throughout the thesis. System architectures such as sensor, approach,

activity, participant, data set and evaluation techniques of each study will also

be taken into account when perform comparison.
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3.10 Summary

This chapter presents the architecture of the proposed multi-sensor activity recog-

nition framework. The justifications of the choices of sensors and sensor location

are identified. Also, the details of wearable sensor development and set up are

described. A detailed description of the proposed framework are presented which

covers sub-systems including sensor acquisition, pre-processing, feature calcula-

tion, feature selection, classification, and classifier fusion. In this research, fea-

ture selection and classification are mainly focused as they are the main key in

a successful activity recognition. The research aims to evaluate different feature

selection algorithms and to propose novel feature selection algorithms. An ex-

tensive experiments are carried out and the details are presented in Chapter 4.

In this research, novel classifier fusion techniques are also proposed which are

presented in Chapter 5. Three activity data sets have been collected using the

developed sensor platform. The chapter also presents how these data sets have

been acquired, along with their descriptions i.e. participants, data distributions,

and activities’ descriptions. Finally, the chapter presents assessment measure-

ments that are used for evaluation in this research. The challenges in comparison

of different activity recognition systems have been identified and the strategies

employed to overcome these challenges.
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Features and Feature Selection

Study

This chapter investigates the feature selection based on the architecture proposed

in Chapter 3. It proposes two feature selection approaches i.e. Feature Combi-

nation (Section 4.2), and Maximal Relevance Maximal Complementary (Section

4.3). The extensive experimental studies are conducted to demonstrate the pro-

posed methods. Some parts of the work in this chapter have been published in

[1, 2, 3, 8, 9].

4.1 Feasibility study

4.1.1 Study hypothesis and objectives

This research proposes multi-sensor AR based on wrist-worn sensors in order

to achieve a practical and high accuracy classification solution. Based on the

literature review, it is hypothesised that a wrist worn sensor can be used to

recognise human activities. In this study, a feasibility study of the use of wrist-

worn sensor to detect human activities is carried out with two main aims. The

first aim is to evaluate the feasibility and identify limitations of the approach.

The second aim is to investigate different features and classification algorithms

studied in the literatures and classifiers for the design of multi-sensor AR in later

stage. The objectives of this study are:
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1. To study the feasibility of using wrist-worn sensor for human AR.

2. To investigate and identify features suitable for AR.

3. To investigate popular classification techniques namely DT and NN.

4.1.2 Experiment design and data set

This study is carried out using Young Activity data set which is a small data set

based on seven young participants (See the details in Section 3.5.2) performing

five basic activities including running, walking, standing, sitting, and lying down.

WEKA software is used for Correlation-based Feature Selection and classifica-

tion. The study is carried out using 5-fold cross validation and the results are

averaged over 10 runs. A paired t-test with 95% confidence level is used to test

the statistical difference between results.

4.1.3 Methodology

4.1.3.1 Pre-processing

The raw sensor data contains noise and consequently signal pre-processing is

required. Weighted moving average is used to filter the outlier data (See de-

tail in Section 3.6.2). An example of raw and pre-processed accelerometer data

are illustrated in Figure 4.1. For each sample ith, the norm is calculated using

Ai =
√
x2 + y2 + z2. Norm represents acceleration size which is used to calculate

feature.

The processed data is divided into windows of 128 samples with 50% overlap-

ping (See detail in Section 3.6.3). The size of the window is selected based on

[144] where the classifier performance does not increase with window size larger

than 128 frames. In total, 1,070 patterns are used in this study and the distri-

bution of each class are sitting 21%, standing 26%, walking 18%, lie down 27%,

and running 9%.
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Figure 4.1: An example of triaxial accelerometer data on various activities. Top:
Raw sensor data. Bottom: pre-processed data

4.1.3.2 Feature extraction

In this study, a number of features from both time and frequency domains are

investigated. Seven features are selected from a survey literature [140]. The

selection is based on the two highest test accuracies from each activity scenario.

For example, difference and minimum achieved the best results in three activities

scenario. A further 8 features which are normally used in accelerometer-based

AR [106, 116, 129, 130, 155, 157] are selected. In total, this study investigates

13 features as shown in Table 4.1. For the spectral energy feature, the energy of

signal between 0.3 Hz and 6 Hz are calculated as these frequencies include most

of the information found in daily activities signals [144]. To calculate coefficient

sum feature, the summation of the signal coefficients from 0.5 Hz to 3 Hz are used

as it can discriminate between activities like running and walking [140]. For each

pattern, 13 features are extracted and analysed using Matlab and the detailed

information on these features are described in [140].
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Table 4.1: A list of features calculated from Young activity data set
Description Domain Total Features

Time Frequency

Features from [140]

Minimum Spectral energy 7
Difference x Spectral entropy
Difference y Coefficient sum
Difference z

7 Commonly used features

Mean Spectral energy 8
Standard deviation Spectral entropy

Variance
Correlation x, y
Correlation x, z
Correlation y, z

4.1.3.3 Feature extraction

Three different algorithms are used for feature selection namely DT C4.5, feed-

forward backpropagation NN (ANN) and Correlation-based Feature Selection

(CFS) . For C4.5 and ANN, classifications are carried out using each feature.

For C4.5, the confidence level which determines the amount of tree pruning is set

to 0.25. Two hidden neurons are used for each ANN classifier and learning rate is

at 0.3 which was selected based on experimental results. The features are ranked

based on their accuracy. The classification is carried out using 60% training and

40% testing data and the accuracy is averaged over 10 runs. The classification

results and rankings are shown in Table 4.2.

For CFS technique, each feature is evaluated on the correlation between fea-

ture and classes. Using Best-First search, features which are highly correlated to

the classes but low correlated to other features are selected. After applying the

CFS technique using WEKA, 6 features are selected namely mean, minimum,

correlation x, y, difference x, difference y and key coefficient sum.

Using ranking results from both C4.5 and ANN, 24 different feature sets are

created. For example, set A contains a feature ranked 1, set B contains features

ranked 1 and 2, and so on. Including the result from CFS, there are 24 sets in

total ranging from 1 up to 13 features and the list of the feature sets are shown

in Table 4.3. Sets C to M are built from the results from C4.5 ranking and sets

N to W are built from ANN ranking results. Note that, C4.5 and ANN produce

the same rank to minimum and mean, hence only 2 sets i.e. sets A and B are

added. Set M includes all features and set X is the result from CFS evaluation.
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Table 4.2: Feature ranking using C4.5 and ANN

Feature
C4.5 ANN

Accuracy (%) Rank Accuracy (%) Rank
Minimum 79.87 1 65.75 1
Mean 74.64 2 63.64 2
Key coefficient sum 67.31 3 45.23 7
Energy 65.07 4 31.73 11
Entropy 60.05 5 26.62 13
Difference x 54.77 6 48.08 4
Difference y 54.63 7 50.78 3
Standard deviation 53.63 8 46.14 6
Variance 53.63 9 38.90 8
Difference z 52.81 10 47.75 5
Correlation x, y 38.29 11 37.17 9
Correlation y, z 33.41 12 34.00 10
Correlation x, z 29.54 13 28.37 12

4.1.3.4 Classification

Two classifiers: DT C4.5 and Feed-forward ANN are used in this study. An

investigation on the performances of C4.5 and ANN in both feature selection and

classification processes is carried out. The associated algorithms are discussed as

follows:

1. Decision Tree

DT [113] is a hierarchical model that recursively separates the input space

into class regions. It composes of decision nodes and leafs in which each

node m has a test function fm(x). Given a node, a test function is applied

to the input and depending on the output one of the branches is taken.

This process is repeated until the one of the leaves is reached.

The learning algorithm of the DT is greedy where it locally finds the best

attribute to split the data and keep repeating until it unable to separate

further. Its aim is to find the smallest tree possible and in order to achieve

that it finds the best attribute that would make the data after the split as

pure as possible. The purity is measured by a function called Entropy. For

K classes, the entropy at node m is calculated as:

Em = −
K∑
i=1

N i
m

Nm

logb
N i

m

Nm
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Table 4.3: A list of feature sets used created from rankings generated by C4.5
(Set A to M) ANN (Set N to W), and CFS (Set X)

Set Features
A Minimum
B Minimum, Mean
C Minimum, Mean, Key coefficient sum
D Minimum, Mean, Key coefficient sum, Energy
E Minimum, Mean, Key coefficient sum, Energy, Entropy
F Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x
G Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y
H Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y,

Standard deviation
I Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y,

Standard deviation, Variance
J Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y,

Standard deviation, Variance, Difference z
K Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y,

Standard deviation, Variance, Difference z, Correlation x, y
L Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference y,

Standard deviation, Variance, Difference z, Correlation x, y, Correlation y, z
M Minimum, Mean, Key coefficient sum, Energy, Entropy, Difference x, Difference

y, Standard deviation, Variance, Difference z, Correlation x, y, Correlation y, z,
Correlation x, z

N Minimum, Mean, Difference y
O Minimum, Mean, Difference y, Difference x
P Minimum, Mean, Difference y, Difference x, Difference z
Q Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation
R Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum
S Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum, Variance
T Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum, Variance, Correlation x, y
U Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum, Variance, Correlation x, y, Correlation y, z
V Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum, Variance, Correlation x, y, Correlation y, z, Energy
W Minimum, Mean, Difference y, Difference x, Difference z, Standard deviation, Key

coefficient sum, Variance, Correlation x, y, Correlation y, z, Energy, Correlation x,
z

X Mean, Minimum, Correlation x, y, Difference x, Difference y, Key coefficient sum
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where N i
m is the number of data that belongs to class i at node m, Nm is

the number of data at node m, and b is the log base usually is 2 or e. The

entropy Ém after the split by an attribute A which has n values:

Ém = −
n∑

j=1

Nmj

Nm

K∑
i=1

N i
mj

Nmj

logb
N i

mj

Nmj

where Nmj is the number of data at node m that has value j, and N i
mj is

the number of data that belongs to class i at node m and has value j.

The DT searches for the attribute that would create the largest reduction

of entropy after the split. To avoid overfitting in a DT, post-pruning is

usually performed where a subtree that causes overfitting is deleted.

2. Artificial Neural Network (ANN)

ANN utilises the concept of a nervous system consisting of several input

nodes (dendrites) that are connected (through synapses) to several output

nodes (axons). The basic processing unit in ANN is perceptron xi which

is associated with a connection weight Wi. The output of the network

is calculated from an activation function, usually a sigmoid function i.e.

hyperbolic tangent, of the weighted sum of n perceptrons that linked to the

output plus a bias weight:

y = f(
n∑

i=1

Wixi +W0)

Adjusting the weight to minimise the error of the output, any relationship

between inputs and outputs could be modelled. For AR, a feed forward

MLP (see Figure 4.2) is often used as it can implement nonlinear discrimi-

nants. An MLP with one hidden layer can be used to approximate nonlinear

function.

In this study, the classification is conducted using WEKA software. For the

ANN classifier, a feed-forward backpropagation algorithm is used where different

numbers of hidden node are trained and tested for all 24 feature sets. The numbers
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Figure 4.2: A plot between accuracy and number of features.

of hidden neurons ranging from 2 to 30 nodes with the increment of 2 are trained

and tested and the learning rate of 0.3 is used. In the DT C4.5, different values of

confidence factor used for tree pruning are tested. The optimum neural network

models and DT models of each feature set are later compared. All of the tests

are carried out using 5-fold cross validation and the results are averaged over 10

runs. A paired t-test with 95% confidence level is used for results comparison.

4.1.4 Results

4.1.4.1 Feature selection

The classification results of each feature (see Table 4.2) show that Minimum is

the best feature achieving accuracy of 79.87% using C4.5 and 65.75% using ANN.

Also, when observing the area under ROC curve (AUC), classification using mini-

mum has a larger area and thus a better average performance. Classification using

mean also gives a comparable result. However, C4.5 using correlation between x

and z gives the worst result of only 29.54% accuracy. In the case of ANN, Entropy

gives the worst result. When observing the histograms and scatter plots using the

Entropy; and Correlation x, z features, it is apparent that the classes are highly

overlapped, especially for Correlation x, z feature. Consequently, it is difficult

for the classifier to find the decision boundaries using these features, resulting

in poor accuracy. When inspecting the F-score of each feature, it is found that

Difference y is the best feature for discriminating running from other activities.
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It also achieved very good result in discriminating walking activity. Minimum

and mean of norm acceleration can separate sitting from other activities quite

well and are also useful for discriminating sitting from standing.

Figure 4.3: A plot between accuracy and number of features.

Using the ranking results, 23 sets (Set A to W) have been created. C4.5 with

0.25 confidence level is used on feature set A to M and ANN with 0.3 learning

rate is used on feature set N to X. The number of hidden nodes is between 4

and 7 depending on the number of features used. From Figure 4.3, it is observed

that by adding new features, the overall accuracy also increased. The accuracy

significantly improves by increasing the number of features from 1 to 2. Using

features from ANN ranking, there is no statistically significant improvement after

combining more than 3 features i.e. minimum, mean, and difference y. In the case

of C4.5, the improvement in accuracy after combining 8 features i.e. minimum,

mean, key coefficient, energy, entropy difference x, difference y and standard

deviation is not statistically significant.

The classification result using only one feature is disappointing. Although,

using the best feature i.e. minimum, the best accuracy is 72.23% classified by
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Figure 4.4: Accuracy of ANN on feature set C to L and M.

ANN with 12 hidden neurons and 80.59% classified by C4.5 with 0.25 confidence

level. From Table 4.3, feature set A to M is built based on the result of C4.5 for

feature ranking. The classification results of using ANN on some of these feature

sets are depicted in Figure 4.4.

Different numbers of hidden neurons ranging from 2 to 30 are tested in order

to find the optimum model. The accuracy of ANN significantly improves when

the hidden neuron increased from 2 to 4. Set E which contains 5 features gives

the worse accuracy of 84.95%. Sets G, H, I and J produce similar accuracies

with average of 86.65%. Better accuracies are obtained when using more than 11

features. Classification using feature set M which contains all features selected

from ANN ranking, is superior to other sets. The optimum number of hidden

neurons for each feature set is selected based on the highest accuracy achieved.

Table 4.4 shows the ratio of the number of hidden neurons per number of features

and classification results. For features from C4.5 ranking, apart from sets A and

B, the average number of hidden neurons per feature is 2.10. ANN with 28 hidden

neurons achieved the best accuracy of 90.57% using 13 features from set M.

From Table 4.3, sets A, B, M to W are created according to the feature ranking

using ANN. Again, different configurations of ANN are tested on these feature

sets and some results are depicted in Figure 4.5. The accuracy of ANN improves
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Table 4.4: ANN classification result using features from C4.5 ranking and ANN
ranking

Feature from C4.5 Ranking Feature from ANN Ranking
Set Confidence level Accuracy (%) Set Number of hidden neurons per feature Accuracy (%)
A 12.00 72.23 A 12.00 72.23
B 6.00 84.36 B 6.00 84.36
C 2.00 85.32 N 3.33 86.64
D 5.00 85.10 O 3.00 86.42
E 0.80 84.95 P 4.40 87.36
F 1.33 85.91 Q 1.00 87.55
G 2.86 86.57 R 2.29 87.07
H 1.50 86.51 S 1.00 87.08
I 1.33 86.70 T 2.22 88.79
J 1.80 86.83 U 3.00 89.77
K 2.73 88.43 V 2.36 89.49
L 1.50 89.55 W 2.50 90.75
M 2.15 90.57 M 2.15 90.57

significantly when more than 6 hidden neurons are used. The classification results

of using set P, Q, R, and S (using 5-10features, respectively) are similar at nearly

87.27% on average. The accuracy of ANN using set T is slightly better, however

there is no statistical difference. ANN using all features except entropy (set W)

is statistically better than other sets obtaining the highest accuracy of 90.75%

(see Table 4.4). The average number of hidden neurons per feature is 2.49 (set

M to W) which is 16% higher than those sets obtained from C4.5 ranking (set C

to M).

Figure 4.5: Accuracy of ANN on feature set N to W and M.
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When comparing ANN classification results, it appears that using feature sets

from ANN ranking (Set M to W) produce statistically better accuracy. The AUC

also exhibited similar results. Figure 4.6 shows ANN classification on features

from CFS ranking (set X containing 6 features) achieved 88.87% accuracy which is

statistically better than features from C4.5 ranking (set F containing 6 features).

However, there is no statistical difference between ANN ranking (set Q containing

6 features).

Figure 4.6: Comparison of classification results using 6 features from C4.5 rank-
ing, ANN ranking and CFS evaluation.

Classifications using C4.5 on these feature sets has also been carried out.

Different configurations on confidence level, which is used for tree pruning, from

0.15 to 0.95 using increment of 0.1 are tested in order to find optimal models. The

confidence level is used in Weka DT classifier where lower confidence level means

higher pruning. The results of classification accuracy and AUC show that there is

no statistical difference when the confidence level changed, specifically when more

than 0.55 confidence level is used. The optimal C4.5 models for each feature set

are selected based on the confidence level that achieved highest accuracy. Table

4.5 shows the configurations and accuracy achieved for each feature set. The

DT using feature set W using 11 features achieved 94.17% accuracy which is the

highest among other sets.

Figure 4.7 illustrates C4.5 classification results on different feature sets. The

results show that using features from ANN ranking gives higher accuracies. Over-
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Table 4.5: C4.5 Configurations and classification results using features from C4.5
ranking and ANN ranking

Feature from C4.5 Ranking Feature from ANN Ranking
Set Confidence level Accuracy (%) Set Number of hidden neurons per feature Accuracy (%)
A 0.25 80.59 A 0.25 80.59
B 0.25 88.63 B 0.25 88.63
C 0.15 88.94 N 0.45 91.31
D 0.15 88.70 O 0.35 92.17
E 0.15 88.68 P 0.25 92.12
F 0.25 90.33 Q 0.45 92.02
G 0.25 92.69 R 0.35 92.75
H 0.25 92.71 S 0.35 92.75
I 0.25 92.71 T 0.35 93.79
J 0.25 92.70 U 0.25 93.73
K 0.35 93.69 V 0.25 93.74
L 0.25 93.69 W 0.15 94.17
M 0.15 94.11 M 0.15 94.11

all, the accuracies increase when number of feature increases. However, there are

slightly decreases in accuracies in some of the feature sets from C4.5 ranking e.g.

after energy and entropy are added in set D and E. For C4.5 ranking features, the

classification accuracies significantly improve when using more than 7 features.

For ANN ranking features, there is no statistical difference in accuracy after using

more than 9 features.

Figure 4.7: Accuracies of C4.5 classification using features from C4.5 ranking and
ANN ranking.

C4.5 classification using features from CFS ranking (Set X containing 6 fea-
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tures) gives 93.03% accuracy which is better than using features from C4.5 rank-

ing (Set F containing 6 features). However, there is no statistical difference

comparing to using features from ANN ranking (Set Q containing 6 features)

(see Figure 4.6).

4.1.4.2 Classification

The best configurations of C4.5 and ANN models on each feature sets are used

in order to compare the performances of these two classifiers. Table 4.6 shows

different classification results of ANN and C4.5 over feature set W indicating

that in general C4.5 outperforms ANN. C4.5 classifiers which use features from

ANN ranking perform better than ones which use features from C4.5 ranking (see

Figure 4.8).

Table 4.6: Classification results using ANN and C4.5 on Set W
Classifier TPR FPR Precision Recall F-score AUC
ANN 0.907 0.031 0.906 0.907 0.906 0.976
C4.5 0.941 0.019 0.941 0.941 0.941 0.970

Table 4.7, Table 4.8, and Table 4.9 show examples of confusion matrix of dif-

ferent classification models. It reveals that classifiers are often confused between

stand and lie down activity. When visually inspecting some of the features e.g.

correlation x, z, standard deviation and minimum, which the classifiers use for

separating these two classes, it is found that lying down and standing activities

exhibit similar values. Lying down activity is sometimes misclassified as sitting

or walking. The confusion matrix also reveals that C4.5 and ANN can classify

run, sit and walk very well, however ANN classifier has more problem classifying

lie down and stand activities.

Table 4.7: Confusion matrix of C4.5 on set W
Actual Predict

Lie down Run Sit Stand Walk
Lie down 259 0 4 18 3
Run 0 90 0 0 1
Sit 7 0 217 1 0
Stand 21 0 4 249 0
Walk 2 1 0 1 192
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Figure 4.8: Classification results of C4.5 and ANN on different feature selection
schemes.

Table 4.8: Confusion matrix of ANN on set W
Actual Predict

Lie down Run Sit Stand Walk
Lie down 239 0 6 31 8
Run 0 91 0 0 0
Sit 6 0 217 2 0
Stand 37 0 5 232 0
Walk 2 1 1 1 191

Table 4.9: Confusion matrix of C4.5 on set X
Actual Predict

Lie down Run Sit Stand Walk
Lie down 251 0 2 23 8
Run 0 90 0 0 1
Sit 9 0 214 2 0
Stand 15 0 5 254 0
Walk 2 1 0 0 193
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4.1.4.3 Discussion

The study investigates 13 different features and the results suggest that Differ-

ence y, Minimum and Mean are the best features for classifying running, walking,

sitting and standing activities. This is confirmed by the result of classification on

set N, which is the combination of these three features, achieving high accuracy

of 91.31%. The results also suggest that Difference y is the best feature for clas-

sifying running. As the difference in y-axis acceleration is higher when running,

thus its data is distributed further from other classes.

The results of the accuracy on the different number of features show that

using more features improves overall accuracy consequently using more features

enhances the classifiers performance. Using only 13 features in the study, the

results show no statistical difference when more than 7 features are used. Possibly

using a larger set of features could diminish the classifiers performance.

In the study on feature selection, the results suggest that using ANN ranking

produces a better set of features comparing to C4.5 ranking. Similar to ANN

ranking, CFS method also produces a better feature set. The results are consis-

tent even though different classifiers are used. Our results suggest that DT C4.5

classifier performs better than feed-forward backpropagation ANN. These results

are also consistent despite different sets of feature used. The results are similar

to [155] where similar activities are studied. The results suggest that high clas-

sification result can be obtained using ANN ranking feature selection and C4.5

classifier. ANN outperforms DT [124], however the experiment is carried out on

unsupervised data, while in our work supervised data is used. Further experi-

ments need to be carried out in order to investigate the effect of using the model

of this work with unsupervised data.

4.1.5 Conclusion remarks

This study demonstrates that a single wrist worn accelerometer can be used to

identify activities of a user however, only simple activities can be detected. This

is because the data obtained from the accelerometer mounted on the wrist can-

not provide enough information for complicated or high level activities. Also,

other activities involving the use of hand e.g. eating, washing dishes, reading,
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etc. using only a wrist worn accelerometer to predict those activities can be com-

plicated. Other sensors should be used to provide additional context information

to supplement and reduce ambiguity from an accelerometer.

4.2 Feature selection study: Feature Combina-

tion

4.2.1 Study hypothesis and objectives

The aim of feature selection is to identify the smallest subset of input features

which explains the output classes. This process is important especially to the

classification problems which have a large number of input features. For example,

a multi-sensor activity classification system normally contains a large number

of input features generated from different sensors. Feature selection can help

reduce the size of feature space which leads to reduction in computational cost

and complexity in the classification system. In real world problems where input

features contain irrelevant and redundant features, feature selection can help

identify relevance feature set leads to improvement in classification performances.

Feature selection techniques mainly focus on the relevancy of the features and

classes, and redundancy between features. However, using these two criteria,

features with high relevancy and redundancy may be selected. On the other hand,

feature complementary concept considers if a feature complement the already

selected feature set. It is hypothesised that using the feature complementary

concept can identify the optimum feature set which leads to better classification

accuracy comparing to other techniques which do not employ this concept. In

this study, the aims are to investigate different feature selection techniques and

propose a new method suitable for multi-sensor AR. The objectives of this study

are as follow:

1. To investigate different feature selection techniques for multi-sensor activity

recognition.

2. To propose a feature selection technique which uses feature complementary

concept to select relevance features.
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3. To validate the proposed technique on the Multi-sensor activity data set.

4. To compare the results with other well established feature selection algo-

rithms.

4.2.2 Experiment design

The study is separated into two experiments according to two data sets: Multi-

sensor activity data set and Wearable-sensor activity data set. In this study, the

proposed feature selection algorithm called Feature Combination (FC) is com-

pared against three popular feature selection techniques which are Maximal Rel-

evant Minimal Redundant (MRMR), Normalized Mutual Information Feature

Selection (NMIFS), and Clamping. The description and formulas of these algo-

rithms are presented in Section 4.3.2.

In the first experiment, FC is compared against the Clamping method using

the Multi-sensor activity data set. In the second experiment, FC is compared

with MRMR, NMIFS, and Clamping using the Wearable-sensor activity data

set.

4.2.3 Methodology

4.2.3.1 Feature generation and transformation

Experimentation in Section 4.1 demonstrates that 13 different features from

both time and frequency domains are useful in human activity classification.

In this work these features are also computed from the collected sensor data.

However, the features are not only calculated from the acceleration magnitude√
x2 + y2 + z2, but also from raw accelerations of X, Y, Z axis, temperature and

altitude as well. In addition, other features including maximum, RMS, and main

axis are also calculated. A list of features is displayed in Table 4.10 contain-

ing 12 features from X-axis acceleration, 12 features from Y-axis acceleration,

12 features from Z-axis acceleration, 10 features from acceleration magnitude, 8

features from temperature, 8 features from altitude and 1 feature from accelera-

tion. The calculated features are then transformed into [0 1] range. Scaling helps

avoiding features with larger numeric ranges dominating features with smaller
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Table 4.10: Number of features calculated from each sensor data
Sensor data Time-domain features Frequency-domain features
Acceleration X-axis,
Acceleration Y-axis,
Acceleration Z-axis,
Acceleration magni-
tude, Temperature,
Altitude

Mean, minimum, maximum,
standard deviation, variance,
range, root-mean-square, cor-
relation, difference, main axis

Spectral energy, spectral en-
tropy, key coefficient

Total Number of fea-
tures

45 18

numeric ranges. It also reduces numerical difficulties during calculation [115]. In

the MLP which uses the gradient descent method i.e. backpropagation, scaling

can help in faster convergence.

4.2.3.2 Feature selection algorithms

In the feature selection study, two different approaches used for feature ranking

which are based on MI and NN are investigated.

1. MI based feature selection MI is based on information theory proposed by

[15]. It measures the dependency between two variables. MI value is zero

if and only if the variables are independent. Given continuous variables fi

and fj, the MI can be calculated as:

MI(fi; fj) =

∫ ∫
p(fi, fj) log

p(fi, fj)

p(fi)p(fj)
dfidfj

In practice, it is difficult to calculate MI of the continuous values and often

the variables are discretised using bins. The MI of discrete variables can be

calculated as:

MI(fi; fj) =
∑
i

∑
j

p(fi, fj) log
p(fi, fj)

p(fi)p(fj)

where p(fi, fj) is the joint probability of features i and j, and p(fi) is the

probability of feature i. There are many feature ranking algorithms based

on MI [17, 62, 63, 65]. MRMR is one of the most popular feature selection

algorithms. Many algorithms have been based on MRMR. For example,
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NMIFS enhances MRMR by using entropy of the variables to normalize

the MI values when calculating the redundancy between variables. MRMR

is enhanced by using the Kernel Canonical Correlation Analysis as inputs

rather than the actual features [7].

In this study, some of the commonly used feature selection algorithms based

on MI which are MRMR and NMIFS are investigate.

(a) MRMR

The MRMR algorithm [62] ranks the features based on the minimal

redundancy and maximal relevance criterion. It calculates the MI be-

tween two features to measure the redundancy and the MI between a

feature and the outputs to measure the relevance. Using MRMR con-

cept and greedy selection, a set of feature rankings S can be obtained

as follow:

(A) Given S = {} where S is a set of selected features and F =

{f1, f2, fi, fj..., fN} where F is a set of N features, selects the

feature fs in F which has the maximum mutual information be-

tween itself and output C where C = {c1, c3, ..., cK} and fs =

maxfi∈F MI(fi;C). Updates S and F .

S = S ∪ {fs} (4.1)

F = F \ {fs} (4.2)

(B) Select feature fs in F which satisfies the following condition:

fs = max
fi∈F

{MI(fi;C)− 1

|fi|
∑
fj∈S

MI(fi; fj)}

Update S and F using (4.1) and (4.2).

Repeat Step (B) until the desired number of features is obtained.
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(b) NMIFS

The NMIFS algorithm [63] is an enhancement of the MRMR algorithm.

A Normalized mutual information (NMI) between two features are

used instead:

NMI(i; j) =
MI(i; j)

min{H(i), H(j)}

where H() is the entropy function. Similar steps as MRMR are carried

out, however the condition in Step (B) is changed to:

fs = max
fi∈F

{MI(fi;C)− 1

|s|
∑
fj∈S

NMI(fi; fj)}

2. Neural network based feature selection

Some studies have proposed to use NN for feature selection [18, 19, 58]. For

example, NNFS [19] selects features based on weights associated with that

features. The weights associated with unimportant features would have

values close to zero. NNFS adds a penalty term to the cross-entropy error

function in order to distinguish redundant network connection. Clamping

technique proposed by [18] ranks the features based on the effect to classi-

fication accuracy from clamping features. In this study, the performance of

the proposed algorithm with the Clamping algorithm is compared.

The Clamping technique [18] is used to obtain the feature ranking where

each feature is clamped to a fixed value (mean of each feature x̄ is used) and

the impact of the clamped network generalisation performance, g(X|xi = x̄)

to the network generalisation performance, g(X) is calculated using:

Imi = 1− g(X|xi = x̄)

g(X)

Clamping the most important feature highly affects generalisation perfor-

mance while the redundant features show no adverse effect. For an N data

set, the rankings can be combined using the Borda Count technique which
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is a kind of plurality voting where each vote is associated with a specified

ranking point. A given feature is associated with a point that is related to

its importance. The most important feature is associated with the highest

possible ranking value e.g. the total number of features. For example, in a

feature space size n, feature X is the most important, hence it is associated

with n points. Feature Y is the second most important thus, n-1 points is

associated, and so on. Finally, the final feature ranks can be obtained by

sorting the summation of the points of each feature.

4.2.4 The proposed Feature Combination

The feature ranking using the Clamping technique can only considers the perfor-

mance of a single feature. Feature selection based on this ranking may discard

the features which are useless in itself but help improve classification performance

when combined with other features. Also, the features with high ranking may

be overlapped with other high ranking features. To overcome this, a Feature

Combination technique is proposed which emphasises on the performances of a

combination of features rather than single feature. The idea is to use forward

selection to find the best combination of features for a data set. A feature is

added to the lists by its importance and difference in accuracy is calculated along

each addition. By monitoring the accuracy difference, the feature which is highly

overlapped with already added features will not be included into the list. This

technique also allows the weaker feature which is not overlapped with existed

features to be selected.

Starting from an empty list, a feature is added according to its ranking. For

any current feature list using p features, mean of accuracy (M Accp) of validation

set is calculated and compared with mean of accuracy (M Accp−1) of the previous

feature list i.e. using p-1 features. If (M Accp) is less than or equal to (M Accp−1),

then the recently added feature is removed from the list. This process is carried

out until all features have been tested. For an N data set, results are combined

using majority voting resulted in a new feature ranks. Figure 4.9 describes the

pseudo code of the feature selection.
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Figure 4.9: Pseudo code of Feature Combination.
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4.2.5 Data sets

In this study, two activity data sets are used: Multi-sensor activity data set and

Wearable-sensor activity data set. All experiments are carried out using 10-fold

cross-validation where 8 folds are used for training, 1 fold for validation and 1

fold for testing. The size of the training, validation and testing data of each fold

used for different data set are shown in Table 4.11.

Table 4.11: Characteristics and data partition per fold for different data sets used
in the FC study

Data set # Features # Classes Data type # Sample # Training # Validation # Testing
Multi-sensor ac-
tivity data set

63 9 Real 17,488 5,760 720 720

Wearable-sensor
activity data set

141 12 Real 39,328 20160 2520 2520

4.2.6 Experimental results

4.2.6.1 Experiment 1: Multi-sensor activity data set

The sensor data is pre-processed using WMA and segmented at 3.88 seconds with

50% data overlapping resulting in a total of 17,843 patterns. It is noted that the

number of walking upstairs and walking downstairs classes are relatively low. In

the data collections, normally a participant was asked to perform an activity for

a limited time i.e. 10 minutes. However, due to the physical restriction because

of participants’ ages, using stairs (walking up/down) activity were performed

without a set time limit as to reduce risk of falling. On an average, a participant

used 5 seconds to climb up the 6-step stairs. The data from walking upstairs and

downstairs classes only constitute to 2% of all data set which is clearly imbalanced.

This will affect classification performance where most techniques assume samples

are distributed evenly among different classes. Also, an imbalanced data set poses

other problems such as difficulty in establishing accurate decision boundary, error

in interpreting classification results, and data from minority class tend to be

treated as noise [16].

In this work, it is decided to remove data from walking downstairs and walking

upstairs classes as the numbers of samples are too low to be able to discover true
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classes boundaries especially in our case which shows highly overlapped classes.

Also, according to the interview with the participants, it is found that majority

of them live in a bungalow or on ground floor while participants who live on

2-floored houses only use stairs couple times a day (to access their bedrooms).

The under-sampling technique is used to obtain a new data set with the balanced

number of samples from each class. All data from the smallest class i.e. dressing

class are preserved. The same data size is obtained from the other 8 classes. In

total, the new balanced data set contained 805× 9 = 7245 patterns. This study

used 10-fold cross validation which the data are randomly divided into 10 folds,

one of 10 folds is used as the validation data, one of 10 folds is used as the test

data and the remaining 8 folds are used as the training data in turn, the mean

of the classification rates by using these 10 test data sets is used as the final

classification rate.
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Figure 4.10: Classification accuracy between using Feature Combination and
Clamping feature selection techniques

Features are then generated from the raw sensor data as described in Section

4.2.3.1. Next, a feature selection is carried out using NN and the proposed Feature

Combination techniques in order to select the optimum feature subset. The

NN with resilient backpropagation and 20 hidden neurons is used. The feature

ranking procedure using 10-fold cross validation and 10 runs is carried out. Figure

4.10 shows that using the proposed Feature combination method can achieved
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higher accuracy. The final subset is obtained by observing the truncation point

of the mean accuracy of all data sets. 16 features are selected as listed in Table

4.12.

Table 4.12: The selected features by Feature Combination using Multi-sensor
activity data set
Sensor Selected features
Accelerometer RMS Y axis RMS X axis Maximum Y axis

Minimum Y axis Difference Z axis Maximum Z axis
Key Coefficient Y axis Correlation X, Y Minimum Z axis
Minimum X axis Maximum norm acc. Difference Y axis

Temperature sensor Mean temperature Key Coefficient temperature Min temperature
Altimeter Entropy altitude

4.2.6.2 Experiment 2: Wearable-sensor activity data set

Firstly, features are ranked using the specified techniques mentioned in Section

4.2.4. The results from different runs are combined using the Borda count. Fea-

ture selection is performed using NN. A multilayer perceptron with one hidden

layer is used where the hidden node is set to α× number of input. Experiments

are carried out to determine the appropriate value of alpha and the number of

epoch where trade-off between accuracy and training time are considered.
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Figure 4.11: The mean classification accuracy obtained using MRMR, NMIFS,
Clamping, and FC
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The result of averaged accuracy on test sets is shown in Figure 4.11. From the

graph, it can be seen that FC achieves the highest accuracy. The hypothesis if

the accuracy difference is significant is tested. First, the data normality is tested

using Shapiro-Wilk and the results indicate that these are not normal distribution.

Thus, the Related-Samples Wilcoxon Signed Rank Test is applied and the result

indicates that the accuracy of FC is significant higher than other techniques

(p<0.05). COM is significant higher than MRMR and NMIFS (p<0.05). The

difference in accuracies of MRMR and NMIFS are not statistically significant

(p = 0.315). To sum up, the performance of the feature selection techniques

can be expressed as FC >∗ COM >∗ MRMR = NMIFS where >∗ indicates

significantly better and = indicates no significant difference at 95% confidence

interval.

MRMR and NMIFS produce similar accuracy and also select similar set of fea-

tures. The reason is that these two techniques are based on MI. This is evident

in which MRMR and NMIFS produce similar ranking. When investigate why

these two techniques cannot achieve higher accuracy, it is found that majority of

the features selected at the beginning are from accelerometer and gyroscope only.

Although features extracted from these two sensors contain valuable information,

when using the forward selection strategy this would lead to a selection of re-

dundant features. MRMR and NMIFS only selects features from accelerometer,

gyroscope and light sensor.

On the other hand, Clamping ranking selects features from a variety of sen-

sors such as accelerometer, gyroscope, heart rate sensor, barometer, light, and

altimeter (see Table 4.13). When Clamping ranking is combined with MRMR

and NMIFS (COM), it can be seen that the result has considerably improved.

Besides accelerometer, gyroscope and light sensor, COM also selects features from

barometer which means that this sensor provides valuable information for activ-

ity classification. Features selected from Clamping and FC are similar as FC is

modified from Clamping technique. However, FC searches for only the subset of

features which are complementing each other and reduce redundant features. FC

clearly achieved better accuracy comparing to the other three techniques. How-

ever, according to the graph, the accuracies at the beginning are lower. Thus, in

the case of data set with small number of features (fewer than 5), using MRMR
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should produce a better result. The truncation at 24 features is selected where

the accuracy starts to remain constant. A list of selected features is shown in

Table 4.13.

Table 4.13: The selected features by Feature Combination using Wearable-sensor
activity data set

Sensor Data MRMR NMIFS Clamping COM FC

Accelerometer

X - axis - - RMS, mean RMS RMS, mean
Y - axis RMS, max,

median, mode,
key coefficient,
mean, min

Max, median,
mean, mode,
min

RMS, max,
median, key co-
efficient, mode,
mean

RMS, median,
mean, min,
mode

Max, median,
mean, min,
mode, RMS

Z - axis Min, median,
mode, mean

max RMS, mean Mean, median,
min, mode

RMS, mean√
x2 + y2 + z2 Intensity, max,

median, mean,
RMS

Intensity, RMS,
max, mean

Correlation X,
Z, max,RMS

Max, intensity,
RMS, median,
mean

Correlation X,
Z, max, RMS

Temperature - - - - - -
Altimeter Altitude - - Min - Min
Heart rate
monitor

Heart rate - - - - Min

Light Light intensity Max Max Max, min Max, RMS,
mean, median

Max, min

Barometer
Temperature - - Max, median,

RMS, mean
Median, Max Max, median,

RMS
Pressure - - Max, median Max Max, median

Gyroscope

X - axis STD, RMS STD , mode - STD STD
Y - axis - - - - -
Z - axis Std, RMS, inten-

sity
Min, median,
mode, mean

- - -√
x2 + y2 + z2 RMS, mean, me-

dian, std
RMS, mean, me-
dian

Correlation X, Y RMS Correlation X, Y

4.2.7 Discussion

The objective of this study is to compare the performance of 4 feature selection

techniques. Our results suggest that FC is the most appropriate technique for

our application. FC can select a more diversity set of features comparing to other

techniques. It monitors the performance of a subset of features along the selection

to make sure that redundant features are not selected. However, according to the

FC algorithm, redundant features may still be selected at earlier stage and we

suggest that post checking should be added to remove any redundant feature after

selection. MRMR and NMIFS only measure the redundancy between 2 variables.

The results of the experiment show that this measurement is not enough to detect

the overlapped features. MRMR and NMIFS select features with high relevancy

to classes and low redundancy with
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The result of this study implies that the technique which can select a subset

of features with the lowest feature redundancy is the most optimum technique.

4.2.8 Conclusion remarks

FC can select the optimum set of features comparing to MRMR, NMIFS, COM

and FC as it can select features from diverse sensors which helps reduce feature

redundancy. This technique can be improved by adding a post feature check to

remove redundant features which may be selected in the early stage of selection

process.

4.3 Feature selection study: Maximal Relevance

Maximal Complementary

4.3.1 Study hypothesis and objectives

From previous section, it can be seen that using the concept of feature complemen-

tary helps improve classification accuracy. However, there are some limitations

with FC techniques. Firstly, since the algorithm employs a forward selection tech-

nique, there is a possibility that the good features are eliminated in earlier stages.

Secondly, redundant features can get selected in very early stages as FC performs

forward selection and does not do any comparison between other features except

the adjacent feature. In this study, the aim is to propose a new feature selection

technique that overcomes the mentioned limitations. The proposed feature se-

lection technique introduces relevancy and complementary measurements which

are used for features ranking. It is hypothesised that using the proposed feature

selection technique, a optimum feature set will be ranked and selected, comparing

to other techniques which do not use the feature complementary concept. The

objectives of this study are as follow:

1. To propose a feature selection technique which uses feature complementary

concept that can select relevance features.
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2. To validate the proposed technique using well-defined problems, benchmark

data sets, and real world data sets.

3. To compare the results with other well established feature selection algo-

rithms.

4.3.2 Feature selection algorithms

In this experiment, two different approaches used for feature ranking which are

based on mutual information i.e. MRMR and NMIFS and NN i.e. Clamping are

studied. Their descriptions and formulas are presented in Section 4.2.3.2. There

are still some limitations on these three techniques. Clamping technique provides

robust ranking even in noisy data. However, it only considers the relationship

between one feature and the classes. It does not consider any relationship between

the features. MRMR and NMIFS do consider the relationship between features.

However, the relationship between only two features are measured. Among these

three techniques, none considers how a feature would complement to the already

selected features. In this experiment, a new feature selection technique which

considers the relationship between feature and the class as well as the relationship

among a group of features is proposed.

4.3.3 The proposed Maximal Relevance Maximal Com-

plementary Feature Selection

The proposed feature selection method is based on the criteria of maximum rel-

evance and maximum complementary (MRMC) of the feature. In our method,

NN is employed for the calculation of the relevance and complementary score.

NN is based on the concept of connectionist where several input nodes are con-

nected with associated weights to several outputs nodes. A network with one

hidden layer which is used. Given input of N features F = {f1, f2, ..., fi, ..., fN}
to predict output of K classes C = {c1, c2, ..., cK}. Figure 4.12 depicts the NN

architecture where b1 is a bias input and weights W = {w11, w12, ..., wNj} where

w11 represents a weight connect from f1 to hidden node 1, and j is the number

of hidden nodes. The weights and bias are generated randomly from a univariate
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distribution. The network output node ŷi can be calculated from the summation

function [53]:

ŷi = g(
N∑
i=1

W Tfi + b1)

Where g(z) is a sigmoid activation function. In this study, a logistic function

g(z) = 1
1+e−z is used. The network tries to minimize the following cost function:

J(W ) = − 1

N
{

N∑
i=1

K∑
k=1

y
(k)
i log(ŷi)

(k) + (1− y
(k)
i ) log(1− ŷi)

(k)}

where y
(k)
i is the predicted output for class k using pattern i. First, the two

measurements i.e. the relevance and complementary used for calculating feature’s

score are introduced.

1. Relevancy score

The relevancy score measures how much the feature is important to the

network. By removing the feature node in the network then calculating

the network’s performance, the relevancy of the feature can be obtained

such that if the clamped feature is important, the network performance will

significantly affected. First, the base network is constructed using all the

features F and its performance is used as the base line. Next, the feature

fi is removed from the network. In order to remove the feature without

disrupting the whole network, a static value is used. In this study, a mean

value of the feature is used (fi = f̄i) as has been used successfully in [18].

This network is referred as the relevancy network. After the feature is

removed, the network performance is re-calculated and evaluated with the

base line performance. Figure 4.12 shows the architecture and concept of

the base line network and the network with the removed feature.

Given a set of feature F , the relevance of the feature Relfi is calculated by:

Relfi = 1− P ′(F |fi = f̄i)

P (F )
(4.3)
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Figure 4.12: The architecture of the network with all features and the relevancy
network

where P is the generalised performance of the NN using feature set F

and P ′ is the generalised performance of the NN using feature set F where

feature fi values are substituted by mean value of fi. Note that the value of

P and P ′ is always between 0 and 1. The higher score of relevancy means

the feature is more important. The score reflects how much effect if the

feature is not used in the network. For example, Reli = 0.7 means that the

absent of the feature fi will lower the network’s performance by 70%.

The relevance measurement only considers the relationship between a single

input and the class. It does not consider the relationship between features

i.e. redundancy and complementary. We enhance the Clamping method

by introducing another measurement to measure complementary of the fea-

tures to the already selected feature set. Also, unlike other techniques which

consider redundancy measurement, MRMC considers feature complemen-

tary.

2. Complementary score

The complementary score measures how much the feature complements

the already selected features set. It also takes feature redundancy into

account such that if the feature is redundant to the already selected features,

the score should be low as it does not bring additional information to the

classification. Firstly, the base line performance is obtained by constructing

a network using all selected features S and calculating its performance.

Next, a new feature fi is added to the network. This network is referred as
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the complementary network. The architecture and concept of the base line

network and the network with new feature is shown in Figure 4.13.
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Figure 4.13: The architecture of the network with selected features and the com-
plementary network

From Figure 4.13, it can be seen that the weights for the feature fi needs

to be obtained as they are not existed in the base line network. In our

algorithm, we modify the construction of the complementary network such

that it partly uses the weights and biases from the base line network. We

assume that the baseline network has already identified the correct weights

for the already selected features. Thus, by using the same weights and bias

would help the network converges faster. This also reduces the possibility

of the complementary network obtaining poor performance resulting from

random initial weights. As the input and hidden nodes of the baseline net-

work and the complementary network are different, the number of weights

and biases are also different. The other weights and biases that are missing

are generated randomly using the standard normal distribution with mean

0 variance 1 scaled by the number of input nodes for bias and weights in

the first layer and the number of hidden nodes in the second layer.

Given an already selected feature set S, the complementary of feature fi to

S can be calculated as:

Comfi =
P (S ∪ fi)

P (S)
− 1 (4.4)

where P (S ∪ fi) is the generalised performance of the complementary net-
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work and P (S) is the generalised performance of the baseline network. The

values of P is always between 0 and 1. The complementary score reflects

how much the new feature fi contributes to the base line network. For

example Comfi = 0.1 means by adding feature fi, the performance of the

network is improved by 10%.

3. Maximum relevance and maximum complementary score

The proposed algorithm ranks features based on the maximum relevance

and maximum complementary score. After the relevancy and complemen-

tary score are obtained, the relevance-complementary score (RC) can be

calculated as:

RCfi = Relfi + Comfi (4.5)

The feature is then selected based on the maximum RC score. From the

algorithm, it can be seen that the complementary measurement can reduce

the chance of selecting overlapping or redundant features. For example,

given three features f1, f2, f3 where f3 = f1 to represent overlapped feature

and suppose their relevance scores are expressed as f1 = f3 > f2. If Clamp-

ing technique is used, the feature ranking will be f1, f3, f2. However, by

combing the complementary with relevancy, the ranking will be f1, f2, f3.

As the complementary score of f3 should be zero, the RC score for f2 will

then be higher than f3.

The steps of MRMC algorithm are summarised in Figure 4.14 which are ex-

plained in detail below:

Step 1 : Normalize features value to [0 1] range. This step makes sure that features

with larger values do not overwhelm features with smaller values. Set S =

{} and F contains all features.

Step 2 : Calculate the relevance score of all features fi in F using (4.3). Note
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that the network is constructed using training data, then the generalised

performance is calculated using validation data.

Step 3 : Select the first feature which has the maximum relevance score fs =

maxfi∈F Rel(fi).

Step 4 : Update S and F using equations (4.1) and (4.2).

Step 5 : Check if the size of feature set F is more than 1. If Yes, go to Step 6.

Otherwise, update S using S = S ∪ F . Terminate the algorithm.

Step 6 : Calculate the complementary score for all features fi in F using (4.4).

Step 7 : Calculate the RC score using (4.5).

Step 8 : Select feature fs which has the maximum RC score fs = {maxfi∈F RC(fi)}.
Go back to Step 4.

4.3.4 Data sets

The experiments are carried out using two well-defined problems studied in [65]

and four benchmark classification data sets including iris, breast cancer, car-

diotocography, and chess which are obtained from the UCI Machine Learning

Repository [64] available at http://archive.ics.uci.edu/ml. The proposed algo-

rithm is also evaluated using a real world data set which we have collected from

wearable sensors used for predicting human activities. All experiments except the

first and second experiments are carried out using 5-fold cross-validation where 3

folds are used for training, 1 fold for validation and 1 fold for testing. The reason

that we used 5 fold here is to reduce experimental time due to large data size.

The size of the training, validation and testing data of each fold used for different

data set are shown in Table 4.14.

4.3.5 Experiment setup

For the calculation of MI of MRMR and NMIFS, the input features are discretised

using bin 10. For Clamping and MRMC, the number of hidden nodes is set to 2
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Normalize input to [0 1] range

Calculate Relevance score (Rel) for all 

features in F using eq (4.3)

Select feature with maximum Rel score

Update S and F using eq (4.1) and eq 

(4.2)

Calculate Complementary score (Com) 

for all features in F using eq (4.4)

Calculate RC score using eq (4.5)

Select feature with maximum RC score

Is size of F is more than 

1
S = S U FNo End

Yes

Ini!aliza!on

F={All features}, S={}

Figure 4.14: A flow chart of MRMC feature selection algorithm
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Table 4.14: Characteristics and data partition per fold for different data sets used
in the MRMC study

Data set # Features # Classes Data type # Sample # Training # Validation # Testing
Nonlinear AND 14 2 Real 500 500 - -
Nonlinear AND with partly overlapped features 17 2 Real 500 500 - -
Iris 4 3 Real 150 90 30 30
Cancer-1992 9 2 Integer 699 288 96 96
Cancer-1995 30 2 Real 569 252 84 84
Cardiotocography-fetal 21 3 Real 2126 315 105 105
Cardiotocography-morp 21 10 Real 2126 300 100 100
Chess 36 2 Categorial 3196 1830 610 610
Wearable-sensor activity 141 12 Real 39328 15120 5040 5040

× number of input nodes and the number of epoch is 300 regardless the network

converges or not.

For the real world problems, the feature selection methods are evaluated using

NN. The number of hidden nodes is set to 2 × number of inputs and the number

of epoch is set to 300. For each size of input, 10 models are constructed and the

best one is selected using validation data. The test data is then applied to obtain

the classification results. The validation data is also used to determine the size

of features. The number of features is selected at the point where there is no

significant improvement when more features are added. The performance of the

four algorithms are compared using statistical tests at 95% confidence interval.

4.3.6 Experimental results

This section presents evaluation results of MRMC against other feature selection

methods as presented in Section 4.2.3.2. The results are reported on each data

set.

4.3.6.1 Experiment 1: Nonlinear AND problem

In the first experiment, a well-defined problem which the correct features are

known is studied. A nonlinear AND problem which have been previously studied

in [63, 65] is used. There are 14 features in this problem. The first five features

f1 to f5 are generated randomly from an exponential distribution with mean

10. These features represent irrelevant features. The next six features f6 to f11

are relevant features generated randomly from a uniform distribution range [-1

1]. The next three features f12 to f14 are redundant features (fully overlapped
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features) where f12, f13, f14 are identical to f9, f10, f11, respectively. The class

label is determined by:

f(x) =

{
C1 If f6 ∗ f7 ∗ f8 > 0 AND f9 + f10 + f11 > 0

C2 If f6 ∗ f7 ∗ f8 < 0 AND f9 + f10 + f11 < 0
(4.6)

According to this problem, the optimal feature set is {f6, f7, f8, [f9 or f12], [f10
or f13], [f11 or f14]}. The set of 500 data samples is generated randomly from a

uniform distribution. The class label for each data sample is determined using

equation (4.6). Feature selection algorithms which described in Section 4.2.3.2

and Section 4.3.3 are applied on the data set. For Clamping and MRMC which

require validation data set, the 500 training data set is used. Table 4.15 presents

the ranking results using these algorithms.

Table 4.15: Feature rankings using different feature selection methods (Nonlinear
AND)

Algorithm Feature rankings
MRMR f11 f9 f1 f2 f4 f3 f10 f5 f6 f8 f7 f14 f12 f13
NMIFS f11 f9 f10 f6 f8 f7 f3 f4 f2 f1 f5 f14 f12 f13
Clamping f8 f7 f6 f9 f11 f12 f14 f10 f13 f4 f5 f1 f2 f3
MRMC f8 f7 f6 f9 f11 f10 f14 f12 f13 f4 f5 f1 f3 f2

From Table 4.15, it can be seen that only NMIFS and MRMC can identify

the correct set of features. The first important feature ranked by MRMR and

NMIFS is f11 and by Clamping and MRMC is f8. This is expected as MRMR

and NMIFS selects the first feature using maximum MI. Similarly, Clamping and

MRMR use the same measurement to select the first feature. MRMR cannot

detect the irrelevant feature where it ranks f1 as the third important feature.

Clamping correctly select the first five features, however it fails to detect that f12

is the redundancy of f9 and f14 is the redundancy of f11. According to this result,

it can be seen that NMIFS gives the emphasis on detecting redundancy where

it puts redundant features f12, f13, f14 at the end of the rank. On the contrary,

MRMC gives emphasis on complementary where all irrelevant features are put at

the end.
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4.3.6.2 Experiment 2: A nonlinear AND problem with partly over-

lapped features

This experiment aims to show the superior ability of MRMC over the other three

algorithms where it can select the correct features set from the data set which

contains irrelevant, complete overlapped and partly overlapped features.

We use the same data set as generated in experiment 1. However, we introduce

another three features f15 to f17 which will represent partly overlapped features.

Feature f15 is set to f15 = f6 ∗ f7 which overlaps the feature f6 and f7. Feature

f16 is set to f16 = f9 + f10 which overlaps the feature f9 and f10. Feature f17 is

set to f17 = f8 ∗ f11 which overlaps the feature f8 and f11 but has no relationship

to the classes. From this example, it can be seen that the relevant features are

f6 to f16. Feature f15 is the overlap of feature f6 and f7. However, it is better to

select f15 and treat f6 and f7 as redundant as f15 contains information from f6

and f7, therefore by selecting f15 the feature space would be smaller. The same

reason also applies for selecting f16 over f9 and f10. The optimal subset of this

data set is {f8, [f11 or f14], f15, f16}.

Table 4.16: Feature rankings using different feature selection methods (Modified
nonlinear AND)

Algorithm Feature rankings
MRMR f16 f11 f1 f2 f4 f5 f3 f15 f9 f8 f10 f6 f7 f17 f14 f12 f13
NMIFS f16 f11 f6 f9 f8 f7 f10 f3 f4 f2 f1 f14 f5 f15 f12 f17 f13
Clamping f15 f8 f14 f11 f9 f12 f4 f10 f13 f6 f16 f1 f17 f3 f5 f7 f2
MRMC f8 f15 f16 f11 f14 f6 f10 f4 f12 f9 f13 f1 f7 f3 f17 f5 f2

The result from Table 4.16 shows that only MRMC can produce the correct

feature set. Only two features f16, f11) are selected correctly by MRMR. The

next five features selected by MRMR are irrelevant features. Clamping can select

the first three features (f15, f8, f14) correctly. However, the fourth feature (f11)

is the redundant of the third feature (f14). This is because Clamping has no

method of detecting overlap or redundant features. NMIFS can identify the first

two features correctly. However, it selects f6 and f7 instead of f15 which makes

the size of feature set larger. It also fails to detect that f9 is the redundant feature

of f16.
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4.3.6.3 Experiment 3: Iris data set

This data set has been widely used in classification literatures [60, 61]. The

data set contains three classes of the type of Iris plant: Setosa, Versicolor, and

Verginica. There are 50 samples per class. One class is linearly separable from

the others. Two classes are not linearly separable. There are four features in this

data set including sepal length (cm), sepal width (cm), petal length (cm), and

petal width (cm). Different feature selection algorithms are applied on the data

set and the mean classification accuracy of the test set is presented in Figure 4.15.
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Figure 4.15: Mean classification accuracy of test data on different FS algorithms
(Iris data set)

From Figure 4.17, all algorithms select the first feature correctly. MRMC does

not correctly select the second feature in all folds and MRMR does not correctly

select the third feature, therefore classification accuracy is slightly affected. The

size of the feature set for each algorithms is determined using the validation

data. The paired T-test is used to compare the accuracy between different size

of features. The number of features is selected when no significant improvement

is detected when adding more features. The size of features, test classification

accuracy and standard deviation are shown in Table 4.17.

The performances of each feature selection techniques are compared empir-

ically. First, the data is tested for normality using Shapiro-Wilk. The result
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Table 4.17: Feature sets selected by different feature selection algorithms and
mean test accuracy (Iris data set)

Algorithm No. of features Mean test accuracy (%) Standard Deviation
MRMR 1 95.333333 1.8257419
NMIFS 1 95.333333 1.8257419
Clamping 1 95.333333 2.9814240
MRMC 1 95.333333 2.9814240

indicates that the variables are not normal distribution, therefore the Friedman

Test is used. The results show that there is no statistical significance in classifi-

cation accuracy between different feature selection algorithms (p=1.00).

4.3.6.4 Experiment 4: Wisconsin diagnostic breast cancer data set

This data set has been used extensively in previous works [58, 59]. The breast

cancer data set is obtained from the University of Wisconsin Hospitals, Madison

[57]. This data set is collected in 1992 and we shall refer this data set Cancer-

1992. It contains 9 integer-valued features such as clump thickness, uniformity

of cell size, uniformity of cell shape, bland chromatin, etc. The values for each

feature is range between 1 and 10. There are 699 samples with 65.5% benign

and 34.5% malignant cases. There are 16 samples which contain some missing

values. For example, clump thickness value is missing in sample 1. The mean

classification accuracy on test data are shown in Figure 4.16.

From Figure 4.16, the accuracy of Clamping and MRMC at the beginning

are lower than MRMR and NMIFS. MRMR, NMIFS and MRMC reach similar

accuracy when 3 features are used. Clamping reaches the highest accuracy when

5 features are used. The accuracies of MRMR and MRMC fluctuate slightly after

3 features. The number of features used for each algorithm is shown in Table 4.18.

Table 4.18: Feature sets selected by different feature selection algorithms and
mean test accuracy (Breast cancer 1992 data set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 3 96.666667 2.8905077
NMIFS 4 95.625000 2.0036858
Clamping 8 95.625000 1.1410887
MRMC 2 95.833333 1.6470196

Based on the mean test accuracy, the algorithms’ performances can be ex-
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Figure 4.16: Mean classification accuracy of test data on different FS algorithms
(Breast cancer data 1992 set)

pressed as Clamping<NMIFS<MRMC<MRMR. The performances of the four

algorithms are compared using statistical tests. The data normality test shows

that the data is not normal distribution therefore we use the Friedman test to

detect the differences between algorithms. The result indicates that there is no

statistical significance between four algorithms (Chi Square(3)=1.826, p=0.609).

When we look at the number of features used in each algorithm, it can be seen

that MRMC uses the smallest number of features. Hence, MRMC is the most

optimum algorithm for this data set.

We also evaluate the proposed algorithm on another breast cancer data set

which is collected in 1995. It is composed of 30 real-valued input features com-

puted from a digitalised image of cell nucleus such as radius, texture, smoothness,

mean, standard error, etc. to determine whether the cell is malignant or benign.

The data set contains 357 benign and 212 malignant samples. In this study, a

balanced sampling is used where an equal number of positive and negative classes

are randomly selected using a uniform distribution. The size of training, valida-

tion, and testing data for each fold is shown in Table 4.14. The mean classification

accuracy of the test data set for all four algorithms are shown in Fig 4.17.

From Figure 4.17, the first feature selected by Clamping and MRMC has lower
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Figure 4.17: Mean classification accuracy of test data on different FS algorithms
(Breast cancer 1995 data set)

accuracy then the feature selected by MRMR and NMIFS. However, using two

selected features by MRMC, the accuracy significantly improves. MRMR and

NMIFS provide similar performances on this data set.

The number of features for each algorithm is selected based on validation

accuracy. The number is selected when there is no statistically significance when

adding more features. The data normality is tested and appropriate test e.g.

paired T-test or Wilcoxon Signed Ranks test is applied. The results are shown

in Table 4.19.

Table 4.19: Feature sets selected by different feature selection algorithms and
mean test accuracy (Breast cancer data 1995 set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 4 95.000000 2.7147034
NMIFS 1 85.000000 13.0573044
Clamping 2 84.047619 8.7319623
MRMC 2 91.904762 2.7147034

The test accuracy for each algorithm are shown in Table 4.19. Based on the

test accuracy, the algorithms’ performances can be expressed as Clamping <

NMIFS < MRMC < MRMR where A < B indicates that the algorithm B is

better than the algorithm A. The normality test shows that the data have normal
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distribution. The within-subjects ANOVA is applied to compare the performance

of each feature selection algorithms. Since the Mauchly result is significant, the

Greenhouse-Geisser test is reported. The results indicate that there is no sta-

tistical significant between each algorithm(F (1.322, 5.288) = 2.273, p = 0.192).

From Table 4.19, it can be seen that NMIFS uses the lowest number of features.

Therefore, it can be concluded that NMIFS is the optimum method on this data

set.

4.3.6.5 Experiment 5: Cardiotocography data set

This data set has been used previously in [10]. It contains the measurement

of fetal heart rate (FHR) and uterine contraction features e.g. minimum FHR

histogram, percentage of time with abnormal long term variability, etc. on car-

diotocograms classified by expert obstetricians. The data set contains 21 input

features which can be classified into 10 types of morphologic patterns or 3 fetal

states. The data set has unbalanced class distribution. In this study, the balanced

sampling is used to obtain the equal number samples per class.
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Figure 4.18: Mean classification accuracy of test data on different FS algorithms
(Cardiotocography-Fetal data set)

The average classification accuracy of 3-class fetal states and 10-class morpho-

logic patterns are shown in Figure 4.18 and Figure 4.19, respectively. From Figure
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Figure 4.19: Mean classification accuracy of test data on different FS algorithms
(Cardiotocography-Morp data set)

4.18, the classification accuracy of MRMC starts at the lowest but continues im-

proving as the number of features is increasing. The classification accuracy of

MRMR and NMIFS are high when using one feature. The classification accuracy

of NMIFS falls to the lowest point when 5 features are used. The performance

of MRMC is better than the other 3 algorithms when 6 to 10 features are used.

From Figure 4.19, all feature selection algorithms produce similar accuracy trend.

The classification accuracy improves when more features are used. The perfor-

mance of MRMC is superior to the other 3 algorithms when 12 to 17 features are

used.

Table 4.20: Feature sets selected by different feature selection algorithms and
mean test accuracy (Cardiotocography-Fetal data set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 18 90.666667 1.7036708
NMIFS 15 90.476190 2.0203051
Clamping 21 90.476190 1.5058465
MRMC 4 87.619048 3.5634832

Table 4.20 shows the number of features selected by each algorithm, the mean

classification accuracy on test data and the standard deviation on Cardiotocog-

raphy data set for classifying 3 fetal states. Based on the test classification
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accuracy, the performance of each algorithms can be expressed as MRMC <

Clamping = NMIFS < MRMR. The normality test shows the data is nor-

mal distributed. The ANOVA test is applied to test the null hypothesis that

classification accuracy for all algorithms is the same. Since the Mauchly result

is significant, the Greenhouse-Geisser test is reported. The results indicate no

statistical significance between accuracy obtained by different feature selection

algorithms (F (1.045, 4.18) = 6.711, p = 0.058). From Table 4.20, it can be seen

that MRMC selects the lowest number of features. Therefore, it can be concluded

that MRMC is the optimum method on this data set.

Table 4.21: Feature sets selected by different feature selection algorithms and
mean test accuracy (Cardiotocography-Morp data set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 21 91.428571 1.5058465
NMIFS 16 90.666667 1.2417528
Clamping 21 87.428571 4.1184282
MRMC 15 83.619048 6.8146834

Table 4.21 shows the results of different feature selection methods on classi-

fying 10 morphologic patterns of cardiotocography data set. Based on the mean

classification accuracy on the test data, the performance of the algorithms can

be expressed as MRMC < NMIFS < Clamping < MRMR. The Shapiro-

Wilk is applied to test data normality. The result shows that the data is normal

distribution. The ANOVA is applied to test the performance of different feature

selection algorithms. The results show that there is no statistical significant in

accuracy between four algorithms at the 5% level (F (3, 12) = 0.278, p = 0.840).

Among the four algorithms, it can be seen that MRMC uses the lowest number

of features. Therefore, it can be concluded that MRMC is the optimum feature

selection method for this data set.

4.3.6.6 Experiment 6: Chess data set

The chess data set contains sequences of chess-description for chess end game.

This data set has been previously used in [55, 56]. The data set consists of 36

categorical-input features to classify if the white can win or cannot win. The class

distribution is 52% win and 48% cannot win. Equal class distribution is used and
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the number of training, validation, and testing data are shown in Table 4.14. The

data set uses a string to represent the board-description e.g. f, l, n, etc. which we

convert these into integer values e.g. f=1, l=2, n=3, etc. The mean classification

accuracy of the test data set is shown in Figure 4.20. The classification result

of each algorithm using the number of features determined by validation data is

presented in Table 4.22.
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Figure 4.20: Mean classification accuracy of test data on different FS algorithms
(Chess data set)

From Figure 4.20, the performances of all algorithms are increased when using

more number of features. When we observe the feature selected by each algorithm,

it is found that the first three features selected are the same. Generally, the

performances of Clamping and MRMC are better than MRMR and NMIFS in

this data set. MRMC performance is better than Clamping when 8 to 21 features

are used. All algorithms reach similar accuracy when 29 and more features are

used.

Based on the mean classification accuracy of test data, the algorithms’ perfor-

mances can be expressed as NMIFS < MRMR < Clamping < MRMC. We

first test the data normality of test accuracy using different number of features

for different algorithms as shown in Table 4.22. The normality test indicates that

the data is not normal distribution. Therefore, the Friedman test is used to test
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Table 4.22: Feature sets selected by different feature selection algorithms and
mean test accuracy (Chess data set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 27 96.590164 1.2234825
NMIFS 20 96.459016 1.2835134
Clamping 14 97.377049 0.9628967
MRMC 10 97.540984 0.8439041

the different in performances between four algorithms. The result reveals that

there is no statistical significant difference between the algorithms (p = 0.054).

Based on the number of features used in each algorithm, MRMC uses the lowest

number while MRMR uses the highest number of features. Therefore, we can

conclude that MRMC is the most optimum algorithm for this data set.

4.3.6.7 Experiment 7: Wearable-sensor activity data set

We collected raw sensor data of accelerometer, gyroscope, heart rate monitor,

light, temperature, altimeter, and barometer from 12 elderly people performing 12

activities of daily livings including walking, feeding, exercising, reading, watching

TV, washing dishes, sleeping, ironing, feeding, scrubbing, wiping, and brushing

teeth. The participants wore the sensors one their wrists and heart rate monitor

on their chests. The data set consists of 141 real-valued input features. The

classification accuracies of the test data set for all algorithms are shown in Figure

4.21. The size of the feature set of each algorithm are determined using validation

data and the results are presented in Table 4.23.

From Figure 4.21, MRMC accuracy is better than the other algorithms when

four or more features are used. Differences in accuracies are noticeable when 10

and 34 features are used. The accuracy of Clamping is lower than other algorithms

when few features are used. However, it achieves comparable accuracy as MRMR

and NMIFS when more than 14 features are used. MRMR and NMIFS achieve

the same accuracy when few features are used. However, NMIFS performance

drops when 3 and 25 features are used.

Based on the mean classification accuracy on test data, the algorithms’ per-

formances can be expressed as MRMR < Clamping < NMIFS < MRMC.

The algorithms’ performances are compared statistically. The data normality
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Figure 4.21: Mean classification accuracy of test data on different FS algorithms
(Wearable-sensor activity data set)

Table 4.23: Feature sets selected by different feature selection algorithms and
mean test accuracy (Wearable-sensor activity data set)

Algorithm # Selected features Mean test accuracy (%) Standard Deviation
MRMR 64 93.313500 0.4858261
NMIFS 66 93.662700 0.5337766
Clamping 62 93.611120 0.8777444
MRMC 50 94.027800 0.6026319
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test reveals that the data is normal, thus ANOVA test is applied. The Spheric-

ity test is significant therefore the Greenhouse-Geisser test is reported. The re-

sults indicate that there is no significant difference between the four algorithms

(F (1.474, 5.895) = 1.417, p = 0.301). Based on the number of features used

in each algorithm, it can be seen that MRMC only uses 50 features while the

other use over 60 features. Therefore, we can conclude that MRMC is the most

optimum algorithm for this data set.

4.3.7 Discussion

The summary of the experiments is presented in Table 4.24. The optimal feature

selection algorithms of each data set is based on the statistical results and the

number of features. Based on 8 experiments, MRMC is the optimum feature

selection algorithm in general. It is able to obtain high classification result us-

ing the minimum number of features. NMIFS is the next best feature selection

algorithm.

Table 4.24: Optimum feature selection algorithm on each data set
Data set Optimum feature selection algorithm
Nonlinear AND NMIFS, MRMC
Nonlinear AND with partly overlapped features MRMC
Iris MRMR, NMIFS, Clamping, MRMC
Cancer-1992 MRMC
Cancer-1995 NMIFS
Cardiotocography-fetal MRMC
Cardiotocography-morp MRMC
Chess MRMC
Multi-sensor AR MRMC

The results from experiments 1 and 2 show that MRMC is capable of detecting

completely overlapped and partial overlapped features. In other experiments, the

result also shows that MRMC can be used on various data type i.e. categorical,

real, and integer values. The performance of MRMC is not as good as NMIFS in

breast cancer-1995 data set. This is due to the fact that the first feature selected

by MRMC normally results in a low classification accuracy. The differences in

accuracy between NMIFS and MRMC are about 10% when one feature is selected.

When looking at other data sets, the differences in accuracies are about 5% or less.

This implies that when using one feature, if an algorithm obtains a significantly
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higher accuracy than MRMC then that algorithm would be more optimum for

that data set, provided that the number of input features is small.

For the cardiotocography data set, MRMC shows that it is the optimum

algorithm among the four algorithms. It achieves good accuracy while using the

smallest number of features. Experiment 6 demonstrates that MRMC also works

well with categorical data. In experiment 7, the proposed algorithm is evaluated

with the data set with a large number of inputs. The result shows that MRMC

is much superior. In general, it uses fewer than 10 features comparing to other

algorithms while achieving the highest accuracy. When comparing MRMC with

Clamping, it can be seen that by introducing a complementary measurement, the

performance of the algorithm is better. For example, in breast cancer 1995 data

set, using the same number of features, MRMC can obtain higher accuracy.

From this study, it can be seen that using Clamping to detect the most im-

portant feature may not give the correct result. This affects the performance

of MRMC as it uses the same criteria to select the first feature. As forward

search is used, the performance of the feature selection algorithm depends on the

first selected feature. Therefore, in case of the feature selection of a small set

of features, using MRMC may not guarantee good results. However, when the

number of features is increased, MRMC is demonstrated to be superior to the

other three algorithms. This is due to the fact that although the first feature

selected by Clamping algorithm may not always be the most important but it

is somewhat important i.e. the second or third most important feature, and by

using complementary measurement, the correct subset of features can later be

identified.

4.3.8 Conclusion remarks

In this study, a new feature selection algorithm based on Maximum Relevance

Maximum Complementary using NN has been proposed. The proposed methods

are evaluated on well-defined problems and real world data sets containing small

to larger set of features (N=4 to 100+). The study is carried out using 5-fold

cross validation. The algorithms performances are evaluated empirically using

statistical tests at 95% confidence interval. The results show that in general
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MRMC provides a good performance comparing to the other three algorithms.

Also, the complementary measurement introduced improves the performance of

Clamping algorithm. The study indicates that for the problem with small set

of features, the performance of MRMC is affected by the selection of the first

feature. Future research will be focusing on the identification of the first feature

in order to improve the performance of the algorithm. Also, sometimes there is

more than one important features with equal scores, in order to correctly identify

the feature, the next important feature needs to be considered.

4.4 Sensor contribution study

4.4.1 Study hypothesis and objectives

In this research, multiple sensors are used for AR. The aim of this study is to

understand the importance of different sensor in AR model. Two techniques i.e.

MI and Clamping are used to analyse the features generated from the sensors.

MI is used to measure the importance of each feature to the activity classification

while Clamping is used for measure the importance of each feature within the

model to the activity classification. Based from literatures, it is hypothesised

that accelerometer is the most important sensor for recognising the interested

activities. This is because these activities are mainly use movement on the wrist

and acceleroemeter is capable for capturing movement information. Also, it is

hypothesised that specific sensor i.e. light will be important for specific activity

with different lighting condition i.e. sleeping.

4.4.2 Methodology

We use two techniques to investigate the importance of a particular sensor i.e.

MI and Clamping [18].

1. Mutual information (MI)

MI is based on information theory. It is used for defining the dependency

between variables. Given two variables, x, y, the MI can be calculated as

[15]:
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I(x; y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy

2. Clamping

MLP is constructed using several sensors based on the feature selection

process. Features of each sensor are substituted using their mean values. If

the sensor is important in the network, removing it would result in lower

network performance. Assuming all features within a sensor give equal

significance, the contribution of a particular sensor could be calculated as:

con(S) = 1− g(F |S = S̄)

g(F )

where F is a set of features, S is the set of features of a particular sensor,

g(F |S = S̄) is the performance of the network where S is substituted of with

their mean values, and g(F ) is the generalised performance of the network.

4.4.3 Experiment design and data set

The study of sensor contribution is separated into two experiments. The first

experiment is carried out to understand the importance of a sensor and feature

to the activity classification using MI and to understand the importance of the

sensor within the model using Clamping. The second experiment is carried out to

understand the effect of the absent of a sensor within the model using Clamping.

To study the contribution of all sensors, the Wearable-sensor data set is used in

this study.

4.4.4 Experimental results and discussions

4.4.4.1 Experiment 1: Sensor contribution using MI and Clamping

For each feature, MI between feature and class is calculated. Figure 4.22 and the

Shapiro-Wilk tests reveal that MI is not normal distributed (P ≤ 0.05). Thus,

it is appropriate to analyse the data using non-parametric statistics e.g. median,

quartile, etc.
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Figure 4.22: A histogram of MI of features

Figure 4.23 to Figure 4.29 show the plot of MI of each feature. The plot

of MI of each feature shows that accelerometer sensor contains the most infor-

mation about the activities. 33.96% of accelerometer features have more than

third quartile of MI. Altimeter and temperature sensors are the least important

sensors. The result shows that accelerometer, gyroscope, barometer and light are

among the most important sensors containing useful information in classifying

12 activities. Accelerometer and gyroscopes produce the top ten MI (See Table

4.25). MI of some of the features calculated from these sensors are in the 3rd

quartile or higher (See Table 4.26). Also, it can be seen in Table 4.27 that the

time domain features provide more useful information than the frequency domain

features. Maximum, RMS, mean, median, STD, mode, minimum, intensity are

the most important features, respectively.

Table 4.25: Top ten features
Source Feature
Acceleration Y axis Max, mean, median, min, mode, RMS
Norm gyro RMS, mean
Acceleration Z axis Min, mode
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Figure 4.23: A histogram of MI of features (cont.)
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Figure 4.24: A histogram of MI of features (cont.)
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Figure 4.25: A histogram of MI of features (cont.)
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Figure 4.26: A histogram of MI of features (cont.)
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Figure 4.27: A histogram of MI of features (cont.)
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Figure 4.28: A histogram of MI of features (cont.)
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Figure 4.29: A histogram of MI of features (cont.)

Table 4.26: The percentage of features in different quartile of MI

Sensor % > 0.75 Quartile %0.5-0.75 Quartile %0.25-0.5 Quartile % < 0.25 Quartile
Accelerometer 33.96 24.53 16.98 24.53
Gyroscope 26.42 13.21 30.19 30.19
Barometer 25 75 0 0
Light 11.11 55.56 11.11 22.22
Heart rate 0 83.33 16.67 0
Altimeter 0 0 66.67 33.33
Temperature 0 0 66.67 33.33

Table 4.27: Features with MI over 75% Quartile
Sensor Data Feature

Accelerometer

X - axis Max, RMS
Y - axis Mean, max, min, median, mode, RMS
Z - axis Mean, max, min, median, mode√
X2 + Y 2 + Z2 Mean, max, median, intensity, RMS

Light Light intensity Max

Barometer
Temperature Max
Pressure Max

Gyroscope

X - axis STD, min, mode, intensity, RMS
Y - axis STD
Z - axis STD, max, intensity, RMS√
X2 + Y 2 + Z2 Mean, STD, median, RMS

The feature selection is performed using FC. The truncation at 24 features is

selected as the accuracy started to remain constant. Features from accelerometer,

altimeter, heart rate monitor, light and barometer are selected. Also, 16 features

are used to conform to previous study. Next, the contributions of sensors in our
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model (with 24 features) are investigated. The result shows that accelerometer

is the most important sensor in the model (See Figure 4.30). This is followed

by altimeter, heart rate monitor (HR), barometer, gyroscope, and light respec-

tively. The top three features with the highest importance in the model are mean

acceleration on Z-axis, maximum barometer pressure, and minimum altitude,

respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Accelerometer

Gyroscope

Barometer

Light

Heart rate monitor

Al�meter

Importance

Figure 4.30: The contribution of each sensor in AR model with 24 features.

4.4.4.2 Experiment 1: Discussion

The result of the study indicates that accelerometer is the most important sensor

for AR. This confirms that accelerometer has ability of measuring human activity

quantitatively, fast reaction to changes in movement and reflects type of activity

well [150]. It is found that the new sensors introduced including gyroscope,

barometer and light contain useful information about human activities. Similar to

accelerometer, gyroscope can reflect changes in activity well. We also observe that

data obtained from gyroscope are similar to those from accelerometer. Barometer

and light can be used to differentiate activities such as using stairs and sleeping.

Interestingly, although gyroscope, barometer and light are shown to be very

important sensors on their own, this is not the case when they are combined

together. In our model of 24 feature selected using FC, only 2 gyroscope features

are selected. Also, its contribution to the network is not as high as other sen-

sors. This may be explained that although gyroscope is a good sensor on its own,
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when it is used with accelerometer, many of its features become redundant. This

is possibly due to the feature calculated from gyroscope data are similar to ac-

celerometer data. It is suggested that other features such as angle, roll, and pitch

should be calculated. The result also indicates that heart rate has significant

contribution to the model. Using heart rate in the model increases the accuracy

by 1.75%. The statistical tests show that the improvement is significant (p<0.05).

This may be due to the fact that majority of activities studied in [143] are exer-

cise related activities e.g. cycling, running, rowing, etc. Although, the authors

reported that heart rate help improve exercise activities, due to the similarity in

these activities and large number of classes, the overall improvement is not as

high as they expected. On the other hand, our study contains activities which

are rather different e.g. walking, sleeping, exercise, large difference in heart rate

between these activities are expected and thus resulting in heart rate having a

significant impact in our model.

4.4.4.3 Experiment 2: Sensor contribution within the model using

the absent of a sensor concept

In this section, we study how each sensor within the model helps with classi-

fication. We perform experiments to understand how the loss of a particular

sensor affects the classification accuracy and to which activity. To control the

experiment, top features (based on MI) of each sensor are selected to use in the

classification. The selected features are maximum acceleration Y-axis, maximum

heart rate, maximum barometric pressure, maximum light intensity, RMS gyro

magnitude, minimum temperature, and minimum altitude.

Firstly, we generated a classification model (called base model) which uses all

sensors. We constructed the next model by removing one sensor. For example,

model 1 used all sensor except accelerometer. Model 2 used all sensor except

heart rate sensor. In total, 8 models are built. The notation of the model is

given by M followed by the name of the removed sensor e.g. MAcc represents

model which does not use accelerometer. The classification is performed using

MLP and the number of hidden nodes is twice the number of input. Table 4.28

shows mean accuracy of the model when a particular sensor is not used. The
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test of normality indicates that model MLight is not normal distribution, thus we

employ the Wilcoxon Signed Ranks to test the effect of the loss of a sensor. The

statistical results indicate that there is a statistical significant different between

the base model and all the other models (p<0.05). Based on the reduced accuracy,

the contribution of the sensor can be ranked from the highest to the lowest as

accelerometer, gyroscope, light sensor, barometer, heart rate sensor, temperature

sensor, and altimeter, respectively. We examine the F-score of each class of each

model (See Table 4.29). The model which does not include accelerometer has

an effect on several activities including brushing teeth, feeding, ironing, reading,

scrubbing, walking, and wiping. The effect on the absent of light sensor is on

sleeping, stairs, and washing dishes activities. The model without a gyroscope

sensor has effects on exercise and watching TV activity.

Table 4.28: The effect of the loss of a particular sensor
Model Missing sensor Accuracy (%) Std. Deviation
Base model None 65.1913 1.4354
MAcc Accelerometer 50.0933 1.4140
MHR Heart rate sensor 62.0873 1.2548
MBaro Barometer 60.7004 1.2010
MLight Light sensor 57.6663 1.1589
MGyro Gyroscope 55.8540 1.4780
MTemp Temperature sensor 62.2528 1.1885
MAlt Altimeter 62.8056 1.1016

Table 4.29: F-score of models developed for sensor contribution study.
Model Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe
Base model 0.6771 0.5818 0.5506 0.5856 0.5549 0.7140 0.7382 0.7144 0.7809 0.5191 0.7088 0.6683
MAcc 0.5036 0.4438 0.4239 0.3715 0.4271 0.5025 0.6579 0.6437 0.3858 0.4307 0.6048 0.5325
MHR 0.6493 0.5382 0.5393 0.5797 0.5122 0.6826 0.6995 0.6995 0.7725 0.4459 0.6652 0.6229
MBaro 0.6406 0.5494 0.5397 0.5483 0.4824 0.6771 0.6456 0.6639 0.7596 0.4715 0.6500 0.6211
MLight 0.5688 0.5639 0.4673 0.5640 0.5062 0.6843 0.5994 0.5354 0.7428 0.3973 0.6193 0.6035
MGyro 0.5995 0.3807 0.4841 0.5147 0.4879 0.5878 0.6676 0.6402 0.7286 0.4489 0.4838 0.6304
MTemp 0.6544 0.5410 0.5405 0.5644 0.5197 0.6968 0.7204 0.6885 0.7541 0.4542 0.6816 0.6155
MAlt 0.6583 0.5541 0.5417 0.5624 0.5157 0.7094 0.7033 0.6885 0.7645 0.4883 0.6814 0.6359

4.4.4.4 Experiment 2: Discussion

In this study we develop several models to investigate the absent of a particular

sensor. It is found that each sensor has a significant contribution toward the

classification accuracy in general. This means that each sensor has given specific
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information which is useful for activity classification. The results also show that

accelerometer is the most important sensor since the classification accuracy has

significantly dropped when the sensor is not used. However, missing this sensor

does not strongly affect the detection of sleeping. This is due to the fact that

this activity is not involved in much movement. On the other hand, missing the

light sensor has significantly affected sleeping detection. This suggests the model

uses information from the light sensor to detect sleeping activity. Similarly, stairs

activity is also affected by missing light intensity information. When observing

the plot of the maximum light intensity of these two classes, it is found that,

unlike other classes, the light intensity data from sleeping and stairs activities are

rather clustered. Therefore, missing the light sensor affects the classification of

these two classes. The absent of gyroscope has effects on exercise and watching

TV activities. This shows that although the MGyro model contains accelerometer

feature, it is not enough to detect these activities. RMS of gyro magnitude

significantly helps classify exercise and watching TV activities. Although the

results demonstrate that each of the seven sensors are important, these models

are constructed based on only one feature from each sensor. It is possible that

when a model is developed with more features, information from a particular

sensor could be substituted by the other features from other sensor as well. In

fact, in the proposed model, temperature sensors are not selected.

4.4.5 Conclusion remarks

In general, accelerometer is the most important sensor. It is found that the new

added sensors (gyroscope, barometer, light and heart rate monitor) provide valu-

able information for AR. It is found that gyroscope and accelerometer exhibit

similar data and some are overlapped. Heart rate data can be useful when clas-

sifying activities which have diversity in heart rate data and may not be useful if

contain activities which exhibit similar heart rate e.g. similar exercise activities.

We also find that maximum light intensity can be useful for detecting sleeping,

stairs, washing dishes activities. The RMS of gyro magnitude can help in classi-

fying exercise and watching TV activities. Although we find that all the sensors

provide important information toward classification, when larger features of sen-
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sors are available, a particular sensor could be omitted. The results also show

that combining several sensor data improves classification accuracy.

4.5 Summary

This chapter presents extensive experiment results on features and feature selec-

tion. First, the feasibility of using wrist worn sensor for AR is investigated. It is

found that activities can be recognised using only an accelerometer worn on wrist,

however only basic activities such as walking, running, sitting, standing, etc. can

be detected. Further investigation is carried out where multiple sensors are used.

One of the most important tasks in AR using multi-sensor is to select the optimal

set of features from a large feature space. In this chapter, two feature selection

techniques are proposed. First, FC is proposed which combines Clamping tech-

nique and modified forward selection. The experimental results indicate that FC

can select a better set of features comparing to other well-known feature selection

algorithms i.e. MRMR, NMIFS, and Clamping. However, FC has two limitations

due to the use of forward selection. Firstly, redundant features may be selected

in the early round of selection and secondly, good features may be eliminated in

the early selection stage. Another feature selection technique called MRMC is

proposed which uses the concept of feature complementary. The experimental

results indicate that MRMC provides comparable results with MRMR, NMIFS,

and Clamping when applying on data sets with small numbers of features. The

results also show that MRMC outperforms other algorithms when applying on

data sets with large numbers of features. It is found that MRMC performance is

affected by the selection of the first feature. Future research can be carried out

to identify the method to select the first feature in order to improve MRMC per-

formance. In this chapter, the comparison study on FC and MRMC has not been

carried out due to limited time strain, which may be of interest for future study.

Finally, the chapter presents a study on sensor contribution to AR performance.

The experimental results indicate that accelerometer is the most important sen-

sor. The missing of accelerometer has a strong impact on AR accuracy. Also, in

general, it is found that multiple sensors contribute to the increased classification

accuracy. However, if a large set of features is available, some sensors may be
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omitted. For future research, investigations on the proposed techniques can be

carried on other data sets, and compared with other feature selection techniques.
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Activity classification and

classifier combination study

In previous chapter, two feature selection techniques have been proposed and

evaluated. The next step is to identify the suitable classification method for AR.

In this chapter, experimental studies on the classification algorithms for multi-

sensor AR are presented. The chapter also addresses the challenges in classifier

combination by proposing two classifier combination techniques i.e. classifier

fusion weights using GA and classifier combination model using GA. The proposed

techniques are tested and validated using the extensive experimental studies.

Some parts of this chapter have been published in [1, 4, 8].

5.1 Activity classification algorithms study

5.1.1 Study hypothesis and objectives

After an optimum feature set is identified, the activity classification can be carried

out. There are various classification techniques which can be used for AR. In

this study, three classification techniques i.e. NN, SVM, and RBF are selected

due to their popularity. Based on literatures, it is hypothesised that SVM will

achieve the highest accuracy due to its capability in formulating problems into

convex optimization problems which guarantee to achieve the global minimum.

The objectives are to evaluate different classification techniques and to identify
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suitable technique for AR.

5.1.2 Experiment design

The study is separated into two experiments using two activity data sets i.e.

Multi-sensor activity data set and Wearable-sensor activity data set. The exper-

iments investigate three popular classification algorithms i.e. MLP, RBF, and

SVM.

5.1.3 Methodology

5.1.3.1 Classification algorithms

In this study, three classification algorithms are investigated. A brief description

on these techniques is reviewed below.

1. Multi-Layer Perceptron [53]

MLP exploits the idea of the nervous system in which numerous inputs

are connected to numerous outputs. These connections are associated with

weights and the outputs are usually calculated from activation functions,

such as sigmoid functions, of summation of weighted inputs. MLP is capable

of learning any nonlinear functions by adjusting the connection weights to

minimise the error of the output. Several works on sensor-based activity

classification have been conducted using MLP [152, 155, 175]. Given the

input x and output o for ith data. Based on the connectionist concept, the

network output and can be calculated as:

oi = ϕ(
∑
i

wixi)

where ϕ is the activation or transfer function which normally is a sigmoid

function e.g. logistic function, hyperbolic tangent, etc. MLP learns the

classification error through the back propagation algorithm and minimises

that error by adjusting the weights wi.
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2. RBF [53]

RBF is a type of neural network which uses the radial basis function as

the activation function. For N hidden neurons, the activation function is

defined as:

f(x) =
N∑
i=1

wiφ(∥x− ci∥)

where ci is the centre vector for neuron i and φ is a kernel function e.g.

Gaussian, thin plate spline, etc.

3. SVM [114]

SVM projects inputs into a higher dimensional space so that non-linear data

can be separated. It then searches for hyperplane with a maximal margin

to separate the data by solving the following optimisation problem:

min
w,b,ξ

[
1

2
wTw + C

m∑
i=1

ξi]

subject to:

oi(w
Tf(xi) + b) ≥ 1− ξi

ξi ≥ 0

The slack term ξi is used to relax the constraints allowing misclassified

examples. The associated cost parameter C is used for penalizing ξi. f() is

a kernel function which transforms the input xi into a higher dimensional

space. Common kernel functions are such as linear kernel, RBF kernel

and polynomial kernel, etc. This study uses RBF kernel function f(xi) =

exp(− 1
(2σ2)

∥ xi − xj ∥2) where σ is the width of the Gaussian kernel. For

K-class classification, K binary classifiers are constructed and one-VS-all

classification is applied.
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5.1.3.2 Data sets

Two activity data sets i.e. Multi-sensor activity data set and Wearable-sensor

activity data set are used in the study. All experiments are carried out using

10-fold cross-validation where 8 folds are used for training, 1 fold for validation

and 1 fold for testing. The size of the training, validation and testing data of

each fold used for different data set are shown in Table 5.1.

Table 5.1: Characteristics and data partition of different data sets used in the
activity classification algorithm study

Data set # Features # Classes Data type # Sample # Training # Validation # Testing
Multi-sensor ac-
tivity data set

63 9 Real 17,488 5,760 720 720

Wearable-sensor
activity data set

141 12 Real 39,328 20160 2520 2520

5.1.4 Experimental results

5.1.4.1 Experiment 1: Multi-sensor activity data set

The neural network used in this experiment test is developed using MatLab Neu-

ral Network Toolbox R⃝. The network has one hidden layer and the numbers of

hidden nodes are selected based on the minimum error on validation sets. The

RBF network used are built using MatLab Neural Network Toolbox R⃝. The RBF

parameters, SPREAD, which defines the radius of the RBF neurons are deter-

mined from 10-fold cross validation.

The classification results from MLP and RBF are not very good comparing to

SVM. The highest accuracy achieved by MLP is 81.52% while RBF only achieves

72.18%. SVM, on the other hand, shows statistically better classification perfor-

mance. This is because SVM encodes classification into optimization problems

allowing it to solve classification as a convex problem. This means global mini-

mum can be guaranteed. On the other hand, MLP and RBF use random weights

and gradient which cannot guarantee global minimum. The analysis of confusion

matrix shows that MLP, RBF, and SVMmake similar misclassifications thus com-

bining these three classifiers will not increase classification accuracy. Therefore,

it is decided to use only SVM in the proposed method.
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Table 5.2: Mean precision and recall of the proposed method
Brush teeth Dress/undress Feed Iron Sleep Sweep Walk Wash dishes Watch TV

Precision 0.8495 0.7907 0.9041 0.8554 0.9814 0.9573 0.9494 0.8904 0.9606
Recall 0.8556 0.8305 0.9304 0.8551 0.9545 0.9538 0.9334 0.8600 0.9470
F-score 0.8517 0.8091 0.9166 0.8546 0.9676 0.9553 0.9409 0.8741 0.9534

SVM is applied which is constructed using LIBSVM [114] which is a free

library for constructing the SVM model. A radial Gaussian kernel function is

used. For SVM parameters, a grid search [6] using C = 20, 20.25, ..., 27.75, 28 and

γ = 21, 21.25, ..., 23.75, 24 on validation sets are carried out using 10-fold cross

validation with 10 runs. All combinations of C and γ are tested on each data set.

The optimum parameters are selected based on the highest mean accuracy which

are C = 22.5 and γ = 23.

A test using unseen data sets are carried out. The proposed model achieves

mean classification accuracy of 90.23%, standard deviation of 1.179, and standard

error mean of 0.1179. When observing classification results of each class, the

model also achieves high accuracy between 83.05% and 95.45%. Table 5.2 shows

mean precision, recall and F-score of the nine classes. In general, the results show

high precision and recall indicating that the model is high performance (Precision

= 90.43%±6.37%, Recall = 90.23%±5.06%). The average F-score of the proposed

model is 0.9026 and standard deviation is 0.0567. The model performs extremely

well in detecting sleeping activity. Activities such as watching TV, sweeping,

walking and feeding also have been detected very well. However, the model does

not perform well in detecting dressing activity.

Within the 9.77% of mean misclassification, the errors are mostly from dress-

ing (19.27%), ironing (16.47%) and brushing teeth (16.41%) and washing dishes

(15.91%) classes. Table 5.3 shows the confusion matrix of the proposed method.

The numbers with the underlines show results from the model that achieves the

lowest accuracy, the numbers with the bars show results from the highest accu-

racy, and the mean values are in between those two numbers.

The confusion matrix reveals that the model often confused dressing class

with ironing (24.41%) or brushing teeth (23.82%) classes. Ironing activities are

also frequently misclassified as dressing (42.45%), washing dishes (23.30%) or

brushing teeth (20.36%) activities. Classification of brushing teeth is regularly
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Table 5.3: Confusion matrix of the proposed method
Actual Predict

Brush teeth Dress/undress Feed Iron Sleep Sweep Walk Wash dishes Watch TV

Brush teeth
64 3 5 4 1 0 0 1 2

68.45 3.03 2.57 2.44 0.52 0 0.02 2.37 0.060
73 1 1 1 0 0 0 2 2

Dress/undress
6 57 4 4 0 3 3 2 1

3.23 66.44 1.23 3.31 0.07 1.63 1.97 1.85 0.27
4 68 1 1 0 1 2 3 0

Feed
4 2 72 0 0 0 0 1 1

1.96 0.76 74.43 0.74 0.27 0.02 0.08 0.80 0.94
1 2 75 0 0 0 0 0 2

Iron
5 4 1 65 0 1 0 3 1

2.36 4.92 0.77 68.41 0.10 0.18 0.14 2.70 0.42
2 2 1 72 0 0 1 2 0

Sleep
0 2 1 4 72 0 0 0 1

0.72 1.13 0.71 0.29 76.36 0.09 0.18 0.25 0.27
0 1 0 0 79 0 0 0 0

Sweep
0 0 0 0 0 77 2 1 0

0.03 1.49 0.11 0.10 0.08 76.30 1.57 0.23 0.09
0 1 0 1 0 76 1 0 1

Walk
1 1 0 0 0 3 75 0 0

0.24 3.18 0.11 0.14 0.04 1.34 74.67 0.09 0.19
0 2 0 0 0 0 78 0 0

Wash dishes
4 2 2 1 0 0 0 71 0

2.72 2.82 1.27 3.85 0.12 0.04 0.01 68.80 0.37
3 1 1 4 0 0 0 71 0

Watch TV
0 1 2 1 1 1 0 1 73

1.00 0.46 1.22 0.80 0.26 0.14 0.07 0.29 75.76
1 0 2 0 0 0 0 0 77

Note: n indicates minimum and n indicates maximum

confused with dressing (26.23%), feeding (22.25%), ironing (21.13%) and washing

dishes (20.52%).

1. H1: The proposed method can achieve more than 90% accuracy

The result from the Shapiro-Wilk test indicates that the data are normally

distributed (SW=0.979, df=99, p=0.107). The result of the null hypothesis

testing is H0 : µ ≤ 90.00 which indicates that the accuracy difference is sig-

nificant at the 5% level on a one-tailed test (T=2.336, df=99, p=0.0296).

Therefore, the null hypothesis is rejected in favour of the experimental hy-

pothesis that the mean accuracy of the proposed method is higher than 90%

indicating that the method can accurately detect elderly ADL. Particular

classes with F-score higher than 90% are hilighted with bold faces in Table

5.2.

2. H2: Classification accuracy can be improved by combining data from tem-
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perature sensor and/or altimeter with accelerometer

In order to control the experiment, the number of inputs is set to 16 to com-

ply with the number of selected features used in our proposed method. For

configuration A, 16 top accelerometer features based on feature rankings in

Section 4.2.4 are selected. We select the best combination of features for

both configurations B and C through the experimentations. 16 features in

configuration D is selected from the proposed method (see Table 4.12).

Classifications are conducted using SVM on 10-fold cross validation × 10

times = 100 data sets. Optimum SVM parameters C and γ are selected

using the grid search for each configuration. The results of classification

accuracy using features from only accelerometer, accelerometer with tem-

perature sensor, and accelerometer with altimeter, and combination of these

sensors are shown in Table 5.4. The result shows that classification accuracy

is increased when temperature or altimeter is combined with accelerome-

ter. The data are tested for normality using the Shapiro-Wilk test which

reveals that the data are not normally distributed (p <0.001). Thus, it

is appropriate to use non-parametric statistics for hypothesis testing. The

Kruskal-Wallis test at 5% significance level is used to test the null hypothesis

that the median classification accuracies are the same across all configura-

tions. The result indicates that there is a statistically significant difference

in median of accuracies between different configurations (H(3)=305.730, p

<0.001) with a mean rank of 50.59 for using only accelerometer, 170.49 for

using accelerometer with temperature sensor, 265.06 for using accelerometer

with altimeter, and 315.87 for using combination of all three sensors.

A further pair-wise comparison between configuration D and others e.g. A

VS D, B VS D, C VS D are conducted using the Mann-Whitney U test. The

comparison results indicate that there is a statistically significant difference

in median accuracy between configuration A and D (U=0.00, p <0.001),

B and D (U=660.00, p <0.001), C and D (U=2803.50, p <0.001). The

results also indicate that the mean rank of configuration D is significantly

higher than other configurations. Therefore, it can be concluded that by

combining data from temperature sensor and/or altimeter with accelerom-
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Table 5.4: Classification accuracies of using different set of sensors
Configuration Sensor Selected features Accuracy

A Accelerometer RMSY , RMSX , MAXY , MINY , MINZ , MINX ,
DIFY , MAXZ , KEYY , CORXY , MAXNORM ,
DIFY , MEANY , MAXX , MEANZ , RANGEZ

82.7694%

B Accelerometer,
Temperature

RMSY , RMSX , MAXY , MINY , MINZ , MINX ,
DIFY ,MAXZ , KEYY , MEANTEMP , STDTEMP ,
MAXTEMP , MINTEMP , RANGETEMP ,
ENTTEMP , KEYTEMP

87.5764%

C Accelerometer,
Altimeter

RMSY , RMSX , MAXY , MINY , MINZ , MINX ,
DIFY , MAXZ , KEYY , MEANALT , STDALT ,
MAXALT , MINALT , ENEALT , ENTALT ,
KEYALT

89.3736%

D Accelerometer,
Temperature,
Altimeter

RMSY , RMSX , MAXY , MINY , MINZ , MINX ,
DIFY , MAXZ , KEYY , CORXY , MAXNORM ,
DIFY , ENTALT , MEANTEMP , MINTEMP ,
KEYTEMP

90.2250%

eter, classification accuracy can be improved. The result show that using

a combination of accelerometer, temperature sensor and altimeter achieves

the highest classification accuracy among other configurations.

5.1.4.2 Experiment 1: Discussion

Different classification models are compared based on MLP, RBF and SVM. The

results indicate that SVM is the most powerful classification algorithm. There-

fore, we propose a wrist-worn multi-sensors based AR and classification method

for detecting elderly ADL using SVM. The proposed method achieves high clas-

sification performance of F-score between 0.81 and 0.97 and overall accuracy of

90.23%. This demonstrated that the proposed method performs very well on

detecting activities of an elderly person. The method can detect several daily

activities including basic ADL such as feeding, brushing teeth, dressing, walking

sleeping and I-ADL such as washing dishes, ironing, sweeping floor and watching

TV.

The confusion matrix reveals that the proposed method often gets confused

among dressing, ironing, brushing teeth and washing dishes activities. Dressing

is the most difficult activity to be detected as there is no clear pattern on how

this activity should be performed e.g. one participant may undress/dress her

top first while the other may do in different sequences. Finding a generalised
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decision boundary for the dressing activity proved to be challenging. For the

other three classes i.e. ironing, brushing teeth and washing dishes, the results

could be implied that these classes have some common characteristics. Ironing,

brushing teeth and washing dishes are all involved in some kind of repetitive

stroke motion e.g. back-and-forth motion. The analysis shows that maximum

and minimum acceleration on Y-axis of ironing and washing dishes activities are

highly overlapped. Nevertheless, when comparing to previous works [170], our

method still achieves a higher classification result on these activities. Also, the

proposed method can accurately detect less active activities i.e. sleeping and

watching TV (F-score=95.45% and 96.04%, respectively comparing to 93.9%).

The results from the experiment indicate that, in our application, accelerom-

eter is the most valuable sensor for AR. This result supports the previous finding

from the literature [152]. The temperature sensor and altimeter when using on

their own do not achieve good classification results comparing to the accelerom-

eter. However, the experimental results reveal that by adding information from

temperature sensor or altimeter, the classification performance is statistically im-

proved, and that the combination of all three sensors achieves the highest classi-

fication accuracy confirming our hypothesis. This result supports the theory that

a variable that is completely useless by itself can provide significant performance

improvement when taken with others [5]. Features from accelerometer when taken

with features from temperature and altitude improve class separability resulting

in better classification performances.

Table 5.5 shows a comparison between the proposed method and previous

works. The proposed method can achieve comparable or even higher accuracy

comparing to previous works considering the sensor locations and number of

recognised activities.

5.1.4.3 Experiment 2: Wearable-sensor activity data set

The classification models are developed using classification algorithms as de-

scribed in Section 5.1.3.1 with 24 selected features as shown in Table 4.12. Also,

to demonstrate that the proposed method using more sensors can achieve better

accuracy, we construct another model where 16 features from three sensors are

179



Chapter 5: Activity classification and classifier combination study

Table 5.5: Accuracy between the proposed method and previous works
Author Recognised activities Brush

teeth
Dress/
undress

Feed Sleep Walk Wash
dish

Iron Average

Proposed model 9 85.56% 83.05% 93.04% 95.45% 93.34% 86.00% 85.51% 90.23%
Fleury et al.
[170]

7 64.30%* 75.00% 97.80% 93.9% 95.00% - - 86.20%

Maurer et al.
[75]

6 - - - - >90% - - 87.10%

Huang et al. [76] 4 85.00% - 84.00% - - 76.00% - 82.00%
Hong et al. [166] - - - - 92.66% 84.36% - 97.94% -
* activities include wash hand and teeth are detected

used and classification is based on SVM in previous experiment. From here, we

shall refer this model as SVM163S. As the SVM163S uses only 16 features, we

also constructed classification models using truncation point at 16 features. The

notation of the model name is given by the algorithm, number of features, and

number of sensors. For example, RBF167S represents the classification model

using RBF with 16 features from 7 sensors.

Figure 5.1: A plot between classification accuracy and number of hidden nodes
in MLP with 16 features.

Firstly, we carry out the experiments to determine the optimum number of

hidden node and epoch used for the neural network model. All experiments are

done using validation data set 10-fold cross validation for 10 runs. It can be

seen from Figure 5.1 that the more hidden nodes, the higher accuracies. How-

ever, using a large number of hidden nodes will increase the complexity with the

network model. It is decided to use alpha = 3 where number of hidden nodes =

alpha*input. Since we have a trade-off of using lower number of hidden nodes, it is
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decided to use 2000 epoch for training so that high accuracy can be achieved. The

network is set up using the mentioned configuration and trained using the scaled

conjugate gradient and the logistic output function. The network is validated

using test set with 10-fold cross validation and 10 runs. The network is trained

and tested 5 times and then, network with highest accuracy is selected. The mean

accuracy obtained is 94.8496 ± 0.4207%. Confusion matrix of the MLP167S is

presented in Table 5.6, and precision, recall, and F-score are presented in 5.7.

Table 5.6: Confusion matrix of the MLP167S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 19810 101 324 119 85 34 103 121 1 176 44 82
Exercise 84 19901 59 228 137 85 7 104 62 95 34 204
Feed 376 81 19075 473 116 157 116 102 2 368 92 42
Iron 96 256 290 19600 75 187 15 34 23 170 37 217
Read 126 124 206 120 20072 55 47 14 24 80 111 21
Scrub 63 112 43 56 28 20037 21 91 69 116 72 292
Sleep 195 17 126 61 50 64 20071 168 12 95 48 93
Stairs 184 61 87 84 15 206 53 19877 212 45 127 97
Walk 2 25 10 25 7 105 5 247 20472 16 7 31
Wash 123 111 402 219 65 129 26 49 17 19740 38 81
Watch 21 36 58 56 82 64 47 119 7 26 20464 20
Wipe 41 174 58 107 22 307 29 102 72 160 26 19902

Table 5.7: The precision, recall and F-score of the MLP167S
Activity Precision Recall F-score
Brush 0.9379 0.9433 0.9406
Exercise 0.9477 0.9477 0.9477
Feed 0.9198 0.9083 0.9140
Iron 0.9268 0.9333 0.9301
Read 0.9671 0.9558 0.9614
Scrub 0.9350 0.9541 0.9445
Sleep 0.9772 0.9558 0.9663
Stairs 0.9453 0.9444 0.9448
Walk 0.9761 0.9771 0.9766
Wash 0.9361 0.9400 0.9381
Watch 0.9699 0.9745 0.9722
Wipe 0.9440 0.9477 0.9459

Similar experiments are carried out to determine the appropriate number of

hidden nodes and epochs for MLP247S. It is decided to use alpha = 3 and epoch

=2000. The model is tested using test set with 10-fold cross validation and 10

runs. The network is trained and tested 5 times and then, network with highest

accuracy is selected. The mean accuracy is 96.7349 ± 0.3705%. The classification
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results including confusion matrix, precision, recall, and F-score of the MLP247S

are presented in Table 5.8 and Table 5.9.

Figure 5.2: A plot between classification accuracy and number of hidden nodes
in MLP with 24 features.

Table 5.8: Confusion matrix of the MLP247S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 20230 67 214 58 46 28 80 95 0 97 26 59
Exercise 95 20364 58 111 63 37 14 53 17 76 18 94
Feed 202 44 19859 257 107 55 86 85 2 214 54 35
Iron 65 85 199 20111 44 84 32 46 23 106 25 180
Read 67 54 109 86 20482 34 22 25 13 31 63 14
Scrub 36 37 20 70 19 20390 22 62 22 67 38 217
Sleep 85 16 121 44 17 52 20364 142 10 59 26 64
Stairs 113 55 63 48 14 86 83 20293 130 43 61 59
Walk 5 21 12 26 5 36 10 154 20634 17 13 19
Wash 79 70 203 144 44 75 28 57 20 20172 20 88
Watch 16 12 32 28 53 27 33 73 8 21 20677 20
Wipe 30 88 35 123 25 226 36 61 47 105 28 20196

For SVM classification, firstly, a search for optimum C and γ is carried out.

A rough grid search is done using 10-fold cross validation using C = 2b where

b is [-5, 15] and γ = 2c where c is [-15, 3]. Next, a fine grid search is carried

out using 10-fold cross validation with 10 runs using C = 2b and γ = 2c where b

and c are the selected power from coarse grid search and their values are between

[b-1, b+1] and [c-1, c+1]. The parameters with the highest averaged validation

accuracy are chosen for the model.

For SVM with 16 features SVM167S, C = 23.75 and gamma = 22.5 are used.
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Table 5.9: The precision, recall and F-score of the MLP247S
Activity Precision Recall F-score
Brush 0.9623 0.9633 0.9628
Exercise 0.9737 0.9697 0.9717
Feed 0.9491 0.9457 0.9474
Iron 0.9529 0.9577 0.9553
Read 0.9791 0.9753 0.9772
Scrub 0.9650 0.9710 0.9680
Sleep 0.9786 0.9697 0.9741
Stairs 0.9597 0.9641 0.9619
Walk 0.9860 0.9848 0.9854
Wash 0.9602 0.9606 0.9604
Watch 0.9823 0.9846 0.9835
Wipe 0.9597 0.9617 0.9607

The accuracy averaged over 100 results is 96.9575% ± 0.3485%. The confusion

matrix and other results are shown in Table 5.10 and Table 5.11.

Table 5.10: Confusion matrix of the SVM167S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 20286 20 240 73 62 20 39 78 0 97 34 51
Exercise 49 20427 44 84 83 58 7 52 19 64 33 80
Feed 247 78 19876 224 110 51 58 67 1 203 40 45
Iron 86 123 160 20097 37 105 19 70 4 104 15 180
Read 62 62 195 94 20397 28 17 18 11 53 40 23
Scrub 19 66 20 59 17 20442 17 65 10 67 38 180
Sleep 119 10 64 19 9 49 20487 116 4 37 22 64
Stairs 71 43 90 60 7 112 32 20422 82 30 45 54
Walk 0 26 6 11 9 63 12 141 20642 13 1 28
Wash 64 67 249 114 51 70 15 36 14 20249 15 56
Watch 22 21 15 25 38 21 29 98 4 18 20690 19
Wipe 25 66 12 95 29 196 19 68 30 114 28 20318

For SVM with 24 features, C = 24.25 and γ = 22 are used. The accuracy

averaged over 100 results is 97.2040% ± 0.3103%. The classification results are

shown in Table 5.12 and Table 5.13.

For RBF, experiments are carried out to determine the appropriate number

of hidden nodes and activation function among Gaussian function, Thin Plate

Spline (TPS) function, and r4logr. The experiments are done using 10-fold cross

validation. Firstly, we experiment with different activation functions using a fixed

hidden node. The result shows that using r4logr function achieves the highest

validation accuracy (See Figure 5.3). Next, experimentations using the r4logr

function with different hidden nodes show that the accuracy is increased when
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Table 5.11: The precision, recall and F-score of the SVM167S
Activity Precision Recall F-score
Brush 0.9637 0.9660 0.9649
Exercise 0.9723 0.9727 0.9725
Feed 0.9478 0.9465 0.9471
Iron 0.9591 0.9570 0.9580
Read 0.9783 0.9713 0.9748
Scrub 0.9636 0.9734 0.9685
Sleep 0.9873 0.9756 0.9814
Stairs 0.9619 0.9703 0.9661
Walk 0.9914 0.9852 0.9883
Wash 0.9620 0.9642 0.9631
Watch 0.9852 0.9852 0.9852
Wipe 0.9630 0.9675 0.9653

Table 5.12: Confusion matrix of the SVM247S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 20246 29 280 65 53 20 30 85 0 101 47 44
Exercise 40 20667 26 57 20 16 1 38 17 59 11 48
Feed 289 35 19824 197 142 67 67 63 2 186 78 50
Iron 91 69 162 20210 30 56 10 62 8 127 14 161
Read 61 32 154 101 20463 14 25 20 5 40 68 17
Scrub 9 23 34 58 6 20549 8 29 4 38 40 202
Sleep 65 9 70 24 21 37 20526 124 2 28 26 68
Stairs 86 37 96 38 14 55 44 20498 99 22 30 29
Walk 0 33 3 8 6 38 8 153 20670 6 0 27
Wash 78 28 208 123 54 66 19 34 19 20278 18 75
Watch 13 6 19 8 55 6 30 72 6 20 20742 23
Wipe 43 52 17 112 25 164 21 48 20 195 29 20274

the hidden nodes are increased. It is decided to use 3000 hidden nodes as the

accuracy starts stabilise. RBF network is constructed using activation function

r4logr where the activation, Z, is calculated as Z(r) = r4 log r with 3000 hidden

nodes and the linear output function. The model is tested using 10-fold cross

validation with 10 runs. The network is trained and tested 5 times and then,

network with highest accuracy is selected. The averaged accuracy is 95.3075 ±
0.4133%.

Similar experiments are carried out for RBF with 24 features. The results

show that using the TPS activation function achieves the highest accuracy. For

the number of hidden nodes, the results indicate that the more hidden nodes, the

higher the accuracies. However, it is decided to use 3000 hidden nodes as the

accuracy becomes stable after this setting.

RBF network is constructed using activation function r2 log r with 3000 hidden
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Figure 5.3: A plot between classification accuracy and number of hidden nodes
in RBF with 16 features.

Figure 5.4: A plot between classification accuracy and number of hidden nodes
in RBF with 24 features.
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Table 5.13: The precision, recall and F-score of the SVM247S
Activity Precision Recall F-score
Brush 0.9631 0.9641 0.9636
Exercise 0.9832 0.9841 0.9837
Feed 0.9488 0.9440 0.9464
Iron 0.9623 0.9624 0.9624
Read 0.9796 0.9744 0.9770
Scrub 0.9744 0.9785 0.9765
Sleep 0.9873 0.9774 0.9824
Stairs 0.9657 0.9739 0.9698
Walk 0.9913 0.9865 0.9889
Wash 0.9610 0.9656 0.9633
Watch 0.9829 0.9877 0.9853
Wipe 0.9646 0.9654 0.9650

Table 5.14: Confusion matrix of the RBF167S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 19850 79 501 81 63 39 37 105 0 155 32 58
Exercise 137 19869 125 171 90 119 14 55 64 208 48 100
Feed 491 51 19218 391 106 196 43 73 4 301 67 59
Iron 113 133 260 19920 22 141 5 40 25 172 18 151
Read 133 52 445 104 19974 33 44 7 10 48 124 26
Scrub 17 28 54 55 22 20277 14 21 15 94 90 313
Sleep 175 14 145 22 10 66 20229 151 1 67 51 69
Stairs 149 39 175 73 22 239 30 19950 138 64 88 81
Walk 17 18 22 39 23 91 9 191 20455 40 6 41
Wash 158 73 441 196 68 119 15 20 9 19799 16 86
Watch 27 13 33 18 65 61 59 69 5 22 20608 20
Wipe 80 82 58 63 17 300 25 55 43 210 41 20026

nodes and the linear output function. The model is tested using test set 10-fold

cross validation with 10 runs. The network is trained and tested 5 times and then,

network with highest accuracy is selected. The averaged accuracy is 95.6734 ±
0.3744%.

The data normality is tested using the Shapiro-Wilk and the results indicate

that they have normal distribution (p ≥ 0.05). Thus, the Paired-sample T-test is

used to test the accuracy difference between each model and the result is shown

in Table 5.18. The result indicates that the differences between each model

are statistically significant where SVM247S >∗ SVM167S >∗ MLP247S >∗

RBF247S >∗ RBF167S >∗ MLP167S >∗ SVM163S where >∗ indicates sig-

nificantly better at 95% confidence interval. An experiment to test if there is a

difference in accuracy when 16 and 24 features are used is carried out. The result

indicates that using 24 features achieves statistically higher accuracy than using
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Table 5.15: The precision, recall and F-score of the RBF167S
Activity Precision Recall F-score
Brush 0.9299 0.9452 0.9375
Exercise 0.9715 0.9461 0.9587
Feed 0.8948 0.9151 0.9049
Iron 0.9426 0.9486 0.9456
Read 0.9752 0.9511 0.9630
Scrub 0.9352 0.9656 0.9502
Sleep 0.9856 0.9633 0.9743
Stairs 0.9620 0.9478 0.9549
Walk 0.9849 0.9763 0.9806
Wash 0.9348 0.9428 0.9388
Watch 0.9726 0.9813 0.9769
Wipe 0.9523 0.9536 0.9529

Table 5.16: Confusion matrix of the RBF247S

Actual Predict
Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 19714 13 650 45 87 22 57 106 0 206 37 63
Exercise 119 20171 80 129 40 58 10 52 16 200 35 90
Feed 490 8 19432 284 82 220 39 62 8 204 106 65
Iron 111 63 253 20074 16 72 11 58 30 137 19 156
Read 96 19 383 90 20048 21 87 11 4 61 157 23
Scrub 11 18 55 42 11 20301 11 23 14 66 138 310
Sleep 125 9 129 55 15 54 20224 180 2 45 96 66
Stairs 201 32 172 52 23 83 30 20056 173 54 102 70
Walk 13 14 16 39 21 57 8 188 20524 31 9 32
Wash 147 52 273 170 47 90 9 29 7 20022 24 130
Watch 30 5 37 21 51 25 74 56 4 19 20663 15
Wipe 80 41 48 108 29 283 39 76 13 378 37 19868

16 features (p <0.05).

The results reveal that SVM is the best classification model among others. In

general, the models can classify walking very well. However, they have difficulty in

classifying feeding activity. The result shows that in our data set SVM is superior

to MLP and RBF. SVM247S achieves the highest classification accuracy while

MLP167S achieves the lowest accuracy. When observing the F-score for each

class, it is found that in general SVM247S obtains the highest score, especially for

exercise activity. SVM167S achieves slightly better result in classifying brushing

teeth and feeding than SVM247S. When observing precision and recall, it can

be seen that SVM167S achieves higher precision in washing dishes and watching

TV comparing to SVM247S. While SVM247S has higher sensitivity in obtaining

these classes, SVM167S makes prediction more accurately.

When examining classification algorithms using 24 features, it is found that
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Table 5.17: The precision, recall and F-score of the RBF247S
Activity Precision Recall F-score
Brush 0.9327 0.9388 0.9357
Exercise 0.9866 0.9605 0.9734
Feed 0.9026 0.9253 0.9138
Iron 0.9510 0.9559 0.9534
Read 0.9794 0.9547 0.9669
Scrub 0.9537 0.9667 0.9602
Sleep 0.9818 0.9630 0.9723
Stairs 0.9598 0.9529 0.9563
Walk 0.9870 0.9796 0.9833
Wash 0.9346 0.9534 0.9439
Watch 0.9645 0.9840 0.9741
Wipe 0.9512 0.9461 0.9486

Table 5.18: Test classification accuracy of each model
Model Mean Std. Error
SVM167S 96.9575 0.0349
SVM247S 97.2040 0.0310
MLP167S 94.8496 0.0421
MLP247S 96.7349 0.0371
RBF167S 95.3075 0.0413
RBF247S 95.6734 0.0375
SVM163S 85.4238 0.0672

SVM has the highest F-score in most classes except feeding and reading where

MLP is better. RBF has the lowest F-score in every class especially in feeding

which is substantially lower. However, we found that RBF has comparable or

even higher precision with SVM in some classes such as exercising, and reading.

MLP has a comparable F-score with SVM in brushing teeth, washing dishes and

watching TV. When examining at the models using 16 features (which is not the

optimal number of features), SVM has the highest F-score in all classes. The

F-score of RBF is higher than that of MLP in most classes except for brushing

teeth and feeding.

The statistical results indicate that our models using 7 sensors obtains a sig-

nificant higher accuracy than the model based on 3 sensors regardless the clas-

sification algorithms used. The improvement in accuracy is between 9.43% and

11.78%. Next, the F-score of each class between previous work and our SVM

models is compared. The results indicate that the proposed system achieves a

higher F-score than SVM163S model in all 12 activities (See Table 5.19). The F-

score of all classes of the SVM247S are higher than SVM167S except for brushing

teeth, feeding and wiping.
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When observing the confusion matrix of SVM247S (See Table 5.12), it is

found that the model often confuses between feeding and brushing teeth, wiping

and scrubbing, and walking and using stairs. Ironing and washing sometimes

are also confused with feeding. It is observed that these activities have similar

motions on the wrist.

To evaluate the trade-off between accuracy and the use of heart rate monitor,

a classification without using the features from the heart rate is performed. The

heart rate feature is substituted with the next best feature. The classification

using MLP obtains 93.1020% ± 0.5850%. Since the data is normal distributed,

we applied the Paired Sample test. The result indicates that by removing heart

rate feature, the classification accuracy is significantly lowered (T=-28.993, p

<0.05).

Table 5.19: F-score comparison between models based on 3 sensors and 7 sensors
Model Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe
SVM163S 0.7684 0.8670 0.7575 0.8214 0.8496 0.8615 0.9478 0.8771 0.9530 0.8069 0.9398 0.8055
SVM167S 0.9649 0.9725 0.9471 0.9580 0.9748 0.9685 0.9814 0.9661 0.9883 0.9631 0.9852 0.9653
SVM247S 0.9636 0.9837 0.9464 0.9624 0.9770 0.9765 0.9824 0.9698 0.9889 0.9633 0.9853 0.9650

5.1.4.4 Experiment 2: Discussion

Comparing with SVM163S, the results suggest that the addition of heart rate sen-

sor, barometer, gyroscope and light sensor improve classification accuracy. This

means that they provide valuable information for classification of the activities

studied. The results of the study provide suggestion on possible sensors for other

activity classification systems. Also, these sensors except for heart rate monitor

are used on a users wrist will allow practical applications of AR for home-based

care. The results of the study show that the proposed system achieves statistically

better performance.

The results show that combining heart rate with other sensor significantly

improves classification accuracy. Nevertheless, the classification accuracy without

using heart rate is still high comparing to SVM163S. This suggests that it is

possible to use only wrist worn sensors to maintain the practicality and better

accuracy can be achieved.

Table 5.20 indicates that the proposed model achieves comparable or in some
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activities higher than previous studies. Also, the proposed approach only requires

sensor worn on wrist and chest. Also, results indicate that even when the heart

rate sensor is removed, high accuracy can be achieved. This is an important

aspect for a practical application in elder care. The system which is not intrusive

or perceived as stigmatisation can be easily accepted by the elderly.

Table 5.20: Accuracy comparison between previous works and the proposed sys-
tem

#activity Sensor lo-
cation

Brush teeth Feed Iron Sleep Stairs Walk Average

SVM247S 12 Wrist,chest 96.36 94.64 96.24 98.24 97.39 98.65 97.20
Wang et al. [49] 12 wrists, an-

kles, chest
- 89.50 - 89.20 90.80 88.20 91.3

Fleury et al. [170] 7 Body, en-
vironment

64.30 97.80 - 93.90 - 95.00 86.20

Hong et al. [166] - Wrist, ob-
jects

- - 97.94 92.66 - 84.36 -

Parkka et al. [155] 7 On-body - - 87.00 - 79.00 86.00 82–86
Maurer et al. [75] 6 Wrist - - - - >90 - 87.10
Trabelsi et al. [48] 12 Chest,

thigh, left
ankle

- - - 95.4 - 98.1 91.4

5.1.5 Conclusion remarks

The results show that in general SVM achieves the highest accuracy followed by

MLP and RBF. Classification models which use 24 features are better than ones

using 16 features. Also, classification models which generate from seven sensors

are better than three sensors. Nevertheless, it is found that different models are

better at classifying different activities. Therefore, the classification accuracy can

be improved by the combination of these classifiers.

5.2 Classifier fusion weight using Genetic Algo-

rithm study

5.2.1 Study hypothesis and objectives

In this study, GA is used to determine the fusion weights. Studies indicate GA

improve the classifier fusion accuracy [92, 93]. For example, classifier combi-
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nation using 8-10 ensembles generated from different techniques is studied [92].

Weight combination using GA to combine several Bayesian classifiers is investi-

gated [93]. However, there are some limitations on these studies. Firstly, most

of them focused only on the fusion of all classifiers. For example, they produce 6

classifiers then used GA to combine them. Based on this, the conclusion that GA

could improve classifier combination accuracy is not always true as all possible

combinations have not been tested. Secondly, fitness functions such as function

which reflects on the classifier combination function e.g. Sum, Min, Max, Prod-

uct, Ranking, and Weighted Average have not been investigated before. Finally,

some of these results are often compared with the mean accuracy of a set of clas-

sifiers rather than to the best individual classifier. The mean accuracy is always

equal or less than the accuracy of the best individual classifier (equal accuracy is

only occurred if and only if all classifiers have the same accuracy). For example, if

there are 3 classifiers with 90%, 85%, 95%, the mean accuracy is 90% which is less

than the best individual (95%). This weakens the conclusion that the classifier

combination is better than a single classifier. In this study we investigate which

fusion and weight techniques are optimums for all possible classifier fusions and

compare the results with the best classifier. It is hypothesised that using GA,

classification accuracy will be at least equal to the highest accuracy obtained by

the best classifier, or higher. Also, we hypothesis that using fitness function which

reflects the same combiner function will improve the classifier fusion result.

5.2.2 Experiment design and data set

In this study, six classifiers are generated from MLP, RBF, and SVM using 16

features and 24 features selected in feature selection study. Seven classifier com-

bination methods and six fusion weights are investigated. Also, a method based

on GA to find the optimum fusion weight is proposed and evaluated against other

methods. Wearable-sensor activity data set is used in this study. All experiments

are carried out using 10-fold cross-validation where 8 folds are used for training,

1 fold for validation and 1 fold for testing. The size of the training, validation

and testing data of each fold used are shown in Table 5.21.
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Table 5.21: Characteristics and data partition of the data set used in the study
Data set # Features # Classes Data type # Sample # Training # Validation # Testing
Wearable-sensor
activity data set

141 12 Real 39,328 20160 2520 2520

5.2.3 Methodology

5.2.3.1 Multi-model fusion methods

In this study we experiment with 7 fusion methods which are widely used in the

classifier combination context [47, 92, 93, 103]. Given that predji is the prediction

of input xi using classifier model j, P̂
(j)
ik is the posterior probability that xi belongs

to class k and wj is the weight for classifier model j, the prediction of the multi-

model fusion can be calculated as:

1. Majority vote (MV)

predi = modeJ{pred(j)i }

2. Product

predi = max
K

{ 1

p(Ck)J−1

J∏
j=1

(P̂
(j)
ik )wj}

3. Sum

predi = max
K

{ 1
J

J∑
j=1

(P̂
(j)
ik )wj}

4. Min

predi = max
K

{ minJ(P̂
(j)
ik )wj∑K

k=1minJ(P̂
(j)
ik )wj

}

5. Max

predi = max
K

{ maxJ(P̂
(j)
ik )wj∑K

k=1maxJ(P̂
(j)
ik )wj

}

6. Ranking

First the probability P̂
(j)
i is converted to ranks where the maximum rank

score is K and minimum is 1. Given that rank
(j)
ik is the ranking score of

model j predicting that data xi belong to class k, the prediction of the
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multi-classifier can be calculated as:

predi = max
K

J∑
j=1

wjrank
(j)
ik

7. Weighted average (WA)

The weight accuracy P̂
(j)
k of class k using model j can be calculated as:

P̂
(j)
k =

K∑
k=1

Accuracy

predi = max
K

J∑
j=1

wjP̂
(j)
ik

In case of equal scores, the model selects the result based on the best classifier.

5.2.3.2 Fusion weight

Since each classification model may be superior to others, it is common to incor-

porate weights to the models to reflex this. We study 6 weight functions. Given

m training examples and J models, the weight for each classifier model j can be

calculated as:

1. Simple average (SA)

wj =
1

J

2. Variance-covariance (VACO)

This technique uses the mean square error to calculate the weights. For a

classification problem, we propose the modified version below:

wj =
[
∑m

i=1(1− P̂
(j)
iK )]−1∑J

j=1[
∑m

i=1(1− P̂
(j)
iK )]−1
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where P̂
(j)
iK is the probability that model j predicts that data xi belongs to

class K, given that the true class is K.

3. Discounted mean square forecast error (DMSFE)

wj =
[
∑m

i=1 β
m−i+1(1− P̂

(j)
iK )]−1∑J

j=1[
∑m

i=1 β
m−i+1(1− P̂

(j)
iK )]−1

where β is often chosen between 0.95, 0.9, 0.85 and 0.80.

4. Unit weight

wj = 1

5. Weighted accuracy (WACC)

wj =
Accuracy(j)∑J
j=1Accuracy

(j)

Note that all calculated weights must be summed to 1 i.e.
∑J

j=1wj = 1. This

is except for the unit weight function where all the weights are 1.

5.2.4 The proposed Genetic Algorithm based FusionWeight

In this study, we propose to use GA to find weights for classifiers. GA has been

commonly used to solve an optimisation problem [46]. The advantage of GA over

other optimisation techniques is that instead of starting at a single point to find

the solution, a population of points is created. It mimics natural selection in

which the population is modified over time. Individuals are randomly selected as

parents to produce children of the next generation.

5.2.4.1 Fitness function

GA is used to find the weights that minimise the mean square of the combination

error. The classification error is defined as follow:
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errori =

{
0 if trui = predi

1 otherwise

Unlike previous works that used average weight function i.e. f(w) = w1x1 +

... + wKxK as a fitness function, we propose to use the fitness function (ff)

according to the fusion method. Given the fusion method (fm) as any function

described in Section 5.2.3.1, the fitness function is defined as:

ff(wj) =
1

2m

m∑
i=1

error(trui, fmi(wj))
2

For example, for Sum function the following fitness function is used:

ff(wj) =
1

2m

m∑
i=1

error(trui,max
K

{ 1
J

J∑
j=1

(P̂
(j)
ik )wj})2

Also, to investigate if using different fitness functions based on classifier fusion

function would produce a better accuracy, the linear weight function is explored:

ff(wj) =
1

2m

m∑
i=1

error(trui,max
K

{ 1
J

J∑
j=1

(P̂
(j)
ik ) ∗ wj})2

5.2.4.2 Population initialisation

The weight for each classifier is represented in each bit of a chromosome. For

each combination, we have J bits. Each bit is represented by a real number

between 0 and 1. In order to make sure that the weight obtained will result in

higher classification accuracy, a population which covers the search space and at a

possible optimum point is necessary. We propose to use the following strategy to

initialise the population. Firstly, one of the populations must contain weighted

average accuracy chromosomes. Secondly, the weights are randomly generated

from a uniform distribution and the highest weight is assigned to the best model.

Note that, the weight for the best model within the group is generated randomly

between 1
J
and 1. The initial population process can be summed up as follow:

1. Create a J-bit chromosome with weighted accuracy using wj =
Accuracy(j)∑J
j=1 Accuracy(j)
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2. Set Lower bound = 1
J
and Upper bound = 1

3. Randomly generate weight using range [Lower bound, Upper bound]

4. Update Lower bound value using Lower bound = 0

5. Update Upper bound value using Upper bound = 1−
∑J

j=1W

Repeat step 1) to 3) for 20 × J − 1 times. The initial population of 20 × J

chromosome are generated.

5.2.4.3 Crossover, mutation, and parents selection

The chromosome of the crossover kids are randomly selected where half of the

genes are from each parent. The crossover kids are checked if their chromosomes

are still valid. If not, the chromosome of the crossover kid can be calculated

using:

Crossoverkid = α× parent1 + (1− α)× parent2

where α is a uniform random number between 0 and 1.

The adaptive mutation is used where directions that are adaptive with respect

to the last generation, are randomly generated. The feasible region is bounded

by the constraint (0 ≤ wj ≤ 1). The mutant chromosome is calculated using:

Mutant = parent + step size× direction

where steps size can be calculated using the following algorithm [12].

if the state before the last one is better than the last state then

step size = min(1, step size× 4)

else

step size = max(
√
eps, step size

4
)

end if

where eps is the distance from 1.0 to the next largest double-precision number,

which is 2−52.

A mutant is checked so that linear constraints (
∑J

j=1wj = 1) and bounds

are satisfied. In case that the mutants chromosome is not valid, the parent

chromosome is used.
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The tournament style is used to select the parents. For each tournament,

four chromosomes are selected randomly. Each chromosome is played against

each other. The chromosome with the highest score i.e. fittest chromosome is

the winner of the tournament. The winners for each tournament are selected as

parents.

5.2.5 Experimental results

We perform classification using 3 algorithms with 16 and 24 features. In total, 6

classification models are produced. The classifications of the 6 models give mean

accuracy between 94.85% and 97.20% with STD between 0.3088 and 0.4186. As

expected, SVM performance is superior to other algorithms. However, when

we investigate the precision and recall of each classifier, it is found that some

classifiers are better than SVM in some activities.

Next, classifier fusion is performed. Data from training and validation set are

used to determine the weight for SA, VACO, DMSFE and WACC techniques,

whereas in GAFW, the training set is used in the fitness function and the vali-

dation set is used to select the weight. There are 57 possible combinations which

can be generated from 6 classifier models. We present the classifier fusion re-

sult of the test dataset in Table 5.23. The classifiers fusion result is compared

with the best individual classifier (BI) within the fusion group. Improvement col-

umn shows the percentage of mean difference between classifier fusion and BI. It

can be seen that classifier fusion which utilises posterior probability can achieve

a better result comparing to fusing the class output directly. Among 7 classi-

fier fusion methods, sum is the best fusion technique. It improves classification

accuracy by 0.3435% on average comparing to using only the best individual clas-

sifier. 95.79% of all possible combinations using the sum method achieve equal

or higher accuracy than using the best classifier. This is followed by product,

majority vote, weighted average, max, min, and ranking, respectively. In term

of the fusion weight determination technique, in general, 98.25% of combination

using GA achieves equal or higher accuracy than using one best classifier. VACO

also achieves very good result of 93.86% accuracy equal or higher than BI fol-

lowed by WACC, DMSFE-0.95, SA, unit weight, DMSFE-0.90, DMSFE-0.85 and
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DMSFE-0.80, respectively.

A study on the computational cost required to obtain fusion weights using

different methods is carried out. The cost is based on the time used to find

the weights for combining two classifiers using training data set of 2,016,000

samples. For different classifier combination function, the cost is based on using

the function to combine the result of two classifiers per sample. The results are

shown in Table 5.24.

5.2.6 Discussion

In this study, experimentations on several classifier fusion and fusion weight de-

termination techniques are performed. The results show that sum is the most

effective fusion method and when used with SA, WACC, or GA, improvement on

all combinations can be achieved. As sum technique uses the average probability

produced by all classifiers, it is not heavily affected when some classifiers are over

confident. On the contrary, the min technique uses the minimum probability that

the data will belong to this class. Min selects the class that has the minimum

objection by all classifiers. As Min is sensitive toward objection, it is affected

when some inaccurate classifiers always produce low probability. Similarly, max

technique selects the class which has the highest probability. Therefore, if the

system contains bad classifiers that produce high probability, the system accuracy

is affected. The experimental results show ranking is the worse fusion method.

Although ranking reduces the bias caused by some classifiers being over confi-

dent, converting probabilities into rank also loses some information. Thus, fusing

classifiers by ranking could produce conflict or wrong prediction if there are many

inaccurate classifiers in the group.

In term of fusion weight techniques, we find that in general GA performs

the best comparing to others shown in Table 5.23. The improvement over BI

is significant (p <0.05) at 95% confidence interval. Although this improvement

is lower comparing to other techniques, the results show that by using GA with

linear fitness function, 99.42% of the combination can achieve equal or better

accuracy than using just one best classifier. Also, one should bear in mind that

in our experiment we limit the search time to only 5 minutes. Better performance
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Table 5.22: Classifier fusions results.
SA = Simple average, VACO = Variance-covariance, DMSFE = Discounted mean square

forecast error, Unit weight = All weight equal 1, WACC = Weighted accuracy, GAFW = GA

based fusion weight, BI = Best individual classifier, WA = Weighted average.
Weight function Fusion function Accuracy (%) STD. Improve (%) <BI (%) =BI (%) >BI (%)
- BI 96.9662 0.4158 0.0000 0.0000 100.0000 0.0000
- MV 97.1522 0.4832 0.1918 7.0175 26.3158 66.6667

SA

Product 97.3865 0.4610 0.4203 0.0000 0.0000 100.0000
Sum 97.3972 0.5004 0.4310 0.0000 0.0000 100.0000
Min 97.2504 0.3978 0.2842 15.7895 0.0000 84.2105
Max 97.1507 0.6207 0.1845 5.2632 0.0000 94.7368
Ranking 96.7159 0.7208 -0.2502 57.8947 0.0000 42.1053
WA 97.3463 0.5337 0.3802 1.7544 0.0000 98.2456

VACO

Product 97.3090 0.5709 0.3428 5.2632 0.0000 94.7368
Sum 97.3596 0.5659 0.3934 5.2632 0.0000 94.7368
Min 97.1990 0.6202 0.2329 7.0175 0.0000 92.9825
Max 97.1990 0.6202 0.2329 7.0175 0.0000 92.9825
Ranking 97.0793 0.4941 0.1131 5.2632 21.0526 73.6842
WA 97.1385 0.5628 0.1724 7.0175 0.0000 92.9825

DMSFE-0.80

Product 97.1015 0.6188 0.1353 26.3158 0.0000 73.6842
Sum 97.2328 0.5997 0.2666 12.2807 0.0000 87.7193
Min 96.8771 0.6670 -0.0891 40.3509 0.0000 59.6491
Max 97.1264 0.4592 0.1603 12.2807 0.0000 87.7193
Ranking 96.7314 0.7690 -0.2348 45.6140 3.5088 50.8772
WA 96.8250 0.7432 -0.1412 33.3333 0.0000 66.6667

DMSFE-0.85

Product 97.1729 0.6017 0.2067 12.2807 0.0000 87.7193
Sum 97.2797 0.5878 0.3135 12.2807 0.0000 87.7193
Min 96.9789 0.6261 0.0127 40.3509 0.0000 59.6491
Max 97.1267 0.4445 0.1605 17.5439 0.0000 82.4561
Ranking 96.8291 0.7139 -0.1371 40.3509 3.5088 56.1404
WA 96.9086 0.6952 -0.0576 33.3333 0.0000 66.6667

DMSFE-0.90

Product 97.2610 0.5878 0.2948 12.2807 0.0000 87.7193
Sum 97.3284 0.5750 0.3622 5.2632 0.0000 94.7368
Min 97.1054 0.6145 0.1393 12.2807 0.0000 87.7193
Max 97.1282 0.4266 0.1620 21.0526 0.0000 78.9474
Ranking 96.9931 0.6304 0.0269 28.0702 3.5088 68.4211
WA 97.0544 0.6336 0.0882 19.2982 0.0000 80.7018

DMSFE-0.95

Product 97.3399 0.5831 0.3737 5.2632 0.0000 94.7368
Sum 97.3692 0.5658 0.4031 5.2632 0.0000 94.7368
Min 97.2196 0.6343 0.2535 7.0175 0.0000 92.9825
Max 97.0927 0.4114 0.1265 29.8246 0.0000 70.1754
Ranking 97.1510 0.5651 0.1849 17.5439 1.7544 80.7018
WA 97.2063 0.6064 0.2401 10.5263 0.0000 89.4737

Unit weight

Product 97.3866 0.4610 0.4204 0.0000 0.0000 100.0000
Sum 97.3463 0.5337 0.3802 1.7544 0.0000 98.2456
Min 97.2504 0.3978 0.2842 15.7895 0.0000 84.2105
Max 97.1507 0.6207 0.1845 5.2632 0.0000 94.7368
Ranking 96.7040 0.7098 -0.2621 59.6491 0.0000 40.3509
WA 97.3463 0.5337 0.3802 1.7544 0.0000 98.2456

WACC

Product 97.3905 0.4597 0.4243 0.0000 0.0000 100.0000
Sum 97.3994 0.4999 0.4332 0.0000 0.0000 100.0000
Min 97.2585 0.3967 0.2923 14.0351 0.0000 85.9649
Max 97.1481 0.6215 0.1819 5.2632 0.0000 94.7368
Ranking 97.2049 0.4118 0.2387 21.0526 0.0000 78.9474
WA 97.3530 0.5323 0.3868 1.7544 0.0000 98.2456
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Table 5.23: Classifier fusions results (cont.)

Weight function Fusion function Accuracy (%) STD. Improve (%) <BI (%) =BI (%) >BI (%)

GAFW+fusion function

Product 97.1910 0.2840 0.2248 0.0000 0.0000 100.0000
Sum 97.1771 0.2932 0.2109 0.0000 0.0000 100.0000
Min 97.0730 0.3773 0.1068 7.0175 5.2632 87.7193
Max 97.1764 0.4275 0.2102 10.5263 1.7544 87.7193
Ranking 97.0189 0.3710 0.0527 0.0000 68.4211 31.5789
WA 97.0706 0.2548 0.1044 0.0000 0.0000 100.0000

GAFW+linear function

Product 97.1511 0.2613 0.1849 0.0000 0.0000 100.0000
Sum 97.2067 0.3085 0.2405 0.0000 0.0000 100.0000
Min 97.2067 0.3085 0.2405 0.0000 0.0000 100.0000
Max 97.2067 0.3085 0.2405 0.0000 0.0000 100.0000
Ranking 96.9783 0.4091 0.0121 3.5088 84.2105 12.2807
WA 97.0648 0.2598 0.0986 0.0000 1.7544 98.2456

Table 5.24: Computational cost on different fusion weight functions and different
classifier combination methods

Weight function Cost (s) Weight function Cost (s)
GA sum 122.7658 VACO 0.0941
GA min 150.9691 DSMFE-0.80 0.1387
GA max 156.4008 DSMFE-0.85 0.1479
GA rank 71.9906 DSMFE-0.90 0.1378
GA prod 125.4562 DSMFE-0.95 0.1514
GA linear 119.0677 Unit weight 0.0001
SA 0.0105 WACC 0.1213

Fusion methods Cost (s) Fusion methods Cost (s)
MV 0.012245 Max 0.000121
Product 0.001735 Ranking 0.001716
Sum 0.000847 WA 0.000067
Min 0.000115
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is expected if GA converges.

The results also reveal that using linear function as fitness function can find

better weights, especially for Min and Max classifier combination function. How-

ever, GA with ranking function produces better results than GA with linear

function. When we observed on the cases that used GA with linear function fail

to improve the accuracy, it is found that the calculated weights are totally dif-

ferent. For example, GA with linear function gave 0.3 and 0.7 weight, while GA

with ranking gave 0.7 and 0.3 weight. This is because the class probability has

been converted into ranks which are different data representation than that used

in linear function.

VACO also obtains very good results while using the low computational cost.

The DMSFE technique performs the worst. DMSFE is similar to VACO, where

β in VACO is 1, DMSFE is between 0.80 - 0.95. From our study, it can be seen

that β value nearer to 1 achieves better combination accuracy. The results are

similar in [54] which found VACO is better than DMSFE.

The results of the study also show that using GA to find the fusion weight uses

a much higher computational cost than other functions especially when trying

to optimise min and max function. Therefore, the proposed GAFW should be

appropriate in the AR model that will be developed offline. For other system

that needs to update the fusion weights in real time, other functions such as

VACO and WACC should be used. For the classifier combination function, the

computational cost is very low and can be applied in both online and offline

applications.

5.2.7 Conclusion remarks

We have studied the use of GA to find fusion weights. Unlike previous studies, we

compare GA performance with BI and test on all possible classifier combinations.

The results show that for all possible classifier combinations and fusion methods,

99% of times GAFW can achieve higher or at least equal to the best classifier

within the group. However, due to high computational cost, this technique is

only suitable for offline training.
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5.3 Classifier combination using Genetic Algo-

rithm study

5.3.1 Study hypothesis and objectives

Although the results from previous study of using GA to find the optimum fusion

weight show a promising result, it suffers from high computational cost. In this

study, we propose to use GA to find the optimum combination model between

classifiers, fusion weight and combiner functions. Simple weight functions such

as SA, VACO, unit weight and weighted accuracy are used so that the classifier

combination can be done online. It is hypothesisd that using GA, an optimum

classifier combination can be found which resulted in higher classification result.

The objectives of this study are to propose an algorithm using GA, called Genetic

Algorithm based Combination Model (GACM), to find the optimum combination

between different classification models, weight functions and classifier combina-

tion function and to evaluate the proposed algorithm against manual selection

and best individual classifier.

5.3.2 Experimental design and data set

This study uses Wearable-sensor activity data set with 10-fold cross validation and

10 runs. The combination is based on six classifiers generated from MLP, RBF,

and SVM using 16 features and 24 features. Four fusion weights including SA,

VACO, unit weight and weighted accuracy and five classifier combiner functions

including product, sum, minimum, maximum, and weighted average are studied.

The study is carried out using 10-fold cross validation and 10 runs. The statistical

tests are based on 95% confidence interval. The combination model obtained

based on training data and the result is evaluated on test data. The results are

compared with the combination model obtained from manually selection.
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5.3.3 The proposed Genetic Algorithm based Combina-

tion Model

5.3.3.1 Problem representation

In this study, GA is used to find the optimum combination between classifiers,

weight functions and combiner functions. Given a problem with m classifiers, w

weight functions, and c combiner functions, the chromosome of the combination

can be represented as:

M =


M1 M2 . . . Mm

W1 W2 . . . Ww

C1 C2 . . . Cc


The values of Mi, Wi, and Ci are either 0 or 1 where 0 represents the absent of

the incident i.e. classifier, weight, or combiner functions, and 1 represents the

present of the incident. For example, a chromosome of

M =


1 1 0

0 1 0

1 0 0


represents the combination model using classifiers 1 and 2 with weight function

2 and combiner function 1. There are some constraints that need to be applied

on the chromosome. First, if only one classifier is selected, then the weight and

combiner function must not be selected. This means that the value of the bit in

the chromosome which represents the weight and combiner functions can only be

0. For example,

M =


1 0

0 0

0 0


represents the combination model which consists of classifier 1. Second, if more

than one classifier is selected, the weight and combiner functions must not be 0.
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5.3.3.2 Fitness function

The aim is to find the combination model which yields the highest classification

accuracy. Therefore, the fitness function is the mean classification error:∑N
i=1(error(predi, truei))

N

Where N is the number of training data. The error function is defined as:

errori =

{
0 if trui = predi

1 otherwise

5.3.3.3 Fitness scaling function

The fitness score calculated from the fitness function may not be suitable for

using in GA e.g. scores vary too widely or too little. If the range of the score is

too wide, the chromosomes which have high scores will fill the population quickly

which will prevent the GA from exploring other solution regions. On the other

hand, if the score varies too little, the probability of selecting each chromosome

will be similar which will make the GA progress slowly. Therefore, fitness scaling

function is used for scaling the raw fitness score so that it falls into an appropriate

range. In addition, we propose to add model selection criteria e.g. simpler model

is preferred, etc. to the fitness scaling function such that the chromosomes which

favour these criteria have higher score. The raw fitness score

Si =
p

sqrt(ri)
∑R

i=1
1√
(ri)

(5.1)

where p is the number of parents required for the next generation, ri is the rank

of ith chromosome, and R is the total number of population. The fitness scaling

algorithm is defined as follow:

In this study, the criterion is the number of classifiers used in the combination

model. Therefore, according to algorithm 1, z is the index of the population sort

by the number of classifiers in the ascending order.
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Algorithm 1 Fitness scaling algorithm

function FitnessScaling(score,#parent, population)
i = sort(score) ◃ Sort score in ascending order
n = #score
x = 1
while x ≤ n do

y = FindLocation(i, x, n) ◃ Return locations where score is equal to
the minimum score in range x to n

if y is not empty then
z = Sort population index y by criteria
i(y) = i(y(z))

end if
x = y(end) + 1

end while
Calculate scaled score using equation (5.1)

return scaledScore
end function

5.3.3.4 Selection function

In this study, a tournament selection strategy is used. A group of n chromosomes

are competed in a tournament and a parent is the chromosome that wins the

tournament. The number of parents required for the next generation can be

calculated as [12]:

NP = (2×NCK) +NMK

where NP is the number of parents, NCK is the number of cross over kids and

NMK is the number of mutant kids.

5.3.3.5 Crossover function

The crossover kids are reproduced based on two parents. The number of crossover

kids can be calculated using:

NCK = η(NPOP −NE)

where η is the crossover fraction, NPOP is the population size, and NE is

the number of elite. The following strategies are used to combine chromosome
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between the two parents.

1. Randomly swap each genes which represent classifiers between the two par-

ents.

2. Randomly swap the genes which represent weight function between two

parents.

3. Randomly swap the genes which represent combiner function between two

parents.

Note that the successful rate of the swap is α% and the crossover kid is based

on the parent that is the fittest. For example, figure 5.5 shows the result of the

crossover between two parents, given that parent 2 is fitter than parent 1 and α

is 20%. The red arrow indicates the genes that are successfully swapped, while

the black arrow indicates the unsuccessful swap.

Parent 1

Parent 2

Crossover kid

crossover rate = 20%

1 0 1 0 1 0 0 1 0 0 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 0 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 0 0 0 0

classi!er combinerweight

Figure 5.5: An example of crossover process between two parents

5.3.3.6 Mutation function

The mutation kids are produced based on the mutation of the genes of a parent.

The size of mutation kids can be calculated from:

NMK = NPOP (NE +NCK)

The processes of mutation are as follow:
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1. Randomly mutate each gene which represent classifiers by changing the

value from 0 to 1, or 1 to 0.

2. Randomly mutate the genes which represent the weight function by ran-

domly selecting a weight function.

3. Randomly mutate the genes which represent combiner function by randomly

selecting a combiner function.

Note that the successful rate of the mutation is β%. Figure 5.6 shows the mutation

result of a chromosome, given β is 20%. The red arrow indicates the genes that are

successfully mutated, while the black arrow indicates the unsuccessful mutation.

Chromosome

Mutant

mutation rate = 20%

1 0 1 0 1 0 0 1 0 0 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 1 0 0 0 0

classi!er combinerweight

Figure 5.6: An example of mutation process from a parent

Hill climbing algorithm is used in both mutation and crossover processes to

ensure that the chromosomes generated from these processes will not decrease

the mean fitness values of the whole populations. Each time the chromosome

is generated either from crossover or mutation process, it is checked if its fitness

value is lower than the mean fitness values of the whole populations. If the fitness

value of the generated chromosome is lower, then we attempt n times to generate

another chromosome.

5.3.4 Experimental results

For each fold, all possible combinations (1,146 classification models) are generated

and then used to calculate the mean classification error using training data. The

results in Table 5.25 shows the minimum error selected manually from each fold

and run. Table 5.26 shows the mean classification error of the combination model

generated by GACM using training data. The bold fonts indicate where there is a
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difference in error between manual selection and GACM. From these tables, it can

be seen that 15% of times GACM cannot find the most optimum combination.

However, the average error difference between manual selection and GACM is

only 0.0176.

Table 5.25: Minimum error based on all possible combination. The error are
based on training data.

Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.2249 0.4541 0.4718 0.4630 0.4630 0.4674 0.4674 0.4718 0.4718 0.2249
Run 2 1.0626 1.0758 1.0317 1.0847 1.1155 1.0670 1.0714 1.0758 1.0670 1.0714
Run 3 1.0317 1.0494 1.0538 1.0714 1.0626 1.0538 1.0450 1.0406 1.0494 1.0362
Run 4 1.0494 1.0362 1.0626 1.0670 1.0670 1.0758 1.0802 1.0626 1.0141 1.0626
Run 5 1.0670 1.0582 1.1067 1.0670 1.0802 1.0009 1.0450 1.0670 1.0450 1.0538
Run 6 1.0362 1.0714 1.0847 1.0847 1.0758 1.0758 1.0626 1.1023 1.0758 1.0273
Run 7 1.1332 1.0450 1.1243 1.1023 1.0891 1.0891 1.1243 1.0714 1.0802 1.1067
Run 8 1.1023 1.1155 1.1199 1.1332 1.0979 1.1596 1.1023 1.1243 1.1111 1.1023
Run 9 1.0979 1.0670 1.0494 1.0626 1.0802 1.0802 1.1023 1.0362 1.0538 1.0935
Run 10 1.1067 1.0847 1.0714 1.1067 1.0847 1.0714 1.0935 1.1023 1.0714 1.0979

Table 5.26: Mean error of the combination model generated by GACM on training
data.

Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.2249 0.4541 0.4718 0.4630 0.4630 0.4674 0.4674 0.4850 0.4718 0.2249
Run 2 1.0714 1.0891 1.0317 1.0847 1.1155 1.0670 1.0714 1.0758 1.0670 1.0714
Run 3 1.0406 1.0494 1.0538 1.0714 1.0626 1.0538 1.0450 1.0406 1.0494 1.0362
Run 4 1.0494 1.0362 1.0626 1.0670 1.0670 1.0758 1.0802 1.0847 1.0229 1.0626
Run 5 1.1067 1.0979 1.1067 1.0670 1.1023 1.0009 1.0450 1.0670 1.0450 1.0538
Run 6 1.0362 1.0714 1.0847 1.0891 1.0802 1.0847 1.0802 1.1023 1.0935 1.0273
Run 7 1.1376 1.0450 1.1243 1.1023 1.0891 1.0891 1.1243 1.0714 1.0802 1.1067
Run 8 1.1023 1.1155 1.1464 1.1332 1.0979 1.1596 1.1023 1.1243 1.1111 1.1023
Run 9 1.0979 1.0670 1.0494 1.0847 1.0802 1.0802 1.1023 1.0362 1.0538 1.0935
Run 10 1.1067 1.0847 1.0714 1.1067 1.0847 1.0714 1.0935 1.1023 1.0714 1.0979

To evaluate the proposed GACM performance, the results are compared with

the performance of the models selected manually. For manual selection, the com-

bination models are selected based on the combination which produces the lowest

error in training stage. These combination models are then evaluated using test-

ing data. The results are shown in Table 5.27. The combination models generated

by GACM in training stage are also evaluated using testing data and the results

are presented in Table 5.28. The mean error of using only one classifier i.e. MLP,

SVM or RBF with 16 features or 24 features are presented in Tables 5.29, 5.30,

5.31, 5.32, 5.33, and 5.34, respectively. The mean error over 10 folds and 10 runs

for manual selection, GACM, MLP16, MLP24, SVM16, SVM24, RBF16, RBF24
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are 1.0380% ± 0.3741%, 1.0452% ± 0.3710%, 5.0444% ± 0.4576%, 2.1798% ±
0.5146%, 1.4417% ± 0.4728%, 1.2663% ± 0.4832%, 3.2238% ± 0.5827%, and

3.0813% ± 0.5803%, respectively. From the results, it can be seen that using

only 1 classifier cannot achieve high classification result. MLP with 16 features

perform the worst. On comparison, using GACM reduces the error from MLP16

by 79% and from SVM24 by 18%. On average, the error difference between man-

ual selection and GACM is 3%. The results also show that GACM has difficulty

in finding the optimum models in fold 1, 2, and 4.

Table 5.27: Manual selection: Mean error of the combination model on testing
data. The models are obtained manually based on training data.

Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 2.2222 0.1587 0.0000 0.0794 0.0794 0.0397 0.0397 0.0000 0.0000 2.1429
Run 2 1.0714 1.0714 1.4683 0.9921 0.7143 1.1508 1.1111 1.0714 1.1508 1.1111
Run 3 1.3889 1.1905 1.0714 0.9524 0.9921 1.1111 1.1508 1.1111 1.0714 1.2698
Run 4 1.1111 1.2698 1.0317 0.9921 0.9921 0.9127 0.8730 1.0317 1.4683 1.0714
Run 5 1.1508 1.0714 0.6349 0.9921 0.8730 1.5873 1.1905 0.9921 1.1905 1.2302
Run 6 1.4683 1.1508 0.9524 0.9524 1.0317 1.0317 1.1508 0.7937 1.0317 1.4683
Run 7 0.9524 1.5079 0.7937 0.9921 1.1111 1.1111 0.7937 1.2698 1.1905 0.9524
Run 8 1.3095 1.1508 1.1111 1.0317 1.3095 0.7540 1.2698 0.9921 1.1905 1.3095
Run 9 0.9127 1.1111 1.2698 1.1508 0.9921 0.9921 0.7540 1.4683 1.2302 0.8730
Run 10 1.0714 1.1905 1.2698 0.9524 1.1508 1.2698 1.0714 0.9921 1.2698 1.0317

Table 5.28: GACM: Mean error of the combination model on testing data. The
models are generated by GA based on training data.

Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 2.2222 0.1587 0.0000 0.0794 0.0794 0.0397 0.0397 0.0000 0.0000 2.1429
Run 2 1.1905 1.0317 1.4683 0.9921 0.7143 1.1508 1.1905 1.0714 1.1508 1.1111
Run 3 1.3492 1.1905 1.0714 0.9921 0.9921 1.1111 1.1508 1.1111 1.0714 1.2698
Run 4 1.1111 1.2698 1.0317 0.9921 0.9921 1.0317 0.8730 0.9524 1.5079 1.0714
Run 5 1.1508 1.1508 0.6349 0.9921 0.8333 1.5873 1.1905 0.9921 1.1905 1.2302
Run 6 1.4683 1.1508 0.9524 0.9921 1.0714 1.0317 1.3889 0.7937 0.9524 1.4683
Run 7 1.0317 1.5079 0.7937 0.9921 1.1111 1.1111 0.7937 1.2698 1.1905 0.9524
Run 8 1.3095 1.1508 1.4683 1.0317 1.3095 0.7540 1.2698 0.9921 1.1905 1.3095
Run 9 1.1067 1.0847 1.0714 1.1067 1.0847 1.0714 1.0935 1.1023 1.0714 1.0979
Run 10 1.1067 1.0847 1.0714 1.1067 1.0847 1.0714 1.0935 1.1023 1.0714 1.0979

The normality test is applied to the data and the results show that the data is

not normal distribution (p <0.05). The Wilcoxon Signed Ranks test is applied to

the data to test if the difference in performances between using manual selection,

GACM, and single classifier are significant. The statistical tests show that the

differences in classification error between manual selection and GACM are not

significant (p ≥ 0.05). The differences in classification error between GACM
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Table 5.29: Mean error of using only MLP with 16 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 5.5952 5.1984 4.8016 4.9206 4.0079 5.0000 4.0079 4.0873 3.9683 5.5556
Run 2 4.3651 4.9603 5.2778 4.8016 4.6032 4.6825 5.5556 4.4444 5.6349 4.3651
Run 3 5.5159 5.0794 5.2381 4.4444 5.5556 5.0794 4.4444 5.1587 4.8810 5.4365
Run 4 4.6825 5.3571 4.5635 5.1587 5.0000 4.8810 5.5159 5.3175 5.6349 4.6825
Run 5 4.9603 4.6825 5.3571 4.7222 5.1984 5.1190 5.1587 5.2778 5.5952 4.9206
Run 6 5.9127 5.0000 5.1190 5.3175 5.3571 5.3968 5.2778 4.0476 5.1190 5.8730
Run 7 4.9603 5.5159 4.8810 5.4762 5.6746 4.4444 4.9206 4.7222 4.8413 4.9206
Run 8 5.3571 4.7222 4.8016 5.5159 5.8730 4.9603 4.8016 5.0000 4.8016 5.3175
Run 9 5.1984 4.0079 5.9921 5.7540 5.3968 5.3571 5.4365 5.0000 4.2063 5.1190
Run 10 4.8413 5.4762 5.1587 4.7619 4.5238 5.1587 5.2381 5.2778 5.3968 4.7619

Table 5.30: Mean error of using only MLP with 24 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 3.8095 1.1905 0.9921 1.1905 1.0317 1.5079 0.7143 0.7540 0.5556 3.7698
Run 2 2.1429 2.4206 2.8175 2.2222 2.0238 1.6270 2.4206 2.1032 2.1825 2.1429
Run 3 2.8571 2.4206 2.6587 2.2619 1.8254 2.4603 2.1032 2.2619 1.6667 2.7778
Run 4 1.9841 2.5397 1.7857 1.8254 2.3413 2.0238 2.4603 2.1429 2.9762 1.9444
Run 5 2.5000 1.7857 2.0238 2.3016 1.9048 2.3413 2.6587 2.3016 2.3413 2.4603
Run 6 2.4603 2.5397 1.8254 2.3016 2.5000 2.3413 2.0238 1.7063 2.5000 2.4206
Run 7 1.9444 2.3413 1.8254 2.0238 2.6190 2.2619 2.1032 2.4603 2.4206 1.9048
Run 8 2.4603 2.1032 2.5000 2.5397 2.3413 1.5476 2.3016 2.4206 1.9841 2.4206
Run 9 2.5397 2.3413 2.5794 2.2619 2.0238 1.6667 2.0238 2.7381 2.3413 2.4603
Run 10 2.0238 2.0635 2.2619 2.1825 2.7381 2.3016 1.7063 2.2222 2.8571 1.9444

Table 5.31: Mean error of using only SVM with 16 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 2.9365 0.1984 0.0794 0.0397 0.3571 0.1984 0.1587 0.1587 0.1190 2.8968
Run 2 1.5873 1.5476 1.5873 1.3889 0.8730 1.2302 1.6270 1.6667 1.3492 1.5873
Run 3 1.6667 1.3492 1.4286 1.1508 1.5476 1.7460 1.4286 1.7857 1.4683 1.5873
Run 4 1.5476 1.4286 1.5079 1.3889 1.3889 1.4286 1.3095 1.3889 1.9048 1.5079
Run 5 1.7063 1.3492 1.3492 1.5079 1.3492 1.7460 1.3492 1.7460 1.7460 1.6667
Run 6 1.8254 1.5476 1.2698 1.5476 1.2698 1.8254 2.0238 1.1111 1.6667 1.7857
Run 7 1.4683 1.8254 1.1111 1.5476 1.6667 1.7460 1.2302 1.7063 1.5873 1.4286
Run 8 1.7460 1.5873 1.4683 1.1905 1.5476 1.7857 1.6270 1.2698 1.6270 1.7063
Run 9 1.2302 1.3492 1.8651 1.6270 1.1905 1.5476 1.5873 1.9048 1.3889 1.1508
Run 10 1.5873 1.5873 1.6667 1.2698 1.5079 1.8254 1.6270 1.3492 1.5873 1.5079

Table 5.32: Mean error of using only SVM with 24 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 3.0159 0.0000 0.0397 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.9762
Run 2 1.3492 1.2698 1.5476 1.1508 1.0714 1.4286 1.3889 1.2302 1.4286 1.3492
Run 3 1.5873 1.1905 1.3492 1.0317 1.2698 1.4286 1.3889 1.7857 1.2302 1.5079
Run 4 1.5476 1.5079 1.0714 1.1905 1.4683 1.1508 1.0714 1.4683 1.7063 1.5079
Run 5 1.5476 1.1905 0.9921 1.1905 1.0317 1.7857 1.1508 1.3889 1.5079 1.5079
Run 6 1.7460 1.1905 1.2302 1.2698 1.4286 1.1111 1.5079 1.3095 1.3095 1.7063
Run 7 1.2302 1.5079 0.9524 1.3095 1.3095 1.6667 0.9524 1.4683 1.3095 1.1905
Run 8 1.3095 1.1905 1.3492 1.1905 1.6270 1.4286 1.4286 1.1111 1.5476 1.2698
Run 9 1.2698 1.3095 1.3492 1.4286 0.8730 1.6270 1.0714 1.4286 1.3095 1.1905
Run 10 1.3889 1.5873 1.4286 0.9524 1.6667 1.7460 1.2698 0.9524 1.3095 1.3095
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Table 5.33: Mean error of using only RBF with 16 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 4.8413 2.3413 1.7857 2.1825 1.5476 1.9048 1.8254 1.9444 1.7857 4.8016
Run 2 3.2143 3.7302 3.2143 3.0556 2.4603 3.4524 3.2540 2.6190 3.5317 3.2143
Run 3 3.9286 3.6111 3.4524 2.8571 3.4921 3.4921 3.5317 3.0556 3.0952 3.8492
Run 4 3.0952 3.0159 3.0159 3.0952 3.3333 3.0159 3.2937 3.2143 4.2460 3.0556
Run 5 3.1746 3.4127 3.6508 3.2937 2.6190 3.6905 3.4127 2.8968 3.3730 3.1349
Run 6 4.0079 3.0952 2.8175 3.3333 2.8571 3.6111 3.8492 2.4603 3.6905 3.9683
Run 7 3.4524 3.8492 2.8571 3.4524 3.2937 3.5317 2.4206 3.9286 3.4524 3.4127
Run 8 3.8492 2.7778 3.6111 3.0952 3.3730 3.7698 3.0159 3.1746 3.0952 3.8095
Run 9 2.9365 2.9365 4.0873 3.8095 3.2540 3.0159 3.2937 3.4524 3.2143 2.8571
Run 10 2.9762 3.4127 3.4524 2.8968 2.7381 4.0476 3.2937 3.1349 3.6508 2.8968

Table 5.34: Mean error of using only RBF with 24 features on testing data
Run no. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 4.9206 1.8651 2.3810 2.2222 1.7063 1.4683 1.8651 1.7063 1.4683 4.8810
Run 2 3.0556 3.1746 3.5317 2.6190 2.4603 2.9762 3.1746 2.5794 3.4127 3.0556
Run 3 4.1270 3.3333 2.8968 2.7778 2.9365 3.2937 3.3730 2.6984 3.1349 4.0476
Run 4 3.0952 2.8968 2.9365 3.3333 3.0159 2.8571 3.0159 2.8571 3.6905 3.0952
Run 5 3.0159 2.9762 3.4127 3.2143 2.6190 3.9683 3.1349 3.0952 3.5714 2.9762
Run 6 4.4841 2.8968 2.6984 2.9762 3.0159 3.1746 3.4524 2.4206 3.1746 4.4444
Run 7 3.0556 3.3730 2.6984 3.0952 2.9365 3.5714 2.6190 3.3333 3.2143 3.0159
Run 8 3.0556 3.0159 3.2540 2.6587 3.2143 3.3730 3.3333 3.4524 3.2540 3.0159
Run 9 3.1349 2.8175 3.8095 3.3730 3.0952 3.2540 3.4524 3.0952 2.6984 3.0556
Run 10 2.8175 3.2540 3.5317 2.7381 2.8968 3.2937 3.4921 3.0159 3.3730 2.7381

and MLP16, MLP24, SVM16, SVM24, RBF16, RBF24 are significant (p <0.05).

The performances of the algorithms can be expressed as Manual > GACM >∗

SVM24.

5.3.5 Discussion

The results based on training data show that in general GACM can find the

combination model that produces the minimum error. The results show that

only 15% of times that GACM are unable to find the optimum model. This is

because the number of elite chromosomes that is set in the experiment maybe

too high. In the experiment, the elite chromosomes contributed to 50% of the

whole population. This leaves 4 chromosomes for crossover and 1 for mutation

which may limit GA in exploring a new solution region. In the experiments, only

10 chromosomes (per population) were used. This number could be increased so

that the number of elite, crossover, and mutation can be adjusted such that other

solution region can be explored. These GA parameters should be selected based

on experiment. The results also show that the error are mainly from fold 1. This
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can be explained by that the data used to train GACM did not represent the

data in fold 1. This implies that GACM performance is affected by the training

data. Therefore, training data set should be carefully selected to ensure GACM

performance. The evaluation of the proposed method on the test data show that

the combination models generated by GACM produces lower error than using

only one classifier. The results of the evaluation on the test data show that

the error obtained from GACM is 3% higher than manual selection which is not

statistically significant. This shows that in general GACM can find the optimum

combination model automatically which reduces the time and effort in manual

search. This is particularly useful when the search space become larger i.e. more

classifiers, weight functions, or combiners.

The results between combination models and one classifier indicate that using

combination model improves classification accuracy significantly. The combina-

tion model increases the classification accuracy between 0.2211% and 3.9992%.

The combination model can be auto generated from GACM. The computational

time in running the proposed algorithm is 20 minutes per fold where 1 fold contain

22,680 data. The proposed algorithm can be used to generate the combination

model offline. The classifier combination using the model can be executed online

as the weight functions and combiners are low computational cost. Other crite-

ria for model selection can be added to suit different application. For example,

model with less number of classifier, particular weight functions or classifiers or

combiners are preferred.

In previous method [103] which find the combination between features, clas-

sifiers, and combiners, a high computational cost is expected as new classifier

need to be built every time a new chromosome is generated. Also, using this

method, optimal parameters may not be able to obtain to use in classifier con-

struction. GACM uses existing classifiers which are already optimised for the

selected features. The study also compares the GACM performances with all

possible combination to demonstrate that the combination models selected by

the proposed method is the optimum ones.
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5.3.6 Conclusion remarks

The results of the study demonstrate that the combination model between clas-

sifier, fusion weight, and classifier combiner improve the classification accuracy.

The combination model can be generated automatically using the proposed algo-

rithm, GACM. The results also show that the combination models obtained by

GACM are as good as manually selection. Also, the proposed algorithm allows

other criteria, besides the minimum error, to be added to suit different purposes.

5.4 Summary

This chapter presents extensive experimental studies on multi-sensor activity clas-

sification and classifier combination. Three classification methods i.e. MLP,

RBF, SVM are studied in this research. The experimental results indicate that

SVM is the most powerful classification. The results also show that using a set

of 24 features generated from seven sensors achieves the best classification re-

sults. Nevertheless, the results indicate that different classification models are

better at classifying different activities which leads to the next investigation on

classifier combination. First, classifier combination using GA weights is investi-

gated. The experimental results indicate using GA weights can achieve equal or

higher accuracy comparing to one best classifier. In this chapter another classifier

combination technique called GACM is proposed where GA is used to find the

optimal combination between classifiers, weight functions, and combiners. The

experimental results show that in general GACM can find the optimal combi-

nation models with the minimum classification error. The combination models

automatically generated by GACM are as good as manual selection. For future

research, the proposed algorithms should be tested on other data sets, or activity

data set with other/larger activities. Another interesting study is to modify the

GACM to be adaptive to data sets. The proposed multi-sensor AR framework

can be applied in health care domain such as home-based monitoring and decision

support system for health care organisations. These applications are discussed in

the next chapter.
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Conclusion and Future works

The study is set out to investigate the use of wrist-worn multi-sensor for AR of

an elderly person for assisted living applications. A number of ageing population

has increased rapidly worldwide over the past decades. This has major effect on

health care where issues such as a rise in care cost, high demand in long-term

care, burden to carers, and insufficient and ineffective care are likely to occur. AR

can be used as the key part of the intelligent systems to allow elderly people to

live independently at homes, reduce care cost and burden to the carers, provide

ensuring for the families, and promote better care. There are a number of AR

systems available. However, a majority of works mainly consider the technical

aspects of the system i.e. accuracy and neglects the practical aspects such as

acceptance and usability. The practicality of the system is the key factor which

indicates whether the system will be used in reality or not. This research aims to

develop the AR system which considers both practical and technical aspects using

non-intrusive, inexpensive wearable sensors so that the acceptance and usability

are increased allowing the system to be used in reality.

Firstly, an application of the proposed multi-sensor AR framework in health

care domain is presented. Applications in home-based monitoring and decision

support system for health care organisations are discussed. Next, the chapter

revisits the objectives set at the beginning of the research. Followed by, a synthesis

of the empirical findings from the study with respect to the research questions

is presented. Finally, the chapter finishes off with the research limitations and

suggestions for future works.
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6.1 Applications in health care

6.1.1 Home-based care application
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Robot
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Internet
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Detect Abnormal Behaviour

Figure 6.1: A practical multi-sensor activity recognition system for home-based
care

This section presents a practical multi-sensor AR system shown in Figure 6.1

and describes how it can be used for home-based care. The elderly person wears

sensors including accelerometer, temperature sensor, altimeter, gyroscope, light

sensor, and barometer which are embedded on watch on their wrists and a heart

rate monitor on their chests. The data from the sensor is continuously trans-

mitted wirelessly through radio frequency to the computer in the elderly’s home.

The computer contains the AR application which can recognise and detect daily

activities of a user. The detected activity is perceived wirelessly by a companion

robot who provides assistances or services based on current activity. For exam-

ple, if the robot detects that the elderly person is exercising, it can play music or

video related to that exercise. If the house is equipped with smart sensors, the

detected activities can be used to provide information for adaptive services. For

example, if it is detected that a user is sleeping, the light and the temperature

can be adjusted to the suitable condition.
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The detected activities can also be used by carer, health professionals, and

families. To protect the privacy of the elderly person, the system will not send

the raw sensor data over the network. The detected activities are encrypted when

sent over the Internet. For carers, their systems will contain an activity abnormal

detection model to detect abnormality of the elderly person. When the abnormal

activity is detected, a carer can visit the elderly home and provide help. This

will allow independence for both elderly person and carer, while maintain safety

and good care when necessary. The families of the elderly person will also benefit

from the system where they can use it to monitor them online anywhere and

anytime to provide a peace of mind that their love ones are doing well. Health

professionals will have access to the activity records. Their systems will contain a

model which interpret each activity into activity patterns. They can use this as a

complement to normal independent assessment and to support illness diagnostic.

Also, if they detect any changes in behaviour, they could send a request to elderly

person’s system to retrieve a raw sensor data for further analysis or arrange a

home or hospital visit for a check up on the elderly person.

Any sensor data sent from the elderly person must be encrypted and autho-

risation system must be installed and used whenever someone requests to access

the data. Also, there must be a signed agreement on who can have access to what

information and the elderly must give their consent prior the use of the system

to ensure privacy and visibility.

6.1.2 Decision support system for health care

This section describes how the proposed multi-sensor AR can be used to enhance

the decision support systems (DSS) for health care. First, the architecture of the

DSS is described, then followed by examples how the proposed method can be

used in DSS and improve health care. Figure 6.2 shows the design of the DDS. The

proposed method is used for classifying the complex sensor data into activities

to generate a database of activity records over times. The data management is

used for manage databases from several sources. The operations that the data

management carry out includes organise, search, query, add, update, and delete

databases. It also connects to the user interface management to provide interface
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for the users to perform operations with the databases. Besides the activity

database, other databases related to health care information such as medical

records, hospital resources, carer records, independence assessments, etc. are

connected with the data management so that the DDS can cooperate several

sources to make reliable decisions.
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Figure 6.2: Decision support system for health care

The model management (MM) is used to manage models, select suitable mod-

els for different problems, execute the model, combine results from models. MM is

connected to data management and user interface management (UI) to retrieve

input data and to present outputs. The models are used to predict, simulate,

schedule, classify, etc. input information. Example models are such as a model

to predict decline in daily activities, schedule the carer timetable, classify inde-

pendence level, simulate the use of beds in hospital, etc.

In some cases, the information from several databases may not be enough to

make a decision. Especially in health care, when experiences or expertise may

be needed to make critical decisions. Therefore, the DDS contains the knowledge

management (KM) which is used to store the knowledge resulting from the de-
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cision made by experts. The knowledge includes the process and/or information

required to make decision by experts. KM consists of several subsystems required

to build the knowledge base. This includes knowledge acquisition, representation,

validation, inference, and explanation or justification of the knowledge.

The DDS also contains the UI to manage different terminals for users to

interact with the DDS. The UI includes several interfaces such as text, graph, web

page, etc. suitable for different tasks and user groups. For example, the interface

for management staffs should present overall result with graphical formats, while

the interface for operational staff should present the information of a particular

task in details. High usability is crucial aspect of the acceptance of DDS.

The DDS can be used to generate a monthly activity graph which shows the

amount of each activity carried out in different months. This can be used to

see the trend and detect changes in activities and support the decision whether

to contact the person to come to the hospital and to which department or a

home visit or whether further activity data should be requested from the patient.

For example, if the graph shows the decline in walking over several months, this

could suggest there is a problem with ambulating. This would help reduce the

number of hospital visits, improve hospital resources utilisation, and increase

earlier detection rate.

The DDS can be used to support the decision on the type of carer is re-

quired for different patients. For example, if an activity record shows no decline

or changes in activity pattern, carer may not be needed. If the activity record

suggests the person may have problem with feeding, the carer who can provide as-

sistance with feeding or cooking should be sent. Also, based on activity database,

the DDS can build a model to predict when it is likely that the person will need

a carer, so that the management of carer e.g. schedule, number of carer, etc. can

be done effectively.

The activity record can be used as a complement tool for the assessment

of independence. The DDS can use this to make a decision whether the carer is

needed and to predict when the carer will be needed in order to manage resources

effectively. The activity database can be used as part of the other clinical decision

support system to give more information to support the illness diagnostic or

disease symptom. For example, if the activity record shows the patient has very
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little sleep per day could influent the decision of the specific sleeping disorder.

6.2 Objective revisits

The main aim of this research is to develop a novel method for multi-sensor based

AR of ADL of an elderly for an intelligent assisted living system. This section

revisits the objectives set out at the beginning of the research and discusses how

these objectives are met.

1. ”To carry out literature reviews in wearable sensor based AR and its appli-

cation in assisted living and to identify research gap”

Extensive literature reviews have been carried out in wearable sensor based

AR and its application in assisted living. These are presented in Chapter

2. The reviews start with the history of AR where different approaches

are reviewed and discussed in term of their advantages and disadvantages.

The rest of the literature reviews are focused on the AR based on wearable-

sensor approach where topics such as sensor types, sensor locations, sensor

fusion, as well as activity classification techniques including pre-processing,

segmentation, feature calculation, feature space manipulation, classification

techniques, and classifier combination are covered. A review on applications

of AR in various domains is presented. In addition, the application of AR

in assisted living is focused where topics such as activities of daily living,

existing studies in AR for assisted living, and requirements of assisted living

are reviewed. Based on these literature reviews, the research gaps in AR

for assisted living are identified.

2. ”To design and develop hardware for sensor data collection”

Sensors and hardware platforms have been identified, designed and devel-

oped for data collection purpose. The details of the sensors, platforms,

implementation, justification for sensor location and choices of activities

are presented in Chapter 3.

3. ”To collect sensor data in a real home setting”
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Three activity data sets are collected. The first data set is collected from

seven young participants performing running, walking, sitting, standing,

and lying down. This data set is used for a feasibility study. The second

data set is collected from 12 elderly people performing 12 ADL in a real

home setting. This data set contains data from three sensors. The third

data set is collected from 12 elderly people performing 13 ADL in home

setting. This data set contains data from seven wearable sensors. The

descriptions and characteristics of these data sets are presented in Chapter

3.

4. ”To carry out a feasibility study on using a wrist worn sensor to detect

activities and to identify features and techniques for data pre-processing

and segmentation for multi-sensor based AR”

A feasibility study has been carried out to evaluate the possibility of using

the wrist-worn sensor for AR, and to identify features, pre-processing and

segmentation techniques suitable for human AR. This study used Young

Activity data set to evaluate the feasibility. According to the study, a

set of features from time and frequency domain are identified. Also, a

pre-processing technique i.e. Weighted Moving Average, and segmentation

technique i.e. windowing using 128-window length and 50% overlapping are

selected. The results of this study are presented in Section 4.1.

5. ”To investigate and evaluate techniques for feature selection and to propose

novel feature selection techniques for multi-sensor based AR”

This research proposed two feature selections: Feature Combination (FC)

and Maximal Relevancy Maximal Complementary (MRMC). These tech-

niques are based on MLP and the concept of a relationship between a group

of features and the outputs. The proposed algorithms are evaluated against

three popular feature selection techniques including MRMR, NMIFS, and

Clamping on multi-sensor AR data sets as well as benchmark data sets.

The studies of the proposed algorithms are presented in Chapter 4.2.

6. ”To investigate techniques for activity classification and to evaluate classi-

fication results generated from different techniques”
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This research study investigated three classification algorithms i.e. MLP,

RBF, and SVM for multi-sensor AR of an elderly person. The investigation

is carried out using two multi-sensor activity data sets. The results of the

study are reported in Section 5.1.

7. ”To investigate and evaluate techniques for classifier fusion and to propose

a novel classifier fusion technique based on Genetic Algorithm”

This research carried out an investigation on several techniques for classifier

fusion including six fusion weights i.e. simple average, variance-covariance,

discounted mean square forecast error, weighted accuracy, and unit weight,

and seven fusion methods i.e. majority voting, product, summation, maxi-

mum, minimum, weighted average, and ranking. Also, two classifier fusion

techniques based on GA are proposed. The first technique uses GA to

find optimum weights for classifier fusion called Genetic Algorithm based

Fusion Weight (GAFW). Unlike previous works, the evaluation of the tech-

nique is carried out on all possible classifier combinations. Also, different

fitness functions of GA are investigated. The results indicate that in gen-

eral, using GAFW can achieve at least equal or higher than using only one

best classifier. The results of this study is presented in Chapter 5. An-

other classifier fusion technique is proposed where GA is used to find the

optimum combination between classifiers, fusion weight, and classifier com-

bination functions which is called Genetic Algorithm based Combination

Model (GACM). Also, the proposed technique allows other model selection

criteria to be added. For example, a combination which uses less number

of classifiers is preferred. An investigation is carried out using 6 classifiers,

4 fusion weight functions, and 5 combiner functions. The results indicate

that in general GACM can find the optimum combination automatically.

The results of the investigation are presented in Sections 5.2 and 5.3.

8. ”To investigate the contributions of sensors for AR”

A study on the contributions of sensors for AR is carried out. Two tech-

niques i.e. Mutual Information (MI) and Clamping are used to calculate

the contributions of the sensors. MI is used to calculate the contribution of
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the sensor for the activity classification, while Clamping is used to calculate

the contribution of the sensor within the classification model. The results

of the investigation are presented in Section 4.4.

9. ”To discuss the application of the proposed multi-sensor AR in assisted

living”

The results of each component of the proposed multi-sensor AR have been

evaluated throughout the thesis using the collected data set and against

other AR studies in term of technical aspect i.e. accuracy. In Section 6.1,

the evaluation of the proposed multi-sensor AR in term of practical aspect

against other AR works is presented. In addition, a discussion on how the

proposed work can be used in the assisted living is presented.

6.3 Empirical findings

The main research problem is to recognise activities of daily living of an elderly

person using multi-sensor worn on wrist. This section summarises the findings

regarding the research questions.

1. How to detect the interested activities of an elderly person using multiple

wearable sensors worn on wrist?

The multi-sensor AR of an elderly person has been proposed in this research.

The sensor fusion process is performed at feature and classifier levels. The

proposed method uses six sensors worn on wrist including accelerometer,

gyroscope, temperature sensor, altimeter, barometer, and light sensor. The

proposed model receives the sensor data where they are pre-processed using

weight moving average and segmented at 3.88 seconds. In training stage,

the method calculates several features and performs feature selection using

one of the proposed feature selection algorithms. Next, the classifiers are

built using the selected features with MLP, RBF, and SVM. The combi-

nation model between classifiers, fusion weight functions, and combiners

is obtained using the proposed GACM. In online stage, selected features

are calculated from the sensor data and then passed to the classifiers. The
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prediction is the activity with the maximum probability obtained from the

combination model. The explicit detail of the proposed multi-sensor AR is

presented in 3.6. Some parts of the results have been published in [1, 3, 8, 9].

2. Does using multiple sensor improve classification accuracy? Does the heart

rate sensor help increase the classification accuracy of the wrist-worn sensor

based AR?

The results of the study in Chapter 5.1 indicate that using multiple sensors

increase classification accuracy. Accelerometer is the most important sensor

in wearable AR. It is found that sensors that are not useful on its own may

be useful when combine with other useful sensors. The study shows that

combining heart rate with other sensor significantly improves classification

accuracy. Nevertheless, the classification accuracy without using heart rate

is still high which suggests that it is possible to use only wrist worn sensors

to maintain its practicality while high accuracy can be achieved. The results

of this study have been published in [1].

3. How to select the features using the relationship between feature and classes

as well as the relationship between a group of features and classes?

This research proposes two feature selection techniques: FC, and MRMC.

Both of these techniques consider the relationship between feature and

classes and the relationship between a group of features and classes. FC

uses Clamping technique to calculate the relationship between a feature and

outputs. It then use the modified forward selection technique to measure

the relationship a group of features and classes. The investigation of this

technique is reported in Chapter 4. The findings indicate that FC perfor-

mance is better than popular techniques including MRMR, NMIFS, and

Clamping at 95% confidence interval. It is found that the evaluation be-

tween a group of features and classes along the selection help to make sure

redundant features are not selected. MRMR, NMIFS, and Clamping only

measure the redundancy between 2 variables which is shown not enough to

reduce the overlapped features. However, FC has two limitations. Firstly,

it is possible that redundant features may be selected at earlier stage of

selection. Secondly, good features may be eliminated in early stage due to
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the use of forward selection.

To overcome these limitations, MRMC is proposed. MRMC is based on

the criteria of maximum relevance and maximum complementary of the

feature. MLP is used to calculate the relevancy and complementary score

of the feature. The feature with maximum score is then selected. The

study of MRMC is presented in Chapter 4.3. The findings indicate that in

general MRMC provide a good result comparing to the MRMC, NMIFS,

and Clamping. The algorithm is capable of detecting completely overlapped

and partial overlapped features. In addition, it is found that the proposed

complementary criteria improve the performance of Clamping.

MRMC has limitation such that it cannot guarantee optimum result when

apply to a small feature set. This is due to the selection of the first fea-

ture obtained from Clamping. However, when the number of features is

increased, MRMC is demonstrated to be superior to the other three algo-

rithms. This is because although the first feature selected by Clamping algo-

rithm may not always be the most important but it is somewhat important

and the optimum feature set can still be obtained by use of complementary

score. The results of this study have been published in [3].

4. How to combine classifiers by utilising class probabilities and are generalise

enough to be apply in other data set?

Two strategies based on GA are proposed for classifier combination. The

first strategy used GA to find the optimum fusion weight for classifier com-

bination called GAFW. An investigation of this technique is reported in

Chapter 5.2. The results indicate that in most cases the combination us-

ing GAFW can achieve equal or better accuracy than using just one best

classifier. GAFW based on linear fitness function yield better performance

than combiner function-specific fitness function, especially when minimum

or maximum combiner is used. However when ranking combiner is used,

GAFW based on ranking fitness function gives better results than GAFW

based on linear fitness function. This is because the class probability has

been converted into ranks which are different data representation than that

used in linear function. It is also found that GAFW should be appropriate
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for the AR model that will be developed offline due to high computational

cost. For online system, it is recommended that other weight functions such

as Variance-Covariance and Weighted Accuracy should be used.

Due to the limitation from high computational cost, another classifier com-

bination method is proposed. This technique uses simple fusion weight and

combiner functions. GA is employed to find the optimum combination be-

tween classifier, fusion weight and combiner functions. The study of this

technique is presented in Chapter 5.3. The results indicate that in gen-

eral GACM can find the optimum combinations automatically. The study

against manual selection among 1,146 combinations reveals that there is no

statistical significant in the performances of GACM and manually selection.

In addition, GACM allows other criteria for model selection to be added e.g.

simpler model is preferred. Some parts of the results have been published

in [4].

6.4 Research limitations

This section discusses the research limitations. First, the limitations are identi-

fied, and their impacts on research results are discussed. Next, a reflection on the

limitations and the justifications of the choices made during the research process.

Finally, the suggestions on how these limitations can be overcome in the future

are discussed.

1. Data not collected under natural setting

This research collected the data from a group of elderly people in a real

home. However, the protocol used in the data collection process is con-

trolled. For example, the participants are asked to perform different activi-

ties for a period of time. This may prevent the participants to carry out the

activities as continuous and natural as possible. Therefore, the reduction in

classification performance of the developed AR model when used in reality

is expected.

The reason that controlled protocol is used in this research is to reduce the
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complexity of the data collection. For example, an experimental set up is

required for each participants home. Data annotation in natural setting

is more complex and video camera may be required to assist the process.

Also, longer hours of data collection are required in order to collect enough

data on specific activities which have lower probability of occurrences. For

example, the elderly person may use stairs only a few times a day. The re-

search used a controlled protocol which has been used widely in AR studies.

However, the following strategies are used to minimise the control effect in

order to encourage the participants to perform the activities as natural as

possible:

Flexibility: The participants are allowed to perform the activities in any

order and they could have breaks in between the activities.

Minimal supervision: The participants are left to perform the activities on

their own without direct supervision. The researcher is only at the start and

the end of each activity to set up the equipment and marked down activity

information. This helps reduce the participants anxiety and encourage them

to carry out activities as natural as possible.

Mimic home setting: Unlike other studies which collect the data in a lab-

oratory, the data collection in this research is carried out in a real home.

The purpose is to mimic the home setting and environment, therefore help

the participants to perform activities more natural.

To overcome this limitation, it is suggested that the data collection should

be carried out in a natural setting i.e. in a real home of the participant or an

instrumented house that allow natural behaviour without using controlled

protocol. In addition, the AR should be tested in real application or on

data set collected under natural setting.

2. A limited skills in electronics

This research requires multi-disciplinary skills including computing, and

electronics as the hardware need to be designed and developed for the data

collection purpose. However, the researcher has limited skills in electronics

and also due to time restriction, it is not possible to develop a new built-
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for-purpose hardware to collect the sensor data. This affects the process

of data collection such that all sensors are not presented in one platform.

Also, this makes it difficult to envisage the real use of the proposed work in

real environment.

Due to this limitation, ready sensor platforms or ones which are easy to

implement are selected. The EZ-430 watch is selected as it contains multi-

sensor on-board. Also, it allows programming and debugging of the soft-

ware on the watch. This allows the researcher to modify the program on

the watch to suit different purposes of the data collection. It can also be

paired with a heart rate monitor which is one of the sensors used in the

research. In addition, a Microsoft Gadgeteer platform is used. It is an

open-source toolkit for building small electronic devices based on the .NET

Micro Framework and Visual Studio/Visual C# Express. There are several

sensors for Gadgeteer available in the market.

Since the sensors are implemented on different platforms, it is decided to

separate the sensors between two wrists. The following strategies are used

to reduce the effect cause by separating the sensors over two wrists. The

sensors are separated in a way that it should not interfere with the AR. The

sensors which are related to the movement i.e. accelerometer and gyroscope

are worn on the dominant wrist in order to capture the activitys movement.

Also, barometer and light sensors are also worn on the dominant wrist as

they are parts of the Gadgeteer platform. The temperature sensor which

captures the body temperature and altimeter are worn on the non-dominant

wrist. In real application, we are expected to implement all the sensors

into a single watch and will be worn on the dominant wrist of the elderly

person. This location will not disrupt a user from performing an activity

and/or cause discomfort in wearing sensors.

To overcome this limitation for future research, it is suggested that the

sensor platforms which is easy to implement, has a variety ranges of sensors

are considered. The sensor hardware should be developed as soon as possible

at the beginning stage of the research. Also, being able to identify the lacks

of skills in hardware in early stage of the study will lead to better problem
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management e.g. whether to employ other people to develop the hardware,

take relevant courses, use ready hardware, etc.

3. Low number of participants

The number of ageing population (people aged 65 years and over) in the

world is 520 million in 2010. Using this population with 95% confidence

level and 5% confidence interval, the sample size of 385 is required in order

to build a generalised classification model. This limitation affects the studys

results such that the model may not be generalised enough for the world

population.

One of the main challenges in activity research is the data collection. It

is difficult to recruit a large number of people to participate in the data

collection. There are several challenges in recruiting participants for the

data collection. Here, only the problems related to this research are dis-

cussed. Firstly, it requires the participant to participate for a rather long

period of data collection in order to collect enough data for all interested

activities. This includes time to setup equipment, performing activities,

breaks between activities for the participants, and transferred data. Also,

enough data collection tools are required. If the number of equipment is

not sufficient, the process of data collection could be slow and extended

time will be required. In this research, one set of equipment is used. Also,

the data annotation is done manually which is a time-consuming process.

Secondly, it is difficult or in some cases not possible to use the available

public data sets. This is due to the variability between sensors, equipment,

participants, and activity descriptions. Thirdly, it is more difficult to re-

cruit elderly people to participate in the data collection. The number of

elderly people is generally lower than the young people. In addition, since

this research is related to physical activities, only healthy elderly people are

eligible.

Table 2.6 shows the characteristics of the participants in other studies.

Based on this table, the number of participant varies from 1 to 60 people.

The mean number of participants is 10.97 and median is 8 people. Figure 6.3

shows the histogram of the number of participants which illustrates that the
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Figure 6.3: A histogram of number of participants in AR studies.
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number of participants is skewed toward the lower number of participants.

In addition, only 7% of the studies collected the data from elderly people.

Among these studies, a small number of elderly people is recruited. For

example, [145] used eight elderly people in their study. [83] work is based

on two elderly persons. A larger number of elderly people is recruited in

[101] study. However, mainly posture and transition activities are studied

in that work. In this research, each activity data set is based on 12 elderly

people, containing both males and females. This number is slightly larger

than the average number of participants in previous AR studies.

Collaborations between the research project and nursing homes, hospitals,

or any organisations related with elderly people could attract more number

of participants. To overcome this limitation in future research, it is sug-

gested that, if possible, such collaborations are established prior research

commences.

6.5 Future works

In this research, a multi-sensor AR of an elderly person has been studied. Future

research may be conducted to overcome the limitations discussed in Section 6.4.

Also, this research could be extended into various new research directions.

1. Extension of the MRMC

Maximal Relevancy Maximal Complementary feature selection has been

proposed in the research. However, MRMCs performance is depended on

the first feature when a number of feature set is low. MRMC uses Clamping

to select the first feature and the results of the experiment show that the

selected feature is not always the most relevant. Future research may be

conducted to improve MRMC by focusing on the identification of the first

feature in order to improve the performance of the algorithm. In addition,

future work may consider the cases that there are more than one important

features with equal scores. It is recommended that in order to correctly

identify the first feature, the next important feature also need to be taken

into account.
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2. Abnormal activity detection algorithm

The results of the proposed multi-sensor AR are activity records of an el-

derly person. Future research could be conducted to use these results to

develop an abnormal activity detection algorithm. This algorithm can be

used by the carers or the healthcare professionals to detect any changes in

behaviour in both long-term and short-term care. Future study may focus

on the discovery of activity pattern over times and outlier detection.

3. Hardware and battery

Future research can be focused on the hardware aspects to improve the

systems usability and acceptance. Note that, the system mentioned here

refers to the equipment used for collecting sensor data. The system could

be designed and developed so that all sensors are implemented on a single

micro-controller board. Also, the future research could be focused on the

extension of the batterys life of the system.

4. Data privacy and security

One of the main issues in monitoring system is privacy and security. This

problem is often concerned by the users when they consider adopting the

system. The monitoring system is designed to be used by several users such

as relatives, carers, and healthcare professionals who should have different

access rights to the data. Future research can be conducted to focus on

the data privacy and security. Research problems such as how/what/where

the data should be stored, data encryption, authorisation, the design of the

system architecture i.e. distributed or centralised could be investigated.

5. More activities

The multi-sensor AR proposed in this research is based on 13 activities of

daily living. Future research can extend the number of activities to cover

more daily activities as well as fall. Suggested activities are shower, using

toilet, using stairs, and dressing. These activities may be difficult to detect

if only use wearable sensors. It is suggested that sensors which can be used

to identify the location of the user such as motion sensor and RFID use
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in conjunction with wearable sensor to help with the classification. Note

that the video sensor should be avoided. Location has shown to have a

relationship with activity. It can be used to eliminate activities that are

not possible at certain locations or increase probability of possible activities.
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The Barthel index used to evaluate the participants and activity selection.
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1

Barthel Index of Activities of Daily Living 

Instructions: Choose the scoring point for the statement that most closely corresponds to the patient's current 
level of ability for each of the following 10 items. Record actual, not potential, functioning. Information can be 
obtained from the patient's self-report, from a separate party who is familiar with the patient's abilities (such as a 
relative), or from observation. Refer to the Guidelines section on the following page for detailed information on 
scoring and interpretation. 

The Barthel Index 

Bowels
0 = incontinent (or needs to be given enemata) 
1 = occasional accident (once/week) 
2 = continent 

Patient's Score:   

Bladder
0 = incontinent, or catheterized and unable to manage 
1 = occasional accident (max. once per 24 hours) 
2 = continent (for over 7 days) 

Patient's Score:   

Grooming
0 = needs help with personal care 
1 = independent face/hair/teeth/shaving (implements 
provided) 

Patient's Score:   

Toilet use
0 = dependent 
1 = needs some help, but can do something alone 
2 = independent (on and off, dressing, wiping) 

Patient's Score:   

Feeding
0 = unable 
1 = needs help cutting, spreading butter, etc. 
2 = independent (food provided within reach) 

Patient's Score:   

Transfer
0 = unable – no sitting balance 
1 = major help (one or two people, physical), can sit 
2 = minor help (verbal or physical) 
3 = independent 

Patient's Score:   

Mobility
0 = immobile 
1 = wheelchair independent, including corners, etc. 
2 = walks with help of one person (verbal or physical) 
3 = independent (but may use any aid, e.g., stick) 

Patient's Score:   

Dressing
0 = dependent 
1 = needs help, but can do about half unaided 
2 = independent (including buttons, zips, laces, etc.) 

Patient's Score:   

Stairs
0 = unable 
1 = needs help (verbal, physical, carrying aid) 
2 = independent up and down 

Patient's Score:   

Bathing
0 = dependent 
1 = independent (or in shower) 

Patient's Score:   

Total Score:    
(Collin et al., 1988) 

Scoring:

Sum the patient's scores for each item. Total possible scores range from 0 – 20, with lower scores indicating 
increased disability. If used to measure improvement after rehabilitation, changes of more than two points in the 
total score reflect a probable genuine change, and change on one item from fully dependent to independent is also 
likely to be reliable. 

Sources:

• Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. Int Disabil Stud. 1988;10(2):61-63. 

• Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965;14:61-65. 

• Wade DT, Collin C. The Barthel ADL Index: a standard measure of physical disability? Int Disabil Stud. 1988;10(2):64-67. 
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2

Guidelines for the Barthel Index of Activities of Daily Living

General

• The Index should be used as a record of what a patient does, NOT as a record of what a patient could do.

• The main aim is to establish degree of independence from any help, physical or verbal, however minor and for 
whatever reason. 

• The need for supervision renders the patient not independent. 

• A patient's performance should be established using the best available evidence. Asking the patient, 
friends/relatives, and nurses will be the usual source, but direct observation and common sense are also 
important. However, direct testing is not needed. 

• Usually the performance over the preceding 24 – 48 hours is important, but occasionally longer periods will be 
relevant.

• Unconscious patients should score '0' throughout, even if not yet incontinent. 

• Middle categories imply that the patient supplies over 50% of the effort. 

• Use of aids to be independent is allowed. 

Bowels (preceding week) 

• If needs enema from nurse, then 'incontinent.' 

• 'Occasional' = once a week. 

Bladder (preceding week) 

• 'Occasional' = less than once a day. 

• A catheterized patient who can completely manage the catheter alone is registered as 'continent.' 

Grooming (preceding 24 – 48 hours) 

• Refers to personal hygiene: doing teeth, fitting false teeth, doing hair, shaving, washing face. Implements can 
be provided by helper. 

Toilet use

• Should be able to reach toilet/commode, undress sufficiently, clean self, dress, and leave. 

• 'With help' = can wipe self and do some other of above. 

Feeding

• Able to eat any normal food (not only soft food). Food cooked and served by others, but not cut up. 

• 'Help' = food cut up, patient feeds self. 

Transfer

• From bed to chair and back. 

• 'Dependent' = NO sitting balance (unable to sit); two people to lift. 

• 'Major help' = one strong/skilled, or two normal people. Can sit up. 

• 'Minor help' = one person easily, OR needs any supervision for safety. 

Mobility

• Refers to mobility about house or ward, indoors. May use aid. If in wheelchair, must negotiate corners/doors 
unaided. 

• 'Help' = by one untrained person, including supervision/moral support. 

Dressing

• Should be able to select and put on all clothes, which may be adapted. 

• 'Half' = help with buttons, zips, etc. (check!), but can put on some garments alone. 

Stairs

• Must carry any walking aid used to be independent. 

Bathing

• Usually the most difficult activity. 

• Must get in and out unsupervised, and wash self. 

• Independent in shower = 'independent' if unsupervised/unaided. 

(Collin et al., 1988) 
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An example of an information sheet and consent form used in sensor data collec-

tion.
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If you have any addi!onal ques!ons about the research, your rights, or a research-related injury, you 

may contact: Miss Saisakul Chernbumroong, Staffordshire University, Faculty of Compu�ng, 

Engineering and Technology, Stafford, ST180AD. Or by email at: s.chernbumroong@staffs.ac.uk 

Multi-sensor activity recognition for

an intelligent assisted living system 

Introduction

Over the years, the number of ageing population has increased significantly. In 2050, 1.5 

billion people will age 65 years and over. A new model of care that facilitates self-care and 

extends the independence of ageing population is required. Automatic recognition of daily 

activities allows activity monitoring, judging independence level, detect changes in behaviour 

over time which leads to intelligent assisted living system. The research proposes a solution 

in human activity recognition which overcomes privacy violation, cost and wearability issues 

by using non-obtrusive, non-intrusive, low-cost sensors. 

The aim of this data collection is to collect sensory data (acceleration, temperature and 

altitude) from different activities in order to analyse and develop novel method for activity 

recognition of Activities of Daily Living of an elderly. The participants will be required to 

answer their personal information i.e. age, weight, height and personal illness and will be 

assessed on their independence level using Barthel Index. The participants will be required 

to wear watches (which have integrated sensors) on their wrists and perform 11 activities: 

1) Walking 

2) Sweeping floor 

3) Watching television 

4) Walking upstairs 

5) Walking downstairs 

6) Sleeping/Lie down 

7) Dressing 

8) Brushing teeth 

9) Feeding 

10) Washing dishes 

11) Ironing shirts 

Participants will be asked to perform these activities in their own pace and there will be short 

break between activities. For ‘Feeding’ activity, meal will be provided. The activities will be 

done in private area where no direct observation will be made. Also, the participants will be 

asked their opinion toward wearing the watches for monitoring activities. 
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If you have any addi�onal ques�ons about the research, your rights, or a research-related injury, you 

may contact: Miss Saisakul Chernbumroong, Staffordshire University, Faculty of Compu�ng, 

Engineering and Technology, Stafford, ST180AD. Or by email at: s.chernbumroong@staffs.ac.uk 

Privacy and Rights of Participant 

1. Data collected from this study is solely for the purpose of investigation and analysis of 

activity recognition of Activities of Daily Living of an elderly. The statistical and qualitative 

data compiled will be used for research purposes, which will contribute to the knowledge of 

human activity recognition and intelligent assisted living system. 

2. Data collection is collected in an anonymous and confidential manner. No personal details 

are required and hence individuals will be non-identifiable. An email address is required only 

if you wish to be informed about the findings of this study. 

3. Your participation in this study is completely voluntary. You have the right to withdrawn 

from participation at any time. Such requests can be made in form of a verbal statement, 

written statement or an electronic mail clearly stating your wish to withdraw. There is no need 

to state a reason for withdrawal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participant Number

You will need to state this number 

if you later request to withdraw 

from participation

Email address: (OPTIONAL) 

Only needed if you wish to be informed about the 

findings of this study 
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If you have any addi�onal ques�ons about the research, your rights, or a research-related injury, you 

may contact: Miss Saisakul Chernbumroong, Staffordshire University, Faculty of Compu�ng, 

Engineering and Technology, Stafford, ST180AD. Or by email at: s.chernbumroong@staffs.ac.uk 

 

Consent form 

Place: ....................................................... 

Date: ............../............../........................ 

 

Par!cipant number: ............................ 

I, who have signed at the end of this form, give consent to par�cipate in the following study: 

Research Title: .......Mul�-sensor ac�vity recogni�on for an intelligent assisted living system.... 

Researcher: ......................Miss Saisakul Chernbumroong............................................................. 

Contact address: ..............80/4 Bumroongrat Road, Soi 2, Chiang Mai, Thailand, 50000............... 

Telephone number: .........+6653246226......................................................................................... 

 

I volunteer to par�cipate in this study as a par�cipant to answer personal informa�on and sensory 

data collec�on which I am required to wear watches on my wrists and performing 11 ac�vi�es as 

described in Informa�on Sheet. 

I understand that my par�cipa�on is voluntary and that I have the right to withdrawn at any �me 

without providing reasons and without my rights being affected. 

I understand that my personal informa�on will be looked at by researcher solely for the purpose of 

inves�ga�on and analysis of ac�vity recogni�on of Ac�vi�es of Daily Living of an elderly. My data 

will be kept anonymous and in confiden�al manner. 

 

 

By singing on the consent below, I confirm that I have read the above informa!on about this 

study, and that you understand the purpose of the study as well as the poten!al risks that are 

involved agree to par!cipate in this study. 

 

Signature of Par!cipant: ........................................................................ Date: .........../.........../............. 

Signature of Researcher: ....................................................................... Date: .........../.........../............. 

Signature of Witness: ............................................................................ Date: .........../.........../............. 
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