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Abstract 

 

This paper studies the use of 3 ionic liquids ([(NEMM)MOE][FAP], [BMP][FAP] and [BMP][NTf2]) as 

neat lubricant within steel-steel contact conditions. Tribological tests (at 40 and 100ºC) were conducted in 

a HFRR tribometer and hence a complementary study was developed using a MTM tribometer. The wear 

surface on the discs was measured after the HFRR tests by confocal microscopy and also analyzed by 

SEM and XPS. The [BMP][NTf2] showed the lowest friction coefficient in the MTM and HFRR tests at 

40ºC but at 100ºC its tribological behavior worsened due to its lowest viscosity. Similar results were 

found for wear behavior. Both antifriction and antiwear results were related to the tribofilms formation 

from the ECR and XPS measurements.  

 

Keywords: ionic liquids, lubrication, wear, friction coefficient 

 

1. Introduction 

 

Since 2001 several papers have been published that investigate the potential use of ionic liquids (ILs) for 

lubrication.  Most of this work has been focused on using ILs as base stock or as a pure lubricant [1].  

Ionic liquids have some high performance properties for lubrication such as non-flammability, non-

volatility, high ionic conductivity, high thermo-oxidative stability and miscibility with organic 

compounds [2- 4]. Due to the high temperature properties of the ionic liquids, they can be used as a pure 

lubricant under severe tribological conditions for which conventional lubricants do not perform well [5-

7].    

In addition, the advantages of using ILs as additives and their interaction with the wear surfaces have 

been studied by numerous authors [2,8,9]. Most of the early researches in the use of IL as lubricants has 

been focused on the use of PF6 and BF4 imidazolium salts [10,11]. However, the presence of these anions 

can produce unfavorable chemical reactions of the IL with water and lead to the formation of hydrogen 

fluoride, which can damage tribology systems [12]. For these reasons, several authors are focused on the 

research with hydrophobic ILs. Among the hydrophobic ILs can be found those based on the anions 

bis(trifluoromethylsulfonyl)imide [NTf2] and tris(pentafluoroethyl)trifluorophosphate [FAP]. These ILs 

combine their higher hydrophobicity with their excellent hydrolytic stability [13]. Taking into account 

that fact, Gonzalez et al. studied the use of the ionic liquid 1-Butyl-1-methylpyrrolidinium 
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tris(pentafluoroethyl)trifluorophosphate ([BMP][FAP]) as neat lubricant and as additive in the lubrication 

of conventional PVD coatings (CrN, TiN and DLC) [14]. Blanco et al. used ethyl-dimethyl-2-

methoxyethylammoniumtris(pentafluoroethyl)trifluorophosphate ([(NEMM)MOE][FAP]) as base oil 

additive in the lubrication of TiN and CrN PVD coatings [15,16] 

The tribological behaviour of ionic liquids as neat lubricants or as additives has been evaluated for 

different types of contact, with steel-steel being the most studied case [17- 21]. Now, this paper studies 

the use of three ionic liquids based on the [FAP] and [NTf2] anions as neat lubricant applied to   steel-

steel contacts.  

 

2. Experimental details 

The properties of the ionic liquids used as lubricants in this study are listed in Table 1. The viscosity of 

the ionic liquid at high shear rates (10
6
-10

7
 s

-1
) and temperatures of 70 and 100ºC was measured using an 

Ultra Shear Viscometer (PCS Instruments, UK), because of typical shear rates in the boundary lubrication 

regime reach values greater than 10
6
 s

-1
. The tribological tests conducted using the high frequency 

reciprocating rig (HFRR) (PCS Instruments, UK) considered the typical specimens: AISI 52100 steel 

balls (with 6.0 mm diameter, 58-66 HRC of hardness and less than 0.05 m of roughness) and softer AISI 

52100 steel discs (190-210 HV30  and roughness of less than 0.02 m). The HFRR is a reciprocating 

friction and wear test machine which provides reliable assessment of the tribological behavior of 

lubricants and additives under a wide range of load, stroke length, frequency and temperature values. 

Such experiments were developed at a normal load of 7.85 N (corresponding to a maximum contact 

pressure of 1.31 GPa) under fully flooded lubrication, a stroke length of 2 mm, a frequency of 25 Hz, and 

duration of 60 minutes (corresponding to a sliding distance of 360 m). The ionic liquid temperature was 

controlled and these experiments were conducted at temperatures of 40 and 100ºC. Friction force and 

electrical contact resistance (ECR) in order to determine the tribofilms formation on the wear surfaces 

were measured during the tribological tests. Each tribological test was repeated at least three times. The 

wear scar volume on the disc surface was measured after each test using confocal microscopy 

methodology. Tested surfaces were also analyzed by SEM and XPS in order to determine their chemical 

composition and the dominant wear mechanism. 

Before the experiments using the HFRR tribometer, the ionic liquids were tested in a Mini Traction 

Machine (MTM) from PCS Instruments Ltd. in order to obtain their tribological behaviour under different 
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contact conditions. The MTM is a tribometer with a ball-on-disc configuration where the antifriction and 

antiwear properties of lubricants and additives can be tested under variable load, speed and temperature 

conditions. Both the disc and the ball are driven independently providing slide-roll ratios (SRR) from 0% 

(pure rolling) to 200% (pure sliding). Such tests were performed at room temperatures using 0.25 ml of 

ionic liquid in the contact between the ball (AISI 52100, 18 mm. diameter, Ra < 0.01 µm) and the disc 

(AISI 52100, 46 mm. diameter, Ra < 0.01 µm), at normal load of 50 N (corresponding to a maximum 

contact pressure of 1.13 GPa), at sliding-rolling ratio of 50%, and rolling speed from 3 to 200 mm/s.  

   

3. Results and discussion 

 

The results obtained from the experiments conducted using the MTM at room temperature, Fig. 1, 

showed clearly that under favorable contact conditions (higher rolling speed in this case) the 

[BMP][NTf2] ionic liquid performs better. However, its tribological behaviour become worse more 

rapidly than the FAP-based ionic liquids when the rolling speed decreases. This tribological behaviour is 

related not only to the balance of formation/destruction of the tribofilms on the wear scar surface but also 

to the rheological behavior of the ionic liquids. It is noted that [BMP][NTf2] ionic liquid has lower 

viscosity than the other ionic liquids for both tested temperatures, Fig. 2. 

The results of the experiments conducted at 40ºC using the HFRR machine showed that the lowest 

friction coefficient values was reached with the [BMP][NTf2] ionic liquid, while the FAP-based ionic 

liquids presented similar friction coefficient values being slightly better the [BMP][FAP], shown as Fig. 

3. Simultaneously, the electrical contact resistance (ECR) was measured during the friction and wear tests 

confirming the tribofilms formation in all cases.  

Some tribological changes were detected during tests made at 100ºC, Fig. 4. Now, the tribofilms 

formation in the tests with [BMP][NTf2] was almost null and hence the increase in the friction coefficient. 

The FAP-based ionic liquids with similar tribofilms formation showed close friction coefficient values. 

This change with temperature for the tribological behavior of the [BMP][NTf2] was analysed more in 

detail using the XPS technique. 

Fig. 5 shows the average friction coefficient of all testing conditions performed in the HFRR machine. In 

general the friction coefficient rises with temperature. It is of interest to note the sharply increase of 

friction coefficient showed by [BMP][NTf2] from 40 to 100ºC.  
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Figs. 6, 7 and 8 show the wear behavior found in the tests at both temperatures. It can be observed that 

wear increase sharply with temperature. At 40ºC the wear results for ionic liquids with the same cation, 

[BMP][FAP] and [BMP][NTf2] were similar (Figs. 6 and 8) and lower than the [(NEMM)MOE][FAP] 

values but the SEM image of the base of the wear track show identical wear behavior in all cases. At 

100ºC the situation changed and the [BMP][NTf2] ionic liquid showed poor wear behavior not only in 

quantity but also showing abrasive wear which can be observed in the SEM images, Figs. 7-8. 

X-Ray photoelectron analysis was performed using a Phoibos hemispherical detector MDA5 from 

SPECS, using Mg x-ray radiation (1253.6 eV) at 13 kV and 200 W. High resolution measurements were 

recorded at constant pass energy 30 eV with an energy step 0.1 eV. Spatial resolution was achieved using 

a 2.5 mm iris between the sample and the detector.  Pressure in the analysis chamber was kept below 

5·10
-9

 mbar during the measurements. Analysis of the spectra was recorded using CasaXPS software as 

well as fitting software developed by the authors. Calibration of spectra was performed using the peak of 

adventitious C1s at 284.6 eV. 

In Fig. 9 can be seen that samples lubricated with [(NEMM)MOE][FAP] at 40ºC presents two XPS F1s 

bands inside the wear scar, one assignable to [FAP
-
] anion at 688.6 eV (47%) and a second one at 687.5 

eV (53%) related to fluoride-metal interaction due to chemical reaction between the ionic liquid and the 

surface [14]. When the sample is analysed outside the wear scar, only the peak corresponding to [FAP
-
] 

can be observed, as there is no chemical reaction between the ionic liquid and the surface (tribofilm). The 

situation remains very similar when the test temperature increased to 100ºC both inside the wear scar with 

two F1s peaks at 687.5 eV (56%, fluoride-metal) and 688.6 eV (44%, [FAP
-
]), and outside the wear scar 

with a single peak at 688.0 eV belonging to unreacted [FAP
-
], see Fig. 10 and Table 2. 

The sample lubricated with [BMP][FAP] behaves very similarly to that with [(NEMM)MOE][FAP]. At 

40ºC, F1s photoelectron band inside the wear scar can be splitted into a [FAP
-
] band at 688.5 eV (85%) 

and a F-metal interaction band at 686.6 eV (15%) whereas outside the wear scar only the [FAP
-
] F1s 

photoelectron band can be observed at 688.2 eV. When temperature increased to 100ºC the situation is 

practically the same than at 40ºC: two bands inside the wear scar ([FAP
-
] at 688.6 eV, 80%, and fluorine-

metal interaction at 687.0 eV, 20%) but only [FAP
-
] was found in the analysis of the outer part of the 

wear scar (688.4 eV) (Table 2). 

Samples lubricated with [BMP][NTf2] do not show qualitative differences at 40ºC or 100ºC in F1s 

photoelectron bands. F1s band appears between 689.0 eV and 689.2 eV in any case (both temperatures, 
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inside and outside, Fig.11, Table 2), matching the F1s band of the [NTf2
-
] anion as described by Bovio et 

al. [22]. 

The presence of neat [BMP][NTf2] can be also detected inside and outside the wear scar at both 40ºC and 

100ºC analysing the N1s photoelectron band. Pyrrolidinium based ionic liquids shows two N1s bands at 

399.5 eV from the [NTf2
-
] anion and at 403 eV from the pyrrolidinium cation [23] which are clearly seen 

in our case as reflected in Fig. 12. 

Nevertheless, O1s band shows an interesting behaviour in these samples. Three different O1s bands can 

be detected at 40ºC inside the wear scar: 529.8 eV (assignable to Fe2O3, [24]), 532.8 eV (from the [NTf2
-
] 

anion according to [22-23]) and 531.2 eV which probably arises from the tribofilm. Only two of these 

bands are present in the outer part of the wear scar (530.1 eV from Fe2O3 and 532.7 eV from the ionic 

liquid), although the band at 531.9 eV due to the tribofilm is not present, as there is no tribofilm outside 

the wear scar (Fig. 13, Table 3).  

When the test is performed at 100ºC, the situation in the outer part is very similar (O1s bands at 530.5 eV 

and 532.8 eV from iron oxides and neat [NTf2
-
]) although inside the wear scar only neat ionic liquid can 

be detected at 532.8 eV (Fig. 14, Table 3), confirming the inexistence of tribofilm as suggested by ECR 

measurements. According to the previously shown results, the tribofilm in the lubrication with 

[BMP][NTf2] at 40ºC does not seem to involve the anion as it happened with [BMP][FAP], but the ionic 

liquid seems to somehow induce the formation of the tribofilm while remaining chemically unaltered. 

[BMP][NTf2] at 100ºC does not create a tribofilm on the surface, thus increasing the friction coefficient. 

The presence of iron oxides was confirmed by checking the Fe2p3/2 photoelectron band inside the wear 

scar. Every sample shows a band between 709.9 and 710.4 eV assignable to iron oxides [24] with the 

single exception of [BMP][NTf2] at 100ºC. 

Further XPS analysis concerning P and S elements was also carried out. As reflected in the following 

tables 4 and 5, [(NEMM)(MOE)][FAP] shows a clear P2p peak both at 40ºC and 100ºC around 133.6 

which is a typical value for phosphates [25]. The behaviour of [BMP][FAP] is very similar, although the 

intensity of the P2p peaks is lower. However, the intensity of P2p in the case of [BMP][NTf2] is 

negligible. 

Analysis of S2p peak reveals a band at 169.3 eV (FWHM 2.8 eV) for [(NEMM)(MOE)][FAP] at 40ºC 

which is almost the same than for [(NEMM)(MOE)][FAP] at 100ºC (169.6 eV (FWHM 2.5 eV)) which is 

near the iron (III) sulfate band at 168.9 eV [24,25]. The situation is the same for [BMP][NTf2] with peaks 
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at 169.2eV (FWHM 2.5 eV) at 40ºC and 169.2 eV (FWHM 2.8 eV) at 100ºC suggesting also the presence 

of iron (III) sulfate. However, the intensity of S2p peak is very low in the case of [BMP][FAP] with a 

noisy peak at 169.4 eV (FWHM 2.4 eV) at 40ºC which disappears when increasing the temperature at 

100ºC suggesting the disappearance of the iron (III) sulfate in the tribolayer. 

 

4. Conclusions 

 

This paper studied the use of ethyl-dimethyl-2-methoxyethylammonium 

tris(pentafluoroethyl)trifluorophosphate, 1-butyl-1-methylpyrrolidinium 

tris(pentafluoroethyl)trifluorophosphate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) 

imide ionic liquids as neat lubricants within steel-steel contact. 

Results show that [BMP][NTf2] ionic liquid exhibited the minimum friction coefficient for the HFRR 

tests conducted at 40⁰C and for MTM tests. For the two ionic liquids with the same [FAP] anion, the 

[BMP][FAP] showed the better anti-friction performance for all the tests made, according with previous 

author’s results related to these two ionic liquids ([BMP][FAP] and [(NEMM)MOE][FAP]) in the 

lubrication of PVD coatings. Nevertheless, [BMP][NTf2] showed the highest friction coefficient in the 

HFRR tests made at 100ºC according with its lowest viscosity value at this temperature.   

Wear results exhibited similar behavior, showing the surfaces lubricated with [BMP][NTf2] as the lowest 

wear volume for the tests made at 40ºC. However with the increasing temperature this ionic liquid 

worsened its anti-wear performance showing the higher wear track with an important surface damage. 

Wear volume measured after tests made with [BMP][FAP] and [(NEMM)MOE][FAP] were similar, 

although the former showed a slightly higher anti-wear behavior. 

XPS confirmed the presence of tribofilms in samples lubricated with [BMP][FAP] or 

[(NEMM)MOE][FAP] both at 40ºC and 100ºC whereas only neat ionic liquid without interaction with the 

surface could be detected inside the wear scar of sample lubricated with [BMP][NTf2] at 100ºC, thus 

confirming the evidences obtained through ECR. 
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Fig. 1. Stribeck curves obtained at the MTM at normal load of 50N and 50% of SRR. 
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Fig. 2. Viscosity of IL’s measured at high shear rates. 
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Fig. 3. Friction and ECR behavior for tests at 40ºC. 

 

 

 

Figure(s)



 

 

  
Fig. 4. Friction and ECR behavior for tests at 100ºC. 
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Fig. 5. Average friction coefficient from the reciprocating wear tests made in the HFRR machine. 
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Fig. 6. 3D confocal reconstruction of wear track and SEM image of the bottom of wear track for test at 

40ºC. a) [(NEMM)MOE][FAP]; b) [BMP][FAP]; c) [BMP][NTf2] 
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Fig. 7. 3D confocal reconstruction of wear track and SEM image of the bottom of wear track for test at 

100ºC. a) [(NEMM)MOE][FAP]; b) [BMP][FAP]; c) [BMP][NTf2] 
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Fig. 8. Average wear volume. 
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Fig. 9. F1s XPS spectra for [(NEMM)MOE][FAP] at 40⁰C (inside and outside the wear scar). 
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Fig. 10. F1s XPS spectra for [(NEMM)MOE][FAP] at 100⁰C (inside and outside the wear scar). 
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Fig. 11. F1s XPS spectra for [BMP][NTf2] at 40⁰C and 100⁰C (outside and inside the wear scar). 
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Fig. 12. N1s XPS spectra for [BMP][NTf2] at 40⁰C and 100⁰C (inside the wear scar). 
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Fig. 13. O1s XPS spectra for [BMP][NTf2] at 40⁰C (inside and outside the wear scar). 
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Fig. 14. O1s XPS spectra for [BMP][NTf2] at 100⁰C (inside and outside the wear scar). 
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Table 1. Ionic liquids properties. 

Ionic Liquids    

Cation Anion IUPAC name Purity 

(%) 

Water content 

(ppm) 

Viscosity (mm2/s)* Viscosity 

Index* 40ºC 100ºC 

[(NEMM)MOE] [FAP] 

ethyl-dimethyl-2-

methoxyethylammonium 

tris(pentafluoroethyl)trifluorophosphate 

>99 
<100  

(Karl Fisher) 
38.652 6.550 123 

[BMP] [FAP] 
1-Butyl-1-methylpyrrolidinium 

tris(pentafluoroethyl)trifluorophosphate 
>99 <1 % 58.758 8.538 118 

[BMP] [NTf2] 
1-Butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide 
>99 

<100  

(Karl Fisher) 
28.826 6.228 174 

* Measured in a SVM 3000 Stabinger Viscometer (ASTM D7042, D2270) 

 

Chemical structure   
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Table 2. F1s photoelectron band. FWHM is given in brackets. 

F1s 

(inside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 
688.6 (2.1) eV 47% 

687.5 (2.7) eV 53% 

688.5 (2.4) eV 85% 

686.6 (2.1) eV 15% 
689.0 (2.1) eV 

100ºC 
687.5 (2.5) eV 56% 

688.6 (2.0) eV 44% 

688.6 (2.2) eV 80% 

687.0 (1.9) eV 20% 
689.0 (2.1) eV 

 
F1s 

(outside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 688.0 (2.6) eV 688.2 (2.7) eV 689.2 (2.2) eV 

100ºC 688.0 (2.8) eV 688.4 (2.8) eV 689.1 (2.1) eV 
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Table 3. O1s photoelectron band. FWHM is given in brackets. 

O1s 

(inside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 
531.6 (2.9) eV 68% 

529.8 (1.5) eV 32% 

531.7 (2.7) eV 62% 

529.9 (1.6) eV 38% 

532.8 (1.8) eV 57% 

531.2 (2.1) eV 25% 

529.8 (1.4) eV 18 % 

100ºC 
532.4 (2.9) eV 62% 

530.0 (1.8) eV 38% 

531.4 (3.1) eV 75% 

529.7 (1.4) eV 25% 
532.8 (1.8) eV 

 
O1s 

(outside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 
532.3 (2.3) eV 60% 

530.1 (1.8) eV 40% 

531.9 (2.3) eV 55% 

529.9 (1.7) eV 45% 

532.7 (2.2) eV 66% 

530.1 (1.9) eV  34% 

100ºC 
532.2 (2.8) eV 60% 

530.0 (1.8) eV 40% 

531.9 (2.8) eV 68% 

529.9 (1.6) eV 32% 

532.8 (1.9) eV 90% 

530.5 (2.1) eV 10% 
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Table 4. P2p photoelectron band. FWHM is given in brackets. 

P2p 

(inside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 133.5 (2.1) eV 133.8 (2.2) eV Undetectable 

100ºC 133.6 (2.1) eV 133.4 (2.3) eV Undetectable 
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Table 5. S2p photoelectron band. FWHM is given in brackets. 

S2p 

(inside) 
[(NEMM)(MOE)][FAP] [BMP][FAP] [BMP][NTf2] 

40ºC 169.3 (2.8) eV 169.4 (2.4) eV 169.2 (2.5) eV 

100ºC 169.6 (2.5) eV Undetectable 169.2 (2.8) eV 
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