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Abstract   Reliable production plants are vital in today’s economy as they have a direct impact on productivity, profit-

ability and overall prosperity of industrial nations whose income depends on their industries, products they create and ex-

ports. Reliability depends on regular condition monitoring and plant maintenance and more importantly the tools and tech-

nologies being designed, developed and used. Excess vibration is one source of plant failure and this can have many root 

causes ranging from dynamic incompatibility between different elements of machinery or their foundations to other causes 

resulting from general wear and tear. Prediction or detection of source or causes of these unwanted problems is challenging 

and requires sophisticated tools and theories as well as experience and expertise. Moreover, classical vibration monitoring 

on its own cannot predict the root causes of failures that are due to operating conditions, especially when severe or abnor-

mal service conditions are present. Under such conditions, the systems may behave in a completely different or unpredicta-

ble manner: active excitation forces/loads and resulting displacements can make the system behave in a nonlinear fashion.  

Here an industrial case study that involves the non-destructive evaluation of an extruder motor due to excessive vibration is 

presented. A novel Dynamic Design Verification (DDV) procedure for non-destructive monitoring and resonant vibration 

identification - which relies on a combined Experimental Modal Analysis (EMA), Operating Deflection Shapes (ODS) and 

linear elastic Finite Element Analysis (FEA) - is used to assess the structural integrity and dynamic behaviour of extruder 

motor and associated subsystems. The analyses concluded that the root cause of the high vibration is not due to wear and 

tear of the motors but is due to weakness of the motor support structures and concrete foundation supporting the extruder 

motor. Based on the performed analyses, structural dynamic modifications (additional supports) applied to the ‘non-drive 

end’ of the motor have been considered and their effects on the system are analysed. It was concluded that this modification 

shifted the lowest natural frequency away from the operating speed and effectively reduced vibration to a safe level. 

Keywords Rotating machinery, vibrations, modal analysis, operating deflection shape analysis, non-destructive testing, 

dynamic design verification 

1. Introduction 

Detection and monitoring of vibration in rotating ma-

chines is an important and effective way to identify possible 

failures due to poor design and maintenance, imbalance 

problems and/or incompatibility between the supporting 

structure/foundation, machine parts and other auxiliary 

equipment [1]. However, to understand and pinpoint the 

root cause of excessive vibration [2] it is often necessary to 

determine the interaction amongst all the mentioned com-

ponents which may be very complex. A review of the pro-

gress made in rotating machinery condition monitoring and 

diagnosis through the use of different signal processing 

techniques for vibration analysis is considered in [3]. Dif-

ferent methods including automated diagnosis were used 

effectively to obtain vital information and detect machine 

faults from vibration profile before catastrophic failures (of 

parts or components). 

A parameter estimation technique has been considered in 

[4] for monitoring machinery condition based on experi-

mentally measured vibration data, as a way for observing or 

predicting an incipient failure of its components indicated 

by a change in stiffness or mass element. An intelligent 

platform based on a standalone data-driven approach is 

proposed in [5] to diagnose faults such as performance 

degradation assessment, remaining life estimation and dy-

namic design verifications of steady-state in-service rotating 

machinery. To show the effectiveness of the developed in-

telligent platform in different applications two industrial 

case-studies were also considered in [5]. 

As mentioned in [6] excessive vibrational amplitudes - 

resulting in deflection of the machine parts and large dis-

placements - are most influenced by the behaviour of the 

foundation, which changes the overall dynamic response of 
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the system, making it behave in a completely different and 

unpredictable manner. A new procedure to identify the 

modal parameters of a rigid foundation – which affects the 

vibration behaviour of a rotor supported by two hydrody-

namic bearings - was developed in [7]. A component syn-

thesis method for vibration isolation/damping of massive 

rotating machinery supported by an elastic structure is con-

sidered in [8]. The method allows easy calculation of the 

stiffness matrix of resilient elements as well as the system 

vibration characteristics.  

The dynamical behaviour of a rotating machines placed 

on flexible foundation structure is studied in [9] using the 

mechanical impedance method. The technique incorporates 

both theory and experiments for the system modelling, and 

uses the experimental results for validation. A mathematical 

methodology - using modal parameters (obtained experi-

mentally through frequency response functions and Fourier 

Transforms) to analyse the foundation influence on rotating 

machinery (the rotor-bearings system) and finite element 

method to model the rotor and reduce the degree of freedom 

order of the foundation model - was considered in [6,10]. A 

built-in masses system – similar to a base isolation system - 

has been considered in [11] as an alternative method to re-

duce system vibration at points far from the exciting ma-

chine. Significant reduction in vibration levels and excess 

movement has been obtained when a relatively small per-

centage of the total mass of the machine has been used as 

additional weight in the supporting structure. 

Another way of analysing faults or excess movement in 

rotating machinery can be obtained through the use of the 

Operating Deflection Shape (ODS) analysis, a 

non-destructive and non-invasive technique used to monitor 

the behaviour of a system while in operation [12-17]. As 

shown in [17] the ODS technique is especially useful when 

classical condition monitoring is not possible. Operating 

Deflection Shapes importance as a means of detecting ex-

cessive vibrations due to, faults, unbalance or misalignment 

in rotating machinery and its components has been high-

lighted by the studies performed in [18-22]. Significant 

changes in the ODS data acquired from multiple accel-

erometers through the frequency spectra of the displace-

ment and acceleration responses [18-20] have been consid-

ered as an early warning indicator of rotating machinery 

faults.  

In this paper the outcome of an industrial case study for 

the vibration assessment and analysis of an extruder motor 

due to excessive vibration is presented. The investigation is 

based on the combined application of linear elastic Finite 

Element Analysis (FEA), Experimental Modal Analysis 

(EMA) and ODS techniques assess the condition of an 

in-service pipe extruder motor that was showing signs of 

excessive vibration.  

The root cause of these excess vibrations, as discussed 

above, was the weakness of the motor support and concrete 

foundation supporting the extruder motor.  The analysis 

also reveals that the extruder motor and gearbox has been 

dynamically well designed with its natural frequencies lo-

cated well above its intended operating speed. However, 

from the EMA and FEA simulation, the motor support and 

concrete foundation does not achieve its designed stiffness 

causing this “stiffness drop” to shift the foundation natural 

frequencies into the extruder operating region. 

To address the problem, additional supports have been 

added to the “non-drive end” of the motor. It was concluded 

that the performed structural dynamic modification on the 

system had managed to shift the lowest natural frequency 

away from the operating speed and effectively reduced vi-

bration to a safe level. 

2. Problem Formulation and Procedure 
Description 

The need for a non-invasive testing and evaluation ap-

proach was justified by the excessive vibrations of a piece of 

industrial equipment, i.e. an extruded motor, which created 

an unpleasant working condition for the hired personnel in a 

nearby control room. Routine vibration monitoring report-

ed/pinpointed high vibration in the horizontal direction of an 

extruder motor, having the vibration level recorded as high 

as 5 to 6 mm/sec
2
. In this case, the motor shaft and gear is 

linked with clutch-type coupling. The motor bearing is of 

sleeve-type whilst the gearbox uses a rolling element bear-

ing. 

To solve the excessive vibration problem, a design veri-

fication approach [23], which combines Experimental Modal 

Analysis (EMA) Operating Deflection Shapes (ODS) and 

Finite Element method (FEM), is considered. The approach 

adopted was to investigate whether or not any vibration 

could induce excessive cyclic stresses on both the motor 

itself, its supporting components and the foundation of the 

system, thus, affecting the overall structural integrity which 

may result in a catastrophic failure. 

The measurement and evaluation procedure have been 

devised using a state-of-the-art MDT-Q2 data acquisition 

system (Quadrant & Technologies SDN. BHD.) based on a 

4-channel real-time machinery analyser, tri-axial (meas-

urement locations were taken in the principal directions) and 

uni-axis accelerometers, modally tuned impact hammer and 

ME’scope software (Vibrant Technology, Inc., USA) used to 

analyse the motion and the excessive vibration levels of the 

motor and its gearbox. 

Modal analysis using Frequency Response Function (FRF) 

measurement technique, (i.e., impact testing) was used in 

determining the dynamic characteristics namely the natural 

frequencies, mode shapes and damping. The measured input 

is force from the impact hammer and the measured output is 

acceleration from the accelerometer. The test was carried out 

by fixing the impact hammer and roving the tri-axial accel-

erometer throughout the measurement points. The sampling 

rate used was 2048 samples/sec with block size of 4096. This 

yields frequency resolutions of 0.5 Hz and 2 seconds of time 

record length to capture every response signal. 5 averages or 

impacts were taken at each measurement point. The signals 

were averaged and processed to generate the Frequency 

Response Functions (FRFs) estimation. The modal extrac-

tion technique was performed using modal analysis software 

called ME’scope. The software was also used to perform 

post-processing of the acquired data and curve-fitting for the 

extraction of modal frequency, modal damping and modal 
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shape. In addition to that, a three-dimensional structural 

model that represents the motor and its gearbox was created. 

It consists of a series of points with Cartesian coordinate 

connected together using straight lines to form surfaces. The 

displayed point numbers show the measurement locations as 

in the actual motor and its gearbox. This model was used to 

display the mode shapes of the structures from the acquired 

data.  

Meanwhile, ODS requires the system to be in steady-state 

operating condition. The test was performed in similar 

manner where the impact hammer was replaced with a 

uni-axis accelerometer as a reference input signal indicating 

the reference DOF and for the purpose of measuring the 

relative phase between accelerometers. The tri-axial accel-

erometer is used as a roving accelerometer and can measure 

acceleration in three orthogonal directions simultaneously. 

The roving accelerometer approach allows large structure 

with multiple points to be investigated cheaply and effec-

tively by passing the need for using many accelerometers 

simultaneously. The sampling rate used was 2048 sam-

ples/sec with block size of 8192. This yields better frequency 

resolutions of 0.25 Hz and 4 seconds of time record length to 

capture every response signal. 10 averages were taken at 

each measurement point. The vibration signal was processed 

into frequency domain, (i.e., ODS FRF) and being sent to 

ME’scope for post-processing to generate the deflection 

shape during operation. 

Lastly, Finite Element (FE) Modal Analysis and Structural 

Design Modification (SDM) using FEA was performed on 

the motor and its gearbox for verification purpose of the FE 

model prior to fabrication. Finite element model was created 

with references to structural drawings and general assembly 

and layout drawings. The main advantage of SDM in Finite 

Element Analysis (FEA) allows large number of design 

modifications without having the unnecessary physical cy-

cles of ‘modify-and-test’. 

2.1. Modal Analysis (MA) 

Modal analysis is used in investigating the dynamic be-

haviour of static systems. However, Modal analysis enables 

an enhanced understanding and identification of the root 

cause of vibration phenomena encountered in engineering by 

describing a system with its modal parameters - namely the 

natural frequencies, natural damping and natural modes. 

These three parameters comprehensively define the dynamic 

characteristics of a system. Currently, there are two such 

techniques used to extract these modal parameters, one is 

classical Experimental Modal Analysis (EMA) [24-26], the 

other is FEA. Operational Modal Analysis (OMA) [27,28] 

and the Impact-Synchronous Modal Analysis (ISMA) 

[29-31], are relatively new techniques and now being widely 

used in determining modal parameters of in-service ma-

chinery, troubleshooting, Structural Dynamic Modification 

(SDM), force determination, analytical model updating, 

optimal dynamic design, passive and active vibration control, 

as well as vibration-based structural health monitoring in 

aerospace, mechanical and civil engineering [32-36]. Con-

ventional Experimental Modal Analysis (EMA) has limita-

tions in that it requires the system to be in a complete shut-

down state; which means no unaccounted excitation forces 

are induced into the system. OMA holds advantage over 

EMA in terms of its practicality and simplicity to carry out 

the procedure and performing the analysis while the system 

is in operation. However, the lack of knowledge of the input 

forces does affect the operational modal parameters ex-

tracted. Also mode shapes obtained from OMA cannot be 

normalised accurately, subsequently affecting the develop-

ment of mathematical models thereafter. However, ISMA 

[31] has the advantages of the OMA and EMA combined. It 

carries out the analysis while the system is in operation and is 

also able to provide the actual input forces in the transfer 

functions, hence allowing for better/more detailed modal 

extractions and mathematical model development. 

Considering the Dynamic Design Verification (DDV) 

procedure, modal analysis technique based on Frequency 

Response Functions (FRF) was used to determine the dy-

namic characteristics (mode shapes and associated natural 

frequencies) of the stationary extruder motor and its gearbox 

[17,37], shown in Fig. 1. Carrying out measurement using 

Fast Fourier Transformation (FFT) analysis on a continuous 

system, the FRF, being an estimated quantity, is obtained 

over a number of averages. The extruder motor (Fig. 1a) has 

a sleeve-type motor bearing, the motor shaft and gear are 

linked with clutch-type coupling, and the gearbox (Fig. 1b) 

uses a rolling element bearing. 

  

               (a)                    (b) 
Figure 1.  (a) Extruder motor, and (b) Gearbox  

The mathematical model of a time varying rotating 

structure can be expressed as   

[ ]{ } [ ]{ } [ ]{ } { }FyKyDyM =++ &&&               (1) 

The FRF of the of a viscously damped system of form (1) 

subjected to a harmonic excitation of the form 

( ){ } ( ){ } tjejftF ωω=  is expressed as 

   ( )[ ] [ ] 12 −
−+= MDjKj ωωωα    (2) 

Modal analysis was performed on the extruder motor and 

its gearbox using a real-time data acquisition system, impact 

hammer, tri-axial accelerometers and ME’scope software. 

All the measurement locations taken using tri‐axial accel-

erometer have been linked together to obtain the ME’scope 

wire‐mesh model of the extruder motor and the gearbox as 

shown in Fig. 1.  

In Fig. 2, the modal frequencies around the running speed 

are shown for both the extruded motor and the gearbox. It is 

quite clear that the modes of interest are the ones close to the 

running speed of 21.2 Hz / 1272 rpm. 
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(a) 

 

(b) 

Figure 2.  Modal Frequencies of the (a) Extruder motor, (b) Gearbox  

The first two mode shapes of the motor at the natural 

frequencies of 22.2 Hz and 32.0 Hz, and first two mode 

shapes of the gearbox at the natural frequencies of 18.1 Hz 

and 36.7 Hz respectively, are shown in Fig.3a and Fig. 3b. 

 

(a) 

   

(b) 

Figure 3.  Mode Shapes of the (a) Extruder motor, (b) Gearbox  

 

Listed in Table 1 and Table 2 are the first four modes ex-

tracted from the FRF spectrums. The modes of concern - 

based on the FRF - are identified near the running speed of 

21.2 Hz / 1272 rpm of the motor. The 1st natural frequency 

of both extruder motor and gearbox recorded at 22.2 Hz and 

18.1 Hz are the closest to the running speed of 21.2 Hz. 

Table 1.  Frequency modes for the Extruded Motor 

Shape Frequency(Hz) Damping(%) 

1 22.2 16.1 

2 32.0 8.45 

3 52.1 4.32 

4 63.7 4.59 

Table 2.  Frequency modes for Gearbox 

Shape Frequency(Hz) Damping(%) 

1 18.1 12.1 

2 36.7 7.70 

3 55.1 9.23 

4 64.2 1.20 

2.2. Operating Deflection Shapes (ODS) 

Operating Deflection Shapes (ODS) can be defined as 

any forced motion of two or more Degrees of Freedom 

(DOFs) - points & directions - on an in-service machine or 

structure [38]. ODS can be divided into two categories: time 

domain ODS and frequency domain ODS. Time domain 

ODS is extremely useful in giving an overall ODS, which 

can be planar, orbital or 3D for a non-stationary signal such 

as a transient signal compared to frequency domain ODS. It 

is recommended to perform frequency domain ODS for 

stationary signal such as a steady state signal under a con-

stant operating conditions [39]. 

In the Dynamic Design Verification (DDV) procedure, 

frequency domain ODS is considered next to determine the 

extruder motor and gearbox deflection while in operation. 

The vibrations response Y(ω) which defines the structure 

deflection at a particular frequency [15,40] (i.e. the ODS of 

the system subject to a harmonic excitation) can be ex-

pressed by 

( )
{ } { }{ }

∑
= −

=
n

r r

r
T
r F

Y

1
2

2ω
ω

ψψ
ω     (3) 

where ω is the excitation frequency, t is the time, F is the 

harmonic force defined by { } { } tiefF ω=  : rψ  is the eigen-

vector and rω  is the eigenvalue of the mode r. The local 

amplitude Y(ω) in Eq. (1) was obtained as a forced vibration 

[25] from 

  [ ][ ]{ } [ ][ ]{ } [ ][ ]{ } { }FKDM =++ ϑψϑψϑψ &&&    (4) 

where [M] is the mass matrix, [D] is the damping matrix 

expressed as a linear combination of [M] and [K], F is the 

external force, [ ]{ }ϑψ  represents the forced response and ψ 

the mode shape vectors.  

To capture deflection while in operation, the ODS analysis 

was performed on the extruder motor and its support using 

one uni-axial accelerometer as reference (at a reference point) 

and a tri-axial accelerometer to measure vibration signal (at 

all the pre-defined measurement locations). Various fre-

quency domain measurements including Fast Fourier 

Transform (FFT) spectrum, Frequency Response Functions 

(FRF), or ODS FRF obtained from Cross and Auto Power 

spectrum can be used to obtain ODS. 

 

(a) 
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(b) 

Figure 4.  ODS analysis of the Extruder Motor (a) FFT Spectrum, and (b) 

Maximum deflection @ Running Speed of 21.2Hz/1272 rpm 

The ODS shapes of the extruder motor obtained using FFT 

linear spectrum are shown in Fig. 4. It was observed that the 

FFT spectrum (Fig. 4.a) was dominated by the running speed 

of the motor at 21.2Hz (1272 rpm). The operating shape at 

21.2Hz showed maximum deflection occurs at the motor 

‘non-drive end’ (Fig. 4.b). Moreover, a top view of the ODS 

shows the extruded motor to be pivoted at the gearbox in-

board bearing. 

4. Problem Solution 

A Finite Element Analysis (FEA) was performed on the 

extruder motor and its gearbox. The first four modes of vi-

bration generated from the FEA results (Fig. 5) are at 21.5 

Hz, 36.6 Hz, 49.7 Hz and 64.8 Hz. It can be observed that 1st 

natural frequency of both the extruder motor and gearbox 

from FEA obtained at 21.6Hz are very close to the running 

speed of 21.2Hz, while the rest of the frequencies were much 

greater than the running speed of concern. 

 

(a) 

 

(b) 

Figure 5.  Extruder motor and Gearbox vibration modes (a) 1st mode, (b) 

2nd mode, (c) 3rd mode, (d) 4th mode 

3.1. Structural Modifications 

With reference to the extruder motor and gearbox system 

design, the Finite Element Analysis (FEA) performed on the 

3D model was correlated with the modal analysis as an im-

portant part of the verification process [41]. In this case, the 

correlation established between the modal analysis and Op-

erating Deflection Shape (ODS) analysis results (on one side) 

and the Finite Element (FE) modal analysis (on the other) 

indicate a resonance problem due to inadequate supports and 

weakness of the motor foundation. The ODS study showed 

extreme vibrations close to the running speed forcing the 

extruded motor into pivoting/rotating during operation and 

applying stress at the concrete base foundations (Fig. 6). 

 

(a) 

 

         (b) 

Figure 6.  Concrete base of the (a) extruder motor and, (b) Gearbox 

When high levels of vibration propagate from the vibra-

tion source, foundation isolation is highly recommended [11].  

The critical effect of resonance as a dynamic amplifier was 

observed when frequencies matched the supporting founda-

tion structure. Due to the mentioned amplification effect, a 

detailed frequency analysis is often needed to evaluate the 

assembly’s general behaviour.  

The supporting element and concrete foundation also 

formed a an integral part of the overall system and OD 

showed excessive displacement at the none drive end due to 

inadequate stiffness of the supporting foundation.  

Therefore, the ODS results and the FEA simulation indi-

cate that the motor support and concrete foundation does not 

achieve the designed stiffness and causes a “stiffness drop”. 

This has subsequently caused a shift in the foundation nat-

ural frequencies, bringing it into the extruder motor operat-

ing range. Once the weak element of the structure has been 

identified, Structural Dynamic Modification (SDM) was 

applied iteratively using ANSYS FEA in order to adjust the 

foundation stiffness. The adjustment in Fig. 7, applied to the 

‘non-drive end’ of the motor by introducing additional 

support, aims to stiffen the connection between the motor 

and the foundation. The modification requires the additional 

C-Channel to be rigidly fixed to the foundation by anchor 

bolts, plates and grouting as base (see Fig. 6 and Fig. 7 for 

details). 
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Figure 7.  Structural dynamic modifications applied to the extruder motor - 

showing the dimensions and position of the additional leg for the motor at 

non-drive end 

Figure 8 shows the Finite Element Analysis of the pro-

posed correction/adjustment structural modification. The 

performed structural modification shifted the 1st natural 

frequency about 40% away from the operating speed while 

the 2nd natural frequency had remained steady and became 

the lowest natural frequency for the extruder motor. The 

resonances of the motor are now well away from the running 

speed, no pivoting/rotating of the supports appears during 

operation and the applied stress at the foundation is drasti-

cally reduced. 

 

 

Figure 8.  Extruder motor and Gearbox new modes of vibrations (Left) 

1st bending mode and (Right) 2nd bending mode  

5. Conclusion  

In this paper, an investigation into the application of a 

non-destructive evaluation technique of an extruder motor 

has been presented. The experimental technique, based on 

Experimental Modal Analysis (EMA) and Operating De-

flection Shape (ODS), was applied for an in-service moni-

toring of extruder motor vibrations. The ODS study showed 

that extreme vibrations of the extruder motor was due to its 

structural natural frequency being “close” to the running 

speed of the extruder motor which causes “near-resonance” 

excitation during operation. It was observed that the root 

cause of the high vibration was due to weakness of the motor 

support and concrete foundation supporting the extruder 

motor. 

Using a Dynamic Design Verification (DDV) procedure 

the 1st natural frequency was shifted about 40% away from 

the operating speed preventing the supports from pivoting 

during operation and therefore minimizing the applied stress 

at the foundation. It was concluded that a general require-

ment for foundation or base natural frequency is that it 

should be at least 20% - 25% away from the machinery 

operating speed. 
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