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Abstract5

This paper introduces Singular Spectrum Analysis (SSA) for tourism demand forecasting6

via an application into total monthly U.S. Tourist arrivals from 1996-2012. The global7

tourism industry is today, a key driver of foreign exchange inflows to an economy. Here, we8

compare the forecasting results from SSA with those from ARIMA, Exponential Smoothing9

(ETS) and Neural Networks (NN). We find statistically significant evidence proving that10

the SSA model outperforms the optimal ARIMA, ETS and NN models at forecasting total11

U.S. Tourist arrivals. The study also finds SSA outperforming ARIMA at forecasting U.S.12

Tourist arrivals by country of origin with statistically significant results. In the process, we13

find strong evidence to justify the discontinuation of employing ARIMA, ETS and a feed-14

forward NN model with one hidden layer as a forecasting technique for U.S. Tourist arrivals15

in the future, and introduce SSA as its highly lucrative replacement.16

Keywords: United States; Tourist arrivals; Tourism demand; Forecasting; Singular Spectrum17

Analysis; ARIMA; Exponential Smoothing; Neural Networks.18

1 Introduction19

Previous research has highlighted the importance of accurate demand forecasting to the tourism20

sector. The dependence of tourism on both investment and infrastructure development make a21

degree of advance planning essential, as many authors have recognised. Well informed investment22

decisions are vital for efficient resource allocation in both tourism and supporting sectors. The23

economic downturn and an increased awareness of world economic volatility have strengthened24

rather than weakened this need to forecast tourist demand accurately.25

As discussed in the following section there is an extensive and high profile existing literature26

on forecasting tourism demand. This literature covers a wide range of different forecasting27

techniques, applied to a wide range of different countries or locations. The purpose of this paper28

is to add to this literature by introducing a new model for forecasting tourist arrivals and to29

apply it to inbound U.S. Tourist arrivals. Forecasting U.S. Tourist arrivals is both a demanding30

and important task, mainly because these data exhibit a high degree of fluctuation over time.31

Figure 1 depicts the time series for total monthly U.S. Tourist arrivals between January 1996 and32

November 2012. A first look at the time series suggests signs of seasonality in U.S tourist arrivals.33

The figure also shows that the tourism industry in the U.S. is experiencing rapid development in34

terms of demand. Since 2002 U.S. Tourist arrivals exhibit a strong upward trend. The need to35
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allocate resources for future growth is further evidence of the importance of developing accurate36

demand forecasting for investors, managers and policy makers in the tourism sector.37
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Figure 1: Total monthly U.S. Tourist arrivals time series (Jan. 1996 - Nov. 2012).

There are a number of components which define a good demand forecasting model for tourism38

management. Firstly, the forecasting model has to be able to pick up strong variations in tourist39

arrivals as most tourist demand time series show increasing fluctuations with seasons. Secondly,40

given the seasonal fluctuations, the measure of forecasting accuracy based on the forecasting41

error alone is not sufficient. It is important that the forecasting model is equally able to predict42

the actual direction of change. If not, investment decisions and the resources allocated to tourism43

could find themselves catering for a peak in demand but actually experiencing a trough. Thirdly,44

a tourism demand forecasting model needs to be efficient both in the short and long run. This45

is because long term investments are needed to be able to supply to the short term demand46

fluctuations. In this paper we consider all these aspects as we introduce the Singular Spectrum47

Analysis (SSA) technique for forecasting U.S. Tourist arrivals and compare its performance with48

other forecasting models currently used to forecast tourism demand. In brief, the SSA technique49

seeks to decompose the original time series, filter the noise and reconstruct a new time series50

which is less noisy. We then use this newly reconstructed time series for forecasting future data51

points.52

The remainder of this paper is organized as follows. Section 2 provides a review of the53

existing literature on the forecasting of tourism demand. Section 3 provides a review of the54

main forecasting techniques employed. Section 4 introduces the data for U.S. inbound tourist55

arrivals and discusses the measures for evaluating the forecasting performance. Section 5 reports56

the empirical results from the SSA technique in comparison to other, previously employed,57

forecasting techniques. Conclusions are provided in Section 6.58
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2 Literature Review59

The existing literature on the forecasting of tourism demand is wide ranging both in terms of60

the different techniques employed and in terms of the different countries covered. A common61

theme in almost all of the papers also helps to explain the reasons behind this extensive interest62

in forecasting tourism demand. A large number of authors including Chan and Lim (2011), Chu63

(2008), Coshall and Charlesworth (2011) and, Goh and Law (2002) emphasise the importance64

of forecasting for investment and development planning in tourism. This message is re-enforced65

by authors, such as Gounopoulos, Petmezas, and Santamaria (2012) and Hui and Yuen (2002),66

who add that such forecasts are also important as a consequence of the vulnerability of tourism67

to large fluctuations in demand. Some authors also emphasise the importance of tourism to68

a particular economy to re-enforce the importance of accurately forecasting tourism demand.69

Examples include work by Jackman and Greenidge (2010) for Barbados and Chu (2011) for70

Macau. Those readers seeking a detailed review of the literature, the paper by Song and Li71

(2008) covers 121 studies produced from 2000 to the date of publication. This review article72

offers a further reason for the sustained and extensive interest in forecasting tourism demand.73

They found that no single forecasting model outperforms all other in all possible situations.74

This implies that the literature is not only of importance but also in need of further research.75

A more recent review of forecasting and the closely related issue of tourism demand modelling76

is included in the paper by Song et al. (2012).77

Perhaps the most common form of study is one that assesses the performance of one or more78

forecast techniques relative to a set of alternatives. Alvarez-Diaz and Rossello-Nadal (2010)79

examine forecasts of UK tourist arrivals in the Balerics, using meteorological variables. They80

compare the performance of an ARIMA model and a non-causal autoregressive neural network,81

finding that the latter performs better. Assaf, Barros, and Gil-Alana (2011) examine persistence82

and seasonality in data for tourist arrivals into Australia. They compare the performance of83

three different forecasting models, two standard methods using stationarity of degrees 0 and84

1 and a model with fractional degrees of integration. Athanasopoulos and De Silva (2012),85

in a study of tourist arrivals in Australia and New Zealand propose a model which captures86

time varying seasonality within a vector innovation time series model. They produce evidence87

that this model offers greater forecast accuracy than a number of alternatives. Cho (2003)88

investigates three different techniques (exponential smoothing, univariate ARIMA and artificial89

neural networks) to forecast tourist arrivals in Hong Kong, finding the artificial neural networks90

forecasts to be the most accurate.91

Chu (2008) explores fractionally integrated ARMA models in forecasting tourism arrivals in92

Singapore, observing that they perform well in comparison to more traditional ARIMA models.93

Chu (2011) compares a piecewise linear model with autoregressive trend, seasonal ARIMA and94

fractionally integrated ARMA models in forecasting tourism demand for Macau, concluding the95

piecewise linear model to be the most accurate. Likewise, Gil-Alana (2005) considers forecasts96

using monthly data for tourist arrivals into the US using a procedure combining unit and frac-97

tional integration in seasonal variation. He finds evidence of long memory and mean reverting98

behaviour. Goh and Law (2002) use data for Hong Kong tourist arrivals to compare forecasts99

from a stochastic non-stationary seasonality model (SARIMA) and an intervention component100

model (MARIMA) with a selection of eight other time series models. Their results suggest the101

SARIMA and MARIMA models to have the highest forecast accuracy of the models analysed.102

Greenidge (2001) uses a structural time series model to provide and evaluate forecasts for103

tourism arrivals in Barbados. Jackman and Greenidge (2010) further explore the structural time104

series model for tourist arrivals in Barbados, finding that it produces more accurate forecasts105
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than a number of alternatives. Hadavandi et al. (2011) present forecasts for tourism arrivals in106

Taiwan using a hybrid artificial intelligence model, involving a fuzzy rule-based system, which107

they found to be more accurate than a selection of three alternative approaches. Kim et al.108

(2011) consider the performance of prediction intervals for tourism arrivals into Hong Kong109

and Australia for a selection of time series forecasting models. They find an autoregressive bias110

corrected bootstrap model to perform best of those tested. Lim and McAleer (2001) analysed the111

performance of various different exponential smoothing models in forecasting tourist arrivals in112

Australia, concluding that using models expressed in first differences increased forecast accuracy.113

Shareef and McAleer (2007) evaluate the abilities of ARMA models to capture the effects of114

volatility in the time series of tourism arrivals in the Maldives. Song et al. (2010) focus on a115

different aspect of forecasting tourism demand - what is the appropriate measure of demand?116

Using data for Hong Kong they find use of tourism arrivals to be more affected by income in117

the country of origin and tourism expenditure to be more sensitive to prices. Wan, Wang, and118

Woo (2013), also using tourist arrival data for Hong Kong, assess the properties of disaggregated119

forecasts using a seasonal ARIMA model relative to aggregate forecasts. They find the sum of120

disaggregated forecasts to provide greater accuracy than an aggregate forecast.121

A very closely related strand in the literature seeks to combine two or more forecasting122

models into a new hybrid model and to test whether this results in greater forecast accuracy.123

Andrawis, Atiya, and El-Shishiny (2011) finds that, in forecasts of tourism arrivals into Egypt,124

combining short and long term forecasts improves accuracy compared to the individual forecasts.125

Cang (2011) examines tourism arrivals into the U.K. and examines three different forecasting126

models support vector neural networks, seasonal ARIMA and an exponential smoothing model.127

He finds that non-linear combinations of these models offer greater forecast accuracy than the128

individual specifications. Coshall and Charlesworth (2011) consider a number of forecasting129

models, both individually and in combination. Using data on UK outbound tourism they also130

find that forecast accuracy is improved by using a combination of forecasts.131

Shen, Li, and Song (2008) focus on outward leisure tourism from the U.S. and examine seven132

different types of individual forecasting techniques. Their results also suggest that forecast accu-133

racy is improved by combining forecasts. Shen, Li, and Song (2011) conduct a similar analysis of134

UK outward tourism, using seven different individual forecasting methods and six combinations.135

Again their findings suggest that forecast accuracy is improved by using combinations of fore-136

casts. Song et al. (2011) develop a model to forecast Hong Kong tourist arrivals which combines137

a structural time series model with a time varying parameter one. They find that, relative to a138

number of time series models, their hybrid model exhibits greater forecast accuracy. Song, Gao,139

and Lin (2013), again with respect to tourism arrivals in Hong Kong, consider a model which140

combines quantitative forecasts which judgemental forecasting from an online survey. They find141

that adding a judgemental component improves forecast accuracy.142

A number of papers consider the implications of shocks to one or more forecasting models143

of tourism demand. Gounopoulos, Petmezas, and Santamaria (2012) consider the forecasting of144

the impact on tourism arrivals in Greece of macro-economic shocks. They compare a number145

of different forecasting methods, finding an ARIMA model to be the most accurate and also146

develop a VAR model. Smeral (2010) examines the effects on forecasts of outbound travel of147

global recession for a sample of countries. Mao, Ding, and Lee (2010) use a cusp catastrophe148

model to forecast the rates of recovery of tourist arrivals in Taiwan from the SARS epidemic.149

Their results suggest that tourism from China and the U.S. recovered quickly but that from150

Japan did not. In a similar vein Page, Song, and Wu (2012) estimate the negative effect of the151

Swine flu epidemic on U.K. tourist arrivals using a time varying parameter model. Fourie and152

Santana-Gallego (2011) use a gravity model to estimate and predict the impact of mega-sports153
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tourism events on tourist arrivals.154

Studies which examine the determinants of demand for tourism are not analysis of fore-155

casting models but are so closely related to the forecasting of tourism demand that they merit156

consideration. Chan and Lim (2011) analyse seasonality in New Zealand tourism demand using157

spectral analysis. They find different categories of inbound tourism share common cyclical be-158

haviour. Naude and Saayman (2005) consider the determinants of tourist arrivals in 43 African159

countries, finding tourism infrastructure and health risks to be of particular importance. Nelson160

et al. (2011) estimate a demand model for visitors to Hawaii from mainland U.S. Their results161

suggest home state income, airfares and (log) distance to be important. Seetanah, Durbarry,162

and Ragodoo (2010) estimate tourism demand for South Africa using a gravity model. Their163

analysis suggests prices, level of development and common borders to all be important deter-164

minants. Seetaram (2010) uses dynamic panel cointegration to estimate demand elasticities for165

tourism arrivals into Australia, finding demand to be inelastic in the short run but elastic in the166

long run.167

Volatility models are built upon an ARIMA model to which they add a second equation to168

explain the conditional variance. Coshall (2009) provides a good overview of these techniques and169

their application to forecasting tourism demand. The most commonly used specification is the170

GARCH model, developed by Bollesrslev (1986). This adds to the ARIMA model an equation to171

explain the conditional variance. This equation models the current period conditional variance172

in terms of lagged squared residuals (capturing the short run impact of past shocks) and longer173

term effects from lagged values of the conditional variance. Extensions of the GARCH model174

include the TGARCH (which use dummy variables to model asymmetric shocks) and EGARCH175

models. For example, Kim and Wong (2006) use both the EGARCH and TGARCH models176

to provide forecasts of tourism demand in Korea with asymmetric responses to news shocks.177

Coshall (2009), in an application to UK outbound tourism, shows that forecasts using the178

EGARCH model can be combined with those from an exponential smoothing model such that179

the combined forecast is more accurate than either of the individual methods.180

The use of Singular Spectrum Analysis (SSA) in the tourism sector was firstly evaluated by181

Beneki et al. (2012) via an application into signal extraction and forecasting of U.K. Tourist182

income. Here, we introduce SSA as a new model for forecasting tourism demand in the future.183

The SSA technique is swiftly being recognized as a powerful, nonparametric time series analysis184

and forecasting technique. The roots of SSA are closely associated with Broomhead and King185

(1986a, 1986b). The applications of SSA are diverse and its growing success is evident in186

many different fields (see for example, Lisi & Medio, 1997; Ghil et al. 2002; Hassani, Heravi,187

& Zhigljavsky, 2009; Ghodsi et al. 2009; Hassani & Thomakos, 2010; Hassani, Heravi, &188

Zhigljavsky, 2012; Hassani, Soofi, & Zhigljavsky, 2013; Beneki & Silva, 2013; Silva, 2013). As189

noted above, there exists various different techniques which have been applied for forecasting190

tourism demand in the past. In this paper we compare the forecasting results from SSA with191

those obtained from ARIMA (Automatic-ARIMA), Exponential Smoothing (ETS) and Neural192

Networks (nnetar). The ETS methodology gained its popularity through the sound performance193

at the M3-competition, and the state space framework which now underlies the newly developed194

ETS is widely applicable, like ARIMA, and provides a forecast with the backing of a good195

stochastic model (Hyndman et al. 2002). Neural networks has frequently been adopted in196

tourism demand forecasting as mentioned earlier on. It is important to note that here we use197

the most basic version of Vector SSA along with optimal choices, and the optimal version of198

ARIMA. Given the choice of forecasting methods we are comparing the forecasting accuracy199

provided by both parametric and nonparametric time series analysis and forecasting techniques.200

In comparison to parametric forecasting techniques, nonparametric techniques are not bound by201
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any of the parametric assumptions such as stationarity and normality. As such, nonparametric202

models are able to provide a true approximation of the real situation. Also it is not the intention203

of this paper to show SSA as the universally best model for forecasting tourist arrivals. Instead,204

we are interested in introducing SSA as an alternative method, and further research is required205

to compare SSA’s performance against many other forecasting techniques.206

3 Forecasting Methods207

3.1 Auto-Regressive Integrated Moving Average (ARIMA)208

We employ the most optimal version of Box and Jenkins (1970) ARIMA model. This optimal209

version of ARIMA is provided via the forecast package in the R software and is more popular210

as Automatic-ARIMA. This particular version was mainly developed to enable ease of use, and211

provide swift, optimal forecasting results for those adopting the ARIMA method. A detailed212

description of the algorithm and the optimality of Automatic-ARIMA can be found in Hyndman213

and Khandakar (2008). The Automatic-ARIMA algorithm is summarized below. In doing so214

we mainly follow Hyndman and Athanasopoulos (2013).215

In terms of determining the number of differences d, required for the ARIMA modelling216

process, the algorithm allows one to select this value using three different approaches; KPSS217

unit root tests, Augmented Dickey-Fuller (ADF) test or the Phillips-Perron (PP) unit root218

tests. It has been found that the KPSS tests lead to better forecasts in comparison to the ADF219

and PP test when applied to the M3 competition data (Hyndman 2014). However, instead of220

relying on these results alone, in this paper we consider modelling using all three approaches221

and report the results based on the KPSS unit root tests from Kwiatkowski et al. (1992) for222

the number of differences d required as it provided better forecasts for U.S. Tourist arrivals in223

comparison to ADF and PP tests. It should also be noted that according to Hyndman and224

Athanasopoulos (2013), when a time series is nonstationary, the Automatic-ARIMA forecasting225

algorithm accounts for this by automatically taking first differences of the data until the data226

are stationary.227

Thereafter, p and q are calculated by minimizing the Akaike Information Criterion (AIC).228

The optimal model will then be the model with the smallest AIC, and it is selected from229

ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0) and ARIMA(0,d,1). Finally, the constant c is230

included or set to zero in the model depending on whether d = 0 or whether d ≥ 1. Log trans-231

formations can be attained by setting lambda=0 where necessary to comply with the parametric232

restrictions underlying ARIMA. Table 2 shows the ARIMA model parameters used for forecast-233

ing total U.S. Tourist arrivals whilst the model parameters for forecasting U.S. Tourist arrivals234

by country of origin are shown in Table 7.235

3.2 Exponential Smoothing (ETS)236

The ETS technique is an automatic forecasting model incorporating the foundations of expo-237

nential smoothing and provided through the forecast package for the R software. Earlier models238

of exponential smoothing did not provide a method for easily calculating prediction intervals239

(Makridakis, Wheelwright, & Hyndman 1998). For a detailed description of ETS refer to Hynd-240

man and Athanasopoulos (2013). In brief, the ETS model considers the error, trend and seasonal241

components in choosing the best exponential smoothing model from over 30 possible options242

by optimizing initial values and parameters using the MLE for example and selecting the best243

model based on the AIC. As noted in Hyndman and Athanasopoulos (2013), both multiplicative244
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and additive models give the same point forecasts with varying prediction intervals. Here we245

report the most favourable results for ETS by evaluating between point forecasts and prediction246

intervals. The ETS model parameters for forecasting total U.S. Tourist arrivals are reported in247

Table 3.248

3.3 Neural Networks (NN)249

Neural networks is a popular forecasting method for tourism demand according to the literature250

review in Section 2. Here we use an automatic forecasting model known as nnetar and provided251

through the forecast package in R. For a detailed explanation on how the nnetar model operates,252

see Hyndman et al. (2013). In brief, nnetar is structured as a system of feed-forward neural253

networks with lagged inputs and one hidden layer. The nnetar function trains 25 networks254

by using random starting values and then obtains the average of the resulting predictions to255

compute the forecasts. It should be noted that the simplest form of NN models contain no256

hidden layers and are then equivalent to linear regression. One of the NN model parameters257

are referred to as ‘weights’ and these are selected based on a loss function embedded into the258

learning algorithm. This loss function could for example be the Mean Squared Error (MSE) or259

even the Root Mean Squared Error (RMSE) which has been adopted for the loss function in260

the SSA algorithm explained below. We leave the automatic NN forecasting model to select the261

best parameters to suit the data. The resulting model parameters for NN model are shown in262

Table 3.263

3.4 Singular Spectrum Analysis (SSA)264

The SSA technique is different and advantageous in comparison to classical time series methods265

as the techniques which fall under the latter, forecasts both the signal and noise (assuming266

that a time series consists of signal and noise) whilst SSA seeks to filter the noise and forecast267

the signal. The univariate SSA technique has two variations known as Vector SSA (VSSA)268

and Recurrent SSA (RSSA). In this paper we concentrate on the application of the VSSA269

model for forecasting U.S. Tourist arrivals.The choice of VSSA over RSSA is motivated by two270

factors. First and foremost, the total U.S. Tourist arrivals time series (see, Figure 1) shows271

the presence of shocks around the periods of 2002 and 2008. Golyandina, Nekrutkin, and272

Zhigljavsky (2001) found the VSSA model is more robust in comparison to the RSSA model,273

and thus able to provide better forecasts in the presence of such shocks which create structural274

breaks in a time series. This was later confirmed by Pepelyshev (2010) who also provides275

a detailed comparison between recurrent and vector forecasting. Secondly, instead of solely276

relying on Golyandina, Nekrutkin, and Zhigljavsky’s (2001) and Pepelyshev (2010) findings, we277

compared the performance of both VSSA and RSSA models at forecasting total U.S. Tourist278

arrivals (results are not reported here) and found no statistically significant difference in the279

forecasting accuracy between the two methods, except at h = 12 steps ahead where the VSSA280

model outperformed the RSSA model with statistically significant results. Thus, taking these281

two factors into consideration, we selected the VSSA model as the more suitable counterpart282

for forecasting U.S. Tourist arrivals. We use the R software to obtain the VSSA forecasts with283

the aid of an automatic VSSA forecasting code. In brief, the SSA technique can be summarised284

as follows. The SSA technique has two stages and two choices as mentioned in Hassani and285

Mahmouvdvand (2013). The two stages are referred to as Decomposition and Reconstruction,286

whilst the two choices are known as the window length L and the number of eigenvalues r. Each287

of the two stages include two separate steps known as Embedding, Singular Value Decomposition288

(SVD) and, Grouping and Diagonal Averaging. A detailed description on the theoretical and289
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practical foundations of SSA can be found in Golyandina, Nekrutkin, and Zhigljavsky (2001)290

and Hassani (2007) which explains the process with examples. Here we provide a brief summary291

of the basic SSA process, and in doing so we mainly follow Hassani (2007).292

Stage 1: Decomposition293

1st step: Embedding294

The first step is concerned with mapping a one dimensional time series YN = (y1, . . . , yN )295

into the multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)
′ ∈ RL, where296

K = N−L +1. This process is referred to as embedding whilst the vectors Xi are called L-lagged297

vectors. The single choice of the embedding stage is the window length L, which is an integer298

such that 2 ≤ L ≤ N . This step results in the trajectory matrix X, which is also a Hankel299

matrix and takes the form: X = [X1, . . . , XK ] = (xij)
L,K
i,j=1.300

2nd step: Singular Value Decomposition (SVD)301

Next we obtain the singular value decomposition of the trajectory matrix and represent it as302

a sum of rank-one bi-orthogonal elementary matrices. The eigenvalues of XX
′
are denoted by303

λ1, . . . , λL in decreasing order of magnitude (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the orthonor-304

mal system (that is, (Ui, Uj)=0 for i ̸= j and ∥Ui∥=1 of the eigenvectors of the matrix XX
′

305

corresponding to these eigenvalues. Here, ∥Ui∥ is the norm of the vector Ui, and (Ui, Uj) is the306

inner product of the vectors Ui and Uj . Set307

d = max(i, such thatλi > 0) = rankX.

If we denote Vi = X
′
Ui/

√
λi, then the SVD of the trajectory matrix can be written as:308

X = X1 + · · ·+Xd, (1)

where Xi =
√
λiUiVi

′
(i = 1, . . . , d). The matrices Xi are elementary matrices as they have309

rank 1, Ui and Vi denotes the left and right eigenvectors of the trajectory matrix. The collection310

(
√
λi, Ui, Vi) is called the i-th eigentriple of the matrix X,

√
λi (i = 1, . . . , d) are the singular311

values of the matrix X and the set {
√
λi} is called the spectrum of the matrix X. The expansion312

(1) is said to be uniquely defined if all the eigenvalues have a multiplicity of one.313

Stage 2: Reconstruction314

1st step: Grouping315

At the first step in the second stage we split the elementary matrices Xi into several groups316

and sum the matrices within each group. This is referred to as the grouping step. Denote317

I = {i1, . . . , ip} as a group of indices i1, . . . , ip. Then the matrix XI corresponding to the group318

I can be defined as XI = Xi1 + · · · +Xip . The spilt of the set of indices J = 1, . . . , d into the319

disjoint subsets I1, . . . , Im corresponds to the representation320

X = XI1 + · · ·+XIm . (2)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping. For a given321

group I the contribution of the component XI into the expansion (1) is measured by the share322

of the corresponding eigenvalues:
∑

i∈I λi/
∑d

i=1 λi.323
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2nd step: Diagonal Averaging324

Here we perform diagonal averaging in order to transform each matrix I into a time series, which325

is an additive component of the initial series YT . For example, suppose zij stands for an element326

of a matrix Z, then the k -th term of the resulting series is obtained by averaging zij over all327

i, j such that i + j = k + 2. This procedure is also known as Hankelization of the matrix Z.328

The output of the Hankelization of a matrix Z is the Hankel matrix HZ, which is the trajectory329

matrix corresponding to the series obtained as a result of the diagonal averaging. In its turn,330

the Hankel matrix HZ uniquely defines the series by relating the value in the diagonals to the331

values in the series. By applying the Hankelization procedure to all matrix components of (2),332

we obtain another expansion:333

X = X̃I1 + . . .+ X̃Im (3)

where X̃I1 = HX. This is equivalent to the decomposition of the initial series YN = (y1, . . . , yN )334

into a sum of m series:335

yn =

m∑
k=1

ỹ(k)n (4)

where Ỹ
(k)
N = (ỹ

(k)
1 , . . . , ỹ

(k)
N ) corresponds to the matrix XIk .336

337

In the past, the selection of SSA choices of L and r, such that they are optimal, has been338

a major issue. However, in this paper, we use the Root Mean Squared Error (RMSE) criterion339

(see, Section 4.2) to determine the optimal L for decomposing the U.S. Tourist arrivals series,340

and the optimal r for reconstructing the less noisy series which can then be used for forecasting341

(it is also possible to use any other criteria for minimising the forecasting error as explained342

below in the forecasting algorithm). Accordingly, we look for the combination of L and r which343

provides the lowest RMSE, and this in turn represents the optimal decomposition and recon-344

struction choices for the SSA model.1 Noteworthy is the fact that unlike with parameters of345

ARIMA, ETS and NN models, these optimal VSSA choices remain fixed for the respective hori-346

zon. The automated VSSA code is able to perform this task by evaluating all possible SSA347

choices for a given time series. The resulting optimal VSSA choices are presented in Table 3348

for total U.S. Tourist arrivals and Table 8 for U.S. Tourist arrivals by country of origin. As349

such, this paper adopts basic VSSA with optimal choices for forecasting U.S. Tourist arrivals.350

Below, we provide a concise explanation of the VSSA forecasting algorithm that has been used351

for obtaining forecasts for U.S. Tourist arrivals.352

1. Consider a real-valued nonzero time series (for example, Total U.S. Tourist arrivals) YN =353

(y1, . . . , yN ) of length N .354

2. Divide the time series into two parts; 2
3

rd
of observations for training and validating the355

VSSA model and 1
3

rd
for testing the forecast accuracy. This is a common and widely356

accepted practice, visible in a majority of forecasting algorithms.357

3. Use the training data to construct the trajectory matrix X = (xij)
L,K
i,j=1 = [X1, ..., XK ],358

where Xj = (yj , ..., yL+j−1)
T and K = N −L+1. Initially, we begin with L = 2 (2 ≤ L ≤359

N
2 ) and in the process, evaluate all possible values of L for YN .360

4. Obtain the SVD of X by calculating XXT for which λ1, . . . , λL denotes the eigenvalues in361

decreasing order (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the corresponding eigenvectors. The362

output of this stage is X = X1 + . . .+XL where Xi =
√
λiUiV

T
i and Vi = XTUi/

√
λi.363

1The optimal SSA code used in this study is available upon request.
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5. Evaluate all possible combinations of r (1 ≤ r ≤ L− 1) singular values (step by step) for364

the selected L and split the elementary matrices Xi (i = 1, . . . , L) into several groups and365

sum the matrices within each group.366

6. Perform diagonal averaging to transform the matrix with the selected r singular values into367

a Hankel matrix which can then be converted into a time series (the steps up to this stage368

filters the noisy series). The output is a filtered series that can be used for forecasting.369

7. Set v2 = π2
1 + . . . + π2

r , where πi represents the final component of the eigenvector Ui370

(i = 1, . . . , r). Assume that, eL = (0, 0...., 1) is not a component of the linear space Lr,371

which implies Lr is not a vertical space.372

8. Consider the matrix Π = V▽(V▽)T+(1−v2)AAT , whereA = (a1, . . . , aL−1) =
∑r

i=1 πiU
▽
i /(1−373

v2) and V▽ = [U▽
1 , ..., U

▽
r ], where V▽ is the first L− 1 components.374

9. Next, consider the linear operator θ(v) : Lr 7→ RL, where θ(v)U =

(
ΠU▽

ATU▽

)
.375

10. Then, define vector Zi after grouping and eliminating noise components, such that

Zi =

{
X̃i for i = 1, . . . ,K

θ(v)Zi−1 for i = K + 1, . . . ,K + h+ L− 1,

where, X̃i’s are the reconstructed columns of the trajectory matrix.376

11. Construct the matrix Z = [Z1, ..., ZK+h+L−1] and perform diagonal averaging to obtain377

a new series y1, ..., yN+h+L−1, where yN+1, ..., yN+h forms the h terms of the SSA Vector378

forecast.379

12. Define a loss function L.380

13. When forecasting a series YN h-step ahead, the forecast error is minimised by setting381

L(XK+h − X̂K+h) where the vector X̂K+h contains the h-step ahead forecasts obtained382

using the VSSA forecasting algorithm.383

14. Find the combination of L and r which minimises L and thus represents the optimal VSSA384

choices.385

15. Finally use the optimal L to decompose the series comprising of the training and validation386

set, and then select r singular values for reconstructing the less noisy time series, and use387

this newly reconstructed series for forecasting the remaining 1
3

rd
observations.388

4 The Data and Measures for Evaluating Forecast Accuracy389

4.1 The Data390

This study uses monthly U.S. Tourist arrivals data from January 1996 to November 2012 ob-391

tained via the U.S. Department of Commerce: Office of Travel & Tourism Industries2. Table392

1 provides some descriptives of the data. According to the data, average total tourist arrivals393

into the U.S. between January 1996-November 2012 has been 3,798,000. The maximum number394

2http://travel.trade.gov/research/monthly/arrivals/
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of tourist arrivals during the period of concern is recorded at 7,249,000 in July 2012, whilst the395

minimum number of arrivals was 2,096,000 in November 2001. On average, the lowest tourist ar-396

rivals into U.S. has been recorded from Africa whilst Canada accounts for an average of 1,346,000397

tourist arrivals which is the highest influx of tourists into U.S. from a single country. The skew-398

ness statistic indicates that all time series analysed in this study are in fact skewed and not399

normally distributed. An analysis of the kurtosis suggests that all the series have Platykurtic400

distributions except for Italy which has a Leptokurtic distribution. Accordingly, this informa-401

tion tells us that the Italian time series for tourist arrivals into U.S. has a high probability for402

extreme values with thicker tails and values concentrated around the mean whilst all other time403

series for U.S. Tourist arrivals have a lesser probability for extreme values in comparison to a404

normal distribution and consist of values which have a wider spread around the mean. In order405

to confirm the information provided through the skewness and kurtosis statistics, the data was406

tested for normality using the Shapiro-Wilk test. Accordingly, it was found that Western Eu-407

rope, Total Overseas, Asia and Central America were in fact normally distributed at a p-value408

of 0.05, and that the skewness indicators are thus reliable. Note that in this paper we have409

evaluated the ARIMA model with and without log transformations and the results reported in410

the next section are the best outcomes.411
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Table 1: Descriptive statistics: U.S. Tourist arrivals (Jan. 1996 - Nov. 2012).
Series Mean Median Min. Max. Std. Dev. Skewness Kurtosis
Total Arrivals 3798000 3590000 2096000 7249000 994944 0.86 0.63

Arrivals by country

Canada 1346000 1261000 727300 2945000 417184 1.07 1.24
Mexico 491100 381000 67960 1668000 338299 1.25 0.74
Total Overseas 1961000 1922000 1119000 3089000 382831 0.34 -0.06
Western Europe 859700 848600 418800 1320000 187797 0.14 -0.50
Eastern Europe 39000 36170 17610 76360 11875 0.69 -0.15
Asia 550500 547200 246500 934300 106414 0.22 0.71
Middle East 51600 48300 22930 120200 17996 1.09 1.21
Africa 22870 22540 7869 48080 6863 0.63 0.51
Oceania 65190 65190 28090 165600 23470 1.26 1.81
South America 215200 212100 98580 420300 68877 0.62 0.06
Central America 59510 58540 29730 91860 12097 0.29 -0.14
Caribbean 97440 90670 48330 191100 31712 1.05 0.51
France 86290 78450 36920 201800 31954 1.20 1.39
Germany 136800 132800 54920 235600 39695 0.24 -0.80
Italy 51460 45640 17170 157400 23127 1.88 4.65
Netherlands 41180 38950 20340 90430 12554 1.26 2.23
Spain 36260 30700 13110 104600 16651 1.40 2.15
Sweden 25820 24780 11070 51560 7680 0.84 0.96
Switzerland 29090 27630 13270 74220 10514 1.24 2.22
United Kingdom 338400 349300 164300 475400 64735 -0.46 -0.34
Japan 331200 317700 141600 549100 80225 0.36 -0.21
South Korea 62490 56080 19510 130300 22956 0.78 0.24
PRC & Hongkong 46480 38570 11480 207000 28966 2.63 8.62
ROC (Taiwan) 27830 26480 9451 63400 10223 0.90 0.70
Australia 51380 44940 21000 142400 20462 1.41 2.17
Argentina 30780 31230 9279 64240 13845 0.25 -1.00
Brazil 65960 57190 18680 171000 34633 1.11 0.69
Colombia 31810 29370 11110 74670 12050 0.79 0.18
Venezuela 39330 36370 15780 86160 14841 0.93 0.51

Next we test the U.S. Tourist arrivals series for unit root problems as certain external shocks412

such as recessions (for example) are infamous for making a time series nonstationary in mean413

and variance, thereby creating a structural break in the series. In Table 2 we report the findings414

from the Bai and Perron (2003) test for structural breaks in the U.S. Tourist arrivals series.415

Whilst analysing the causes and reasons behind these structural breaks are beyond the mandate416

of this paper, we will endeavour to outline certain observations. Firstly, we can see that based417

on the Bai and Perron (2003) test, the time series relating to tourist arrivals from the Caribbean418

is the only series that has not been affected by structural breaks. Secondly, except for Canada,419

Mexico, Africa, Central America, Germany, Italy, Spain, United Kingdom, South Korea, PRC420

& Hongkong, Australia and Colombia, all other time series considered in this study are affected421

by a structural break in the year 2001. Interestingly, there are no structural breaks captured422

beyond 2010, and thus we conclude that either the impact of 9/11 is masked in this level of423

data, or its impact was not major enough to cause a structural break in tourist arrivals into U.S.424

The National Bureau of Economic Research 3. reports the U.S. experienced its last recession425

3http://www.nber.org/cycles/cyclesmain.html
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beginning December 2007. The Bai and Perron (2003) test shows there has been a lagged impact426

of this recession on U.S. Tourist arrivals with all series reporting structural breaks in 2010 with427

the exception of Mexico, Western Europe, Africa, Germany, Italy, Netherlands, Spain, United428

Kingdom, Japan, ROC (Taiwan), Colombia and Venezuela. Finally, in terms of U.S. Tourist429

arrivals by country of origin, the most number of structural breaks visible in a time series is430

seen in tourist arrivals from Brazil. The presence of structural breaks would also enable us to431

ascertain the sensitiveness of the various forecasting techniques to such break points.432

Table 2: Break points in U.S. Tourist arrivals time series.
Series Structural Break

Total Arrivals 2001(8), 2004(3), 2007(2), 2010(2)

Arrivals by country

Canada 2006(2), 2010(2)
Mexico 1998(6), 2006(3), 2009(12)
Total Overseas 2001(8), 2004(3), 2007(4), 2010(4)
Western Europe 2001(8), 2004(2), 2007(6)
Eastern Europe 2001(8), 2004(5), 2007(4), 2010(5)
Asia 2001(8), 2004(4), 2010(4)
Middle East 1999(2), 2001(8), 2006(5), 2010(5)
Africa 2008(4)
Oceania 2001(9), 2004(3), 2007(3), 2010(4)
South America 2001(8), 2007(5), 2010(5)
Central America 1998(6), 2001(8), 2007(4)
Caribbean No structural break in series.
France 2001(8), 2007(3), 2010(3)
Germany 2000(10), 2007(2)
Italy 2007(6)
Netherlands 2001(8), 2007(3)
Spain 2007(5)
Sweden 2001(6), 2004(2), 2007(2), 2010(5)
Switzerland 2001(7), 2007(3), 2010(5)
United Kingdom 1998(6), 2008(12)
Japan 2001(8)
South Korea 2005(4), 2010(4)
PRC & Hongkong 2007(4), 2010(5)
ROC (Taiwan) 2001(8)
Australia 2005(4), 2010(4)
Argentina 2001(8), 2006(12), 2010(4)
Brazil 1999(1), 2001(7), 2005(4), 2007(11), 2010(5)
Colombia 2009(5)
Venezuela 2001(12), 2007(6)

In Table 3 we present the model parameters (SSA choices) for each of the forecasting tech-433

niques considered in this study for forecasting total U.S. Tourist arrivals at horizons of h = 1,434

3, 6 and 12 months ahead. It is important to note that each of the techniques have chosen the435
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model parameters (SSA choices) automatically using the respective algorithms (see, Section 3)436

to provide the best possible modelling and forecast for U.S. Tourist arrivals.437

Table 3: Forecasting model parameters for total U.S. Tourist arrivals.
h ARIMA ETS(α, σ) NN(p, P, k) SSA(L, r)

1 order(2,0,1)seasonal(1,1,2) (0.87,0.1245)M NNAR(2,1,1) (38,17)
3 order(2,0,1)seasonal(1,1,2) (0.86,0.1241)M NNAR(2,1,1) (25,14)
6 order(2,0,1)seasonal(1,1,2) (0.87,0.1239)M NNAR(2,1,1) (29,21)
12 order(2,0,1)seasonal(1,1,2) (0.86,0.1231)M NNAR(2,1,1) (15,6)
24 order(2,0,1)seasonal(1,1,2) (0.85,0.1586)M NNAR(2,1,1) (40,25)
36 order(2,0,1)seasonal(1,1,2) (0.92,0.1531)M NNAR(2,1,1) (48,6)

Note:M is an ETS model with multiplicative seasonality.
p is the number of lagged inputs, P is the automatically selected value for seasonal time series, and k is the

number of nodes in the hidden layer. L is the window length and r is the number of eigenvalues.

Next, we consider the VSSA decompositions which is an integral part of the SSA process.438

The weighted correlation (w-correlation) statistic is used to show the appropriateness of the439

various decompositions achieved by SSA (see, Table 3 and Table 7). As mentioned in Golyand-440

ina, Nekrutkin, and Zhigljavsky (2001), the w-correlation statistic which shows the dependence441

between two time series can be calculated as:442

ρ
(w)
12 =

(
Y

(1)
N , Y

(2)
N

)
w

∥ Y
(1)
N ∥w∥ Y

(2)
N ∥w,

where Y
(1)
N and Y

(2)
N are two time series, ∥ Y

(i)
N ∥w =

√(
Y

(i)
N , Y

(i)
N

)
w
,
(
Y

(i)
N , Y

(j)
N

)
w
=

∑N
k=1wky

(i)
k y

(j)
k443

(i, j = 1, 2), wk=min{k, L,N − k} (here, assume L ≤ N/2).444

445

Accordingly, if the w-correlation between two reconstructed components are close to 0, this446

implies that the corresponding series are w-orthogonal and in turn we know the two components447

are well separable (Hassani, Heravi, & Zhigljavsky, 2009). In Table 3 we calculate the w-448

correlations for all the decompositions by comparing the two components of signal and noise.449

Here, we use as signal the reconstructed series containing optimal r components and select the450

remaining r (which does not belong to the reconstruction) as noise. The results indicate that all451

w-correlations are close to 0 which in turn suggests that we have achieved a sound decomposition452

using the VSSA forecasting algorithm (see, Section 3.4). In other words, these w-correlations453

indicate that the VSSA forecasting algorithm works exceedingly well at separating the noise454

from the signal.455
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Table 4: W -correlations between signal and residuals for U.S. Tourist arrivals.
Series 1 3 6 12 24 36

Total U.S. Tourist Arrivals 0.007 0.009 0.009 0.012 0.008 0.009

U.S. Tourist Arrivals by country

Canada 0.013 0.010 0.010 0.028 0.010 0.012
Mexico 0.020 0.020 0.021 0.047 0.032 0.035
Total Overseas 0.009 0.009 0.014 0.014 0.008 0.006
Western Europe 0.010 0.014 0.015 0.019 0.024 0.012
Eastern Europe 0.020 0.016 0.014 0.015 0.022 0.020
Asia 0.008 0.008 0.008 0.017 0.007 0.006
Middle East 0.027 0.047 0.044 0.029 0.022 0.024
Africa 0.019 0.020 0.015 0.031 0.013 0.010
Oceania 0.010 0.009 0.014 0.018 0.007 0.007
South America 0.012 0.019 0.023 0.016 0.020 0.023
Central America 0.013 0.016 0.014 0.021 0.012 0.016
Caribbean 0.021 0.021 0.031 0.051 0.034 0.019
France 0.014 0.027 0.040 0.015 0.014 0.015
Germany 0.015 0.015 0.014 0.017 0.017 0.017
Italy 0.026 0.026 0.026 0.016 0.035 0.024
Netherlands 0.016 0.018 0.018 0.018 0.027 0.014
Spain 0.030 0.014 0.031 0.027 0.016 0.027
Sweden 0.012 0.012 0.012 0.011 0.012 0.017
Switzerland 0.024 0.016 0.021 0.017 0.020 0.020
United Kingdom 0.013 0.016 0.015 0.013 0.012 0.016
Japan 0.009 0.015 0.008 0.009 0.07 0.012
South Korea 0.016 0.016 0.012 0.016 0.016 0.012
PRC & Hongkong 0.025 0.051 0.022 0.030 0.025 0.022
ROC (Taiwan) 0.019 0.031 0.025 0.025 0.015 0.015
Australia 0.011 0.011 0.011 0.011 0.011 0.011
Argentina 0.028 0.010 0.046 0.029 0.007 0.010
Brazil 0.025 0.023 0.026 0.027 0.030 0.027
Colombia 0.022 0.023 0.012 0.012 0.019 0.038
Venezuela 0.026 0.025 0.026 0.046 0.022 0.021

The U.S. Tourist arrivals series exhibits several seasonal patterns. In order to illustrate456

SSA’s capabilities at extracting various seasonal patterns in U.S. Tourist arrivals we present in457

Figure 2, as an example, the in-sample decomposition of total U.S. Tourist arrivals at h = 1 step458

ahead. Firstly we can observe the extracted trend in U.S. Tourist arrivals which corresponds459

with the total arrivals pattern and clearly shows the general trend of increase and decreasing460

tourist arrivals over time. Also interesting is the difference between the four month and twelve461

month seasonal components. The 4 month seasonal component is increasing over time whilst462

the 12 month seasonal component is seen to be decreasing over time. Furthermore, there is more463

fluctuation in the 4 month seasonal component of total U.S. Tourist arrivals in comparison to464

the 12 month component.465
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Figure 2: In-sample SSA decomposition of total monthly U.S. Tourist arrivals at h = 1 step
ahead.

4.2 Measures for Evaluating the Forecast Accuracy466

Root Mean Squared Error (RMSE)467

The RMSE is now a popular measure for forecast accuracy, and is one of the most frequently468

cited measures in forecasting literature (see, for example, Zhang et al. 1998; Hassani, Heravi,469

& Zhigljavsky, 2009; Hassani, Heravi, & Zhigljavsky, 2012; Hassani & Mahmoudvand, 2013;470

Beneki & Silva, 2013). Here, in order to save space, we only provide the RMSE ratios of SSA471

to that of ETS:472

RRMSE =
SSA

ETS
=

(∑N
i=1(ŷT+h,i − yT+h,i)

2
)1/2

(∑N
i=1(ỹT+h,i − yT+h,i)2

)1/2
,

where, ŷT+h is the h-step ahead forecast obtained by SSA, ỹT+h is the h-step ahead forecast473

from the ETS model, and N is the number of the forecasts. If SSA
ETS is less than 1, then the SSA474

outperforms ETS by 1- SSAETS percent.475

Mean Absolute Percentage Error (MAPE)476

The MAPE measure is also quoted in this paper as it is a widely understood criterion for477

evaluating forecast accuracy. In brief, the lower the MAPE result, the better the forecast.478
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MAPE =
1

N

N∑
t=1

|100×
yT+h − ŷT+h,i

yT+h
|,

where yT+h represents the actual data corresponding to the h step ahead forecast, and ŷT+h,i is479

the h step ahead forecasts obtained from a particular forecasting model.480

Direction of Change (DC)481

The DC criterion is a measure of the percentage of forecasts that accurately predict the direction482

of change (Hassani, Heravi, & Zhigljavsky, 2012). DC is an equally important measure, as the483

RMSE, for evaluating the forecasting performance of tourism demand models, because it is484

important that for example, when the actual series is illustrating an upwards trend, the forecast485

is able to predict that upward trend and vice versa. Here, the concept of DC is explained in brief,486

and in doing so we mainly follow Hassani, Heravi, and Zhigljavsky (2012). In the univariate487

case, for forecasts obtained using XT , let DXi be equal to 1 if the forecast is able to correctly488

predict the actual direction of change and 0 otherwise. Then, D̃X =
∑n

i=1DXi/n shows the489

proportion of forecasts that correctly identify the direction of change in the actual series.490

5 Empirical Results491

We select 2
3

rd
of the data as in-sample for model training and validation, and set aside 1

3

rd
of492

the data as out-of-sample for evaluating the forecasting accuracy. The data was forecasted at493

horizons of h = 1, 3, 6, 12, 24 and 36 steps ahead which corresponds to 1, 3, 6, 12, 24 and 36494

month ahead forecasts. These forecasting horizons have been considered because for the tourism495

industry, horizons beyond 12 months are considered to be long term. Moreover, both short and496

long run forecasts are vital for this sector as a country needs to be geared to accommodate the497

tourists and planning of large scale building works or the purchase of new aircrafts for example498

would require managerial decisions to be made well in advance. Therefore, in this paper we499

are effectively evaluating the performance of the forecasting models both in the short and long500

run in terms of obtaining forecasts for U.S. tourist arrivals. We first analyse total U.S. Tourist501

arrivals. Table 5 reports the RMSE and MAPE results for the out-of-sample forecasts of total502

U.S. Tourist arrivals using SSA, ARIMA, ETS and NN. In order to ensure the parametric models503

are correctly specified we carried out a Ljung-Box test on the residuals for autocorrelation and504

the results indicated that the residuals are independently distributed at a p-value of 0.05, and505

are there for not autocorrelated.506

Table 5: Out-of-sample RMSE(MAPE) results for total U.S. Tourist arrivals.
h ARIMA ETS NN SSA SSA

ARIMA
SSA
ETS

SSA
NN

1 601512 (9%) 760599 (13%) 1147080 (19%) 242601(4%) 0.40* 0.32* 0.21*
3 720751 (11%) 723556 (13%) 1124242 (19%) 316049(6%) 0.44* 0.44* 0.28*
6 738630 (12%) 1037666 (20%) 1180780 (19%) 445614(8%) 0.60* 0.43* 0.38*
12 937129 (14%) 1097366 (17%) 1385339 (23%) 517912(9%) 0.55* 0.47* 0.37*
24 1136616 (19%) 1300442 (20%) 1780513 (30%) 526323(9%) 0.46* 0.40* 0.30*
36 1002685 (17%) 1149585 (18%) 1684799 (24%) 605448(9%) 0.60* 0.53* 0.36*

Average 856221 (14%) 1011536 (17%) 1383792 (22%) 442325(8%) 0.52 0.44 0.32
Note:* indicates results are statistically significant based on Diebold-Mariano at p = 0.05.
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Firstly, based on the MAPE criterion reported in Table 5, we can see that the Neural507

Network model is the worst performer at all horizons with an overall average MAPE of 22% at508

forecasting total U.S. Tourist arrivals. Interestingly the SSA technique is the only model which509

reports MAPE values below 10% at all horizons and is in turn the model providing the most510

accurate forecasts for total U.S. Tourist arrivals with a comparatively low average MAPE of511

8%. Based on the MAPE we are also able to identify that the ARIMA model is the second best512

model for forecasting total U.S. Tourist arrivals as its average MAPE of 14% is lower than the513

ETS model’s average MAPE of 17%. Moreover, it is interesting to note that the SSA model’s514

MAPE remains approximately constant over the forecasting horizons of h = 12, 24 and 36515

months ahead, and thereby portrays SSA’s capabilities of providing comparatively stable and516

more accurate forecasts in the long run. The remainder of the analysis focusses on the RMSE517

criterion for evaluating forecast accuracy.518

It is evident from Table 5 that based on the RMSE criterion, SSA outperforms ARIMA, ETS519

and Neural Networks comfortably by recording the lowest forecasting error for total U.S. Tourist520

arrivals at all horizons. The RRMSE statistic shows that SSA is 60%, 56%, 40%, 45%, 54% and521

40% better than ARIMA at forecasting total U.S. Tourist arrivals at h = 1, 3, 6, 12, 24 and 36522

months ahead respectively. Likewise, in comparison to ETS, SSA is 68%, 56%, 57%, 53%, 60%523

and 47% better at h = 1, 3, 6, 12, 24 and 36 steps ahead respectively. Finally we analyse the524

forecasting results between SSA and the Neural Network model. Accordingly we can conclude525

that the SSA model is 79%, 72%, 62%, 63%, 70% and 64% better than the feed-forward Neural526

Network model at h = 1, 3, 6, 12, 24 and 36 months ahead respectively.527

In order to ensure the results reported are not chance occurrences, we test the results further528

for statistical significance using the modified Diebold-Mariano test found in Harvey, Leybourne,529

and Newbold (1997). We find that all the RRMSE results are statistically significant at all530

horizons and thus provides concrete evidence for the inferences we have made. Finally, from531

Table 5 we can infer that when forecasting total U.S. Tourist arrivals, on average, the SSA532

model is 48% better than ARIMA, 56% better than ETS and 68% better than Neural Networks533

based on the forecasting accuracy. Note that initially, we normalized the data (where necessary)534

and evaluated the forecasting accuracy of the ARIMA model. ARIMA’s forecasting results for535

U.S. Tourist arrivals were adversely affected following the data transformations. As such we536

have reported the results sans transformation which gives the best possible outcome for the537

ARIMA forecasts. The results from Table 5 also show that on average, ARIMA provides a538

better forecasting accuracy in comparison to ETS and Neural Networks for U.S. Tourist arrivals539

forecasting both in the short and long run, and is therefore chosen to be the second best model in540

general for this purpose.The feed-forward Neural Network model with one hidden layer provides541

the least favourable forecasts for total U.S. Tourist arrivals.542

Thereafter, we use the Direction of Change (DC) criterion to evaluate the extent to which543

the forecasts from all models are able to predict the actual direction of change in total U.S.544

Tourist arrivals. Table 6 presents the DC results. Firstly, we see that only three outcomes are545

in fact statistically significant for DC. However, based on the criterion itself we could infer that546

SSA provides a more accurate prediction of direction of change in comparison to ARIMA at all547

horizons when forecasting total U.S. Tourist arrivals, and on average, SSA is able to provide a548

83% accurate direction of change prediction whilst ARIMA can only provide a 63% accurate549

prediction of the direction of change in total U.S. Tourist arrivals. Likewise, in comparison to550

both ETS and Neural Networks, SSA provides a better prediction of the direction of change551

at all horizons. However ETS outperforms the ARIMA model in terms of DC at h = 3 and552

24 months ahead and the DC predictions of the NN model is better than ETS at h = 12 and553

24 steps ahead. Furthermore, at 36 steps ahead the SSA model obtains 100% accurate DC554

18



predictions whilst ARIMA is able to report a significant 91% accuracy. Thus, it is clear that555

the SSA model stands out as the most superior model for forecasting total U.S. Tourist arrivals556

at all horizons based on the RMSE, RRMSE and DC criterions in comparison to the optimal557

ARIMA, ETS and Neural Network models. Furthermore, it is clear that the SSA model can558

pick up both short and long run fluctuations in total U.S. Tourist arrivals comparatively better559

than ARIMA, ETS and Neural Networks.560

Table 6: Direction of change results for total U.S. tourist arrivals forecasts.
h ARIMA ETS NN SSA

1 0.74* 0.57* 0.48 0.87
3 0.70 0.73 0.57 0.85**
6 0.67 0.63 0.56 0.81
12 0.47 0.36 0.45 0.66
24 0.30 0.52 0.63 0.78*
36 0.91** 0.56 0.56 1.00*

Average 0.63 0.56 0.54 0.83
Note:* indicates results are statistically significant based on a t-test at p = 0.05.
** indicates results are statistically significant based on a t-test at p = 0.10.

As an example of the out-of-sample forecasting capabilities of the selected models, and also561

to show the accuracy of the DC results, in Figure 2 we provide a graphical representation of the562

forecasting results at h = 24 steps ahead for total U.S. Tourist arrivals. It is further evident from563

Figure 2 that both ETS and NN models experience great difficulty in picking up the seasonal564

fluctuations seen in the U.S. Tourist arrivals time series and that the NN model is indeed the565

worst performer in this case. The results from both Tables 5 and 6 proves that as the horizon566

increases from 1 month ahead to 24 months ahead, the forecasting performance of the parametric567

model (ARIMA), ETS and NN worsens immensely in comparison to that of the nonparametric568

model of SSA.569

The initial results guided our interest towards evaluating the use of SSA for forecasting570

U.S. Tourist arrivals by country of origin. The total U.S. Tourist arrivals forecasting results571

show ARIMA to be the second best forecasting model in comparison to SSA, ETS and Neural572

Networks. As such, here we employ ARIMA as our benchmark as it is evident that ETS and573

feed-forward Neural Networks cannot provide accurate forecasts in this case. In Tables 7 and 8574

we present the ARIMA parameters and Vector SSA choices which were used for forecasting U.S.575

Tourist arrivals by country of origin. It should be noted that we have once again reviewed the576

models are correctly specified via a Ljung-Box test for the independent distribution of residuals.577

Where the residuals were not found to be independently distributed (for example, in some cases578

at h = 24 and 36 steps ahead this issue was experienced) we redefined the model parameters579

to ensure the model specification was valid. In most cases the test results indicated that the580

residuals were white noise at a p-value of 0.05, and that no further model review was required.581

19



Time

To
ta

l U
.S

. T
ou

ris
t A

rr
iv

al
s

2009 2010 2011 2012

2e
+

06
4e

+
06

6e
+

06
8e

+
06

Actual

ARIMA Forecast

ETS Forecast

Neural Network Forecast

SSA Forecast

Figure 3: 24 months ahead forecast for U.S. Tourist arrivals (Feb. 2009 - Nov. 2012).

20



Table 7: U.S. Tourist arrivals by country of origin - ARIMA model parameters.
Series 1 3 6 12 24 36
Canada (0,0,1)S (3,0,3)S (0,0,2)S (0,0,2)S (0,0,2)S (0,0,2)S
Mexico (1,1,3)S (2,1,3)S (2,1,3)S (0,1,3)S (2,1,3)S (1,1,3)S
Total Overseas (0,1,1)S1 (0,1,1)S1 (0,1,1)S1 (0,1,1)S1 (0,1,1)S1 (0,1,1)S1
Western Europe (1,0,0)S2 (1,0,0)S2 (1,0,0)S2 (1,0,0)S2 1,0,0)S2 1,0,0)S2
Eastern Europe (2,0,1)S3 (2,0,1)S3 (2,1,2)S3 (3,1,2)S3 (3,1,2)S3 (3,1,2)S3
Asia (0,1,0)S2 (0,1,0)S2 (0,1,0)S2 (0,1,0)S2 (0,1,0)S2 (0,1,0)S2
Middle East (2,0,1)S1 (2,0,1)S1 (2,0,1)S1 (2,0,1)S1 2,0,1)S1 2,0,1)S1
Africa (2,0,3)S4 (2,0,3)S4 (2,0,3)S4 (2,0,3)S4 (2,0,3)S4 (2,0,3)S4
Oceania (3,0,3)S5 (3,0,3)S5 (3,0,3)S5 (5,1,3)S5 (5,1,3)S5 (2,1,5)S5
South America (0,1,2)S2 (0,1,2)S2 (0,1,2)S2 (1,1,2)S2 (1,1,2)S2 (1,1,2)S2
Central America (2,1,1)S6 (2,1,1)S6 (2,1,1)S6 (2,1,1)S6 (2,1,1)S6 (2,1,1)S6
Caribbean (0,0,1)S3 (0,0,1)S3 (0,0,1)S3 (0,0,1)S3 (0,0,1)S3 (0,0,1)S3
France (1,1,1)S1† (1,1,1)S1† (1,1,1)S1† (1,1,1)S1† (2,0,0)S1† (2,0,0)S1†

Germany (2,1,3)S1 (2,1,4)S1 (2,1,4)S1 (2,1,4)S1 (4,1,5)S1 (2,1,4)S1
Italy (2,0,2)S3† (2,0,2)S3† (2,0,2)S3† (2,0,1)S3† (2,0,5)S3† (2,1,1)S3†

Netherlands (4,0,4)S4 (4,0,4)S4 (4,0,5)S4 (4,0,4)S4 (4,0,4)S4 (4,0,4)S4
Spain (3,0,3)S5 (3,0,3)S5 (2,1,3)S5 (2,1,1)S5 (1,1,1)S5 (1,1,1)S5
Sweden (2,1,1)S3 (2,1,1)S3 (2,1,1)S3 (2,1,1)S3 (2,1,3)S3 (2,1,4)S3
Switzerland (5,1,4)S1 (5,1,4)S1 (3,1,3)S1 (5,1,4)S1 (5,1,4)S1 (4,1,2)S1
UK (2,1,4)S2 (0,1,3)S2 (1,1,1S2) (2,1,5)S2 (2,1,5)S2 (2,1,4)S2
Japan (2,1,2)S2 (3,1,4)S2 (2,1,2)S2 (2,1,2)S2 (2,1,2)S2 (2,1,5)S2
South Korea (1,0,1)S7† (1,0,1)S7† (0,1,0)S7† (0,1,0)S7† (0,1,0)S7† (0,1,0)S7†

PRC & Hongkong (1,0,0)S1* (1,0,0)S1* (1,0,0)S1* (1,0,0)S1 (1,1,1)S1 (1,1,1)S1
ROC (4,1,2)S1 (4,1,2)S1 (4,1,2)S1 (5,1,2)S1 (5,1,3)S1 (4,1,3)S1
Australia (4,1,5)S8 (3,1,4)S8 (4,1,5)S8 (4,1,5)S8 (3,1,4)S8 (3,1,2)S8
Argentina (1,1,1)S2 (1,1,1)S2 (1,1,1)S2 (1,1,1)S2 (1,1,1)S2 (1,1,1)S2
Brazil (1,1,2)S2 (2,1,5)S2 (2,1,5)S2 (4,1,5)S2 (4,1,5)S2 (2,1,3)S2
Colombia (2,0,4)S7 (2,0,5)S7 (4,0,4)S7 (4,0,3)S7 (3,0,3)S7 (2,1,3)S7
Venezuela (3,1,1)S5 (3,1,1)S5 (3,1,5)S5 (3,1,1)S5 (3,1,1)S5 (3,1,1)S5

Note:S=seasonal(0,1,2), S1=seasonal(2,0,2), S2=seasonal(2,0,1), S3=seasonal(1,1,2),
S4=seasonal(2,1,2), S5=seasonal(1,1,1),S6=seasonal(2,1,1), S7=seasonal(2,1,0), S8=seasonal(0,1,1).

† ARIMA with drift. * ARIMA with non-zero mean.
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Table 8: U.S. Tourist arrivals by country of origin - Vector SSA choices (L, r).
Series 1 3 6 12 24 36
Canada (22,16) (28,19) (28,19) (16,9) (33,20) (36,15)
Mexico (5,1) (5,1) (4,1) (51,3) (39,9) (49,26)
Total Overseas (28,16) (29,16) (20,10) (18,11) (38,25) (50,29)
Western Europe (29,17) (23,14) (23,12) (19,14) (21,13) (28,21)
Eastern Europe (14,13) (22,11) (23,11) (20,14) (18,13) (49,5)
Asia (29,23) (25,22) (29,23) (23,11) (31,28) (49,40)
Middle East (24,15) (15,13) (17,13) (22,18) (44,36) (38,15)
Africa (18,14) (17,14) (24,20) (14,12) (47,17) (24,16)
Oceania (39,25) (42,27) (31,19) (34,12) (33,27) (33,27)
South America (27,14) (23,15) (16,12) (26,15) (46,28) (35,24)
Central America (29,17) (29,19) (26,17) (29,25) (47,24) (46,27)
Caribbean (24,20) (24,20) (24,11) (18,12) (24,12) (46,26)
France (15,13) (30,14) (25,12) (43,31) (23,20) (40,21)
Germany (32,10) (25,8) (25,9) (32,15) (24,12) (24,12)
Italy (44,15) (34,15) (34,15) (57,27) (18,14) (30,23)
Netherlands (36,14) (37,14) (26,19) (26,19) (22,10) (32,11)
Spain (28,8) (12,6) (24,8) (14,9) (14,3) (14,9)
Sweden (39,11) (39,11) (39,11) (38,15) (23,20) (24,15)
Switzerland (15,12) (44,38) (16,13) (31,21) (26,17) (26,17)
UK (24,14) (22,14) (32,24) (51,38) (41,34) (47,14)
Japan (31,25) (28,9) (47,19) (23,21) (47,34) (39,9)
South Korea (32,18) (27,17) (28,25) (31,21) (39,15) (50,36)
PRC and Hongkong (40,18) (16,13) (41,21) (25,15) (50,21) (42,34)
ROC (40,21) (40,31) (37,33) (37,33) (37,16) (37,16)
Australia (55,19) (37,21) (37,12) (36,12) (49,33) (48,33)
Argentina (23,15) (30,26) (15,13) (17,15) (41,39) (41,40)
Brazil (26,15) (14,11) (46,12) (39,24) (39,22) (50,12)
Colombia (29,15) (29,16) (39,11) (36,11) (27,23) (19,10)
Venezuela (30,15) (28,15) (26,15) (18,15) (48,15) (37,17)

Table 9 reports the results for out-of-sample forecasting of U.S. Tourist arrivals by country582

of origin. We can infer from the RRMSE criterion that, SSA outperforms ARIMA at forecasting583

U.S. Tourist arrivals at all horizons for all countries of origin with the exception of Mexico at h584

= 3 steps ahead. Furthermore, it is clear from the results that on average, SSA is 53%, 49%,585

44%, 47%, 46% and 41% better than ARIMA at horizons of h = 1, 3, 6, 12, 24 and 36 months586

ahead respectively for forecasting U.S. Tourist arrivals by individual country of origin. These587

results prove that by employing SSA to analyse and forecast the monthly U.S. Tourists arrivals588

data by country of origin we can obtain significantly more accurate forecasts than those possible589

with the optimal ARIMA for both short and long term fluctuations in tourist arrivals into the590

U.S. from each country. We test the results further for statistical significance. Accordingly,591

we find that except for tourist arrivals from Mexico, every other forecasting result obtained in592

this study is statistically significant. This suggests that when forecasting tourist arrivals from593

Mexico there is no difference between the forecasting accuracy of the ARIMA and SSA models.594
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Table 9: Forecasting results for U.S. Tourist arrivals by country of origin.
SSA

ARIMA

Origin 1 3 6 12 24 36

Canada 0.27* 0.32* 0.40* 0.37* 0.30* 0.36*
Mexico 0.98 0.96 1.07 0.99 0.93 0.77**
Total Overseas 0.44* 0.48* 0.42* 0.48* 0.33* 0.43*
Western Europe 0.46* 0.50* 0.53* 0.47* 0.43* 0.44*
Eastern Europe 0.34* 0.37* 0.42* 0.41* 0.42* 0.39*
Asia 0.54* 0.68* 0.72 0.91 0.80* 0.91
Middle East 0.55* 0.42* 0.47* 0.37* 0.38* 0.46*
Africa 0.28* 0.39* 0.45* 0.36* 0.26* 0.24*
Oceania 0.40* 0.43* 0.51* 0.53* 0.60* 0.75**
South America 0.43* 0.45* 0.56* 0.50* 0.49* 0.82
Central America 0.44* 0.45* 0.52* 0.46* 0.34* 0.46*
Caribbean 0.34* 0.38* 0.43* 0.34* 0.49* 0.61*
France 0.36* 0.45* 0.42* 0.36* 0.52* 0.42*
Germany 0.60* 0.51* 0.64* 0.61* 0.64* 0.60*
Italy 0.31* 0.37* 0.41* 0.38* 0.35* 0.44*
Netherlands 0.48* 0.53* 0.47* 0.44* 0.44* 0.43*
Spain 0.60* 0.78* 0.76** 0.62* 0.65* 0.93
Sweden 0.53* 0.62* 0.72* 0.69* 0.62* 0.47*
Switzerland 0.48* 0.50* 0.54* 0.50* 0.48* 0.42*
United Kingdom 0.52* 0.49* 0.61* 0.65* 0.72** 0.92
Japan 0.62* 0.83* 0.82 0.71** 0.66* 0.96
South Korea 0.48* 0.49* 0.73* 0.79* 0.88 0.91
PRC & Hongkong 0.51* 0.52* 0.56* 0.47* 0.73** 0.64*
ROC (Taiwan) 0.50* 0.44* 0.48* 0.58* 0.50* 0.40*
Australia 0.44* 0.45* 0.48* 0.49* 0.61* 0.59*
Argentina 0.54* 0.62* 0.75* 0.64* 0.61* 0.59*
Brazil 0.53* 0.53* 0.58* 0.53* 0.49* 0.49*
Colombia 0.34* 0.38* 0.41* 0.41* 0.35* 0.66*
Venezuela 0.42* 0.34* 0.34* 0.44* 0.53* 0.52*

Average 0.47 0.51 0.56 0.53 0.54 0.59

Note:* indicates results are statistically significant based on Diebold-Mariano at p = 0.05.
** indicates statistical significance at p = 0.10.

Interestingly, when forecasting U.S. Tourist arrivals from Mexico, the optimal SSA choice for595

the number of eigenvalues, r is r = 1 at horizons of 1, 3 and 6 steps ahead. This in turn means596

that the SSA model is relying on the trend alone to forecast future data points for Mexico.597

As such we find it important to briefly comment on this fact. For this purpose, in Figure 4598

we have selected the time series for Mexico and three other time series which were shown to599

have structural breaks (see, Table 2). Upon closer analysis it is clear that whilst all four time600

series shown here are affected by structural breaks, the time series for Mexico shows signs of a601

major structural break shifting U.S. tourist arrivals from Mexico starting December 2009. The602

magnitude of this break has implications on SSA’s modelling capabilities especially as we do603

not incorporate change point detection methods in this paper. This particular time series alone604

provides some useful topics for future research as it suggests that SSA change point detection605

should be incorporated into the tourist arrivals forecasting models so that the technique is606

equipped to provide improved forecasts in the face of similar time series. In line with ensuring607

equality between the other forecasting models adopted in this study, we have used the most608
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basic version of SSA with optimal choices for the purpose of forecasting U.S. Tourist arrivals.609
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Figure 4: Selected U.S. Tourist arrivals time series (Jan. 1996 - Nov. 2012).

6 Conclusion610

The starting point of this paper, as with many other authors, was the importance of accurate611

forecasts of tourism demand to investors, managers and policy makers. The existence of a612

high degree of volatility in tourism demand not only increases this need but creates a need613

for forecasting techniques that cope well with this volatility.We introduce Singular Spectrum614

Analysis (SSA) as a new model for forecasting inbound U.S. Tourist arrivals. The U.S. Tourist615

arrivals time series are analyzed in total and by country of origin.616

Our analysis compared the forecasting accuracy of the newly proposed technique, the Vector617

SSA model, with the forecasting accuracy of the several different widely used forecasting models.618

These most were the accurate version of ARIMA, known as Automatic-ARIMA, an Exponential619

Smoothing model known as ETS and a feed-forward Neural Network model known as nnetar.620

Automatic-ARIMA, ETS and nnetar are all provided as automatic forecasting techniques within621

the forecast package within the R software. We found that the newly proposed U.S. Tourist622

arrivals forecasting model of SSA outperforms all three of these models (ARIMA, ETS and623

Neural Networks). The w-correlations (Table 4) also provide an explanation for one reason624

behind the outstanding performance recorded by the VSSA model as they indicate clearly that625

the VSSA forecasting algorithm is highly successful in separating the signal from the noise found626

in the U.S. Tourist arrivals series.627

Moreover, this paper further uncovers substantial evidence to support the discontinuation of628

the use of ARIMA, ETS and feed-forward Neural Networks as a model for forecasting inbound629
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U.S. inbound tourist arrivals in the future, based on the RMSE, RRMSE and DC criteria along630

with statistically significant results. The results also show that the basic Vector-SSA model with631

the optimal decomposition is able to outperform the optimal ARIMA or, Automatic-ARIMA632

model, ETS and nnetar of Hyndman and Khandakar (2008) in forecasting U.S. Tourist arrivals.633

Our results indicate that the nonparametric SSA model is on average 49% more accurate than634

the parametric model of ARIMA, 58% more accurate than ETS, and 69% more accurate than635

the feed-forward Neural Network model (nnetar) at forecasting tourist arrivals. This provides636

sound evidence for National Statistical Agencies in U.S. and elsewhere to consider introducing637

SSA as a more reliable method of forecasting tourist arrivals. Furthermore, the SSA technique638

has been shown here to provide not only the most accurate forecasts based on the lowest RMSE639

values, but also with statistically significant results in comparison to the rest of the models.640

This paper contributes to the literature on forecasting tourism demand in several ways.641

Firstly, we show that the SSA technique can be used as a reliable demand forecasting technique642

for tourism in the future, using its application to inbound tourist arrivals in the U.S. as an643

example. In doing so, we also increase the number of options available for demand forecasting in644

tourism. Secondly, we show that SSA outperforms the optimal ARIMA model of Hyndman and645

Khandakar (2008). This is an important finding as ARIMA models are widely used in forecasting646

tourism demand at present. The results are statistically significant and provide strong evidence647

to support the discontinuation of ARIMA as a tourism demand forecasting technique for the648

U.S. at least. Given the introduction of SSA and its strong performance with U.S. data it649

would be interesting to see how well the model performs in forecasting tourism demand in other650

nations. Thirdly, we also evaluate the SSA technique against an exponential smoothing and651

neural network model which shows the basic Vector SSA to be superior. Whilst more research652

work should be conducted on the comparison of SSA especially against neural networks in the653

future, the initial evidence is supportive of the use of SSA.654

Overall, given the importance of forecasting tourism demand and the important requirement655

that such forecasts be able to cope well with volatility in demand, this paper offers a new656

technique to forecasters in this area. The evidence from the U.S. data is that it offers the657

prospect of better forecasting accuracy than the pick of those techniques previously employed.658

Improvements in forecasting accuracy should provide a basis for more efficient resource allocation659

by, in particular, investors and managers in tourism.660

In terms of the implications of this paper for further research there are several. In this661

paper we compared the performance of SSA to three of the most important existing alternative662

techniques. It would be worthwhile extending this analysis in the future to a wider of alternative663

techniques. The encouraging results from employing SSA to forecast U.S. inbound tourism664

reported in this paper also suggests that it may be worthwhile in future research to build a665

multivariate SSA model to forecast tourist arrivals. Here, it would be interesting to evaluate666

the spatio-temporal correlations between tourist arrivals from various countries (as proposed667

in Sato, 2012) so that this information could be used to enhance the multivariate SSA model668

to enable more accurate forecasts. Finally, the use of hybrid models has been common in the669

literature concerning the forecasting of tourism demand. It would be both interesting and of670

potential value for future research to consider how the SSA technique performs in a hybrid671

model. Moreover, the presence of structural breaks in U.S. Tourist arrivals suggests that it672

would also be interesting to evaluate the impact on the forecasts of replacing KPSS tests with673

the Bai-Perron (2003) test for determining the number of differences in the ARIMA models.674

The results from forecasting tourist arrivals from Mexico also makes it clear that future studies675

should consider incorporating SSA change point detection for forecasting U.S. Tourist arrivals.676

Finally, it is possible that different categories of tourism may be behaviourally different in a way677
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that is relevant for other forecasting uses. In this paper, owing to data limitations we have not678

been successful in analysing U.S. Tourist arrivals based on purpose of visit and future research679

could benefit immensely if such data was made available by the relevant authorities.680
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