
Science and Information Conference 2015

June 10-12, 2015 | London, UK

1 | P a g e

www.conference.thesai.org

Swapping Algorithm and Meta-heuristic Solutions for

Combinatorial Optimization n-Queens Problem

Neil Vaughan
*

Faculty of Science and Technology

Bournemouth University (BU)

Bournemouth, United Kingdom

nvaughan@bmth.ac.uk

Abstract—This research proposes the swapping algorithm a

new algorithm for solving the n-queens problem, and provides

data from experimental performance results of this new

algorithm. A summary is also provided of various meta-heuristic

approaches which have been used to solve the n-queens problem

including neural networks, evolutionary algorithms, genetic

programming, and recently Imperialist Competitive Algorithm

(ICA). Currently the Cooperative PSO algorithm is the best

algorithm in the literature for finding the first valid solution.

Also the research looks into the effect of the number of hidden

nodes and layers within neural networks and the effect on the

time taken to find a solution. This paper proposes a new

swapping algorithm which swaps the position of queens.

Keywords—n-queens, solution, meta-heuristic, neural network.

I. INTRODUCTION

Problems within combinatorial optimization consist of
finding optimal arrangement from a finite set. In many such
problems, exhaustive search would not be achievable. The set
of feasible solutions is discrete or can be reduced to discrete,
and in which the goal is to find the best solution. Some
common problems involving combinatorial optimization are
shown in Table I, which gives a non-exhaustive list of
combinatorial optimization problems.

The n-queens problem is known to have a finite number of
solutions – it happens to be 92 on a board where n = 8, but the
interesting aspect from a computational complexity viewpoint
is which algorithmic approach is most efficient at finding either
any one solution, or the total number of all solutions. This n-
queens problem can be used as a test to analyse the suitability
of various intelligent algorithms in general for solving
combinatorial optimization or other problems.

The n-queens problem is an example which is well known
in the field of artificial intelligence. Due to the uncomplicated
structure of this problem, it has been used as a springboard to
test out or develop new intelligent problem solving approaches.

The n-queens problem has been attributed to several real-
world applications, although the problem may initially have
been proposed purely as a mathematical problem. These
include scheduling and assigning tasks in a practical way,
preventing deadlock on shared computer resources, traffic
control, system design, robot placement for maximum sensor
coverage, constraint satisfaction and other practical

applications. These applications span a wide area including
physics, computer science and industry which indicates why
the n-queens problem is popular [1].

TABLE I. NON-EXHAUSTIVE LIST OF COMBINATORIAL OPTIMIZATION

Combinatorial optimization

Assignment problem

Closure problem

Constraint satisfaction problem

Cutting stock problem

Integer programming

Knapsack problem

Linear programming

Minimum spanning tree

Nurse scheduling problem

Traveling salesman problem

Vehicle routing problem

Vehicle rescheduling

The n-queens problem belongs to the class of constraint
satisfaction problems and is known as an NP-hard problem.
For dimensions of n x n it has a search space of n!.

The largest n-queens problem solved to date is for n=26 in
which has 2.23 x 10

16
 solutions and took 271 days to solve on

parallel supercomputers in 2009 [2].

TABLE II. NUMBER OF SOLUTIONS FOR INITIAL N-QUEENS PROBLEMS

Chess
board size
(n)

4 5 6 7 8 9 10 11 12

Unique
Solutions

1 2 1 6 12 46 92 341 1787

Total
Solutions

2 10 4 40 92 352 724 2680 14200

Table II shows the number of possible solutions for chess
boards of various sizes. The total number of solutions for each
board is shown in the bottom row. The number of unique
solutions is also shown, unique means excluding any solutions

mailto:nvaughan@bmth.ac.uk

Science and Information Conference 2015

June 10-12, 2015 | London, UK

2 | P a g e

www.conference.thesai.org

which are a mirror image or a rotation of another solution,
which could be seen as duplicates.

There is currently no known formula for finding the
number of solutions from n (Table II). A variant chess related
problem, called the bishops problem has a known formula
which is 2n-2 [3].

There are several other related combinatorial optimisation
problems (Table I).

A. N-Queens Problem definitions

The goal of the non-attacking n-queens problem is to place
n queens on a n x n chessboard, in order that they cannot attack
each other. This is a classical configuration problem, but it can
be also formulated as a combinatorial optimization problem
[3].

Fig. 1. One solution for the non-attacking n-queens problem

II. EXISTING SOLUTIONS

Various existing approaches to solve n-queens have used a
variety of meta-heuristic approaches. Heuristic algorithms
have been presented and compared, using such techniques as
simulated annealing, tabu search, and genetic algorithms [4].
Recent methods involve particle swarm optimization, dynamic
load distribution, ant colony optimization, gravitational search
algorithms, and other recently developed techniques [5].

A. Genetic algorithms

Genetic algorithm approaches have proven applicable to a
wide range of constraint satisfaction problems, including n-
queens problem. But holism and random choices cause
problem for genetic algorithm in searching large state spaces.
So, the efficiency of this algorithm would be demoted when the
size of state space of the problem grows exponentially. The
weakness can be lessened by using local search algorithm like
minimal conflicts algorithm. Minimal conflicts algorithm is
trying to provide partial view for genetic algorithm by locally
searching the state space. This may cause genetic algorithm to
take longer steps toward the solution. Modified genetic
algorithm, is the result of collaboration between genetic
algorithm and minimal conflicts algorithm.

Thanks to its robustness and its capacity of adaptability to a
wide variety of areas, genetic algorithms (GA) [6] are one of
the most used meta-heuristics in the literature. Nowadays, a lot
of research studies related to this kind of algorithm can be
found.

B. Evolutionary algorithms

Recent evolution algorithms aims at the n-queens problem
have been enhanced by the adoption of some quantum
concepts such as quantum bits and states superposition. The
use of the quantum interference has allowed this hybrid
approach to improve efficiency and good results by Draa et al.
(2011) [7].

C. Imperialist Competitive Algorithm (ICA)

Recently ICA was compared with Cooperative CSO and
was found to have less number of fitness function evaluations
than CPSO by Kalejahi et al. (2015) [6].

D. Other methodological algorithms

An approach to solving the n-Queens Problem is to use
vector spaces. Although the situations in which this approach
can be used are limited, it shows promise for wider
generalization, or as an intermediate step that yields a partial
solution. Finite fields can be used for generating solutions, and
it can be combined with other methodologies to quickly
produce solutions to the n-Queens Problem demonstrated by
Pope & Sonnier, (2014) [8].

III. SWAPPING ALGORITHM

This research has developed a new algorithm for solving n-
queens problem. The aim of this algorithm is to identify a first
solution as quickly as possible and with low number of moves.
A solution is in the standard sense, consisting of the non-
attacking problem, which is placing all queens on the board
with no attacking on diagonal, horizontal or vertical lines.

The first step of the algorithm is to place initially all queens
on the board in a semi-random fashion. This step ensures that
exactly one queen is placed in each column and one queen in
each row. At this stage there may be several attacks present on
diagonal lines, but none on horizontal or vertical lines.

A quicker initialization method is to simply align queens
along a diagonal from corner to corner. This can be achieved
by setting for each queen the row is equal to the column. This
requires no randomization and eliminates attacking on rows
and columns.

Because the queens are each initialized on their own row
and their own column, the algorithm never has to check for any
horizontal or vertical attacking, but only diagonals need to be
checked, which reduces computations and increases algorithm
speed significantly.

The next stage is to detect which of the queens are
attacking on diagonal lines. If some queens are found to be
attacking, one is picked at random and swapped with another
queen.

To identify which queen to swap with, a search is
conducted amongst all queens to check whether any queen
exists where a swap would eliminate the present diagonal
attack. If there is, then the preferable swap is made. However if
not, a swap is still made, but with a queen picked randomly.

The author wishes to acknowledge Bournemouth University for funding.

Science and Information Conference 2015

June 10-12, 2015 | London, UK

3 | P a g e

www.conference.thesai.org

A swap process consists of simply swapping the row of the
two queens, however each queen keeps their initial column,
throughout the entire algorithm.

Swapping is the only method by which queens are moved
in this algorithm, so this ensures no two queens are ever on the
same row or column, so only diagonal attacks need to be
detected.

The method used to check if a solution has been found, is to
loop through every queen identifying any diagonal attacks. If a
queen is in an adjacent column to another queen, it cannot be
also in an adjacent row. If a queen is two columns from another
queen it cannot be two rows away. Therefore a check can
identify whether any two queens are positioned whereby the
difference between their columns equals the difference
between their rows.

IV. RESULTS OF THE RANDOM SWAPPING ALGORITHM

An experimental test was completed to identify the number
of swaps required to find a valid solution on an 8x8 board.

When the queens were initialized into a diagonal line from
corner to corner, the random swapping algorithm took on
average 463 swaps to find a solution. This is a high number as
the random swapping has no guidance, and each swap may
make things worse instead of better.

The average number of required swaps 463 was calculated
by running the algorithm indefinitely, until a solution was
found. Over a thousand such runs, the average number of
swaps required to obtain a valid solution was 463.

This took around 60 milliseconds to find a solution, which
was calculated by running a loop requiring the algorithm to
find a solution 1000 times, which took 61 seconds on laptop
with 2GHz processor and with 6GB RAM.

Another interesting question is, when starting with queens
aligned diagonally, what is the minimum number of swaps for
a board of size n to find a non-attacking solution. With this
algorithm on a size 8 board, occasionally a solution was
reached after only 5 swaps (42736815). On other occasions no
solutions were found for over 3000 swaps, with an average of
463 swaps being required.

V. RESULTS OF THE BENEFICIAL SWAPPING ALGORITHM

The beneficial swapping algorithm differs from the random
swapping algorithm in that swaps only take place if they cause
a benefit, by reducing the number of total attacks on the board.

A loop goes through every possible combination of 2
queens on the board, which can be calculated as (n+1)*(n/2) so
on a board where n is 8 there are 45 combinations. After each
swap is complete, if that causes no reduction effect on total
number of attacks, the swap is reversed and the next
combination is tried.

Beneficial swapping algorithm took on average 6
milliseconds to find a valid solution from a random starting
board. This was measured by repeating the test in a loop of
1000 times, which took 6 seconds. The minimum required
number of swaps was 1 and the maximum was 72. Overall the

average number of swaps required was 9.712. This is much
more efficient than the random swapping algorithm.

When starting with all queens arranged in a diagonal line
position from corner to corner, the algorithm found a valid
solution in 9 swaps every time, taking 3 milliseconds per
solution.

VI. CONCLUSION

This research has shown that it is feasible to identify
solutions to the n-queens problem by the proposed swapping
algorithm. This entails keeping each queen in a separate
column and swapping the row of two queens. The initial
starting position may consist of all queens being arranged in a
diagonal line, or a random position, but all queens should have
their own row and column. Due to this, no attacks ever occur
on rows or columns and the algorithm only has to check for
diagonal attacks.

The method for choosing which queens to swap has a big
effect on the efficiency of the algorithm. Swapping queens at
random takes on average 463 swaps and 60 milliseconds from
a diagonal start to find a solution.

When the queens to be swapped were instead selected in an
optimized approach, whereby only queens were swapped in
which doing so reduced the number of total attacks on the
board, this gave a direction to the algorithm and solutions were
found much quicker and efficiently. Only 9 swaps were
required to complete a solution from a diagonal start position,
which took 3 milliseconds. From a random starting position,
the algorithm took on average 9.7 swaps which took on
average 6 milliseconds with a maximum of 72 swaps.

The algorithm was able to identify a valid solution from
any random starting position only by making swaps between
queens in various rows.

REFERENCES

[1] Watkins JJ. (2004). Across the Board: The Mathematics of Chess
Problems. Princeton: Princeton University Press. ISBN 0-691-11503-6.

[2] Sloane NJA, Number of ways of placing n nonattacking queens on an n
x n board, The On-Line Encyclopedia of Integer Sequences.

[3] Dudeney HE. (1970) "Bishops--Unguarded" and "Bishops--Guarded."
§297 and 298 in Amusements in Mathematics. New York: Dover, pp.
88-89 and 96.

[4] Martinjak I, Golub M. (2007), Comparison of Heuristic Algorithms for
the N-Queen Problem, Proceedings of the IEEE Int. Conf on
Information Technology Interfaces, pp. 759-764.

[5] Pothumani. (2013) Solving N Queen Problem Using Various Algorithms
- A Survey, International Journal of Advanced Research in Computer
Science and Software Engineering, Vol. 3, No. 2.

[6] Mohabbati-Kalejahi N, Akbaripour H, Masehian E. (2015). Basic and
Hybrid Imperialist Competitive Algorithms for Solving the Non-
attacking and Non-dominating n-Queens Problems. Computational
Intelligence. pp. 79-96. Springer International Publishing

[7] Draa A, Meshoul S, Talbi H, Batouche M. (2011). A quantum-inspired
differential evolution algorithm for solving the N-queens problem.
Neural Networks, 1, 12

[8] Pope J, Sonnier D. (2014), A linear solution to the n-Queens problem
using vector spaces. Journal of Computing Sciences in Colleges, 29(5),
pp. 77-83.

