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Abstract—This research proposes the swapping algorithm a 

new algorithm for solving the n-queens problem, and provides 

data from experimental performance results of this new 

algorithm. A summary is also provided of various meta-heuristic 

approaches which have been used to solve the n-queens problem 

including neural networks, evolutionary algorithms, genetic 

programming, and recently Imperialist Competitive Algorithm 

(ICA). Currently the Cooperative PSO algorithm is the best 

algorithm in the literature for finding the first valid solution. 

Also the research looks into the effect of the number of hidden 

nodes and layers within neural networks and the effect on the 

time taken to find a solution. This paper proposes a new 

swapping algorithm which swaps the position of queens.  
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I. INTRODUCTION 

Problems within combinatorial optimization consist of 
finding optimal arrangement from a finite set. In many such 
problems, exhaustive search would not be achievable. The set 
of feasible solutions is discrete or can be reduced to discrete, 
and in which the goal is to find the best solution. Some 
common problems involving combinatorial optimization are 
shown in Table I, which gives a non-exhaustive list of 
combinatorial optimization problems. 

The n-queens problem is known to have a finite number of 
solutions – it happens to be 92 on a board where n = 8, but the 
interesting aspect from a computational complexity viewpoint 
is which algorithmic approach is most efficient at finding either 
any one solution, or the total number of all solutions. This n-
queens problem can be used as a test to analyse the suitability 
of various intelligent algorithms in general for solving 
combinatorial optimization or other problems. 

The n-queens problem is an example which is well known 
in the field of artificial intelligence. Due to the uncomplicated 
structure of this problem, it has been used as a springboard to 
test out or develop new intelligent problem solving approaches. 

The n-queens problem has been attributed to several real-
world applications, although the problem may initially have 
been proposed purely as a mathematical problem. These 
include scheduling and assigning tasks in a practical way, 
preventing deadlock on shared computer resources, traffic 
control, system design, robot placement for maximum sensor 
coverage, constraint satisfaction and other practical 

applications. These applications span a wide area including 
physics, computer science and industry which indicates why 
the n-queens problem is popular [1]. 

TABLE I.  NON-EXHAUSTIVE LIST OF COMBINATORIAL OPTIMIZATION  

Combinatorial optimization 

Assignment problem 

Closure problem 

Constraint satisfaction problem 

Cutting stock problem 

Integer programming 

Knapsack problem 

Linear programming 

Minimum spanning tree 

Nurse scheduling problem 

Traveling salesman problem 

Vehicle routing problem 

Vehicle rescheduling 

 

The n-queens problem belongs to the class of constraint 
satisfaction problems and is known as an NP-hard problem. 
For dimensions of n x n it has a search space of n!. 

The largest n-queens problem solved to date is for n=26 in 
which has 2.23 x 10

16
 solutions and took 271 days to solve on 

parallel supercomputers in 2009 [2]. 

TABLE II.  NUMBER OF SOLUTIONS FOR INITIAL N-QUEENS PROBLEMS 

Chess 
board size 
(n) 

4 5 6 7 8 9 10 11 12 

Unique 
Solutions 

1 2 1 6 12 46 92 341 1787 

Total 
Solutions 

2 10 4 40 92 352 724 2680 14200 

 

Table II shows the number of possible solutions for chess 
boards of various sizes. The total number of solutions for each 
board is shown in the bottom row. The number of unique 
solutions is also shown, unique means excluding any solutions 

mailto:nvaughan@bmth.ac.uk


Science and Information Conference 2015 

June 10-12, 2015 | London, UK 

 

2 | P a g e  

www.conference.thesai.org 

which are a mirror image or a rotation of another solution, 
which could be seen as duplicates.  

There is currently no known formula for finding the 
number of solutions from n (Table II). A variant chess related 
problem, called the bishops problem has a known formula 
which is 2n-2 [3]. 

There are several other related combinatorial optimisation 
problems (Table I). 

A. N-Queens Problem definitions 

The goal of the non-attacking n-queens problem is to place 
n queens on a n x n chessboard, in order that they cannot attack 
each other. This is a classical configuration problem, but it can 
be also formulated as a combinatorial optimization problem 
[3]. 

 

Fig. 1. One solution for the non-attacking n-queens problem 

II. EXISTING SOLUTIONS 

Various existing approaches to solve n-queens have used a 
variety of meta-heuristic approaches.  Heuristic algorithms 
have been presented and compared, using such techniques as 
simulated annealing, tabu search, and genetic algorithms [4]. 
Recent methods involve particle swarm optimization, dynamic 
load distribution, ant colony optimization, gravitational search 
algorithms, and other recently developed techniques [5]. 

A. Genetic algorithms 

Genetic algorithm approaches have proven applicable to a 
wide range of constraint satisfaction problems, including n-
queens problem. But holism and random choices cause 
problem for genetic algorithm in searching large state spaces. 
So, the efficiency of this algorithm would be demoted when the 
size of state space of the problem grows exponentially. The 
weakness can be lessened by using local search algorithm like 
minimal conflicts algorithm. Minimal conflicts algorithm is 
trying to provide partial view for genetic algorithm by locally 
searching the state space. This may cause genetic algorithm to 
take longer steps toward the solution. Modified genetic 
algorithm, is the result of collaboration between genetic 
algorithm and minimal conflicts algorithm. 

Thanks to its robustness and its capacity of adaptability to a 
wide variety of areas, genetic algorithms (GA) [6] are one of 
the most used meta-heuristics in the literature. Nowadays, a lot 
of research studies related to this kind of algorithm can be 
found. 

B. Evolutionary algorithms 

Recent evolution algorithms aims at the n-queens problem 
have been enhanced by the adoption of some quantum 
concepts such as quantum bits and states superposition. The 
use of the quantum interference has allowed this hybrid 
approach to improve efficiency and good results by Draa et al. 
(2011) [7].  

 

C. Imperialist Competitive Algorithm (ICA) 

Recently ICA was compared with Cooperative CSO and 
was found to have less number of fitness function evaluations 
than CPSO by Kalejahi et al. (2015) [6].  

D. Other methodological algorithms 

An approach to solving the n-Queens Problem is to use 
vector spaces. Although the situations in which this approach 
can be used are limited, it shows promise for wider 
generalization, or as an intermediate step that yields a partial 
solution. Finite fields can be used for generating solutions, and 
it can be combined with other methodologies to quickly 
produce solutions to the n-Queens Problem demonstrated by 
Pope & Sonnier, (2014) [8]. 

III. SWAPPING ALGORITHM 

This research has developed a new algorithm for solving n-
queens problem. The aim of this algorithm is to identify a first 
solution as quickly as possible and with low number of moves. 
A solution is in the standard sense, consisting of the non-
attacking problem, which is placing all queens on the board 
with no attacking on diagonal, horizontal or vertical lines.  

The first step of the algorithm is to place initially all queens 
on the board in a semi-random fashion. This step ensures that 
exactly one queen is placed in each column and one queen in 
each row. At this stage there may be several attacks present on 
diagonal lines, but none on horizontal or vertical lines.  

A quicker initialization method is to simply align queens 
along a diagonal from corner to corner. This can be achieved 
by setting for each queen the row is equal to the column. This 
requires no randomization and eliminates attacking on rows 
and columns. 

Because the queens are each initialized on their own row 
and their own column, the algorithm never has to check for any 
horizontal or vertical attacking, but only diagonals need to be 
checked, which reduces computations and increases algorithm 
speed significantly. 

The next stage is to detect which of the queens are 
attacking on diagonal lines. If some queens are found to be 
attacking, one is picked at random and swapped with another 
queen. 

To identify which queen to swap with, a search is 
conducted amongst all queens to check whether any queen 
exists where a swap would eliminate the present diagonal 
attack. If there is, then the preferable swap is made. However if 
not, a swap is still made, but with a queen picked randomly. 
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A swap process consists of simply swapping the row of the 
two queens, however each queen keeps their initial column, 
throughout the entire algorithm.  

Swapping is the only method by which queens are moved 
in this algorithm, so this ensures no two queens are ever on the 
same row or column, so only diagonal attacks need to be 
detected. 

The method used to check if a solution has been found, is to 
loop through every queen identifying any diagonal attacks. If a 
queen is in an adjacent column to another queen, it cannot be 
also in an adjacent row. If a queen is two columns from another 
queen it cannot be two rows away. Therefore a check can 
identify whether any two queens are positioned whereby the 
difference between their columns equals the difference 
between their rows. 

IV. RESULTS OF THE RANDOM SWAPPING ALGORITHM 

An experimental test was completed to identify the number 
of swaps required to find a valid solution on an 8x8 board. 

When the queens were initialized into a diagonal line from 
corner to corner, the random swapping algorithm took on 
average 463 swaps to find a solution. This is a high number as 
the random swapping has no guidance, and each swap may 
make things worse instead of better. 

The average number of required swaps 463 was calculated 
by running the algorithm indefinitely, until a solution was 
found. Over a thousand such runs, the average number of 
swaps required to obtain a valid solution was 463. 

This took around 60 milliseconds to find a solution, which 
was calculated by running a loop requiring the algorithm to 
find a solution 1000 times, which took 61 seconds on laptop 
with 2GHz processor and with 6GB RAM. 

Another interesting question is, when starting with queens 
aligned diagonally, what is the minimum number of swaps for 
a board of size n to find a non-attacking solution. With this 
algorithm on a size 8 board, occasionally a solution was 
reached after only 5 swaps (42736815). On other occasions no 
solutions were found for over 3000 swaps, with an average of 
463 swaps being required.  

V. RESULTS OF THE BENEFICIAL SWAPPING ALGORITHM 

The beneficial swapping algorithm differs from the random 
swapping algorithm in that swaps only take place if they cause 
a benefit, by reducing the number of total attacks on the board.  

A loop goes through every possible combination of 2 
queens on the board, which can be calculated as (n+1)*(n/2) so 
on a board where n is 8 there are 45 combinations. After each 
swap is complete, if that causes no reduction effect on total 
number of attacks, the swap is reversed and the next 
combination is tried. 

Beneficial swapping algorithm took on average 6 
milliseconds to find a valid solution from a random starting 
board. This was measured by repeating the test in a loop of 
1000 times, which took 6 seconds. The minimum required 
number of swaps was 1 and the maximum was 72. Overall the 

average number of swaps required was 9.712. This is much 
more efficient than the random swapping algorithm. 

When starting with all queens arranged in a diagonal line 
position from corner to corner, the algorithm found a valid 
solution in 9 swaps every time, taking 3 milliseconds per 
solution. 

VI. CONCLUSION 

This research has shown that it is feasible to identify 
solutions to the n-queens problem by the proposed swapping 
algorithm. This entails keeping each queen in a separate 
column and swapping the row of two queens. The initial 
starting position may consist of all queens being arranged in a 
diagonal line, or a random position, but all queens should have 
their own row and column. Due to this, no attacks ever occur 
on rows or columns and the algorithm only has to check for 
diagonal attacks. 

The method for choosing which queens to swap has a big 
effect on the efficiency of the algorithm. Swapping queens at 
random takes on average 463 swaps and 60 milliseconds from 
a diagonal start to find a solution. 

When the queens to be swapped were instead selected in an 
optimized approach, whereby only queens were swapped in 
which doing so reduced the number of total attacks on the 
board, this gave a direction to the algorithm and solutions were 
found much quicker and efficiently. Only 9 swaps were 
required to complete a solution from a diagonal start position, 
which took 3 milliseconds. From a random starting position, 
the algorithm took on average 9.7 swaps which took on 
average 6 milliseconds with a maximum of 72 swaps.  

The algorithm was able to identify a valid solution from 
any random starting position only by making swaps between 
queens in various rows. 
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