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Mining Spatial-Temporal Patterns and Structural
Sparsity for Human Motion Data Denoising
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Abstract—Motion capture is an important technique with a
wide range of applications in areas such as computer vision,
computer animation, film production, and medical rehabilita-
tion. Even with the professional motion capture systems, the
acquired raw data mostly contain inevitable noises and outliers.
To denoise the data, numerous methods have been developed,
while this problem still remains a challenge due to the high com-
plexity of human motion and the diversity of real-life situations.
In this paper, we propose a data-driven-based robust human
motion denoising approach by mining the spatial-temporal pat-
terns and the structural sparsity embedded in motion data. We
first replace the regularly used entire pose model with a much
fine-grained partlet model as feature representation to exploit
the abundant local body part posture and movement similari-
ties. Then, a robust dictionary learning algorithm is proposed
to learn multiple compact and representative motion dictionaries
from the training data in parallel. Finally, we reformulate the
human motion denoising problem as a robust structured sparse
coding problem in which both the noise distribution informa-
tion and the temporal smoothness property of human motion
have been jointly taken into account. Compared with several
state-of-the-art motion denoising methods on both the synthetic
and real noisy motion data, our method consistently yields better
performance than its counterparts. The outputs of our approach
are much more stable than that of the others. In addition, it is
much easier to setup the training dataset of our method than
that of the other data-driven-based methods.

Index Terms—Human motion denoising, £, ,-norm, Microsoft
Kinect, motion capture data, robust dictionary learning, robust
structured sparse coding.
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I. INTRODUCTION

OTION capture also known as motion tracking is a

prevalent technique to record the movement of objects
or people for immediate or delayed motion analysis and
reuse [1]-[3]. With the rapid development of motion capture
techniques and systems in the past two decades, more and
more motion data are available. Motion data have been used
in a wide variety of fields, such as computer vision [4]-[7],
computer animation [8], [9], movie production, virtual reality,
and medical rehabilitation. In the movie industry, the great
success of recent science fiction action films represented by
Avatar, The Avengers, Transformers: Age of Extinction, and
Dawn of the Planet of the Apes, wherein high quality motion
data have been extensively adopted for generating character
animation, facial animation, and special effects, demonstrates
the important application values of motion capture techniques
and data.

To acquire motion data, the available techniques can either
be inertial, mechanical, magnetic, optical, and depth-based
motion capture [10]-[13]. Among these existing techniques,
the optical-based motion capture technique has attracted much
attention since the performer is freer to move and the captured
motion data are more accurate. However, even with the pro-
fessional optical-based motion capture systems such as motion
analysis system and Vicon, the captured raw data often contain
inevitable noises and outliers [14]-[19]. For example, when
some markers are occluded by the human body or objects, they
become invisible to the cameras, which leads to missing data.
But whatever data prediction methods were used to fill the
missing data, it may bring in a certain percentage of noise. If
two markers are mislabeled when the tacking algorithm con-
fuses the trajectory of one marker with that of the other in
some cases, the captured raw data will contain serious errors,
which also can be regarded as bad noises or outliers. Two
real examples are given in Fig. 1. From Fig. 1(b), we can see
that the positions where the missing data appeared to exhibit
a strong structural distribution property. In Fig. 1(a), the noisy
joints distort human poses and make the whole motion become
unnatural and unsmooth.

The processing of human motion capture is usually both
expensive and time consuming. Thus, it is essential to reuse the
captured motion data. To achieve this goal, the first task is to
refine the captured raw motion data by removing the noise and
outliers from them. In practice, most commercial motion cap-
ture systems provide some post-processing tools for cleaning
motion data, i.e., filling missing values and removing noises.
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Fig. 1. Two real missing and noisy motion capture data sequences. (a) Time lines of all markers in a jump motion sequence, which is captured by ourselves
using a MotionAnalysis Raptor-E Digital RealTime System produced by Motion Analysis Corporation. The white blank spaces within the color lines represent
that the corresponding markers are lost at that frame. (b) Several poses from one motion sequence (i.e., 83_68.amc) are selected from the public Carnegie
Mellon University (CMU) human motion capture dataset [20]. The performed human action in this motion sequence is medium sidestep to right. To be
convenient for identification, the two noisy joints are marked using red and yellow colors separately in each motion frame.

Training Motion Sequences Partlet Model Partlet-Groups Motion Dictionary Learning Five Motion Dictionaries

Training Phase
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Noisy Motion Sequence Partlet-Groups Motion De-noising Motion Reconstruction

Fig. 2. Flowchart of our proposed human motion data denoising approach. For the input motion sequences, we first divide each human pose into five
partitions that are termed as partlets. These partlets are then grouped using a lagged window moving through all of the motion sequences to generate multiple

partlet-groups. In the training phase, we use these partlet-groups to learn five motion dictionaries via a robust dictionary learning algorithm and adopt them
to remove the noise and outliers from noisy partlet-groups in the testing phase (i.e., the denoising phase) by optimizing a robust structured sparse coding

problem. Finally, we reorganize the filtered partlet-groups to reconstruct the filtered clean motion sequences.

However, it requires the user to inspect each motion sequence
frame-by-frame and correct the noisy and missing markers
one-by-one, making it time-consuming and error-prone [17].
Additionally, the underlying denoising/smoothing methods of
these tools are often based on interpretation, which means that
they are efficient only for dealing with certain simple and
short-term noise cases. They would fail to handle complex
and long-term noisy cases. Furthermore, the spatio-temporal
patterns, which are embedded in motion data, play an impor-
tant role in characterizing human motion. However, they have
been ignored by these methods, and consequently result in
distorted and unrealistic motions. In addition, the emergence
of low-cost depth sensors (e.g., Microsoft Kinect) that can
acquire a depth stream with acceptable accuracy provides new
opportunities for accessible motion capture in recent years.
With the depth stream, it is possible to estimate human motion
in real-time [13], [21], [22], although the acquired depth data
are quite noisy and many pixels in the image may have no
depth suffer from multiple reflections, transparent objects or
scattering problems in certain surfaces (such as human tis-
sue and hair) [12]. The motion data derived from the depth
stream are more noise than that from the traditional motion

capture techniques. Researchers still have a long uphill journey
in improving the quality of the data.

To denoise the imperfect motion data, a lot of motion
denoising methods have been proposed in the literature.
However, some intrinsic shortcomings hinder them from
being widely applied in real-world applications [17], [19]. For
example, the structural relationship between different human
joints and the spatio-temporal patterns embedded in human
motion [17], [23]-[26] have not been well exploited in most
existing methods. In order to overcome these problems, in this
paper, we propose a novel data-driven-based robust human
motion denoising approach deriving from dictionary learning
and sparse coding theories. The main ideas of our method are
twofold: to sparsely select the most correlated subset of motion
bases for clean motion reconstruction and to take into account
the distribution information of noises and outliers in motion
data in deriving our objective functions. The flowchart of our
approach is illustrated in Fig. 2. And, the major contributions
of the proposed approach include the following.

1) A fine-grained human pose representation model named

partlet model is proposed in this paper. Using the entire
human pose model as feature representation is a little
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coarser, and noisy data on one part of human body will
inevitably influence the clean data at other parts. To
avoid this problem, we divide each human pose into
five parts named partlets to obtain a much fine-grained
representation. One potential benefit is that these five
parts may be processed in parallel making it much fast
to compute. As shown in our experiments, using such
a new representation does not only reduces the entire
data processing time, but also improves the performance
of our approach. Another significant benefit is that
the out-of-sample problem of data-driven-based meth-
ods can be mitigated by exploiting the abundant local
body part posture and movement similarities embed-
ded in different human motion sequences if we use the
new representation. It can handle the new-come motion
sequence as long as similar local body part postures and
movements have been collected in the training dataset.
Fundamentally, we relax the requirements (i.e., similar
motion sequences in the training dataset) for overcoming
the out-of-sample problem.

2) By simply decomposing the motion noise into dense
Gaussian noise and sparse outliers, a robust dictionary
learning algorithm is proposed to learn multiple motion
dictionaries, which contain the spatio-temporal patterns
of human motion. Our approach can robustly learn
motion dictionaries from both clean and noisy training
dataset. Thus, it is easier to collect motion sequences to
setup the training dataset for our approach than that of
the other data-driven-based methods [17].

3) By utilizing the sparse sample selection ability of
the ¢i-norm [27]-[29], we convert the conventional
human motion denoising problem into a general
£1-minimization framework. In contrast with [17], our
method can automatically select the most correlated sub-
set of motion bases from motion dictionaries for clean
motion reconstruction. As a result, we do not need to
specifically choose the training dataset, and our method
can be more easily applied to real-world applications.

4) We explicitly take both the noise structure informa-
tion and the motion smoothness constraint into account
in a joint framework. We enforce a £; ,-norm penalty
on the noise term to exploit the structure informa-
tion of noise. And, the {3 ,-norm provides more choices
of p € (0, 2] to fit variety of jointly sparse structure of
noise. Meanwhile, we incorporate a smooth graph con-
straint on the sparse representation coefficients matrix in
our objective function to make sure the refined human
motion as smooth as possible.

The structure of this paper is organized as follows. We
first introduce some related work in Section II, and then pro-
vide the details of our proposed approach in Section III. The
experimental analysis and the conclusion are finally given in
Sections IV and V, respectively.

II. RELATED WORK

The goal of human motion denoising is not only to remove
noises and outliers from motion data but also to preserve both
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the embedded spatio-temporal patterns of human motion and
the human body structural constraints (e.g., the bone-length
constraints). Due to the high complexity of human motion,
human motion denoising is a very challenging task, and a lot
of research effort has been expended on this topic.

In some earlier studies, the classic signal denoising methods
like Gaussian low-pass and wavelet transformation are adopted
to filter motion data [16], [17]. For example, a B-spline
wavelet-based method is proposed to remove the impulsive
noise embedded in noisy rigid body motion data [16]. The
biggest advantage of these methods is that they are very
fast and require little computational cost. However, they pro-
cess each feature dimension of motion data independently,
ignoring the structural relationship between different human
markers/joints and the spatio-temporal patterns embedded in
motion data.

Another way is to apply linear time-invariant filters to
denoise noisy motion data [14], [30]. Lee and Shi [14] for-
mulated filtering nonlinear motion orientation data into a
linear time-invariant filtering framework by transforming the
orientation data into a vector space and then transform-
ing the results back to the orientation space after filtering.
Yamane and Nakamura [30] presented a dynamic filter that
converts a physically inconsistent motion into a consistent
one. These methods unfortunately also suffer from the same
shortcomings as the signal denoising methods.

As an improvement, dynamic system-based methods rep-
resented by Kalman filter and linear dynamic system (LDS)
are used to discover the hidden variables and learn their
dynamics [31], [32]. Shin et al. [31] used a Kalman fil-
ter scheme that addresses motion capture noise issues in
real-time computer puppetry situation. Li et al. [32] formu-
lated motion completion problem as a constrained optimiza-
tion problem with the framework of LDS. Since dynamic
system-based methods predict the current state relying on the
past information, the filtered motion exhibit a little of time
delay that cannot meet the real-time requirement for some
applications [19].

With the explosive growth of available motion capture data,
data-driven-based methods [17], [26] have attracted much
attention. Lou and Chai [17] proposed an example-based
human motion denoising method that first applies multichan-
nel singular spectrum analysis to learn a series of filter bases,
which hold spatio-temporal patterns embedded in the precap-
tured clean motion data, and then use them along with robust
statistics techniques to filter noisy motion data. Their method
received encouraging results both on the simulated and real
motion data. However, the data-driven-based methods suffer
from three fundamental problems: 1) their performance relies
heavily on the clean training dataset, while both the training
and the testing data may contain noises and outliers in prac-
tice; 2) the training datasets in these methods must be selected
carefully and they only contain the motion sequences that
come from the same type of human action as the testing/noisy
motion sequences; and 3) they are unable to handle the new-
come motion sequence when there are no similar motion
sequences in the training dataset. The last problem is also
called as the out-of-sample problem. Besides, we have to point



2696

out that only a subset of filter bases are remained and used to
filter the noisy motion in [17], so their method is unable to
preserve all motion details in the original motion sequences.
Indeed, the motion dictionary matrix used in [17] is not a full-
rank matrix, thus the filter bases do not span the whole motion
space. In contrast, five overcomplete motion dictionaries are
learned and used in this paper, making it possible to hold all
motion details.

Recently, Lai er al. [18] reformulated the human motion
completion and denoising problems into a low-rank matrix
optimization framework based on the observation that motion
matrices are mostly approximately low-rank. The greatest
advantage of their method is that their method can process
each input motion sequence independently without the support
of training dataset. However, the low-rank matrix completion
theory would not be applicable when many data entries are
badly corrupted. Moreover, the user has to guess the standard
deviation of noise in their work, which is difficult in practice.

Arguably, the human motion data denoising problem is
still an open problem. The great success of data-driven-based
methods [5], [7], [25], [29], [33], [34] in computer vision and
machine learning encourages us to propose a novel yet robust
human motion data denoising approach to overcome the
existing issues.

III. METHODOLOGY

In this section, we present a data-driven-based robust human
motion denoising approach deriving from dictionary learning
and sparse coding theories as shown in Fig. 2.

A. Notations and Definitions

In this paper, capital letters, e.g., X, represent matrices or
sets, while lower case letters, e.g., x, represent vectors or scale
values. Xj; is the (7, j)th entry of X, and X;. denotes the ith row
of X, while X,; denotes the ith column of X. Similarly, x; is
the ith element of vector x. For an m x n matrix X = [x;],
let vec(X) (X11s - e vy Xomls X125 -+« s Xmn) T be the mn x 1
vector. Here vec(-) is defined as the vectorization operation
that reshapes a matrix into a vector by stacking all columns
one-by-one. X ® Y = [x;;Y] represents the Kronecker product
of X and Y. I. represents the ¢ x ¢ identity matrix. For any
vector x € R4, several useful vector norms are defined

xllo = llxll°, ||x||1—Z|x, ||x||"—Z|xz|" ()
xi7#0

Similarly, for any matrix X € R"™*", the squared Forbenius
norm (i.e., the £-norm), the £;-norm, the £ 1-norm, and the
£ p-norm can be defined as

m

X117 = Z 5o IXla =)

i=1

n
2%

J=1

n

m
XTI =Y 1%l Xl = | D | Do 1Xul e
ij

i=1 \j=1
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Fig. 3. Similar movements and postures of human body parts in motion
sequences. Left: walk and a basketball motion sequences with similar leg
movements. Right: six poses with similar hand postures selecting from
basketball and jump motion sequences separately.

1,12,13,14,15,16,17
14,25,26,27,28,29,30,31
14,18,19,20,21,22,23,24
1,7,8,9,10,11

1,2.3,4.5,6

(b)

Fig. 4. CMU (a) pose model and our (b) partlet model. The rigid part is
marked with red color in the left figure. The markers 1, 2, 7, and 14 are the
root, the right and left femur markers, and the upper neck marker, respectively.

B. Data Preprocessing

1) Coordinate Normalization: Since the raw motion data
are recorded under the real-world global coordinate system,
visual-similar human poses are possible to be of dramatically
numerical diversity due to the reasons of pose translation and
rotation. Meanwhile, different motion sequences frequently
contain an amount of similar body part postures and move-
ments under the local coordinate system as shown in Fig. 3.
In view of this, we hope to remove the effect of pose trans-
lation and rotation in pose representation while to exploit the
available local body part similarities for human motion denois-
ing. We also notice that the torso of a human body as marked
in Fig. 4(a) is usually a stable rigid part. Referring to the
human torso, it becomes simple yet efficient to calculate both
the translation and rotation matrices for each human pose. It
allows us to remove the translation and rotation of the input
human poses, and is easy to set them in a local coordinate
system offering an invariant pose representation. To this end,
we first normalize each human pose and translate it to make
its root marker in the origin point of the local coordinate sys-
tem. Then, we align the local pose by rotating it so that the
plane consisting of three markers, i.e., the left femur, the right
femur, and the upper neck, parallels the XY-plane. And, the
ray that passes through the middle point between the left and
right femur markers and the upper neck marker also paral-
lels the y-axis, and directs to the positive direction of the
y-axis. In order to take the effect of noise into account, we
adopt the iterative closest point algorithm [35] to obtain the
translation and rotation matrices. We record all of these trans-
formation information into a matrix M = M, x M,, where M,
is the rotation matrix and M; is the translation matrix, so all
of these operations can be done in reverse. In other words, we
can translate these local poses into global poses after human
motion denoising.
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2) Partlet Generation: Suppose a normalized local human
motion sequence comprises n poses and each pose con-
tains / markers, we denote it as X = [X.{,...,X,], where
Xt = [X12s Y1ts Z0ts « - - » Xlts Vit zl,]T represents the tth pose and
(xis, Vit» zir) 1s the coordinate of the ith marker in this pose.

Because all / markers are included in pose representa-
tion (i.e., X;), we call such a representation as the entire
pose model representation, which has been frequently used
in [18], [19], [32], [36], and [37]. However, this pose repre-
sentation has two shortcomings: 1) the badly noisy body parts
will inevitably affect the clean body parts and 2) it is too
coarser to exploit the abundant similar local body part pos-
tures and movements. To improve the representation, we divide
each pose into five parts termed as the partlets according to the
human anatomy in order to obtain a more fine-grained repre-
sentation. The five partlets are torso (contains head), left arm,
right arm, left leg, and right leg. Each of them is a set of mark-
ers as shown in Fig. 4(b). In order to make the position of the
joint markers like markers 1 and 14 in Fig. 4 stable, we assign
them to multiple partlets as shown in the table of Fig. 4(b). For
each partlet, one submatrix is derived from X and we denote
the ith partlet as X' = [X',..., X1 € R i=1,...,5,
wherein X!, just includes a subset of markers of X, and d;
equals to three timing the number of contained markers in the
ith partlet. With this representation, we can speed up human
motion denoising via processing these five partlets in parallel.
An incidental benefit is that the out-of-sample problem can
be mitigated via exploiting the abundant similar local body
part postures and movements embedded in different human
motion sequences. It is able to deal with the new-come motion
sequence as long as similar local body part postures and move-
ments are collected in the training dataset. In other words, we
relax the requirements (i.e., similar motion sequences are col-
lected in the training dataset) for overcoming the out-of-sample
problem.

3) Partlet Grouping: If we process each human pose one-
by-one, the embedded spatial-temporal motion patterns will
be ignored. In other words, it would be much better to pro-
cess a short clip of motion than a single pose each time.
In light of this, we use a lagged window with the length of
m-frames moving across the entire motion sequence as shown
in Fig. 2 and group all of the partlets in a same window into a
group. The above obtained partlets in X are reorganized into
n—m+ 1 overlapped groups. We then reshape each group

into a vector g]’- = vec([X", X_le, e X_"j+m_1]) e RUixmx1

where j=1,...,n—m+ 1. So, we totally obtain five partlet-
group motion matrices, i.e., ¥’ = [gll, gls=n—m+1,

from X', i=1,...,5, by partlet grouping operation.

C. Motion Dictionary Construction Via Robust
Dictionary Learning

Human motion data contain some intrinsic spatio-
temporal motion patterns, and it is helpful to reveal and
exploit these patterns for guiding human motion denoising.
Different from [17], we resort to the theory of dictionary
learning [4], [25], [38], [39] to adaptively infer five motion
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Fig. 5. Sketch map of robust dictionary learning algorithm.

dictionaries that preserve the spatio-temporal patterns of
human motion from a training dataset.

Specifically, collecting as many precaptured complete
motion sequences as possible to construct a training dataset
is applied as the first step. Once such a training dataset is
set up, we can use the training motion sequences to construct
five partlet-group motion matrices, i.e., B’ = [g"l, RN gfv] €
RUixmxN i — 1 5 wherein N is the total number of
partlet group, via the partlet generation and grouping oper-
ations. The next step is to solve the following optimization
problem:

min |B — D'W| 7

Di,wi
st W= W, Wiy, W,ijofts,lijSN;
Df=[D%'1,...,Df'Kl.],‘Df'j)zsl,lsiji )
to search the best possible motion dictionary

(i.e., D' € RW@ixmxKiy for the sparse representation of
the training partlet-group data B'. In (3), W' is the sparse
representation coefficient matrix, #; is the target sparsity
and | - ||o is the £op pseudo-norm as defined in (1). In each
motion dictionary matrix, e.g., Di,i=1,...,5, its columns
are the desired motion bases which preserve the embedded
spatio-temporal patterns of human motion. For simplicity,
we assume hereon that the columns of D' are normalized to
unit £,-length. Equation (3) is actually a nonconvex problem
with respect to D' and W, while there exist several efficient
dictionary learning methods such as the classic MOD [40],
K-SVD [41], and their variants [42] can be used to solve it.

However, (3) is a least square error function which is well-
known to be unstable with respect to noises and outliers [43].
Suppose B! is contaminated by a few outliers with large errors,
these outliers are easy to dominate (3) because of the squared
errors. Indeed, (3) is only optimal when B’ is contaminated
by the independent and identically distributed (i.i.d.) Gaussian
noise. In practice, we often have to face the gross noise con-
dition when the motion data have been badly corrupted by
the noise and outliers. So, it is beneficial to enhance the
robustness of (3).

1) Objective Function: In the specific area of human
motion capture, the acquired human motion data usually con-
tain only a few of outliers after post processing. Thus, the
outliers in B’ are rare comparing with the dense slight Gaussian
noise in it. In order to distinguish these two kinds of noise, we
decompose the whole noise E' in B’ into two parts: 1) one is
the dense Gaussian noise E(f’, and 2) the other one is the sparse
outliers E', so we have E' = Ei, +EL. The key idea of our pro-
posed robust dictionary learning algorithm is shown in Fig. 5.
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Since (3) is optimal to the Gaussian noise, we omit Eé, and
propose a robust dictionary learning algorithm by minimizing
the following objective function [44], [45]:

, i i |2 :

min |8 =W = £} + | ],

st W= [wi, ... ,wy] W,"juofts,lfij
D' =[Diy, . D] D5 = 11<j<Ke @

Due to the £p pseudo-norm in (4), it is hard to solve the
optimization problem. As customary, we relax it by minimiz-
ing its £ surrogate and reformulate the objective function as
follows:

min
DI,Wi,Ei

st. D'=[Di,...

B — D 1] [gf} |2+ 2| £
N

’ Dth]’

where [ is a (d; x m) x (d; x m) identity matrix. Compared
the improved (5) with the original (3), since we explicitly
take the effect of noises and outliers into account in deriving
the proposed robust dictionary learning algorithm, the algo-
rithm becomes robust against with the motion data noises and
outliers.

2) Optimization Method: Since (5) is actually a nonconvex
problem with respect to D', Wi and E! jointly, it is difficult to
find the global minimum. However, (5) is convex with the three
variables separately. In the following, we use a coordinate
descent scheme to optimize the three variables alternatively.

For the fixed W' and E!, (5) is equivalent to

awl,

i
D,

,Shlsj=K )

min |~ W — |

st. D'=[Di,...

i

Dl Py =1 r=isK ©
which is a least squares problem with quadratic constraints.
This constrained optimization problem can be solved using
gradient descent with iterative projection, while it also can be
much more efficiently solved using a Lagrange dual [46].

Once the motion dictionary D' is updated, we optimize
Wi and E! in (5)

min

B —[D', 1] w 2+/\HE"H + B W, . D
Wi,EL ' Ei F s b

Equation (7) becomes a classic £; minimization problem
and it can be solved using the orthogonal matching pur-
suit [47], basis pursuit [48], FOCUSS [49] and fixed-point
continuation (FPC) algorithm [50], and so on.

Therefore, we iteratively update Di, Wi, and Eg until the
convergence is achieved, leading to a local optimum solution
of these three variables. Therefore, five motion dictionaries
Di,i = 1,...,5 can be get in the training phase via the
proposed robust dictionary learning algorithm.

D. Human Motion Denoising Via Robust
Structured Sparse Coding

Similarly, using the partlet generation and grouping oper-
ations, we can generate five partlet-group motion matrices,
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which are denoted as Y},i = 1,...,5, for an input noisy
motion sequence in the testing/denoising phase. For a num-
ber of reasons, the partlet-groups (i.e., gj’:) in Y,i_ contaiq
noises and outliers. A slight difference between B' and Y/
is that the former contains multiple partlet-groups from dif-
ferent motion sequences while the later one just contains
multiple partlet-groups from only one motion sequence. This
permits us to exploit the noise distribution information within
a single motion sequence for human motion denoising. In
order to remove the noises and outliers, we convert the con-
ventional human motion de-noising problem into a general
£1-minimization framework, which can automatically select
a most correlated subset of motion bases from the motion
dictionary for clean motion reconstruction.

1) Objective Function: To construct and select sparse
motion bases, we utilize the £;-norm, which is of the sparse
sample selection ability [27], and reformulate the human
motion de-noising problem into a £;-minimization framework

n\}/iln loss (Y}, D'W') + G (V') + [|W];. (8)

The added ¢;-norm penalty on the coefficient matrix W'
cannot ensure the filtered human motion to be smooth,
so we incorporate a smooth graph constraint on W/,
ie, G(W¥). In fact, the graph-based models have been
applied in many applications, such as visual concept
recognition [19], [43], [51], [52] and photo retargeting and
cropping [53]. Here the smooth graph denotes as G' = {Y?, 5%},
where the data samples in Y/ as graph vertices and S is the
graph weight matrix, whose element Sf;b reflects the visual
similarity between g; and g; in Y. There exist two popu-
lar ways to assign the graph weight matrix: 1) one is the
k-nearest-neighbor method and 2) the other is the e-ball-based
method. To reduce the number of parameters, we adopt the
former one and define S’ as below

i | lif g, € Ni(gl) and vice versa
ab ™ 1 0 otherwise

where J\/k(gZ) is the k-nearest neighborhood set of gz. To
enhance the robustness, we adopt £;-norm distance, i.e.,
||g; — gz Il1, as the measurement to find the k-nearest neighbor-
hoods. We empirically set k to 5 in our experiments. Because
of the smoothness of human motion, the temporal neighbors
of g/ are of a highly probability to be in the k-nearest neigh-
borhood set. To enforce the recovered human motion to be
smooth, G(W) is defined as

3 S (W= W), = o (W (¥)) O

G (¥) =
where L' = O — S, O' is a diagonal matrix and
0;51 =Y 5_; S, and tr(-) is the matrix trace operation. Here
L' is a Laplacian matrix [54].

In the particular application of human motion capture, data
are prone to containing noises and outliers due to some rea-
sons like markers occlusion and mislabeling. Some motion
noise frequently pollutes the data entries within multiple
nearby frames due to the reason that once the occluded
markers appear, they will last for a short period of time.
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In other words, the noise in motion data is strongly struc-
tural. It is well known that the ¢;-norm is optimal with
respect to Gaussian noise distribution, but is sensitive to
outliers. The ¢;-norm meets the demand for modeling the
outliers, but cannot preserve the structure information. As an
extension of £;-norm, the € j-norm that assumes the noise
follows the Laplacian distribution is often used to find jointly
sparse solutions [43], [55], [56]. Actually, computational stud-
ies have showed that the {3 ,-norm provides much more
flexible and robustness than the £ 1-norm [57]. Thus, we
enforce the 3 ,-norm penalty on the noise term and rewrite (8)
as follows:
i |17 = DW= B [, + 2o (W (9))

+ A3 ” W'

pe(0,2], i=1,...,5.

; (10)

In (10), the sparse coefficients matrix W' and the noise
matrix E' are jointly estimated in the same framework. In
this framework, the noise term, i.e., Ef, models both outliers
and the structure noise, while the remained Gaussian noise
in Y; — E' can be perfectly removed by applying the squared
Forbenius norm on the first term. Owing to the smooth graph
constraint on the third term, the recovered human motion
would be much more smooth and stable. The last £;-norm
penalty on W/ brings in the benefit that our method can auto-
matically select a most correlated subset of motion bases
from motion dictionaries for clean motion reconstruction. As
a result, our method doesn’t need to specifically choose the
training data set, and it can be very easily applied to real-world
applications. Indeed, (10) is a sparse coding problem. Since
the noise structure information has been taken into account
in (10), we call this model as robust structured sparse coding.

2) Optimization Method: Due to the nonsmooth property
of the £ ,-norm and the nonconvex of (10) with respect to
W' and E' jointly, it is difficult to solve the problem. Here we
apply a coordinate descent scheme for solving this problem.
Since each pose is divided into five partlets, it needs to solve
five similar objective functions derived from (10). To simplify
the notation, we omit the superscript i and try to optimize a
common objective function as below

min |, — DW — EN + il1Ello + Aot (WLET) + 23] W1
(1

Firstly, we fix E and optimize the above (11) with respect
to W. Let Z=Y; — E, (11) is equivalent to

min |Z ~ DV |F + aotr (WLWT) + 23] W]y.  (12)

Using the matrix vectorization operation and Kronecker
product operation, (12) can be rewritten as
TW) = |Z = D7 + hotr (WLWT) + 23]y
& tr((Z — DW)(Z — D)) + hotr (WLWT) + A3 W)
< Vec(\If)T (I,, ® DTD) vec(W) — 2vec(\I’)Tvec (DTZ)
+ havec(9) (L @ Ix)vec(¥) + Asllvec(W)
& vee(W) Avec(¥) — 2vec(¥) b + Az|lvec(W)]|
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where A = I, @ DD+ 1 (L®Ik) and b = vec(D'Z). Because
both DT D and L are symmetrical matrices, A is a symmetrical
matrix. The eigenvalue decomposition of A can be written as
A = UAUT. Therefore, the first two terms in (13) can be
rewritten as

vec(\IJ)TAvec(\lJ) — 2vec(\Il)Tb
= vee(W)” (A% UT)T (A%UT) vec(W)

— 2vec(w)” (A%UT)T ((A%UT)T>1 b

(A%UT) vee(W) — ((AiuT)T>_l b 2
2

Accordilng to (13) and (14), if we denote A* = A% UT and
b* = (A2UT)T)~ b, (12) is equivalent to

< (14)

min |A*vec(¥) — b* ||§ + Azlvec(¥)|1. (15)
vec(W)

Indeed, (15) is a standard ¢; least square problem, that is
the lasso problem. The least angle regression algorithm and
its variants can be applied to find the optimal solution of (15).
It has to point out that since we vectorize W, the size of the
matrix A* may be very large, which is time consuming to
solve (15). In this case, we can directly solve (12) using the
first order method such as proximal gradient method [58].

Secondly, when the optimal value of W has been found, we
optimize (11) with respect to £ and obtain

min 1Y: = DW — E||F + M | Ell2,p- (16)

Let Q = Y; — DV and define a diagonal matrix ® with its
diagonal elements ®; = 1/ (2/p)||Ei.||§_p , then (16) becomes

min |Q — E|} + atr (ETOE). (17)

By setting the derivative with respect to E to 0, we get
E=(I+10)""0. (18)

Since O is a diagonal matrix, the inverse matrix of / + 110,
ie., I+ 10)~1 canbe effectively calculated. Thus, it is easy
to calculate E based on (17).

Till now, we obtain the two updating rules for both W and E.
These updating rules should be recursively applied until the
convergence is achieved and a local optimum solution of W
and E is obtained. Recall that each human pose is divided
into five partlets, here we solve five similar objective functions
derived from (10) in parallel.

3) Motion Reconstruction: After solving the above (11),

we get the sparse representation coefficient matrix
v i=1,...,5. Now, we can reconstruct the fil-
tered clean group motion matrix via Y, = D'W.

Recall that Yti = [g’i,...,gf;],s = n—m+ 1 and
gl = Vec([xf.,x_in, - X_"j+m_]]) € Rdixmx1 — gq,
decompose the filtered partlets groups g;i in f/,i and calculate
the mean ~v'alue for each partlet, eg., 5(’] = (1/n)) Z?il()?fj),
wherein (X_’j), is the rth copy of ij and n; is the total number

we

(13) of the copy of the partlet 5(’/ in f’f. Because the ith partlet
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Algorithm 1 Human Motion Denoising Algorithm

Input:  five motion dictionary matrices:D, i = 1, ..., 5 learned by
the robust dictionary learning algorithm; the noisy global motion
sequence:Xglobalithe length of lagged window:m; regularized
parameters: A1, Ao and A3; the value of p.

Output:  the filtered global motion sequence: Xgjobal-

1: Coordinate Normalization:
normalize and translate the global noisy motion sequence
Xglobal into the local noisy motion sequence Xjocal;
2: Partlet Generation: )
generate partlets X' = [X!}, ...
based on Xjocal
3: Partlet Grouping: } )
generate partlets-groups ¥ = [g}, ...

XileRIn j=1..5

,g_’;],s=n—m—|—l

\l)vhere §]’ = Vec([ij,ij+l, .. "X~ij+m—1]) according to Xi,i =
4: Motion Denoising:
Parfor i = 1:5
Step1: ] )
Initialize E' and compute L';
Repeat

Fix E' and update \Iﬂ: according to (15);
Fix W' and update E' according to (17);

Until Convergence; ) o
Compute the filtered human motion f/,l = D'w!;

End
5: Decompose partlet Groups:
decompose Y}, i=1,...,5 to obtain multiple partlets.

6: Calculate Filtered partlets: B
calculate the mean value for each partlet, e.g., ij =

%Z?’zl(}?_"j), wherein (5(_"].); is the r-th copy of f(’j and nj is
the total number of copy of the partlet 5(’] in f’,i .
7: Form Local Motion Matrix: )
form the filtered submatrix X’ based on }N(fj, and then obtain
the filtered local motion matrix Xjocal-
8: Coordinate Transformation:

convert the local filtered motion sequence Xiocal into the
global filtered motion sequence Xgjobal-

is X = [Xfl, . ..,an] € RY>n i =1,...,5, we can recover
the filtered submatrix X’ based on the recovered partlet
5(’/ It is also easy to form the local motion matrix 5(10%1.
Finally, we translate the local poses to be the global poses
)?global according to the recorded transformation matrix M
to achieve the goal of human motion de-noising. Here, we
summarize our proposed human motion denoising approach

in Algorithm 1.

IV. EXPERIMENTS

The performance of our proposed approach was evalu-
ated on both the simulated and real noisy motion data. To
quantitatively assess the performance of our algorithm, we
first compare it with other four widely used human motion
denoising algorithms with the simulated data, which include
a variety of motion noises. Then, we apply these denois-
ing algorithms to deal with the real noisy human motion
data captured by a commercial optical motion capture sys-
tem (i.e., MotionAnalysis Raptor-E Digital RealTime System)
and a Microsoft Kinect. Since, there are several model param-
eters such as Ay, A2, and A3 in (10) in our algorithm, we
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finally conduct a series of experiments to study the parameter
sensitivity of our approach.

A. Testing on Simulated Data

Since the algorithm’s performance may be affected by mul-
tiple factors including the complexity of action, the noise type
and noise level, we select more than 80 motion sequences
including two simple actions (i.e., walk and jump) and
two complex actions (i.e., dance and boxing) from CMU
human motion database [20]. We used the asf/amc files,
which contain 32 markers, in our experiments. Because most
data in the CMU database are clean, we randomly select
2 sequences of each action to synthesize three kinds of noise:
1) Gaussian noise with signal-to-noise ratio (SNR) ranges
from {30, 25, 20, 15, 10, 5} dB; 2) outlier with ratio from 5%
to 30% with an interval of 5%; and 3) mixed noise that
consists of some Gaussian noise and outliers. The remain-
der motion sequences are used for training. We compare our
method with the following algorithms: 1) Gaussian filter;
2) Wavelet filter [16]; 3) Kalman filter [31]; and 4) the
example-based method [17]. The first three methods are widely
used in commercial motion capture systems, while the last one
is a well-known data-driven-based human motion denoising
method.

We apply a Gaussian filter, Wavelet filter, and Kalman
filter to denoise each feature dimension of noisy motion
data independently. For our method and the example-based
method, we use the clean motion sequences to train algo-
rithm models and test them with the noisy motion data.
For fair comparison, we tune all model parameters for each
algorithm and report their best results. Take the example-
based method for example, we tune the size of lagged
window from {5, 10, 15, 20, 25, 30, 35, 40} and the number of
reserved bases K from {20, 40, 60, 80, 100, 120} and choose
the best setting via cross-validation. For our method, we
let the motion bases number, ie., K;,i = 1,...,5, to be
the same value for simplicity and denote them as K to
be consist with [17]. We empirically set the two parame-
ters A and B used in the robust dictionary learning algorithm
to A = 1073 and B = 10~!. The regularized param-
eters in the robust structured sparse coding model like
A1, A2, and A3 are tuned from {1073, 102, 107!, 1, 102, 103}.
The sparseness parameter p is in (0, 2], so we tune it from
{0.25,0.5,0.75, 1.0, 1.25, 1.5, 1.75, 2}.

To quantify the de-noised results, the root mean squared
error (RMSE) measurement [19], [37]

Z?:l (Zjl':l “Pji _ﬁjinz)

nxl

RMSE (X, X) = (19)
where Pj; is the jth marker in the ith pose in clean motion
data and Pj; is the corresponding filtered marker, is used in
this paper.

Due to the space limitation, we show the results
of only one sequence for each action. The selected
sequences are 08_11 (walk), 02_04 (jump), 05_15 (dance),
and 17_10 (boxing). From Tables I-III, we can see that our
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SUMMARY OF PERFORMANCE FOR THE COMPARED ALGORITHMS ON CMU HUMAN MOTION DATA WITH VARIOUS GAUSSIAN NOISE. THE RMSE

TABLE I

(CM/MARKER) AND STANDARD DEVIATIONS ARE REPORTED. THE HIGHEST PERFORMANCE IS HIGHLIGHTED IN EACH CASE

Action Algorithm SNR=30dB SNR=25dB SNR=20dB SNR=15dB SNR=10dB SNR=5dB
Our 0.88+0.10 146+0.15 161+020 1.78+0.24 226+036 3.17+042
Example-based 1.39 £0.15 2.48 £0.64 2.60 £ 0.55 3.67 £ 0.68 4.37£0.80 5.07 £1.05
Walk Gaussain 1.02+£0.31 2.85 +£0.83 2.02+0.34 3.72+£0.84 4.96 £ 0.67 7.69 +1.03
Kalman 2.18 £0.67 2.32 £ 0.67 2.77£0.68 3.564£0.73 5.14 £0.95 8.74£2.15
Wavelet 1.23 £0.32 1.85£0.41 2.77£0.68 3.97+0.84 5.92+1.18 9.63 £1.64
Our 083+0.18 161+079 1.73+073 199+0.67 256+0.59 3.59+0.89
Example-based 1.34 £0.13 2.05 £ 0.87 2.34 £ 0.55 3.46 £1.02 3.92+1.31 4.70 £1.45
Jump Gaussain 1.27+0.88 3.36 £2.71 2.18 £ 0.67 4.22 + 2.52 5.22 +1.02 7.90 £1.92
Kalman 2.81 £2.75 2.66 £ 1.93 3.05 £ 1.81 3.84 £1.74 5.71 £ 2.32 8.55 £ 1.76
Wavelet 1.21+0.44 1.80 £ 0.65 2.70£1.01 3.97 £ 1.57 5.99 £ 2.17 8.56 £ 3.08
Our 0.86+0.18 237+0.73 255+071 287+070 373+083 523+1.05
Example-based 1.58 £0.21 2.51 +£0.78 2.81 +£0.69 444 +1.11 6.00 £1.91 5.95 £ 1.62
Dance Gaussain 2.13 £0.68 5.87 £ 2.01 2.96 £ 0.56 6.72 £1.88 6.6 £1.06 10.53 £1.40
Kalman 4.39 £ 1.57 4.49+1.54 4.21+1.36 5.73 £ 1.47 724+£1.35 11.11+£2.15
Wavelet 1.87+0.44 2.66 £0.63 4.03£0.96 6.04 £1.51 8.60£2.11 12.73+£2.71
Our 085+020 138+0.35 149+025 210£0.35 3.22+0.71 4.33+0.79
Example-based 1.41 £ 0.12 1.54 £0.51 2.124+0.32 3.11 +0.64 4.83 £0.94 4.20 + 0.88
Boxing Gaussain 1.78 +0.86 2.64£0.78 3.80+1.84 476 £1.71 5.84 £1.00 8.61 £1.46
Kalman 2.84+1.35 3.01+1.34 3.46 £1.29 4.22+1.20 5.81 +1.09 9.10 £ 1.15
Wavelet 1.78 £ 0.46 2.48 £0.67 3.46 £0.97 4.86 £1.37 6.75 £ 1.80 9.24 £2.25

TABLE 11

SUMMARY OF PERFORMANCE FOR THE COMPARED ALGORITHMS ON CMU HUMAN MOTION DATA WITH VARIOUS OUTLIER NOISE. THE RMSE

(CM/MARKER) AND STANDARD DEVIATIONS ARE REPORTED. THE HIGHEST PERFORMANCE IS HIGHLIGHTED IN EACH CASE

Action Algorithm Ratio=5% Ratio=10% Ratio=15% Ratio=20% Ratio=25% Ratio=30%
Our 1.43+0.19 146+022 168+026 1.84+026 1.88+0.26 1.98+0.36

Example-based 1.50 £ 0.35 1.63 £0.35 1.81 £0.52 1.99 £+ 0.56 2.17+£0.77 2.66 £+ 0.88

Walk Gaussain 1.46 £0.39 2.18 £ 0.52 2.77 £ 0.46 3.68 £ 0.51 4.64 £ 0.68 3.36 £ 0.60
Kalman 2.30 £0.69 2.69 +£0.80 3.01 £0.67 3.76 £ 0.70 4.56 +0.86 5.27+£0.74

Wavelet 1.82£0.64 2.80 £0.78 3.46 £0.81 4.21 £1.00 5.14 £1.16 5.80 £1.25

Our 1.33 £+ 0.39 1.47 +£0.37 1.50+0.36 1.70+049 1.74+0.33 1.78+0.27

Example-based 1.15+0.63 1.43 1+0.49 1.50 £0.48 1.91£0.72 1.96 £1.76 2.31 £ 0.83

Jump Gaussain 1.71£0.79 2.42 +0.76 3.14 + 0.60 3.91 +£0.75 4.76 £ 0.61 5.87+0.71
Kalman 2.78 £ 1.88 3.15+1.67 3.73+1.43 4.38 +1.44 5.13+1.21 6.04 +1.04

Wavelet 1.75 £+ 0.66 298 +1.12 6.68 + 1.35 4.39 + 1.46 5.23 +1.68 6.20 + 1.66

Our 1.47+044 167+046 1.72+044 1.93+047 2104+0.47 2.41+0.44

Example-based 1.82 £ 0.47 1.90 £0.48 2.08 £ 0.67 2.20 £0.59 2.31 £0.71 2.42 £0.84

Dance Gaussain 2.44 + 0.66 3.13+£0.51 4.10 £0.61 4.98 £0.84 5.96 £ 0.76 7.25+£0.87
Kalman 4.31 +1.44 4.68 £ 1.35 5.26 = 1.21 590+ 1.14 6.61 +1.19 7.57 £ 1.09

Wavelet 2.37+£0.78 3.99 + 0.88 5.10 £ 1.15 6.01 £1.42 6.94 + 1.46 797+ 1.52

Our 1.00+027 1.26+029 107+035 1.55+0.37 1.85+045 2.26+0.55

Example-based 1.37 £ 0.30 1.59 +£0.29 1.99 +£0.38 2.16 &= 0.56 4.02 +£0.55 4.55 + 0.64

Boxing Gaussain 2.25+0.79 3.03 £0.72 3.94+0.72 4.70 £ 0.68 5.65 = 0.66 6.77 £ 0.84
Kalman 3.14 +1.26 3.73 £ 1.18 4,47 +1.10 5.14 +1.01 6.00 £ 0.91 6.84 + 0.86

Wavelet 2.39 £ 0.67 3.84 +0.89 4.66 £ 1.03 5.50 & 1.06 6.38 = 1.09 7.25+1.10

method consistently outperforms its competitors. More impor-
tantly, the standard deviations of our method are mostly
smaller than the others, which means that the outputs of our
method are much more stable than that of the others.

B. Testing on Real Data

In the real data experiments, we first capture a variety
of actions like walk, jump, boxing, hugging, and picking-up

performing by two subjects using a MotionAnalysis Raptor-E
Digital RealTime System, and each action repeats five times.
These motion data contain 42 markers in each pose. As men-
tioned before, the acquired raw motion data often contain a
certain percentage of missing values. So before the experi-
ments we manually label all of the unnamed markers using
the post-processing tool provided by the motion capture sys-
tem and just apply the spline interpolation method to fill the
remainder missing values. The complete motion data are then
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TABLE IIT
SUMMARY OF PERFORMANCE FOR THE COMPARED ALGORITHMS ON CMU HUMAN MOTION DATA WITH VARIOUS MIXED NOISE (THE SNR
OF GAUSSIAN NOISE AND THE RATIO OF OUTLIER ARE SHOWN IN THE HEADLINE OF TABLE). THE RMSE (CM/MARKER) AND
STANDARD DEVIATIONS ARE REPORTED. THE HIGHEST PERFORMANCE IS HIGHLIGHTED IN EACH CASE

Action Algorithm 20dB + 10% 20dB +20% 10dB + 10% 10dB + 20%
Our 1.83+£0.26 254+042 3.00+:044 3.01+0.39
Example-based 2.79 £ 0.63 3.40 £0.77 5.69 + 1.27 5.75+£0.93
Walk Gaussain 2.96 £ 0.50 4.48 £0.99 6.13 £ 0.87 6.38 £ 0.85
Kalman 3.18 £0.76 4.31 £0.81 6.50 £ 0.87 6.79 £ 1.04
Wavelet 3.73+£0.77 4.87+0.97 7.13£1.18 7.41+1.24
Our 1.91+045 207+076 2.72+044 2.84+0.67
Example-based 2.48 £0.74 299+ 1.18 420+ 1.41 5.20 £ 1.33
Jump Gaussain 3.16 £ 0.58 5.29 £+ 2.00 5.85 £2.15 6.68 = 1.84
Kalman 3.67 £ 1.44 4.86 £ 1.29 5.95 + 1.51 6.75 £ 1.10
Wavelet 3.74 £ 1.04 5.07 £ 1.58 6.23 + 2.25 7.21 £2.32
Our 2424053 292+065 3.67+0.59 3.91+0.78
Example-based 2.99 + 0.82 3.70 £1.08 5.35 £ 1.30 6.92 + 1.46
Dance Gaussain 3.96 £ 0.63 7.35 + 1.67 812+ 1.74 9.01 £1.60
Kalman 5.20 £1.23 6.37 £1.10 8.03 £2.82 8.63 £ 1.15
Wavelet 537+ 1.17 6.85 +1.31 9.23 £2.28 10.31 £ 1.86
Our 2.044+041 217+041 3.42+0.52 3.58+0.53
Example-based 2.19 + 0.43 2.51 +£0.66 4.94 +0.91 5.80 £0.94
Boxing Gaussain 3.79 £ 0.72 6.12 + 1.51 6.56 + 1.57 7.64+1.42
Kalman 4.24 +1.15 5.58 £ 1.02 6.51 £ 1.12 7.61 £0.99
Wavelet 4.74+£1.10 6.19 £ 1.23 7.31 £1.95 8.38 £ 1.81
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Fig. 6.

Comparison between different algorithms on a hugging motion sequence. (a) Length variant curves for a chest bone in the original noisy motion

sequence as well as the results of different algorithms. (b) Key poses on frame numbers 111, 139, 153, 167, 181, 195, 209, and 223 in a hugging motion sequence.
From the top row to the bottom row, the key poses of the original noisy motion sequence and the results of different algorithms are presented one-by-one.

adopted in our experiments. For each action, we randomly
select one sequence as the testing data, while the rest nine
sequences are used as the training data for the example-based
method [17]. In contrast, for our method we simply remove
the testing sequence and use all the other motion sequences
as the training data.

Because we do not have any ground truth of the testing
data, we compare the bone-length of the outputs of differ-
ent algorithms. In Figs. 6 and 7, one bone of human body is
selected and marked with red color. The output of our method
is more stable than that of its competitors. We note that our
method outperforms the example-based method. We believe it
is because the proposed robust dictionary learning algorithm as
well as the robust structured sparse coding algorithm make our
approach become more robust against with noises and outliers.

To demonstrate the effectiveness of our method, we apply
the proposed approach to deal with the outputs from a
Microsoft Kinect [22]. The pose acquired from a Microsoft

Kinect comprises only 20 joints, which is less than that comes
from an optical motion capture system. Similarly, we capture
five motion sequences for each action and then adopt the same
experimental setting as that is used in dealing with the real
optical motion capture data. In Fig. 8, we show the original
imperfect skeletons and the denoising results of our method
in two motion sequences. The human poses of our algorithm
are much more stable and correct than the raw data. It demon-
strates that our method can be used to refine the real imperfect
motion data.

C. Parameter Sensitivity and Convergence

In addition, we conduct experiments to study the parameter
sensitivity of our algorithm using the simulated data. Fig. 9
shows that p should be carefully set under different noise
condition. In other words, it is important to take the noise
structure information into account. In Fig. 10, we study the
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(b)

Comparison between different algorithms on a picking-up motion sequence. (a) Length variant curves for a bone connected the left

and right femur joints in the original noisy motion sequence as well as the results of different algorithms. (b) Key poses on frame numbers
1111, 1123, 1135, 1147, 1159, 1171, 1183, and 1195 in a picking-up motion sequence. From the top row to the bottom row, the key poses of the original
noisy motion sequence and the results of different algorithms are presented one-by-one.
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Fig. 8. Denoising motion capture data with a Microsoft Kinect using our proposed method. From the top row to bottom row, the original captured color
images, depth images, skeletons using Kinect, as well as the denoising results of our method are presented one-by-one. (a) Raise hands. (b) Jump.
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Fig. 9.
(b) outlier (20%), and (c) mixed noise (20 dB + 10%), respectively.
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Fig. 10. Performance variance of our method with respect to (a) A and (b) .

performance variance of our method with respect to the
parameters of robust dictionary learning model, i.e., A and 8.
In this testing, we fixed A; = 102, Ay = 1073, and A3 = 1072,
As we can see, the smaller the A value, the better performance
of our model. When A — oo, our dictionary learning model
[i.e., (5)] is reduced to the traditional dictionary learning
algorithm like K-SVD [59]. In other words, we should take

Performance variance of our method with respect to the p-value on three walk motion

sequences, which contain (a) Gaussian noise (10 dB),

the outliers into account in learning the multiple motion
dictionaries. Meanwhile, Fig. 10(b) shows that we should
carefully tune B, so W is not too dense or too sparse, which
will decrease the algorithm’s performance. In Fig. 11, we
find when Aq, A», and A3 are smaller than 1, the RMSE value
is acceptable. Relatively speaking, our method is much more
sensitive with respect to Ay and A3 than Aj. From Fig. 12,
we find that the bigger dictionary size and window size, the
better performance in a certain range. But it needs more time
to solve the objective function. And from Table IV, we can
see that the partlet representation not only reduces the entire
data processing time, but also improves the performance of
our method. Lastly, Fig. 13 shows the convergence curves of
our optimization algorithms for solving the robust dictionary
learning model and robust structured sparse coding model. As
shown in Fig. 13, it converges within 30 and 100 iterations,
respectively, in solving the proposed two models.
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Performance variance of our method with respect to the parameters A1, A, and A3 on a noisy walk motion sequence. (a) A; and Ay with fixed

A3 = 0.01. (b) A; and A3 with fixed Ay = 1073, (c) Ay and A3 with fixed A; = 102,
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Fig. 12. Performance variance of our method with respect to the (a) dictionary
size and (b) lagged window size.

TABLE IV
PERFORMANCE COMPARISON BETWEEN OUR METHOD WITH AND
WITHOUT USING THE PARTLET MODEL REPRESENTATION UNDER
DIFFERENT NOISE CONDITIONS USING THE WALK MOTION
SEQUENCE (08_11). HERE GAUSSIAN NOISE: SNR = 10 dB,
OUTLIER NOISE: Ratio = 20%, AND
MIXED NOISE: 20 dB + 10%

Noise Representation RMSE(cm/marker)  Time(s)
Gaussian Pose 3.00 £ 0.52 28.95
partlets 2.26 £0.36 13.74
Outlier Pose 2.85 +0.45 27.46
partlets 1.88 £0.28 14.01
Mixed Pose 2.93 £0.45 28.76
partlets 1.90 £ 0.26 13.75
(a) (b)
Fig. 13.  Convergence curves of our proposed optimization methods for

solving the (a) robust dictionary learning model and (b) robust structured
sparse coding model.

So, the proposed optimization algorithms converge very fast
in our application.

V. CONCLUSION

Human motion denoising is an indispensable step for motion
data processing. We have proposed a new data-driven-based
robust human motion denoising approach for removing both
the noise and outliers. Experiments on both the simulated and
real human motion data show that our method consistently

yields better performance than other methods. The outputs of
our method are much more stable than the others. And, it is
very easy to setup the training dataset for our method.
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