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Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex ge-
netic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype
of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism,
genetically-related siblings of individuals with autism, and typically-developing control participants. We
parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity
endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in
controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local
endophenotype effects in specific networks including the visual processing and default mode networks. Our
analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in
adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Autism spectrum conditions (ASCs) are common pervasive neuro-
developmental conditions which typically present in early childhood
and manifest with characteristic impairments in communication and
social relationships, alongside unusually repetitive behaviours and re-
stricted interests. Numerous studies have shown ASC to be highly heri-
table (Ronald and Hoekstra, 2011; Berg and Geschwind, 2012; Colvert
et al., 2015), with genetic heritability estimated at 80% (Lichtenstein
et al., 2010); one recent estimate suggests that siblings of people with
autism are 7 times more likely to be diagnosed with an ASC than are
members of the general population with no genetic relationship to an
autistic proband (Grønborg et al., 2013). The complex polygenic interac-
tions underlying ASC give rise to a continuous spectrum of subclinical
and clinically diagnosed presentations (Baron-Cohen et al., 2001a;
Hoekstra et al., 2007).

The combination of high genetic heritability and heterogeneous
presentation supports the search for endophenotypes of autism.
ley).

. This is an open access article under
Endophenotypes are the heritable and quantifiable – neurophysio-
logical, biochemical, endocrinological, neuroanatomical, cognitive
or behavioural – markers of psychiatric conditions (Gottesman and
Gould, 2003). Endophenotypes are found in patients and their
asymptomatic relatives, and thus simplify the search for causes of
complex psychiatric conditions by identifying genetically mediated
and quantifiable traits that bind together diverse clinical presenta-
tions (Kalueff et al., 2015). Here we search for endophenotypes in
a matched sample of males with ASC, unaffected siblings of people
with ASC, and typically developing controls.

A broader autistic phenotype (BAP) (Losh et al., 2009) has been
identified at the behavioural level, with genetic relatives of autistic
probands exhibiting more autistic traits than the general population
(Constantino et al., 2010; Wheelwright et al., 2010) and more aloof,
anxious, and rigid personality styles (Piven et al., 1997; Hurley et al.,
2007). Whilst not meeting diagnostic criteria for ASC, they also display
abnormalities and impairments resembling the core symptomatology
of ASC in the domains of communication, social reciprocity and behav-
ioural rigidity (Piven et al., 1997; Pickles et al., 2000; Losh et al., 2009),
along with deficits in elements of executive function like planning,
set-shifting and verbal fluency (Wong et al., 2006; Nydén et al., 2011).
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In contrast to the behavioural BAP, there is limited evidence for a
corresponding broader neural phenotype of autism. Previous reports
have shown that ASC-like cognitive profiles in relatives are associated
with atypical brain activation in localised brain regions (Dawson et al.,
2005; Baron-Cohen et al., 2006; Spencer et al., 2011, 2012a, 2012b;
Holt et al., 2014). Such studies produce spatial activation maps but do
not describe interactions between brain regions. In contrast, functional
connectivity analyses study distributed networks of correlated activity
between brain regions (Fox and Raichle, 2007; Van Dijk et al., 2010).
ASCs are now increasingly understood to presentwith system-wide dif-
ferences in neural information processing (Minshew and Goldstein,
1998; Belmonte et al., 2004a, 2004b; Welchew et al., 2005; Geschwind
and Levitt, 2007; Kana et al., 2011; Vissers et al., 2012; Uddin et al.,
2013; Di Martino et al., 2014), and are conceptualised as “nonfocal,
systemic… distributed neural systems disorder[s]” (Minshew and
Goldstein, 1998), rather than disorders of focal brain regions. The
search for autism endophenotypes in brain connectivity is a fledgling
field. Early reports show altered functional connectivity in genetically
high-risk infants (Orekhova et al., 2014; Righi et al., 2014; Keehn et al.,
2015), and reduced white matter maturity in siblings of individuals
with ASC (Lisiecka et al., 2015), but no study has previously examined a
functional-connectivity endophenotype in adolescence.

The current evidence for whole-brain connectivity differences be-
tween typically developing individuals and those with ASC is inconsis-
tent (Barttfeld et al., 2011, 2012; Müller et al., 2011; Rudie et al., 2012;
Vissers et al., 2012; Ray et al., 2014; Tyszka et al., 2014). This inconsis-
tency may partly arise from heterogeneity of participants; both age
(Sowell et al., 2003; Westlye et al., 2010; Lebel and Beaulieu, 2011)
and sex (Lai et al., 2012, 2013), for instance, are known to affect neuro-
pathology in ASC, whilst intelligence is known to modulate several
aspects of neurobiology, potentially including information transfer and
connectivity (Luders et al., 2009; Neubauer and Fink, 2009). Studies
investigating psychological or neurobiological processes in non-
matched age, gender and IQ participants risk masking true differ-
ences or reporting false positives (Mottron, 2004). Other reasons
for inconsistency may include the difficulty of comparing studies
which explore connectivity in distinct task states. Such disparities
represent an important anomaly to the notion of ASCs as "develop-
mental disconnection syndromes" (Geschwind and Levitt, 2007).

Here, we addressed the above limitations by testing whole-brain
hypoconnectivity as an endophenotype of autism in a gender-, age-,
and IQ-matched sample of adolescents, at rest and across a range of
tasks, thus simultaneously maximising sample homogeneity and task
diversity. We employed complex network analysis (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010) to characterise functional-
MRI connectivity networks. This approach conceptualises neuroimaging
data as a complex system of nodes (brain regions) and connections (in-
terregional functional associations) and has successfully revealed
organisational abnormalities in many severe psychiatric conditions
but is a fledgling field in autism research (Menon, 2011; Rubinov and
Bullmore, 2013). We have focused our analysis on description of
whole-brain connectivity, but have also reported observed differences
in local connectivity for completeness and for comparisonwith previous
work.
Table 1
The demographics of each experimental group and results of F-tests between them. Means are

N: 42 (14 ASC × 14 SIBS × 14 CON)

ASC Siblings (S

Age 15.05 (1.9) [6.45] 15.11
Full-scale IQ 104.79 (14.6) [51] 112.43
Verbal IQ 103.5 (18.5) [64] 110 (12) [3
Performance IQ 106.1 (16.8) [46] 110 (11.5)
AQ (Autism-Spectrum Quotient) 39.14 (7.2) [28] 10.79
SRS (Social communication score) 112.9 (38.2) [138] 18.4 (
The strengths of our study for identification of whole-brain autism
endophenotypes lie in the unique combination of a well matched sam-
ple of participants, the presence of unaffected siblings, the presence of
multiple functional tasks and rest, and inwhole-brain complex network
analysis.

2. Materials and methods

2.1. Participants

We analysed a matched group of 14 adolescent males with diag-
nosed ASC, 14 unaffected male siblings of individuals with ASC (hence-
forth “siblings”), and 14 typically-developing controls with no family
history of ASC (Table 1), matched from a larger pool of 68 male and
60 female participants (Spencer et al., 2011; Spencer et al., 2012a,
2012b; Floris et al., 2013; Holt et al., 2014). All of the data andmeasures
analysed in this study were collected in these previous works, the pro-
tocols for which were approved by the Cambridgeshire 1 Research
Ethics Committee (National Health Service).

As mentioned above, matching is crucial in autism research, given
that individual differences in age, gender and IQ between participants
can confound results. Our 14-participant groups were selected using
an automated and unbiased matching algorithm (‘MATCH’) which
minimised pairwise distances between participants in the normalised
feature space (van Casteren and Davis, 2007). The numbers of partici-
pants in our study represent the maximal possible number with absent
between-group differences in age, gender, and full-scale IQ (Wechsler,
1999). In addition, matching for full-scale IQ alone can leave discrepan-
cies between ASC and typically-developing individuals in the subscales
of verbal and nonverbal IQ (Jarrold and Brock, 2004), and our groups
were in fact matched on all three measures. Diagnostic status of the
ASC group was confirmed with the Autism Diagnostic Observational
Schedule-Generic (ADOS-G) (Lord et al., 2000) and the AutismDiagnos-
tic Interview-Revised (ADI-R) (Le Couteur et al., 2003). Siblings and
controls scored significantly lower in number of autistic traits as mea-
sured on the Autism-Spectrum Quotient (AQ) (Baron-Cohen et al.,
2001b), and on the Social Communication Questionnaire (SCQ)
(Rutter et al., 2003), they scored below the cut-off that differentiates
them frompeoplewithASC. Siblings did not differ statistically from con-
trols in these measures.

Themajority of siblings in our study (11/14) were not related to the
participants with ASC: this largely avoids the potential confound intro-
duced by shared environmental factors in the sibling and ASC groups
(Cannon and Keller, 2006). None of the participants were currently or
had previously taken psychotropic medication, though it was later re-
vealed that one sibling had a diagnosis of resolved childhood epilepsy
not initially reported during participant screening.

2.2. Procedure

The data analysed here were collected by Spencer and colleagues,
and the full details of the experimental tasks and the rationale for choos-
ing themwere published previously (Spencer et al., 2011, 2012a, 2012b;
Floris et al., 2013; Holt et al., 2014). Having completed the psychometric
displayed with standard deviations in parentheses (), and range in square brackets [].

IBS) Controls (CON) Matching (F)

(2.0) [6.93] 15.1 (1.8) [5.33] F(2, 41) = .006, p = .994.
(11.4) [32] 113.43 (9.1) [31] F(2, 41) = 2.205, p = .124
7] 110.5 (6.9) [26] F(2, 41) = 1.649, p = .205
[34] 113.3 (10.4) [34] F(2, 41) = 1.123, p = .336
(6.3) [23] 8.86 (5.6) [21] F(2, 41) = 97.882, p = .000
15.2) [53] 14.7 (10.4) [35] F(2, 41) = 72.472, p = .000
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tests reported above, participants performed three short cognitive tasks
(counterbalanced for order) during functional MRI recordings. Behav-
ioural performance and group differences in brain activity during each
task have been published in the above reports.

One task (henceforth “Eyes task”) was adapted from the “Reading
the Mind in the Eyes” task (Baron-Cohen et al., 2001a), and simulta-
neously tested “theory of mind” and emotion recognition. Participants
were presented with a pair of eyes and asked to either choose one of
two mental state words to describe the expression of the eyes (mental
state condition), or to decide whether the eyes were male or female
(gender judgement condition); see Holt et al. (2014) for details.

Another task involved detection of small component shapeswithin a
complicated visual pattern, the so-called Embedded Figures task
(henceforth “Figures task”: see Spencer et al., 2012b, for details)
which has been popularly used in autism research and often demon-
strates superior performance in people on the spectrum (Shah and
Frith, 1983; Jolliffe and Baron-Cohen, 1997; Bölte and Poustka, 2006).

Another task (henceforth “Ekman task”) used the Ekman (1975)
pictures of facial affect, requiring participants to make judgements of
gender on faces that were either happy, fearful or neutral and thus
scrutinising the effects of emotion on cognitive processing (Spencer
et al., 2011).

Recordings were also taken of the cohort during ‘resting state’, a 7-
minute period where participants were simply asked to close their
eyes and think of nothing.

2.3. Imaging analysis

Functional and structuralMRI scanswere acquired on a Siemens Tim
Trio 3-T system (Siemens Healthcare, Erlangen, Germany) at the MRC
Cognition and Brain Sciences Unit (CBSU) in Cambridge, UK. In a se-
quence lasting 4min and 32 s,MPRAGE structural imageswere acquired
with the following parameters: repetition time (TR) = 2250 ms, echo
time (TE) = 2.98 ms, inversion time (TI) = 900 ms, flip angle 9°,
voxel size 1 × 1 × 1mm. Echoplanar (EPI) images during the functional
tasks were acquired in a descending interleaved pattern with the fol-
lowing parameters: TR = 2000 ms, TE = 30 ms, flip angle 78°, voxel
size 3 × 3 × 3 mm, field of view = 192 × 192 mm, 64 × 64 acquisition
matrix. 32 slices were acquired with a slice thickness of 3 mm and an
inter-slice distance of 0.75 mm.

The data preprocessing pipeline employed MRIcron (Rorden et al.,
2007), AFNI (Cox, 1996) and FSL (Jenkinson et al., 2012). The first five
scans of each functional EPI serieswere discarded to ensure signal equil-
ibration. Following skull-stripping, brain segmentation and non-linear
registration to MNI space, anatomical images were co-registered with
functional scans, which had been realigned and slice-time corrected.
We extracted motion parameters using AFNI 3dvolreg and identified
the mean contribution of cerebrospinal fluid (CSF) and white matter
to the signal by creating trimmed (partial volume estimates N0.99) bi-
narymasks of both.We then regressed out these confounds, their deriv-
atives, and quadratic terms (a total of 32 regressors, as described in
Satterthwaite et al., 2013; Patel et al., 2014), but not global signal
(Gotts et al., 2013). We used AFNI3s 3dBandpass command to despike
each participant3s time-series, apply an 0.01 Hz high-pass filter and an
optional 0.1 Hz low-pass filter (see below for a discussion), regress the
confounds and smooth the time-series with an 8-mm FWHM Gaussian
kernel.

We parcellated the images using a parcellation scheme of 264 8mm
regions of interest (ROIs), split into 14 functional networks (Power
et al., 2011): see SupplementaryMaterials, 1. Six ROIs were located out-
side of the brain in several participants, and were thus discarded. Using
MATLAB, we calculated functional connectivity between these remain-
ing 258 nodes using the Pearson correlation coefficient. We removed
weak and potentially spurious correlations by preserving only the
strongest 20% of connection weights for each participant, and analysing
the resulting weighted matrices (Rubinov et al., 2009; van Wijk et al.,
2010). This proportional thresholding represents the most popular ap-
proach in complex network analysis, and through normalising individ-
ual subject weight, emphasises differences in network topology, rather
than differences in total connectivity. In this context, proportional
thresholding can reduce and thus if anything underestimate any pres-
ent between-group differences in total connectivity.

In order to observewhether deviations in functional connectivity are
task-dependent, we included cognitive tasks and resting state data in
our analysis. Previous investigations of functional connectivity diverge
in methods depending on whether they concern resting state or task-
based data. So-called “intrinsic” functional connectivity reflects the
low-frequency, spontaneous fluctuations in connectivity that appear
during rest (Fox et al., 2007; Van Dijk et al., 2010). Autism researchers
also frequently analysed functional connectivity during cognitive
tasks, an approach henceforth described as “task-evoked” which often
does not involve low-pass filtering, in order to emphasise task effects.
Since previous studies have shown that the use of a low-pass filter sub-
stantially modulates findings in functional autism connectivity datasets
(Jones et al., 2010; Nair et al., 2014), we completed analyses with and
without low-pass filtering. Ourmain analyses included a low-pass filter,
and are reported throughout the results section; additional analyses
without low-pass filtering are reported and compared in Results 3.4.

2.4. Correction of movement

Movement is a critical issue in functional connectivity as it can
create artefacts of hypoconnectivity (Power et al., 2012, 2014,
2015; Satterthwaite et al., 2012, 2013; van Dijk et al., 2012). The
correction of movement artefact is a difficult problem without a
clear consensus (Power et al., 2015); it is worth noting that whilst
censoring of time-points has been prominently advocated as a solu-
tion (Power et al., 2013, 2014), this procedure has advantages and
disadvantages, and does not represent an accepted gold standard
(Beall and Lowe, 2014; Power et al., 2015).

We performed several quality control checks to ensure that group
differences did not reflect motion artefacts. Six location parameters
were extracted from the scans of each participant for each slice during
the scan time-series. We computed the mean framewise displacement
(following Jenkinson et al., 2002; Power et al., 2012), as the sum of the
absolute values of the derivatives of the translational and rotational
realignment estimates (after converting rotational estimates to dis-
placement at 50 mm radius), and averaged it to define mean motion
for each participant over the whole scan. We also identified the
maximum spike of movement (i.e. the largest difference in the loca-
tion parameters between slices). We found no gross of movement of
participants on visual inspection and consequent statistical analysis
revealed that the groups did not differ significantly in mean motion
(F(2, 41) = .925, p = .405) or in the number of movement spikes
(F(2, 40) = 2.036, p = .145).

To further investigate a possible influence of motion on our results,
we computed, for each pair of nodes, the correlation between functional
connectivity and maximum framewise displacement. Fig. 1, Part A
shows the moving average of these correlations as a function of
Euclidean distance between nodes, for a “null-hypothesis” pipeline
with only CSF and white-matter but no motion correction, and for our
full preprocessing pipeline. In the absence of a movement artefact we
would expect the correlations to be around zero. In the presence of an
artefact we would expect higher correlations for short-distance node
pairs and lower correlations for long-distance node pairs (Power et al.,
2013; Patel et al., 2014). To assess the magnitude of the correlations,
we performed the same computations after permuting the framewise
displacement values for the participants 100 times, thus generating
the distribution of values to be expected when no relationship between
motion and functional connectivity exists (the grey lines of Fig. 1A and
1B). We then tested, for both pipelines, if the overall mean correlation
or the distance dependence is significantly different from those



Fig. 1.Moving average of correlation between maximum framewise displacement (A) or mean framewise displacement (B) and functional connectivity against distance between nodes.
This is shown in each case for the simple pipelinewithoutmotion correction and for our full pipeline. The bold red lines reflects values from actual data, whilst straight red lines are fitted
linear functions: grey lines are obtained by permuting movement values for participants. (C) Correlations between averagemovement and functional connectivity in each task. As can be
seen, most participants are clustered together with low averagemovement. The few outliers whomovedmost belonged to the ASC (stars) and sibling (triangle) groups and appear to be
consistent across each task, but these participants in fact tend to show higher functional connectivity.

143R.L. Moseley et al. / NeuroImage: Clinical 9 (2015) 140–152



144 R.L. Moseley et al. / NeuroImage: Clinical 9 (2015) 140–152
observed in the permutations. The overall mean correlationwas not sig-
nificantly different from thenull distribution for both pipelines (pN 0.1),
but we found that the slope of a straight line fitted through the correla-
tion values at a steeper angle for the simple pipeline (slope: −0.6/m,
p value b 0.01), where it was almost flat for our full pipeline (slope: −
0.5/m, p value 0.1). This is consistent with a possibly artefactual rela-
tionship between movement and distance dependence in the data,
which is largely corrected for by our pipeline. The use of maximum
framewise displacement is a more stringent test for motion corruption
that has been omitted in previous studies (which typically used mean
framewise displacement). When we examined the relationship be-
tween motion and mean framewise displacement (Fig. 1B), the effect
size of the distance-dependent artefact was negligible.

Finally, we examined the correlation between meanmovement and
maximummovement (spike) parameters and global functional connec-
tivity in each task. Global functional connectivity did not correlate with
movement spikes, but did correlate with mean movement in the
Figure (r = .339, p = .030), Ekman (r = .348, p = .026) and Eyes
(r = .412, p = .007) tasks. Positive correlations between functional
connectivity and average movement (see Fig. 1C) reflected that partici-
pants who moved more tended to have higher functional connectivity.
This bolsters the interpretation of genuine hypoconnectivity in the ASC
group rather than artefactual hypoconnectivity resulting from greater
movement.

Important recentwork suggests that thatmovementmay also repre-
sent a biological, in addition to artefactual, correlate of dysconnectivity
(Zeng et al., 2014) In this context, we did not regress group-averagemo-
tion estimates in our analysis to avoid removal of important biological
effects which are correlated with, but do not arise as a result of, varying
levels of motion.

2.5. Statistical analysis of endophenotypes in functional connectivity

The central tenets of the endophenotype concept (Gottesman and
Gould, 2003) suggest that if disrupted connectivity were present as an
endophenotypeof autism,wewould predict differences between autistic
participants and controls, and between siblings and controls. Significant
difference between affected individuals and their genetic relatives are of
interest but not strictly necessary for identification of endophenotypes,
so we do not include them. For each variable in the forthcoming analy-
sis, we therefore employed analysis of variance (ANOVA) to identify
group differences and followed this with t-tests comparing siblings
and controls and comparing participants with ASC and controls. In all
cases, we used the IBM Statistical Package for the Social Sciences
(SPSS). Given the novel and exploratory nature of this investigation,
we did not correct for multiple comparisons.

We analysed global network organisation with four measures:

Whole-brain functional connectivity: We examined connection strengths
in weighted matrices (pairwise correlations between 258 brain re-
gions), searching for group differences when collapsing all tasks. Many
studies of functional connectivity have taken an a priori approach focus-
ing on certain ROIs. Whilst this is certainly a valid approach based on an
abundance of previous literature, results from these analyses have been
somewhat inconsistent (Müller et al., 2011). In this context, we focused
on a potentially more robust data-driven whole-brain analysis.

Clustering coefficient (C): C quantifies the number of connections be-
tween a node3s nearest neighbours and reflects the density of edges
(connections) in a node3s immediate neighbourhood (Rubinov and
Sporns, 2010: see paper for details). To ensure that C in each participant
differed from that which would be expected by chance and degree dis-
tribution alone, for each participant we divided the value of C by the
mean value of C obtained from an ensemble of 100 random networks
with the same size, density, degree and strength distribution of the
participant template on which they were based (Rubinov and
Sporns, 2011).

Global efficiency (E): E is defined as the average inverse shortest path
length – the minimal number of edges (or ‘steps’) – between all pairs
of nodes. The greater the path length of a network, the less efficient it
is (Bullmore and Sporns, 2012) (see Rubinov and Sporns, 2010, for de-
tails). We normalised E as above.

Node disruption index: We examined the extent to which autistic and
sibling participants differed from controls in node characteristics,
using the measure of node disruption index (NDI: originally termed
“hub disruption index”) (Achard et al., 2012). First, the total weight of
connections (strength) was calculated for each node, and averaged
over the control group. For each participant, these average nodal
strengths were then subtracted from individual nodal strengths. The
NDI is the slope of these differences against the average values over
the control group, and represents the similarity of nodal properties to
the average of nodal properties of the typical participant (see Supple-
mentary Materials 2 and 3 for details and additional analyses).

Local measures: We analysed local differences in functional connectivity
by examining the location of the most highly-connected nodes
(“hubs”), defined as the 20% of nodes with highest total connection
weight. The distribution of these hubs was explored in 9 of the 14
functional networks, namely the cerebellar, cingulo-opercular and
frontoparietal task control, default mode, dorsal and ventral attention,
salience, subcortical and visual networks. We excluded three networks
irrelevant to the nature of our tasks (the auditory network and two sen-
sorimotor networks), and two functionally imprecise networks (see
Supplementary Material 1, for details). Having identified the network
identity of hubs in each group, we searched for differences in the distri-
bution of hubs betweenASC, sibling and control participants by tallying,
in each participant, the number of hubs in each of network. As before,
ANOVAs were first conducted followed by t-test comparisons of ASC
vs. controls and siblings vs. controls. We ensured the robustness of
these results with additional analyses, including an alternative method
of hub selection and an analysis of interregional and intranetwork con-
nections (see Supplementary Material 4).

3. Results

3.1. Global differences: functional connectivity

In initial analysis of average connection weights between 258 brain
nodes, we observed a significant effect of group with the inclusion of all
four task conditions (F[1, 39] = 4.082, p = .025), reflecting differences
in group connectivity averaged across all tasks. Fig. 2A illustrates that
the control group showed the strongest global connectivity and the ASC
group the weakest, with siblings intermediate. One-way ANOVAs of
each task condition individually showed significant group differences in
connection weights in the Figures task (F[2, 41] = 4.003, p = .026:
Fig. 2B) and during resting-state (F[2, 41] = 4.221, p = .022: Fig. 2C),
and a non-significant trend in the same direction (p = .118: Fig. 2D) in
the Ekman task. There was no significant trend effect in the Eyes task
(Fig. 2E); on post-hoc consideration, this could reflect issues around the
nature of this task, which conflated mentalising conditions and gender-
judgement conditions such as to be a non-specific task of ‘active cognitive
processing’. For this reason,we focus on themore easily interpretable task
states for the remainder of the paper, but report analysis of the Eyes task
in Supplementary Materials (5) for completeness and transparency.

Strongly significant correlations (each with a p-value lower than
.01) were seen between connectivity in each of the conditions (see
Supplementary Materials, 6). This reflected the fact that individuals
showed differences in connectivity across the board rather than in
any one task, which explains the main effect of Group when all tasks



Fig. 2. Average connection weights (correlation coefficients) computed from weighted matrices for each group during each task condition. Error bars represent standard deviation.
Asterisks reflect significant (p b .05) group differences in ANOVAs: as can be seen, these emerged for all four conditions together and during the Figures task and resting state alone.
The group difference was non-significant in the Ekman task.
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were collapsed (Fig. 2A). Individualswith lower connectivity tended to be
those with ASC and, to a lesser extent, siblings.

The difference between control and ASC participants was significant
in the Figure (t[26]= 3.291, p= .003) and Ekman tasks (t[26]= 2.270,
p = .032) and during rest (t[26] = 3.427, p = .002), and ASC partici-
pants showed significantly lower whole-brain connectivity than
Fig. 3. Difference matrices produced by subtracting the connection weights of one group from a
White voxels reflect connectionswhere groups donot differ in connectionweights. Red voxels r
controls N siblings; siblings N ASC). Blue voxels represent connections which are stronger in th
controls when all tasks were collapsed (t[26] = 2.748, p = .011). T-
tests found no significant differences between siblings and control par-
ticipants in any task condition (p N .3 for each tasks; although p = .072
across all tasks, see Fig. 2, Panel A). Panels A and B suggest that siblings
are more similar to the ASC group in the strength of functional connec-
tivity (see Fig. 3 for an alternative representation).
nother. The 258 × 258 matrices reflect the edges (connections) between 258 brain nodes.
epresent connectionswhich are stronger in thefirst group than the second (controls NASC;
e second group than the first (ASC N controls; siblings N controls; ASC N siblings).
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Significant endophenotype effects appeared in the non-normalised
clustering coefficient (C) and global efficiency (E) in the Figures task,
the Ekman task and during rest, reflecting differences between control,
sibling and ASC participants in global network organisation. Thesewere
not significant when normalised by reference null models (Supplemen-
tary Materials, 7).

3.2. Global differences: network organisation

The similarity between autistic and sibling participants was further
evident in node disruption index (NDI). Scores closest to zero reflect
similarity to nodal strength in the typical brain (Fig. 4), and the three
groups differed significantly in the Figures task (F[2, 41] = 5.322, p =
.009), the Ekman task (F[2, 41] = 4.422, p = .019), and during rest
(F[2, 41] = 5.452, p = .008). Siblings and control participants differed
significantly in the Figures task (t[26] = 2.226, p = .035) and during
rest (t[26] = 2.491, p = .019); the other comparison relevant for
endophenotypes, that of ASC vs. controls, was also significant in the
Figures task (t[26] = 3.354, p = .002), the Ekman task (t[26] = 3.061,
p = .005) and during rest (t[26] = 3.458, p = .002).

This measure reflects homogeneity within the control group, given
that NDI scores were significantly closer to zero in individual control
participants than in individuals in the ASC or the sibling group. Control
participants would, however, be naturally expected to resemble the
template computed from their group average strength. Therefore, to
examine the homogeneity of the ASC and sibling groups themselves,
we computed deviance from average nodal strength when the ASC or
sibling group were used as an average. Whilst individual controls
were close to an average control template of node strength, siblings
and participants with ASC were no closer to their group3s average
nodal strength than were the other groups: no group differences were
seen in any task, reflecting greater heterogeneity in ASC and sibling
groups than in control participants. We report this fully in Supplemen-
tary Materials (3).

3.3. Local changes in network topography

Weexamined the presence of localised changes in connection differ-
ences by considering the distribution of hub nodes in individual brain
networks, defined by our 258-node parcellation scheme.

The topography of hubs differed substantially in the Figure and
Ekman tasks. Two patterns emerged during the Figures task (Fig. 5A).
Group differences characterised by low number of hubs in controls
and high number of hubs in ASC appeared in the cerebellar network
(F[2, 41] = 8.048, p = .001) and the visual network (F[2, 41] = 4.379,
p= .019),with siblings intermediate in both. In direct comparisons, sib-
lings differed statistically from controls only in the visual network
Fig. 4.Mean node disruption index (NDI) for each group in each task with standard deviation i
with little variance, each tended to resemble the group average in nodal strength. Mean NDIs
sibling groups. Asterisks represent significant (p b .05) differences between groups in ANOVA.
(t[26]=2.421, p= .023); ASC and control participants also differed sig-
nificantly in the visual network (t[26] = 2.931, p = .007), reflecting a
true endophenotype effect. ASC participants also differed from controls
withmore hubs in the cerebellar network (t[26]=3.432, p= .002), but
the siblings did not differ significantly from the controls.

A reversed endophenotype effect, with autistic participants showing
the fewest hubs and controls the most, was evident in the subcortical
network (F[2, 41] = 3.672, p = .035) and was marginally non-
significant in the default mode network (DMN) (F[2, 41] = 3.095,
p = .057). T-tests between siblings and controls were not significant
in either case, though controls and ASC participants differed significant-
ly in the number of hubs in the subcortical (t[26]=2.895, p= .008) and
default mode (t[26] = 2.721, p = .011) networks.

Finally, non-endophenotype (non-linear) effects were observed in
the ventral attention network (ASC participants showed the fewest
hubs and siblings the most, F [2, 41 = 5.594, p = .007); and in the
cingulo-opercular task control network ASC participants showed the
most hubs and siblings the fewest, F[2, 41] = 3.450, p = .042). No
t-test comparisons were significant.

We confirmed all of these group differences using an alternative
method of hub definition and further tests of local network connection
weights. In this case, the group difference in the DMN, whichwas previ-
ously marginally non-significant, became significant and showed a
strong endophenotype effect in intra-network and interregional con-
nection weights (Supplementary Materials, 8).

Trends that were non-significant in the Figures task became signifi-
cant during the Ekman task (Fig. 5B): autistic participants showed the
fewest hubs and controls the most in the DMN (F[2, 41] = 6.381, p =
.004). In contrast, control participants had the fewest hubs and ASC par-
ticipants the most in the dorsal attention network (F[2, 41] = 5.746,
p= .006). In both cases, siblingswere intermediate but significantly dif-
ferent from controls in both the DMN (t[26]= 2.796, p= .010) and the
dorsal attention network (t[26]=2.823, p= .009): autistic participants
also differed from controls in the number of hubs in the DMN (t[26] =
3.441, p = .002) and the dorsal attention network (t[26] = 3.121, p =
.004). The reverse trend, with the greatest number of nodes in the ASC
group and the fewest in the control group, was seen in the visual net-
work with a group difference (F[2, 41] = 5.530, p = .008). T-tests did
not however find this difference to be significant between siblings and
controls.

Finally, a non-endophenotype effect was seen in the cingulo-
opercular task control network, where siblings showed the greatest
number of high-strength nodes and controls the fewest (F[2, 41] =
3.522, p = .039).

These differences remained significant with an alternative method
of hub definition and in an analysis of interregional and intra-network
connectivity (Supplementary Materials, 9).
n error bars. In each task, the mean NDI of control participants close to zero reflected that
further away from zero reflected deviance from typical node structure in the autistic and



Fig. 5. Average distribution of the 20% highest-strength hubs over 9 functional networks in the Figure (A) and Ekman tasks (B), with error bars reflecting standard deviation. Asterisks
represent significant group differences (p b .05) in ANOVA.
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3.4. The effect of low-pass filtering

The use of a low-pass filter has been shown to substantially influ-
ence results in autism neuroimaging (Jones et al., 2010; Nair et al.,
2014). To check the robustness of our findings, we re-analysed our
data without a low-pass filter. As a whole, our results remained con-
sistent between these two preprocessing strategies, with no trend
reversals and most, but not all, tests remaining significant. A full com-
parison of these twopreprocessing strategies is in SupplementaryMate-
rials (10), and the main changes are as follows. In our analysis of
correlation coefficients reflecting whole brain connectivity, t-tests
showed that the comparison of connectivity between controls and
ASC participants in the Ekman task became non-significant (t[26] =
1.790, p= .085); in contrast, a new significant difference now emerged
between controls and siblings in resting state (t[26]= 2.257, p= .033).
This, along with the difference between controls and ASC in resting
state, would implicate hypoconnectivity during rest as a particular
endophenotype in accordance with the criteria we adopted (see
Materials andmethods section, Section 2.4). In our analysis of node dis-
ruption index (NDI), the same trends remained but the group effects in
the Figures task (F[2, 41] = 2.496, p = .095) and the Ekman task (F[2,
41] = 2.493, p = .096) dropped below significance, as did the contrast
between controls and ASC participants (t[6] = 1.645, p = .112) and
controls and siblings (t[26] = 1.975, p = .059) in the Figures task.
Whilst this endophenotype did not therefore remain significant, NDI
remained significantly different and an endophenotype effect remained
in resting state. In the Figures task, group differences in the subcortical
network and cingulo-opercular task control network became non-
significant, but previously marginal group differences in the DMN
(p = .057) became significant (F[2, 41] = 4.207, p = .022). In t-tests,
the difference between controls and ASC participants in the subcortical
network became marginally non-significant (t[26] = 1.963, p = .060),
as did the difference between siblings and controls in visual network
(t[26] = 1.960, p = .061). All local differences in the Ekman task
remained significant.

4. Discussion

We explored whole-brain and local connectivity endophenotypes in
awell-matched cohort of participantswith ASC, unaffected siblings, and
typically developing controls, and observed a robust whole-brain con-
nectivity endophenotype effect in the Embedded Figures task, the
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Ekman task, and resting state. This was confirmed by several strands of
analysis andwith differences in preprocessing (see SupplementaryMa-
terials, 10). Primarily, we observed reduced correlation between brain
regions across all tasks (and across some tasks individually): connection
weights between regionswereweakest in ASC, intermediate in siblings,
and strongest in controls. Further analyses of strength similarity to typ-
ical brain connectivity, using the node disruption index (NDI), con-
firmed that both autistic and sibling participants deviated significantly
from the average density of node connections as shown in the group
of typically-developing adolescent boys — an effect which was present
in all four conditions. Autistic and sibling participants did not differ sig-
nificantly from each other in any task and were more heterogeneous,
lacking the more similar node structure that made individual control
participants close to their group mean in nodal strength. This heteroge-
neity or idiosyncrasy in the autistic brain extends the recent findings of
Hahamy et al. (2015) by showing the genetic heritability underlying
such idiosyncrasy.

Brain endophenotypes in the relatives of people with autism have
been reported previously (Dawson et al., 2005; Baron-Cohen et al.,
2006), including in studies which have analysed less stringently
matched supersets of the current participant cohort (Spencer et al.,
2011, 2012a, 2012b; Holt et al., 2014). These previous investigations re-
ported localised changes in haemodynamic response (blood-oxygen
level dependent: BOLD) to stimuli in task conditions. Analysis of func-
tional connectivity endophenotypes in adolescent autism is, to the
best of our knowledge, novel. Differences in functional connectivity
may explain previously reported abnormalities in localised BOLD signal.
For instance, abnormal functional connectivity may make it difficult to
regulate and reduce brain activity (Spencer et al., 2012a), andmay addi-
tionally underlie regional hypoactivity associated with autistic symp-
toms (Spencer et al., 2011, 2012b).

Functional hypoconnectivity might be interpreted as consistent, at a
theoretical level, with the well-established weak central coherence ac-
count (Happé and Frith, 2006). Weak central coherence describes the
tendency of people with ASC, their relatives (Briskman et al., 2001)
and people with autistic traits (Best et al., 2008) to process data in a
piecemeal fashion, biased towards local processing and often failing to
process things in a global manner or to see the ‘bigger picture’. Just
and colleagues (Just et al., 2012) link this and other autistic features to
a disruption in the integrated activity of distributed brain regions un-
derlying complex cognitive tasks. Of course, support for this theory
rests on the assumption that the observed functional connectivity di-
rectly underlies integration and cognitive function, and the behavioural
correlate of hypoconnectivity is far from transparent. For instance,
despite the robust observed functional-connectivity effect, we did not
observe a behavioural difference between siblings and controls in the
Autism-Spectrum Quotient (AQ) or the Social Communication Ques-
tionnaire (SCQ). This may be due to the small size of our sample: previ-
ous studies demonstrating the heritability of the AQ have contained
hundreds if not thousands of participants (Hoekstra et al., 2007;
Ruzich et al., 2015). It is possible that behavioural tasks require more
statistical power to detect an effect, whereas functional connectivity dif-
ferences are more easily detected.

The existence of a whole-brain endophenotype in our dataset
supports previous reports for heritability of functional connectivity
(Posthuma et al., 2005; Smit et al., 2008; Schutte et al., 2013). Although
where possible we avoided related ASC and sibling participants, it is
impossible to completely disentangle genetic and environmental influ-
ences on the endophenotype, given that our unaffected siblings did live
with their own autistic siblings. Gerdts et al. (2013), however, con-
vincingly show a genetic continuum in the endophenotype with a
comparison of families with one autistic child (simplex families)
and families with multiple autistic children (multiplex families):
the latter exhibit more restricted interests and repetitive behaviour
and are less social, less likely to smile and to make eye-contact than
participants from simplex families. Our analysis provides further
biological evidence of inherited autistic features in the brain and
may highlight genes involved in neural transmission as loci of
interest.

4.1. Localisation of brain differences

Themajor focus of our analysis was onwhole brainmeasures of con-
nectivity. Analysis of hub topography revealed, however, that certain
networks may be particularly compromised in siblings as well as indi-
viduals with autism. We mention several of these in light of their theo-
retical relationship to ASC.

During the Figures task, the cerebellar and visual networks had the
greatest number of hubs in ASC and the fewest hubs in control partici-
pants. This appeared as an endophenotype effect in our primary analy-
sis, although it lost significance when the low-pass filter was removed.
The trend stayed consistent, however, and so this result may still be of
interest, particularly for its consistency with previous research in au-
tism. A greater number of high-strength nodes present in visual systems
could be theoretically consistent with the strengths that both people
with ASC and genetic relations exhibit in piecemeal processing
(Baron-Cohen andHammer, 1997; Bölte and Poustka, 2006). It is consis-
tent, too, with previous reports of temporo-occipital and occipital
hyperconnectivity reported in children and adolescents with ASC
(Keehn et al., 2013; Keown et al., 2013). There has been suggestion
that people with ASC show weaker connections between anterior and
posterior brain regions (Just et al., 2004, 2007; Koshino et al., 2005;
Kana et al., 2009; Damarla et al., 2010). We confirmed this difference
in some of our confirmatory tests (see Supplementary Materials, 8). A
more rigorous, focal investigation of connectivity in and involving the
visual network in relatives could be a target for future research.

The most consistent effect in both the Ekman and the Figures task
was found in the default mode network (DMN), where controls showed
the greatest number, and autistics the fewest number, of high-strength
hubs. This group effect was marginally non-significant with a low-pass
filter (p = .057), but became significant without a low-pass filter
(p= .022). Closer scrutiny of thisfinding (see SupplementaryMaterials,
9 and 10) confirmed that connectivitywithin the DMNand between the
DMN and the rest of the brain was significantly weaker in autism and
significantly weaker in siblings than matched controls, in both of these
tasks. Components of the DMN decrease their activity during overt cog-
nitive processing (Gusnard and Raichle, 2001; Raichle et al., 2001) and
increase activity in ‘mind-wandering’ states (Greicius et al., 2003) and
during tasks involving aspects of social cognition and mentalising
(Schilbach et al., 2008; Lombardo et al., 2010; Mars et al., 2012). This
does not appear to be the case in individuals with ASC (Kennedy et al.,
2006). Consistentwith their archetypal impairments in social cognition,
functional hypoconnectivity of the DMN is a consistent finding in ASC
(Kennedy and Courchesne, 2008; Assaf et al., 2010; Paakki et al., 2010;
Weng et al., 2010; von dem Hagen et al., 2013; although see Lynch
et al., 2013 and Redcay et al., 2013 for a divergent viewpoint). Our find-
ing of DMN hypoconnectivity thus supports the notion that differences
in DMN connectivity constitute a local endophenotype of autism in
adolescence.

As we clustered individual regions together in functional networks,
there may be additional local differences in connectivity (for e.g., see
Keehn et al., 2013; Keown et al., 2013; Fishman et al., 2014) which
were not detected by our analysis. We and others (Just et al., 2012)
draw a tentative link between local connectivity of the visual system
and visual processing strengths of ASC and genetic relatives, but pockets
of hyperconnectivity in the brain may be as detrimental as
hypoconnectivity to behaviour and function. This is evidenced in the
relationship between hyperconnectivity and symptom severity or
behavioural impairment (Mostofsky et al., 2007; Redcay et al., 2013;
Supekar et al., 2013; Fishman et al., 2014). The mechanisms through
which hyperconnectivity might result in functional impairment
have been well discussed by several authors (Belmonte et al., 2004a;
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Courchesne and Pierce, 2005; Happé and Frith, 2006; Markram and
Markram, 2010).
4.2. Strengths, limitations and future directions

Many previous reports of atypical connectivity in ASC have been
localised to specific regions, andwere potentially sensitive to methodo-
logical decisions (Jones et al., 2010; Nair et al., 2014); the multitude of
differential approaches have made studies difficult to reproduce
(Müller et al., 2011). Ourfinding of awhole-brain endophenotype in ad-
olescents addresses previous questions about thewhole-brain nature of
autism connectivity abnormalities (Barttfeld et al., 2011, 2012; Rudie
et al., 2013; Ray et al., 2014; Tyszka et al., 2014) and is backed up by
other approaches such as ICA which have also reported whole-brain
ASC hypoconnectivity (Mueller et al., 2013; von dem Hagen et al.,
2013). We performed analyses with and without a low-pass filter for
rest and all task conditions so to observe any potential changes with
use of this filter (Jones et al., 2010; Nair et al., 2014). The consistency
that we observed between our primary results and those obtained
by this secondary task-evoked approach suggests that our results
are largely robust to this processing step. However, notably, whilst
all the trends persisted, some findings, like node disruption index
(NDI), became non-significant and must therefore be interpreted
cautiously.

The benefit of high nmust be balanced with the genuine problem of
group heterogeneity in autism research. We prioritised the reduction of
group heterogeneity by stringently matching participants on age, sex
and IQ at the expense of reduced n. This reduction of individual differ-
ences which could modulate connectivity increased the likelihood that
the observed effect is real. This is, however, an exploratory study with
no correction formultiple comparisons, and replication of thesefindings
on a larger scale is necessary to validate the putative endophenotype
that we report (Button et al., 2013). It is notable that previous connec-
tivity work on “high-risk” infant siblings and adult relatives focused
on mixed samples (Orekhova et al., 2014; Keehn et al., 2015) and
some authors did not consider gender as a factor (Buard et al., 2013;
Righi et al., 2014). Matching participants by sex is the currently recom-
mended approach given that females with autism may not share the
same neurobiological abnormalities as males (Lai et al., 2012, 2013).
As such, the integrity of functional connectivity in females with ASC
and their siblings remains to be elucidated, particularly in light of evi-
dence suggesting that sexmaymodulate the presentation of behaviour-
al endophenotypes of ASC (Sucksmith et al., 2013; Klusek et al., 2014).

Our analysis deals with a narrow time-window of adolescence and
may not be generalisable to (male) ASC at all ages. Our findings contrib-
ute to a large pool of studies reporting hypoconnectivity in ASC.
However, it is notable that a minority of studies have also reported
functional and anatomical hyper-connectivity (Vissers et al., 2012;
Supekar et al., 2013; Uddin et al., 2013). These findings may, in part,
reflect the different ages of studied subjects (Nomi and Uddin, 2015).
Findings of hyperconnectivity in ASC have been commonly associated
with early life, where autistic children often exhibit brain hypertrophy
(Courchesne and Pierce, 2005) which plateaus in childhood and may
reverse by adolescence,with hypoconnectivity then becoming the dom-
inantfinding (Uddin et al., 2013).More recentwork emphasised the de-
velopmental modulation of functional connectivity (Nomi and Uddin,
2015): their adolescent sample, like ours, showed between-network
hypoconnectivity that appeared normalised in comparison to typically-
developed controls in adulthood, which may explain null findings by
some groups (Tyszka et al., 2014). The authors confirmed the previous
suggestion of within-network hyperconnectivity in children, although
hypoconnectivity between networks was also a feature of childhood
ASC. In light of this, we restrict our interpretations to adolescence, and
further work is needed to characterise the developmental course of func-
tional connectivity in ASC and genetic relatives.
Movement noise is an important issue of concern in analyses of func-
tional connectivity, as it may create artefacts of hypoconnectivity
(Power et al., 2012; Satterthwaite et al., 2012; van Dijk et al., 2012).
Our analysis pipeline involved regression of 32 noise variables
(Satterthwaite et al., 2012), filtering and despiking. We conducted
several checks which suggest that our approach adequately controlled
for movement artefact. Our data speaks against an interpretation of
hypoconnectivity caused by artefacts: correlations between global func-
tional connectivity and movement parameters reflected that most par-
ticipants were clustered together as “low movers” and the few who
moved more (in the ASC and sibling groups) actually tended to show
higher rather than lower connectivity.

Our analysis found differences in absolute but not normalised clus-
tering coefficient (C) or global efficiency (E) in any of the four condi-
tions. These results replicate the previous findings of Barttfeld et al.
(2011, 2012), who found significantly lower non-normalised C during
resting state and an auditory oddball task, and of Rudie et al. (2013)
who found significantly lower non-normalised C in ASC during resting
state, and a trend in the same direction for normalised C (neither
group used our measure of efficiency). Together these findings sug-
gest that changes in clustering coefficient are primarily driven by
the propensity for reduction in whole-brain network connectivity,
rather than by more subtle network reconfiguration. They again cor-
roborate the fact evident from the other data in our report: despite
lacking a diagnosis of autism, genetically-related but otherwise typ-
ically developing siblings of people with autism differ quantitatively
from unrelated members of the public.

We finally comment on the implications and further directions arising
from our use of several tasks. The robustness of the hypoconnectivity
endophenotype across several functional contexts (two cognitive
tasks and resting state) and the overall consistency of findings
with or without low-pass filtering make the findings robust. Such
robustness is also in-line with recent evidence suggesting the
broad convergence and similarity of large-scale whole-brain func-
tional connectivity maps at rest and across multiple tasks (Cole
et al., 2014), and is shown in the correlations we saw between con-
nectivity in each condition, including the Eyes task (Supplementary
Materials, 6). However we cannot claim that hypoconnectivity is
state-independent, given our failure to find the endophenotype ef-
fect in the Eyes task. We note, however, that endophenotypes have
been seen in this task before (Holt et al., 2014) and are not
contradicted by the present findings (see Supplementary Materials,
5). Future studies need to clarify the clinical utility of hypoconnectivity by
searching for the specificity and positive predictive values of such
endophenotypes (Rubinov and Bullmore, 2013). Given the diverse
presentations of ASC and their polygenic aetiology, the identifica-
tion of features specific to diagnosed individuals and their relatives
on the broader autism spectrummay clarify the mechanisms underlying
ASC, and the search for specific genes and targeted interventions.

5. Conclusion

In summary, this multitask investigation compared well-matched
adolescent groups of male autistic participants, unaffected siblings and
typically developing controls to show that siblings of people with
autism differ significantly from typically-developing controls in neural
connectivity and measures of network density. This was evident during
two cognitive tasks (most particularly the Embedded Figures task) and
during rest, and constitutes an endophenotype of autism in these
matched adolescent participants. Our analysis revealed that brain con-
nectivity in siblings was more similar to that of participants with ASC
in presentation, which may underlie the behavioural similarities be-
tween these groups. As hypoconnectivity seems to be shared by individ-
uals with genes conferring vulnerability for autism, it may be an
endophenotype which lends weight to previous suggestions that ASCs
arise from dysfunction of neural connectivity.
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