A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility

Zakir Khan^a*, Zulfiqar Khan^a, Abdul Ghafoor^b

^a Bournemouth University, Sustainable Design Research Cluster, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK.

E-mail: zkhan@bournemouth.ac.uk

^b SMME, National University of Sciences and Technology (NUST), NUST Campus H-12, Islamabad, Pakistan.

E-mail: principal@smme.nust.edu.pk

Corresponding Author:

^a* Bournemouth University, Sustainable Design Research Cluster, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK.

E-mail: zkhan2@bournemouth.ac.uk

Tel.: +44 74592490691

1 Abstract

2 Phase change materials (PCM) with their high thermal storage density at almost isothermal conditions 3 and their availability at wide range of phase transitions promote an effective mode of storing thermal energy. 4 Literature survey evidently shows that paraffins and salt hydrates provide better thermal performance at 5 competitive cost. This review paper is focused on the classification of various paraffins and salt hydrates. To 6 acquire long term productivity of LHS system, the thermo-physical stability of both paraffins and salt hydrates; 7 and their compatibility with various plastic and metallic container materials play a vital role. Likewise, the 8 lower thermal conductivity of PCMs affects the thermal performance of LHS system. This article reviews the 9 various thermo-physical performance enhancement techniques such as influence of container shape and its 10 orientation, employment of fins and high conductivity additives, multi-PCM approach and PCM encapsulation. 11 The performance enhancement techniques are focused to improve the phase transition rate, thermal 12 conductivity, latent heat storage capacity and thermo-physical stability. This review provides an understanding 13 on how to maximize thermal utilization of PCM. This understanding is underpinned by an analysis of PCM-14 Container compatibility and geometrical configuration of the container.

15 Keywords

16 Thermal energy storage, Latent heat, Phase change materials, Thermal stability, Heat transfer

17 Table of Contents

18	1.	Introduction	4
19	2.	Classification of latent heat storage materials	5
20	3.	Long term stability of PCMs	15
21	3	3.1 Thermo-physical stability of PCM	16
22		3.1.1 Paraffins	16
23		3.1.2 Salt Hydrates	17
24	3	3.2 Container-PCM compatibility	19
25	4.	LHS system performance analysis and enhancement	24
26	4	4.1 PCM container configuration	

27	4.2	Heat exchanger surface area enhancement
28	4.3	PCM additives to increase the thermal conductivity
29	4.4	Multiple PCMs method
30	4.5	PCM encapsulation
31	4.5.1	Microencapsulation
32	4.5.2	Macroencapsulation
33	5. Cone	clusion
34	Acknowle	dgment
35	Reference	s55

36

37 1. Introduction

38 The continuous and expeditious rise in worldwide economic development is followed up by a strong 39 demand of continuous supply of energy. Energy generated from fossil fuel have fulfilled and served human 40 needs for a long era. However, the fossil fuel resources are limited and due to their fluctuating pricings, the 41 availability of uninterrupted supply of energy is highly uncertain. Moreover, the higher use of conventional 42 fossil fuel is responsible for immense damage to environment, due to emission of harmful gases and impurities 43 in air that leads to recent global warming. These serious challenges have motivated engineers and scientists all 44 over the world to develop technologies to utilize sources of renewable energy so as to avert from technologies 45 that cause environmental hazards, high cost for energy generation and avoid establishing new costly power 46 plants.

Thermal energy storage (TES) system is considered a very critical technology, which possess a great adaption to renewable energies. The storage of excess energy that would otherwise be wasted could work as to bridge the gap between energy requirements and generation. Solar thermal energy can be stored during solar peak hours and it can be utilized during off peak hours/night times, using TES system. Likewise, both in cold and hot climates, electricity consumption varies significantly during day and night timings, due to space heating and air conditioning. Therefore, an effective power consumption management can be achieved by using TES system to store the thermal heat or coolness in off peak loads hours and use it during peak loads hours.

54 The unpredictable and varying nature of renewable energy affects the supply and demand gap of energy, 55 which can be sorted by adopting robust and responsive energy storage technique. However, the speedy energy 56 storage and its reclamation has been a major challenge. TES can be classified into sensible heat storage (SHS), 57 latent heat storage (LHS) and thermo-chemical categories of heat storage systems. SHS is the most commonly 58 exercised method, e.g. water and rock bed are used to store heat in solar heating systems and in air based heating 59 systems, respectively. However, LHS system is considered the most promising technique for storing thermal 60 energy due to their wide range of availability of PCMs, higher thermal storage density and almost isothermal 61 operation of thermal storage/retrieval. Morrison [1] and Ghoneim [2] reported that to store equal amount of 62 thermal energy from a unit collector area, the storage mass for rock (SHS) will be seven times to that of paraffin 63 116 wax (LHS), five times to that of medicinal paraffin (LHS) and eight times to that of Na₂SO₄.10H₂O (LHS).

64 Telkes and Raymond were the pioneers to investigate PCMs in 1940s. However, PCMs were ignored65 until the energy crisis in late 1970s and early 1980s, which motivated scientists to explore the usage of PCMs in

solar heating systems and other applications. Since then, a good amount of research has been carried out to assess the thermal performance of PCMs in LHS system. Research has explored the design fundamentals, transient behaviour, system optimization and various field applications of PCMs in LHS system. Although, LHS system is more promising than SHS but it lacks practical applications due to low thermal conductivity, poor thermo-physical stability, corrosive nature of PCMs towards its container material, phase segregations and subcooling, irregular melting, volume variation during phase transition and higher cost.

72 The flexibility of PCM to store and retrieve thermal energy at desired time enables it to be employed in 73 broad range of practical applications. A number of comprehensive review articles have been published with a 74 focus on the encapsulation of PCMs; their different types and techniques, encapsulate materials and their 75 utilization in concentrated solar power plants, heat recovery systems, solar thermal heating systems and various 76 passive residential thermal control applications [3-5]. In recent years, a considerable amount of research has 77 been conducted in identification of various novel PCM composites which possess enhanced form-stability, 78 thermal conductivity and thermal storage density [6-8]. Similarly, metal matrix and metal nanoparticle based 79 phase change composites have presented better thermal conductivity than the typical PCMs and thus it indicates 80 a new paradigm for TES systems [9].

81 This review paper is focused on classification and selection of PCMs for LHS system. A comprehensive 82 review of organic paraffins and inorganic salt hydrates is presented as these groups of PCMs possess high phase 83 change enthalpy, sharp melting point, cost effectiveness and abundant availability. Also, both paraffins and salt 84 hydrates are the most studied and commercially used groups of PCMs. For long term utilization of LHS system, 85 it is essential that the PCMs should possess long term thermo-physical stability and hold a good compatibility 86 with container material. This review article presents the thermo-physical stability of paraffins and salt hydrates; 87 and their compatibility with various plastic and metallic containers. Due to low thermal conductivity of organic 88 and inorganic PCMs, the productivity of LHS system during thermal energy storage and retrieval is highly 89 affected. This article reviews the performance enhancement techniques such as the effect of container 90 configurations, inclusion of extended surfaces and fins, additives for enhancing thermal conductivity, employing 91 multi-PCMs and encapsulation of PCMs. This review will help in selecting reliable PCM and compatible 92 container material, with efficient geometric configurations to achieve maximum thermal utilization of PCM 93 based LHS system.

94 **2.** Classification of latent heat storage materials

95 LHS system uses PCM as thermal energy storage medium. Thermal energy transfer occurs when PCM is 96 melted from solid to liquid or solidified from liquid to solid. During the phase transition of PCM, thermal 97 energy is stored or retrieved. PCM phase transition occurs at nearly constant temperature and unlike sensible 98 storage medium such as water, rocks or masonry; PCM captures 5-14 times more heat per unit volume. Plenty 99 of research is carried out in identifying several groups of suitable PCMs . The selection of PCM for thermal 100 storage system shall possess desirable thermo-physical, chemical, kinetic and economic properties, as 101 summarized in Table 1.

Table 1

Key design properties of PCM for storage purposes.

Thermal	Physical	Chemical	Kinetic	Economic
Appropriate phase	Low vapour	Compatible with	High crystallization	Cost
transition temperature	pressure (<1 bar)	container material	rate	effective
High latent heat of	High density and	Long term chemical	High nucleating	Abundant
fusion and specific	small volume	cycling stability	rate to avoid	
heat	change		supercooling	
High thermal	High phase	Highly non-flammable,		Available
conductivity	stability	non-toxic and non-		
		explosive		

For the past four decades, an extensive research is carried out in identification of various nature of PCMs
in a wide range of phase transition temperature and latent heat of fusion including organic materials (e.g.
paraffins, fatty acids), inorganic materials (e.g. salt hydrates, metallic) and eutectics (e.g. mixture of organicorganic, inorganic-inorganic and organic-inorganic materials). Each group of PCMs have their own properties,
strengths and limitations. Table 2 shows the detail comparison of various groups of PCMs. It is evident from
table 2 that paraffins and salt hydrates can provide a better thermal energy storage medium than others.

Paraffins are made up of mixture of alkanes of type C_nH_{2n+2} . They possess almost similar properties and an increase in chain length ensure higher melting point and latent heat of fusion [10, 11]. Paraffins are widely used as thermal energy storage medium due to their good latent heat values (60 - 269 kJ/kg and \approx 150 MJ/m³), varied range of phase transition temperature, low vapour pressure, chemical stability and inert to metal containers, no tendency to supercooling and commercially available in reasonable cost. Paraffins are nontoxic 113 [11, 12]. Table 3 presents the list of thermo-physical properties of paraffins studied by many researchers and 114 commercially manufactured. Besides various favourable properties, paraffins also have some undesirable 115 characteristics which limit applications such as: low thermal conductivity ($\cong 0.2$ W/mK) and incompatibility 116 with plastic containers [11, 13-15].

117 Salt hydrates are compounds of inorganic salt and water of general formula AB.nH2O. Solid-liquid 118 transitions of salt hydrates are actually the dehydration and hydration of salt. Salt hydrates are extensively 119 studied and most important group of PCMs, due to their high latent heat of fusion per unit volume (86 - 328 kJ/kg and ≈ 350 MJ/m³), higher thermal conductivity than paraffins (≈ 0.7 W/mK) and cheaper cost than 120 paraffins [16]. However, during melting of salt hydrates some anhydrous salt or lower hydrates and water 121 122 formation takes place and due to difference in densities the anhydrous salt (or lower hydrates) settles at the 123 bottom of the container reducing the active volume of heat storage. Salt hydrates also experience supercooling 124 because of their poor nucleating properties. Moreover, some salt hydrates are corrosive towards container 125 materials [15, 17]. Table 4 presents the thermo-physical properties of salt hydrates found in literature and some 126 of the manufacturing companies.

Table 2

Comparison of various PCM groups.

Classification	Ref.	Organic	Materials	Inorganic	Materials	Eutectics ^b
		Paraffins	Fatty Acids	Salt Hydrates	Metallic ^a	
Formula	[11, 14]	C _n H _{2n+2} (n=12-	CH ₃ (CH ₂) _{2n} .COO	AB.nH ₂ O	-	-
		50)	Н			
Melting Point	[11, 13]	-12-135 °C	-7-187 °C	-33-120 °C	29.8 - 125 °C	-30.6 - 93 °C
Latent Heat	[11, 13,	60 - 269 kJ/kg	125 - 250 kJ/kg	86 - 328 kJ/kg	25 - 90.9 kJ/kg	100 - 267 kJ/kg
	14]					
Thermal	[13, 15]	0.2 W/m K	0.2 W/m K	0.7 W/m K	40.6 W/m K	0.680 W/m K
Conductivity						
Density	[11-14]	760 (liquid),	878 (liquid),	1937 (liquid),	5910 (solid)	1530 (liquid),
(kg/m3)		900 (Solid)	1004 (solid)	2180 (solid)		1640 (solid)
Key Features		1. Increase in	1. Unlike	1. Alloys of	1. Due to	1. No phase
		chain length	paraffins, each	water and	larger weight,	segregation during

	results in	material possesses	inorganic salts.	it is not	phase transition.
	increased melting	its own properties.	2. Greater phase	seriously	2. Mixture of two
	point and latent	2. Variation in	change enthalpy.	considered.	or many organic or
	heat.	latent heat and	3. Most studied		inorganic or both
	2. Most	melts over a wide	group of PCMs		components.
	commercially	range.			
	used PCMs.				
Advantages	1. Chemically	1. High latent heat	1. High latent	1. High	1. Good thermal
	stable, safe,	of fusion.	heat of fusion	thermal	conductivity.
	reliable and non-	2. Sharp phase	per unit volume.	conductivity.	2. High latent heat
	corrosive.	transformation.	2. High thermal	2. Low vapour	of fusion per unit
	2. No tendency to	3. Fatty acids	conductivity.	pressure.	volume.
	supercooling or	show reproducible	3. Small volume	3. High heat of	
	segregation.	melting and	change than	fusion per unit	
	3. Good latent	freezing.	others.	volume.	
	heat of fusion.	4. No	4. Higher		
	4. Compatible	supercooling.	density.		
	with all metal		5. Sharp melting		
	containers.		point.		
	5. Less expensive		6. Available and		
	and available.		cheap.		
Disadvantages	1. Low thermal	1. Low thermal	1. Corrosion on	1. Low	1. Low latent heat
	conductivity and	conductivity.	metal	specific heat	of fusion per unit
	density.	2. Low flash	containers.	capacity.	weight.
	2. Incompatible	point.	2. Phase	2. Low heat of	2. Very costly.
	with plastic	3. Instable at high	segregation.	fusion per unit	
	container.	temperature and	3. Supercooling.	weight.	
	3. High volume	highly	4. Lack of	3. Costly	
	change, volatile	inflammable.	thermal stability.		
	and inflammable.	4. Toxic and mild	5. Slightly toxic		

	4. No well-	corrosive.	
	defined sharp	5. 2-3 times	
	melting point.	expensive than	
		paraffins.	
Method for	1. Installation of	1. Fire retardant	1. Nucleating
improvement	Fins in storage	additives.	and thickening
	unit.	2. Thermal	agent additives.
	2. Adding highly	conductivity	2. Mechanical
	thermal	enhancement	Stirring.
	conductive	additives.	3. Use of excess
	additives.		water.
	3. Adding fire-		4. PCM
	retardants		encapsulation.

^a In metallic category, only potential low melting point PCMs are considered.

^b In eutectic category, paraffin eutectics, fatty acid eutectics, salt hydrates eutectics, metallic eutectics, salt hydrates – metallic, paraffin– salt hydrates and paraffin– metallic eutectics are considered.

Table 3

Thermo-physical properties of Paraffins

			Latent	Specific heat		Th	ermal			
		Melting	Heat of	Capa	acity C _p	Cond	luctivity			
		Point	Fusion	(kJ	/kg K)	(kJ	/kg K)	Densit	y (kg/m ³)	Thermal
Type of PCM	Ref.	(°C)	(kJ/kg)	Solid	Liquid	Solid	Liquid	Solid	Liquid	Cycles
Dodecane	[15]	-9.6	216				2.21			
RT-9 HC	[18]	-9	260	2		0.2	0.2	880	770	
RT 0	[18]	-1	225	2		0.2	0.2	880	770	
RT 3 HC	[18]	3	200	2		0.2	0.2	880	770	
n-Tetradecane	[12]	6	230							
	[15]	5.8-5.9	258-227			0.21				
RT 8 HC	[18]	8	200	2		0.2	0.2	880	770	
RT 10	[18]	10	190	2		0.2	0.2	880	770	
Paraffin C15	[11]	10	205							
n-Pentadecane	[15]	10	193.9						770	
Paraffin C ₁₆	[11]	16.7	237.1							
RT 18 HC	[18]	18	250	2		0.2	0.2	880	770	
n-Heptadecane (C ₁₇ H ₃₆)	[19]	18.4	84.7							3000
	[12]	19	240			0.21			760	
Paraffin C ₁₇	[11]	21.7	213							
	[12, 20,									
Parallin C_{16} – C_{18}	21]	20-22	152							
Paraffin C ₁₃ –C ₂₄	[12, 20]	22-24	189				0.21	900	760	
RT 25 HC	[18]	22-26	230	2		0.2	0.2	880	770	
n-Octadecane	[22, 23]	27.7	243.5	2.14	2.66	0.19	0.148	865	785	
RT 28 HC	[18]	27-29	245	2		0.2	0.2	880	770	
Paraffin C ₁₈	[11, 12,									
	20]	28	244			0.15	0.148	814	774	
n-Octadecane	[15]	28	245			0.358	0.148	814	779	

RT 28 HC	[18]	28	245	2		0.2	0.2	880	770	
Paraffin C ₁₉	[11]	32	222							
Paraffin wax	[21, 24]	32	251	1.92	3.26	0.514	0.224	830		
RT 35 HC	[18]	35	240	2		0.2	0.2	880	770	
Paraffin C ₂₀	[11]	36.7	246							
			155.5-							
Heneicosane	[15]	40	213					778		
Heptadecanone	[11]	41	201							
Paraffin C ₁₆ –C ₂₈	[12]	42-44	189			0.21		910	765	
RT 44 HC	[18]	44	255	2		0.2	0.2	880	770	
			196.5-							
Docosane	[15]	44	252							
Paraffin (70 wt%) +										
Polypropylene (30 wt%)	[25]	44.77	136.16							3000
	[2, 21,									
P116-Wax	22]	46.7	209	2.89	2.89	0.14	0.277	786		
Paraffin (C _{22.2} H _{44.1}) (TG)	[26]	47.1	166							900
3-Heptadecanone	[11]	48	218							
Paraffin $C_{20} - C_{33}$	[12, 20]	48-50	189			0.21		912	769	
9-Heptadecanone	[11]	51	213							
Paraffin wax 53 (CG)										
	[26, 27]	53	184			2.05				1500
Paraffin wax 54 (CG)	[26, 27] [28]	53 53.32	184 184.48			2.05				1500 1500
Paraffin wax 54 (CG) RT 55	[26, 27] [28] [19]	53 53.32 55	184 184.48 172	2		2.05 0.2	0.2	880	770	1500 1500
Paraffin wax 54 (CG) RT 55 Paraffin C ₂₆	[26, 27] [28] [19] [11]	53 53.32 55 56.3	184 184.48 172 256	2		2.05 0.2	0.2	880	770	1500 1500
Paraffin wax 54 (CG) RT 55 Paraffin C_{26} Paraffin ($C_{23.2}$ $H_{48.4}$) (TG)	[26, 27] [28] [19] [11] [26]	53 53.32 55 56.3 57.1	184 184.48 172 256 220	2		2.05 0.2	0.2	880	770	1500 1500 900
Paraffin wax 54 (CG) RT 55 Paraffin C_{26} Paraffin ($C_{23.2}$ $H_{48.4}$) (TG) Paraffin wax 60-62	[26, 27] [28] [19] [11] [26] [28]	53 53.32 55 56.3 57.1 57.78	184 184.48 172 256 220 129.7	2		2.05 0.2	0.2	880	770	1500 1500 900 600
Paraffin wax 54 (CG) RT 55 Paraffin C_{26} Paraffin ($C_{23.2}$ $H_{48.4}$) (TG) Paraffin wax 60-62 Paraffin wax 58-60	[26, 27] [28] [19] [11] [26] [28] [28]	53 53.32 55 56.3 57.1 57.78 58.27	184 184.48 172 256 220 129.7 129.8	2		2.05 0.2	0.2	880	770	1500 1500 900 600 600
Paraffin wax 54 (CG) RT 55 Paraffin C_{26} Paraffin ($C_{23.2}$ H _{48.4}) (TG) Paraffin wax 60-62 Paraffin wax 58-60 Paraffin C ₂₂ - C ₄₅	[26, 27] [28] [19] [11] [26] [28] [28] [12, 20]	53 53.32 55 56.3 57.1 57.78 58.27 58-60	184 184.48 172 256 220 129.7 129.8 189	2		2.05 0.2 0.21	0.2	880	770 795	1500 1500 900 600 600
Paraffin wax 54 (CG) RT 55 Paraffin C_{26} Paraffin ($C_{23.2}$ H _{48.4}) (TG) Paraffin wax 60-62 Paraffin wax 58-60 Paraffin C ₂₂ – C ₄₅ RT 64 HC	[26, 27] [28] [19] [11] [26] [28] [28] [12, 20] [18]	53 53.32 55 56.3 57.1 57.78 58.27 58-60 64	184 184.48 172 256 220 129.7 129.8 189 230	2		 2.05 0.2 0.21 0.2 	0.2	880 920 880	770 795 780	1500 1500 900 600 600

Paraffin $C_{21} - C_{50}$	[20]	66-68	189		0.21		930	830
RT 70 HC	[18]	69-71	260	2	0.2	0.2	880	770
Paraffin C ₃₃	[11]	73.9	268					
Paraffin C ₃₁₁	[11]	75.9	269					
Paraffin natural wax 811	[15]	82-86	85		0.72			
Paraffin natural wax 106	[15]	101-108	80		0.65			
Polyethylene	[12]	110-135	200				9110	870

Table 4

Thermo-physical properties of Salt Hydrates

			Latent	Th	ermal			
		Melting	Heat of	Cone	luctivity	De	nsity	
		Point	Fusion	(kJ	/kg K)	(kg	g/m ³)	Thermal
Type of PCM	Ref.	(°C)	(kJ/kg)	Solid	Liquid	Solid	Liquid	Cycles
SN 33	[12]	-33	245					
TH 21	[12]	-21	222					
SN 18	[12]	-18	268					
SP -13	[18]	-13	300	0.6				
STLN 10	[12]	-11	271					
SN 06	[12]	-6	284					
SLT 3	[12]	-3	328					
LiClO ₃ ·3H ₂ O	[12, 29]	8	253			1720	1530	
CCl ₃ F.17H ₂ O	[30]	8.5	210					100
$K_2HPO_4 \cdot 6H_2O$	[11]	14	109					
NaOH ₃ 5H ₂ O	[31]	15						5650
Na ₂ SO ₄ 1/2NaCl 10H ₂ O	[31]	20						5650
FeBr ₃ ·6H ₂ O	[11]	21	105					
SP 21 E	[18]	21-23	160	0.6		1500	1400	
Mn(NO ₃)·6H ₂ O	[20, 32]	25.9					1738	
SP 26 E	[18]	25-27	200	0.6		1500	1400	
$CaCl_2 \cdot 12H_2O$	[11]	29.8	174					
TH 29	[15, 32]	29	188	1.09				
Calcium chloride hexahydrate	[29, 33]	29.8	190.8	1.088	0.54	1802	1562	1000
(CaCl ₂ 6H ₂ O)	[34]	23.26	125.4					1000
	[31]	27						5650
	[35]	28	86					1000
LiNO ₃ ·3H ₂ O	[20, 29, 32]	30	296					
LiNO ₃ ·2H ₂ O	[11]	30	296					

SP 31	[18]	31-33	220	0.6		1300	1100	
$Na_2SO_4 \cdot 3H_2O$	[20]	32	251					
Glauber's salt (Na ₂ SO ₄	[36]	32.4	238					320
10H ₂ O)	[20, 31]	32	254	0.554		1485	1458	5650
Na ₂ CO ₃ ·10H ₂ O	[12]	32-36	246.5					
CaBr ₂ ·6H ₂ O	[12, 37]	34	115.5				1956	
LiBr ₂ ·2H ₂ O	[11]	34	124					
$Na_2HPO_4 \cdot 12H_2O$	[20, 29]	35-44	280	0.514		1522		
$Zn(NO_3)_2 \cdot 6H_2O$	[11, 12, 37]	36	147		0.469	1937	1828	
FeCl ₃ ·6H ₂ O	[12]	37	223					
Mn(NO ₃)·6H ₂ O	[11]	37.1	115				1738	
CoSO ₄ ·7H ₂ O	[11]	40.7	170					
KF·2H ₂ O	[11]	42	162					
$MgI_2 \cdot 8H_2O$	[11]	42	133					
CaI ₂ ·6H ₂ O	[11]	42	162					
K ₂ HPO ₄ ·7H ₂ O	[11]	45	145					
$Ca(NO_3)_2 \cdot 4H_2O$	[11, 20]	47	153					
$Zn(NO_3)_2 \cdot 4H_2O$	[11, 12]	45-47	110					
STL 47	[12, 20]	47	221	1.34				
$Mg(NO_3) \cdot 2H_2O$	[11]	47	142					
$Fe(NO_3)_2 \cdot 9H_2O$	[11]	47	155					
Na ₂ SiO ₃ ·4H ₂ O	[11]	48	168					
K ₂ HPO ₄ ·3H ₂ O	[11]	48	99					
$Na_2S_2O_3 \cdot 5H_2O$	[12, 15, 20]	48-49	201-210			1750	1670	
MgSO ₄ ·7H ₂ O	[12, 20]	48.5	202					
$Ca(NO_3)_2 \cdot 3H_2O$	[11]	51	104					
FeCl ₃ ·2H ₂ O	[11]	56	90					
Ni(NO ₃) ₂ ·6H ₂ O	[11]	57	169					
SP 58	[18]	56-59	250	0.6		1400	1300	
MnCl ₂ ·4H ₂ O	[11]	58	151					

$MgCl_2 \cdot 4H_2O$	[11]	58	178					
Na(CH ₃ COO)·3H ₂ O	[12, 15, 20]	58	264-267		0.63	1450	1280	
Sodium acetate trihydrate	[38]	58	230					500
(NaCH ₃ COO.3H ₂ O)	[39]	58	252					100
Fe(NO ₃) ₂ ·6H ₂ O	[11, 20]	60	126					
NaOH	[12, 20]	64.3	227.6			1690		
$Na_3PO_4 \cdot 12H_2O$	[11, 12]	65-69	190					
ClimSel C70	[12, 20]	70-71	194	0.7	0.5	1400	1400	
$Na_2P_2O_7{\cdot}10H_2O$	[12, 20]	70	184					
LiCH ₃ COO·2H ₂ O	[11]	70	150					
E 72	[15]	72	140	0.58				
SP 70	[18]	69-73	150	0.6		1500	1300	
$Al(NO_3)_2 \cdot 9H_2O$	[11]	72	155					
Ba(OH) ₂ ·8H ₂ O	[20, 29, 37]	78	265-280	1.225	0.653	2070	1937	
E 83	[15]	83	152	0.62				
$Mg(NO_3)_2 \cdot 6H_2O$	[15, 20, 37]	89	162.8	0.611	0.49	1636	1550	
TH 89	[12, 15]	89	149					
SP 90	[18]	88-90	150	0.6		1650		
$KAl(SO_4)_2 \cdot 12H_2O$	[11]	91	184					
$(NH_4)Al(SO_4) \cdot 6H_2O$	[12]	95	269					
Magnesium chloride	[12, 40]	111.5	155.11	0.704	0.694	1569	1450	500
hexahydrate (MgCl ₂ 6H ₂ O)	[41]	110.8	138					1000
E 117	[15]	117	169	0.7				

127 **3.** Long term stability of PCMs

Long term useful life of LHS system is limited by poor thermo-physical stability of PCM and corrosion between PCM and its container material. In last two decades, many researchers have indicated the importance of long term stability of PCM-container system [12, 14, 17]. Murat and Khamid [15] suggested that prior to commercial development; the PCMs should be subjected to at least 1000 thermal cycles to examine the long

- term stability. In this section, a detail review is carried out on thermal stability and corrosion behaviour ofvarious PCM-container materials.
- 134 **3.1** Thermo-physical stability of PCM

135 In this section, the thermal stability of paraffins and salt hydrates has been reviewed.

136 3.1.1 Paraffins

Sari et al. [19] investigated thermal stability of microencapsulated n-heptadecane for 5000 melt-freeze
cycles. Perkin Elmer Diamond DSC (Differential scanning calorimeter) and electric hot plate setup were used as
thermal and cycling equipment. They observed good stability of thermo-physical properties of
microencapsulated n-heptadecane as the melting point and latent heat of fusion before and after the 5000
thermal cycles varied from 18.4-18.9 °C and 84.7-94.5 kJ/kg, respectively.

Alkan et al. [25] conducted 3000 thermal cycles of paraffin and polypropylene composite. Setaram DSC Alkan et al. [25] conducted 3000 thermal cycles of paraffin and polypropylene composite. Setaram DSC and electric hot plate setup were used as thermal and cycling equipment. The results from DSC depicted a small variation in melting point and latent heat of fusion of paraffin within the composite from 44.77-45.52 °C and 136.16-116.12 kJ/kg, respectively. It was deduced from stability tests that the composite can be used for solar heating applications.

147 Hadjieva et al. [26] studied variation in thermo-physical properties of three technical grade hydrocarbons C22.2H44.1, C23.2H40.4 and C24.7H51.3. DSC with Mettler TA 3000 system and thermostatic bath setup were used to 148 149 conduct 900 thermal cycles. $C_{22,2}H_{44,1}$ showed a stable behaviour to thermal cycles with a minor change in 150 melting point and latent heat, from 47.1-46.6 °C and 166-163 kJ/kg, respectively. Likewise, C23.2H40.4 displayed 151 no degradation in the thermo-physical properties after 900 thermal cycles. The change in phase transition 152 temperature and latent heat were negligible, such as from 57.1-57.8 °C and 220-224 kJ/kg, respectively. 153 Whereas, C_{24.7}H_{51.3} degraded abruptly showing low latent heat capacity and noticeable change in phase 154 transition range. Because of cheap price and highest enthalpy, C23.2H40.4 was proposed an efficient material for 155 LHS system.

Shukla et al. [28] evaluated three paraffin waxes of different temperature specified as sample A (m.p 5860 °C), sample B (m.p 60-62 °C) and sample C (m.p 54 °C). Rheometric scientific ltd. DSC and oven were used
to conduct 600 thermal cycles for sample A and B, whereas, sample C was examined for 1500 thermal cycles.
DSC results indicated significant degradation in transition temperature and enthalpy of sample A and B.

However, sample C was most stable even after 1500 thermal cycles and was proposed as a good PCM for LHSsystem.

Sharma et al. [42] examined commercial grade paraffin wax 53. Rheometric scientific ltd. DSC and electric hot plate setup were used to conduct 300 accelerated melt-freeze cycles. Paraffin wax was found to be stable PCM with a small change in latent heat of fusion, from 184-165 kJ/kg. Later on, the same PCM was investigated for 1500 thermal cycles [27]. The results from DSC showed a slight change in melting point (53-50 °C), whereas, a noticeable change was observed in latent heat (184-136 kJ/kg).

Table 3 provides detail list of paraffins along with their transition temperature, latent heat of fusion,
thermal conductivity, density and thermal cycles. The experimental results show that thermo-physical properties
of paraffins do not degrade after repeated thermal cycles.

170 3.1.2 Salt Hydrates

Calcium chloride hexahydrate (CaCl₂.6H₂O) is the most studied PCM in salt hydrates group. CaCl₂.6H₂O
experiences continuous phase separation and causes either formation of CaCl₂.4H₂O or other hydrates, with
repeated thermal cycles, which settle down in the container.

Kimura and Kai [33] examined thermo-physical stability of CaCl₂.6H₂O using Perkin elmer DSC and two tubes heat exchanger for carrying 1000 thermal cycles. They used excess water to control the formation of other hydrates and to increase solubility. NaCl was mixed for its good nucleating potentials. The mixture was tested for 1000 thermal cycles. They noticed a good repeatability of thermo-physical properties and no phase separation.

Fellechenfeld et al. [35] used strontium chloride hexahydrate as nucleating agent and silica gel as thickener in CaCl₂.6H₂O. They used Mettler DSC and water bath setup for performing 1000 thermal cycles. They noticed no phase separation and no degradation of thermo-physical properties. Also, Tyagi et al. [34] examined the thermal stability of CaCl₂.6H₂O, using TA Instruments DSC Q-100 to perform 1000 accelerated thermal cycles of cooling and heating and observed a small variation in latent heat of fusion but stability in transition temperature.

Marks [36] evaluated the thermal stability of pure Glauber's salt (Na₂SO₄.10H₂O) and thickened one.
Attapulgite clay was employed as thickener and Borax (Na₂B₄O₇.10H₂O) was mixed as nucleating agent.
Calorimeter and thermal cycling chamber were used to conduct 320 thermal cycles on both pure and thickened

188 Glauber's salt. It was deduced from thermal cycles that thermo-physical properties of pure Glauber's salt
189 degrade quicker than thickened mixture. However, it was reported that due to declination in thermal capacity,
190 both pure and thickened Glauber's salt were rejected for long term LHS system.

Porisini [31] evaluated thermal stability of commercial grade salt hydrates specified as sample A
(NaOH.3.5H₂O), sample B (Na₂SO₄.¹/₂NaCl.10H₂O), sample C (CaCl₂.6H₂O) and sample D (Na₂SO₄.10H₂O).
He used thermostatic chamber to conduct 5650 thermal cycles on each sample. Sample A and sample B failed
after 10 and 300 thermal cycles, respectively. Sample D also experienced declination in thermal properties after
100 thermal cycles. However, sample C showed good thermo-physical stability even after 5650 thermal cycles.

Kimura and Kai [30] investigated thermal stability of Trichlorofluoromethane heptadecahydrate
(CCl₃F.17H₂O). Polyacrylamide was added as thickener and Tetrabutyl ammonium fluoride hydrate was added
as nucleating agent. Perkin elmer DSC and glass beaker with water jacket were used to carry 100 thermal cycles
of the mixture. The PCM showed good thermal stability and it was concluded that it can be used for coolness
storage.

201 Wada et al. [38] conducted thermal stability test of three samples of sodium acetate trihydrate specified 202 as guaranteed grade, technical grade and technical grade with added thickener. Polyvinyl alcohol and sodium 203 pyrophosphate decahydrate were added as thickener and nucleating agent. Calorimeter and thermal bath were 204 used to carry 500 thermal cycles on each sample. It was reported that enthalpy capacity of guaranteed grade 205 sample degrade comparatively quicker than technical grade sample. It was also observed that technical grade 206 with thickener sample experienced little declination in thermo-physical properties during thermal test. Kimura 207 and Kai [39] also tested 220g of same sodium acetate trihydrate which was examined by Wada et al [38]. 208 Disodium phosphate was used as nucleating agent and excess water to increase solubility. They prepared four 209 samples of different ratio of water. They observed phase separation for all four samples and no noticeable 210 improvement in stability of hydrate because of excess water. They concluded that due to severe phase 211 separation, this hydrate cannot be considered as a material for LHS system. The conclusion made by Wada et 212 al. [38] and Kimura and Kai [39] comes in contradiction. The reason for phase separation might be because of 213 the small amount of sample (30g) taken by Wada et al. [38] in comparison to Kimura and Kai [39].

Sebaii et al. [40] conducted thermal stability and container material compatibility tests of commercial grade magnesium chloride hexahydrate (MgCl₂.6H₂O). Shimadzu DSC- 60 and Heraeus D-6450 electric oven were used to carry out 500 thermal cycles and SEM for compatibility test. It was noticed that MgCl₂.6H₂O experienced phase segregation in unsealed container even with excess water and was not compatible with container material (aluminium or stainless steel). The changes in transition temperature (111.5–124.12 °C) and latent heat of fusion (155.11-85 kJ/kg) were significant and thus it could not qualify to be used as thermal storage material. Later on, the same researcher investigated thermal stability for 1000 thermal cycles of MgCl₂.6H₂O with sealed container and excess water [41]. It was observed that sealing of container and excess of water improved thermo-physical stability with slight change in transition temperature (110.8-115.39 °C) and latent heat of fusion (138-130.28 kJ/kg).

Table 4 provides detail list of salt hydrates along with their transition temperature, latent heat of fusion, density and thermal cycles. The experimental results show that salt hydrates need nucleating agents and thickeners to sustain long term thermal stability.

227

3.2 Container-PCM compatibility

For long term stability of LHS system, the compatibility between selected PCM and its containermaterial is considered very important.

230 Lazaro et al. [43] evaluated the compatibility of four commercial organic PCMs (C16-C18, RT20, 231 RT25 and RT26) and one inorganic PCM (TH24) against plastic materials (PP, LDPE, HDPE and PET). During 232 ten months of experimental investigations, through visual inspection and gravimetric analysis, moisture sorption 233 and migration of organic PCM in plastic containers were detected. The results depicted that due to highest mass 234 variation in LDPE encapsulation, it was discarded against all PCMs. PET encapsulates material produced good 235 mass stability against C16-C18, RT 20, RT 25 and RT 26. However, PP, PET and LDPE indicated increase in 236 material mass due to moisture sorption during TH 24 molten salt test and therefore only HDPE encapsulate 237 material were recommended.

Cabeza et al. [44] tested the corrosive nature of zinc nitrate hexahydrate $(Zn(NO_3)_2.6H_2O)$, sodium hydrogen phosphate dodecahydrate $(Na_2HPO_4.12H_2O)$ and calcium chloride hexahydrate $(CaCl_2. 6H_2O)$ upon short term 14 days contact with metals. They observed that apart from stainless steel (Mat. No.1.4301), Zn(NO_3)_2.6H_2O appeared to be extremely corrosive to brass (Ms58 Flach), steel (Mat. No. 1.0345), aluminium (EN AW-2007) and copper (E-Cu 57). Na_2HPO_4.12H_2O proved to be compatible with brass, copper and stainless steel, whereas, it was found very corrosive against aluminium. CaCl_2. 6H_2O was found compatible with brass and copper, while it was very corrosive against aluminium, stainless steel and steel. Cabeza et al. [45] investigated the corrosive nature of same three salt hydrates, as in [44], upon medium term 75 days contact with metals. They reported that while using $Zn(NO_3)_2.6H_2O$ as thermal energy storage medium only stainless steel should be considered for container material. Na₂HPO₄.12H₂O showed good compatibility with brass and stainless steel. Aluminium indicated aggressive corrosion, whereas, copper and steel corrode at slow rate. CaCl₂.6H₂O was observed to have good compatibility with copper, brass and stainless steel but can corrode steel and aluminium at slow rate.

251 Cabeza et al. [46] conducted compatibility test of two salt hydrates sodium acetate trihydrate (NaOAc. 252 $3H_2O$) and sodium thiosulfate pentahydrate (Na₂S₂O₃. $5H_2O$) with the same five metals as in [44]. It was 253 reported that both salt hydrates showed good compatibility with aluminium, steel and stainless steel, however, 254 both salt hydrates were aggressively corrosive towards brass and copper.

Farrell et al. [47] examined the galvanic coupling of aluminium-copper in contact with sodium sulphate decahydrate and sodium chloride eutectic and sodium acetate with additives. It was observed that aluminium alloy 2024 was corroded by both PCMs. The corrosion was more aggressive when aluminium was in contact with sodium acetate in the presence of copper.

259 Nagano et al. [48] inspected material compatibility of magnesium nitrate hexahydrate ($Mg(NO_3)_2.6H_2O$) 260 with magnesium chloride hexahydrate (MgCl₂.6H₂O) as an additive, and six metals. Each metal sample was 261 placed for 90 days in a glass tube of 60 ml at a constant temperature of 95°C. It was reported that copper, steel 262 and brass experienced strong corrosion with a 90 days mass loss of 0.11g, 0.0843g and 0.0284g, respectively. 263 Stainless steel SUS 304 and SUS 316 underwent a very small mass loss of 0.00107g and 0.00017g, respectively. 264 However, it can be seen from Fig. 1 that almost all the surface of SUS 304 and a small portion of SUS 316 were 265 covered with dotted red-brown rust. Aluminium was the only metal that was not affected by the salt hydrates 266 mixture.

268

267

Fig.1. Mg (NO₃)₂· $6H_2O$ compatibility test with metals [48].

Garcia et al. [49] studied the corrosion behaviour of commercial grade Glauber's salt (NA_2SO_4 . $10H_2O$) with aluminium alloys (Al 1050, 2024, 3003 and 6063). Aluminium alloy specimens were partly and fully immersed in the Glauber's salt for 90 days at 45°C. Al 2024 experienced strong pitting corrosion and degradation of PCM due to formation of Na-Al alkaline carbonates due to the reaction with CO_2 from the air. Al 1050 and 3003 displayed an excellent compatibility with Glauber's salt. Al 6063 also showed good resistance to corrosion when the sample was fully immersed, whereas a loss of brightness and stained surface was notice when it was partially immersed.

276 Pere et al. [50] presented the corrosion behaviour of two metals and two metal alloys in contact with 277 eleven different salt hydrates used in cooling and heating applications. Each material specimen was examined 278 after week 1, 4 and 12 to examine corrosion rate, salt precipitation and bubbles formation. They reported that 279 commercial PCM S10 can only be used with stainless steel. Similarly, PCM C10 showed good compatibility 280 with both aluminium and stainless steel. NaOH.1.5H₂O, ZnCl₂.3H₂O and K₂HPO₄.6H₂O were well suited with 281 stainless steel, whereas NaOH.1.5H2O could also be used with carbon steel while ZnCl2.3H2O and 282 K₂HPO₄.6H₂O could be used with copper. Stainless steel indicated good resistance to corrosion when brought in 283 contact with heating application PCMs. Commercial PCM C48 also showed good compatibility with carbon steel and aluminium. MgSO4.7H2O could be used with aluminium and K3PO4.7H2O was suitable to be used with 284 285 carbon steel.

Fig.2. Corrosion tests results: (A) S10 - Copper corrosion test for 12 weeks (B) ZnCl₂.3H₂O - Aluminium
 corrosion test for 12 weeks, and (C) Zn(NO₃)₂.4H₂O-Carbon steel corrosion test for 4 weeks.

286

Table 5

A list of compatible PCM with container material.

РСМ	Ref.	Container Materials					
		Brass	Copper	Aluminium		Stainless steel	Carbon Steel
Zn(NO ₃) ₂ .6H ₂ O	[44]	No	No	No		Yes	No
	[45]	No	No	No		Yes	No
Na ₂ HPO ₄ . 12H ₂ O	[44]	Yes	Yes	No		Yes	No
	[45]	Yes	Caution	No		Yes	Caution
CaCl ₂ .6H ₂ O	[44]	Yes	Yes	No		Caution	No
	[45]	Yes	Yes	Caution		Yes	Caution
NaOAc.3H ₂ O	[46]	Caution	Caution	Yes		Yes	Yes
$Na_2S_2O_3.5H_2O$	[46]	No	No	Yes		Yes	Yes
$Mg(NO_3)_2 \cdot 6H_2O$	[47]	No	No	Yes		Yes	No
Glauber's salt	[49]			Al 1050	Yes		
(Na ₂ SO ₄ .10H ₂ O)				Al 2024	No		
				Al 3003	Yes		
				Al 6063	Caution		
S10 (Na ₂ SO ₄ + NH ₄ Cl + sepiolite)	[50]		No	Caution		Yes	No
$C10 \; (Na_2SO_4 + H_2O + additives)$	[50]		No	Yes		Yes	No
ZnCl ₂ .3H ₂ O	[50]		Yes	No		Yes	No
NaOH.1.5H ₂ O	[50]		No	No		Yes	Caution
K ₂ HPO ₄ . 6H ₂ O	[50]		Caution	No		Yes	No
S46 (Na ₂ S2O ₃ .5H ₂ O +sepiolite+	[50]		No	Caution		Yes	No
fumed silica)							
C48 (CH ₃ OONa+H ₂ O+ additives)	[50]		No	Yes		Yes	Yes
MgSO ₄ .7H ₂ O	[50]		No	Yes		Yes	No
Zn(NO ₃) ₂ .4H ₂ O	[50]		No	No		Yes	No
$K_3PO_4.7H_2O$	[50]		No	No		Yes	Yes
$Na_2S_2O_3.5H_2O$	[50]		No	Caution		Yes	Caution

Table 5 represents the experimental work carried out in identification of container-PCM compatibility. It is observed from literature that paraffins have poor compatibility with plastic containers; however, high density polyethylene (HDPE) has exhibited good compatibility with paraffins. Similarly, majority of inorganic salt hydrates have corrosive nature with metal containers; however, stainless steel has exhibited good compatibility.

293

4. LHS system performance analysis and enhancement

294 LHS system with its high thermal storage density at nearly isothermal process provides a better choice 295 of heat storage. However, due to low thermal conductivity and poor thermo-physical stability of PCMs, the LHS 296 system productivity during charging and discharging processes are highly affected. As a result, large scale 297 practical utilization of LHS system remains inefficient. Therefore, it is necessary to enhance the shortcomings of 298 the LHS system by adopting various performance enhancement techniques. In recent years, few review papers 299 are published on thermal performance enhancement of LHS system [51-53]. These review papers have 300 highlighted the improvement in thermal conductivity of PCMs by using nanostructures, techniques to enhance 301 the thermal performance of PCMs in concentrated solar power plants and the effect of inlet and outlet 302 temperature, and mass flow rate of heat transfer fluid (HTF) on thermal performance of PCM. However, this 303 section reviews the most recent developments in geometrical orientations of containers to enhance heat flow in 304 order to boost the phase transition rate, thermal conductivity enhancement of PCMs by extended surfaces and 305 additives, improvement in thermal storage capacity by multi PCM, and encapsulation of PCMs to ensure better 306 thermal conductivity and thermo-physical stability. This section is focused on techniques that influence the 307 phase transition rate, thermal conductivity, latent heat storage capacity and thermo-physical stability of PCMs.

308 4.1 PCM container configuration

After the selection of PCM, the geometry of PCM container plays an important role in thermal performance of LHS system. The PCM container geometric configuration has a direct impact on the heat transfer nature and ultimately affects the phase transition rate. PCM containers are of typically rectangular, concentric annular tube, spherical and shell and tube configurations. The most studied geometric configuration is shell and tube, for the fact that it has minimal heat loss characteristic and substantial utilization in engineering applications.

315 During melting process, heat is transferred from hot surface to PCM through conduction and as the heat 316 transfer continues, the amount of melted PCM increases near hot surface and thus natural convection takes over. 317 Lamberg at al. [54] simulated the melting time of PCM in rectangular container of 96mm height, 20mm 318 thickness and 41mm depth; with and without natural convection. It was justified by comparison with 319 experimental results that LHS system with natural convection took almost half melting time to that without 320 convection consideration. Kamkari et al. [55] studied the dynamic thermal performance of lauric acid as PCM in 321 rectangular container at different inclination angles of 0°, 45° and 90°. The container hot wall was isothermally 322 heated whereas the other walls were thermally insulated. Various experiments were conducted for hot wall 323 temperatures of 55 °C, 60 °C and 70 °C. It was reported that hot wall positioning in rectangular container played 324 a vital role in formation of natural convection currents and therefore affecting the heat transfer rate and melting 325 rate. Initially, the heat transfer in vertical hot wall container was dominated by conduction as temperature 326 contours were almost parallel to hot wall. The viscous forces were overcome by buoyant forces as the 327 temperature of liquid PCM increased, and eventually the hot liquid PCM climbed along the vertical hot wall. 328 The heat transfer was dominated by natural convection and therefore it increased the melting rate in upper 329 portion of solid-liquid interface by increasing local heat transfer due to hot liquid PCM. The temperature of 330 liquid PCM decreased as it descended along the solid-liquid interface and therefore the heat transfer at lower 331 portion of container was found lesser than upper portion. Also, the accumulated hot liquid PCM at upper portion 332 of container absorbed a considerable amount of heat from hot wall and resulted in stratified liquid layer. In case 333 of 45° inclination of hot wall, contrary to vertical hot wall observations, the stratified temperature layers did not 334 appear at the upper portion of container which means that heat transferred from liquid to solid PCM and thus it 335 increased the melting rate. In case of horizontal hot wall, the uniform temperature distribution along the solid-336 liquid interface resulted in uniform melting rate. The heat transfer enhancement ratio for horizontal hot wall 337 container was found twice to that of vertical hot wall container, as shown in Fig. 3.

Fig.3. Temperature contours of rectangular container with different inclination angles when hot wall is at 70 °C
[55].

338

341 Constrained and unconstrained melting of n-Octadecane in a sphere container is experimentally 342 examined by Tan [56]. In constrained melting case, solid PCM is attached to thermocouple to prevent it from 343 sinking to the bottom of sphere due to gravity. It was reported that in unconstrained melting case, the start of 344 PCM melt was dominated by heat conduction across the sphere wall. As the PCM melted then due to difference 345 in densities the solid PCM sank to the bottom. Therefore, the lower portion of solid PCM was melted by heat 346 conduction from inner wall and the upper portion was melted by natural convection caused due to buoyancy 347 effect. In constrained melting case, conduction heat was responsible for initial inward concentric melting and 348 later the melting was dominated by natural convection, making an oval shape at the top half of solid PCM. The 349 upper half of the solid PCM was melting at higher rate than the bottom half. Natural convection cells were 350 formed at bottom half and it caused waviness profile at bottom of solid PCM.

351 (A) (B) (C) (O)
352 Fig.4. (a) Unconstrained melting inside sphere, (b) Representation of heat conduction and natural convection in
353 unconstrained melting, (c) Constrained melting inside sphere and (d) Representation of natural convection in
354 constrained melting [56].

355 The melting behaviour of n-eicosane in cylindrical container was studied by Jones et al. [57]. The 356 experimental examination was focused on solid-liquid interface, temperature measurements and volumetric 357 liquid fraction. Digital image processing technique was used to locate the melt front in cylindrical container. It 358 was reported that melting process was dominated by four different regimes, such as (a) pure conduction, (b) 359 conduction and natural convection, (c) natural convection and (d) solid shrinkage. As shown in Fig. 5(a), the 360 melt front was found thin and parallel to vertical hot boundaries of cylindrical container, it depicted that initially 361 melting was dominated by conduction. It was noticed that as the melting increased, the melt front thickness 362 along vertical direction varied, with maximum molten layer thickness was observed at top of container. It 363 indicated the buoyant forces driven natural convection began to strengthen and moving the hot molten layer to 364 top of container. However, the melt front was still almost uniform to vertical hot walls and it was suggested that 365 this regime could be a mixed conduction and natural convection, as shown in Fig. 5(b). Later, the melting was 366 found more influenced by natural convection and the molten layer thickness varied along the vertical hot walls, 367 as shown in Fig. 5(c). Lastly, the top portion of PCM was completely melted by convection and this regime was 368 called shrinking solid, as shown in Fig. 5(d). Similarly, Shmueli et al. [58] numerically investigated the melting 369 behaviour of PCM in vertical cylindrical container, isothermally heated from sides, insulted at bottom and top 370 portion of container was bare to air. The melting behaviour was found similar to that of Jones et al. [57].

371

Fig.5. Melting nature of wax in cylindrical container with wall temperature of 45 °C at various time intervals
such as; (a) 1680 seconds, (b) 3120 seconds, (c) 7200 seconds and (d) 10800 seconds [57].

374

375

Fig.6. Comparison of simulate density and vector maps with experimental images [58].

Theoretical optimization of two different models of cylindrical containers is carried out by Esen et al. [21]. In the cylindrical model, the PCM was stored in pipe and HTF was flowing parallel in cylindrical portion. Whereas in pipe model, the PCM was stored in cylindrical side and HTF was flowing in pipe. A series of numerical tests were carried out to investigate the effect of different PCMs, radii of cylinder and pipe, mass flow rate and inlet temperature of HTF on melting time. It was concluded from the results that pipe model required less time than cylindrical model to melt the PCM, due to the fact that thicker mass of PCM takes longer time to melt and less amount of heat loss from the HTF to surrounding.

383 Esapour et al. [59] investigated the melting behaviour of RT35 in various arrangements of shell and 384 multi-tubes. As exhibited in Fig. 7, RT35 was stored in middle tube/shell, whereas HTF was made to flow in 385 inner tubes and outer one .The effect of number of inner-tubes on charging process was analysed. It was 386 reported that an increase in inner-tubes from 1 to 4 enlarged the molten region and therefore the regime was 387 dominated by convection heat transfer, which led to enhanced melting rate. According to Fig. 8, in case A, both 388 the heating surfaces (inner tube and outer tube) were installed wide apart which resulted in weak natural 389 convection effects and thus the melting rate was slow. Whereas in case B, C and D, heat transfer surface was 390 increased by distributing thinner tubes across the shell. The buoyant force increased as the vortices merged to 391 form a large vortex and therefore the melting rate was accelerated. The utilization of 4 inner-tubes in shell 392 reduced the melting time by 29% to that of single inner-tube.

Fig.8. Liquid fraction contours for various multi-tube arrangements [59].

397 Vyshak and Jilani [60] conducted a comparative study on total melting time of PCM stored in 398 rectangular, cylindrical and cylindrical shell containers of same volume and heat transfer surface area. The 399 investigation was carried out for various values of PCM mass and inlet temperature of HTF. It was deduced that 400 cylindrical shell configuration took least time to store the same amount of thermal energy as compared to other 401 two configurations. It was also reported that with increase in mass of PCM, the cylindrical shell performance 402 was more pronounced, comparatively. The results showed that melting time for rectangular container was nearly 403 half to that of cylindrical container. Zivkovic and Fujii [61] also reported the similar results for rectangular and 404 cylindrical configuration.

405

406 Fig.9. Comparison of various container models: (a) Rectangular container model, (b) cylindrical container407 model and (c) cylindrical shell container model [60].

409 Fig.10. Comparison of total melting time vs mass of PCM for cylindrical and rectangular containers and410 cylindrical shell and rectangular containers [60]

411 In case of solidification process, the heat transfer is dominated and influenced by conduction. Therefore, 412 the container orientation has insignificant influence on solidification rate. Seddegh et al.[62] numerically 413 evaluated the thermal behaviour of Paraffin wax in horizontal and vertical orientations of shell and tube 414 container. During melting process, it was noticed that the heat transfer in horizontal system was more effective 415 in melting the upper half of PCM than the lower half, whereas the vertical system presented an almost constant 416 melting rate. Moreover, the comparative analysis showed that horizontal system provided better thermal 417 performance in melting process than vertical system. During solidification process, the natural convection 418 dominated the heat transfer at first, which rapidly reduced the temperature of PCM to its freezing point. The

419 heat transfer was dominated by conduction as the PCM started to solidify around the HTF tube. Due to low 420 thermal conductivity of PCM, the solidified PCM started behaving like insulating medium and thus it reduced 421 the phase transition rate. Due to buoyancy, the liquid PCM was moving to the upper portion of container, 422 whereas the solidification rate was faster in lower portion. Furthermore, the comparative analysis showed that 423 the horizontal and vertical orientations had insignificant influence on solidification rate as the average 424 temperature and solidification rate were almost same for both cases, as shown in Fig. 11. Similarly, Allen et 425 al.[63] experimentally analysed the influence of cylindrical container inclination on solidification rate of n-426 Octadecane. It was observed that due to conduction dominated heat transfer, the orientation of cylindrical 427 container had a minimal impact on the solidification rate of PCM.

428

Fig.11. Comparison of PCM average temperature and liquid fraction in horizontal and vertical orientations ofshell and tube container during solidification process [62]

In this section, the phase transitions of PCMs in various containers have been reviewed. It is noticed from review that conduction heat transfer and natural convection are responsible for melting behaviour of PCMs in containers with different shapes. In early stages of phase transition from solid to liquid, conduction plays a vital role in transferring excess amount of heat and is responsible for higher melting rate. Later, buoyant forces overcome viscous forces and buoyant forces driven flow depends on heat supply, operating conditions, thermophysical properties of PCMs and container geometry. Container orientation and geometric parameters have great impact on the melting behaviour of PCMs, such as aspect ratio of rectangular and cylindrical containers, spherical capsules radius and annular cavity eccentricity. Therefore, the selection of PCM container shall be
carried with great attention, knowing the effect of geometry configuration on phase transition behaviour of
PCM.

441 **4.2** Heat exchanger surface area enhancement

Extended surfaces and fins are employed in the heat exchanger to increase the heat transfer surface area. Fins configuration and orientation play an important role in improving the performance of LHS system. Fins are normally installed in lower heat transfer coefficient side because the fins efficiency rises with declination in heat transfer coefficient. Therefore, fins are mostly on the PCM side.

446 Akhilesh et al. [64] numerically investigated the effect of adding more fins in rectangular container, 447 heated from top wall. It was observed that heat transfer area and thermal energy storage were increased by 448 increasing number of fins per unit length. However, thermal storage performance could not be enhanced any 449 further upon increasing the number of fins beyond a critical value. Gharebaghi and Sezai [65] studied the effect 450 of fins in rectangular container of PCM. It was noticed that inclusion of fins increased the heat transfer rate. 451 They also reported that horizontal fins with vertical heated walls provided double heat transfer rate to that of 452 vertical fins with horizontal heated walls. Thermal storage performance was enhanced by increasing the number 453 of fins and reducing the gap in-between fins. However, increase in number of fin beyond the critical value could 454 not provide considerable enhancement.

Lacroix and Benmadda [66] simulated the melting rate of PCM in rectangular container with horizontal fins and vertical heated walls. The simulation was focused on investigating the effect of number of fins and their length. It was concluded that large number of shorter fins (19 fins, each of 0.01m length) are less efficient in improving the melting rate than few number of longer fins (4 fins, each of 0.03 m length). Even with small temperature gradient, longer fins could improve the performance and it was found more efficient than increasing the heated wall temperature.

461 Shatikian et al. [67] numerically studied the effect of fin thickness on melting rate. It was reported that 462 thicker fins experienced uniform temperature along the length of the fin, whereas thinner fins showed 463 temperature gradient. Temperature uniformity was desirable for better heat transfer but too thick fins would 464 reduce the storage capacity of container. Therefore, the thickness and number of fins should be optimized for 465 better performance of LHS system. 466 Stritih [68] experimentally investigated the fin effectiveness of rectangular container. Fin effectiveness is 467 defined as the ratio between heat flux with fins and heat flux without fins. It was noticed that heat flux with fins 468 was high and because of that fin effectiveness was high and resulted in 40% reduction in phase transition time.

Tao and He [69] numerically examined the effect of number of fins, fin thickness and fin height on melting rate of PCM in horizontal concentric tube. It was noticed that an increase in fins number, thickness and height amplified the thermal conductivity in lower portion of PCM causing enhanced heat transfer rate and melting rate. However, excessively large number of fin, thickness and height would decrease the storage capacity of PCM. Therefore, the recommended values for number of fins, dimensionless thickness and dimensionless height were 7, 0.1 and 0.8, respectively.

Vertical fins effect with constant temperature horizontal wall on solidification time of high temperature
PCM was simulated by Guo and Zhang [70]. It was observed that without fins the solidified front only moved in
vertical direction, whereas with fins, simultaneous vertical and horizontal movement of solidified front was
noticed. Solidification time observed linear declination with number of fins. Thermal energy discharge time was
1/30th with fins to that without fins. Prior to critical value for fin thickness, it was observed that increasing fin
thickness could decrease solidification time.

481 Lacroix [71] numerically studied the behaviour of LHS unit with shell and annular finned tube 482 configuration, with PCM stored in shell side and HTF flowing in tube. Natural convection was considered by 483 including effective thermal conductivity of PCM in conduction equation, as a function of Rayleigh number. It 484 was concluded that annular fins enhanced the heat conduction for all values of mass flow rates and inlet 485 temperatures. Maximum improvement in heat conduction was observed with moderate flow rate and small inlet 486 temperature; whereas even with more number of fins, the increase in heat conduction was less significant with 487 larger flow rate and inlet temperature. Similarly, Zhang and Faghri [72] studied the same shell and annular 488 finned tube system and reported that fins proved to be very effective in tackling the depletion in performance 489 caused by subcooling of PCM.

Rahimi et al. [73] experimentally examined the effect of flow rate, inlet HTF temperature and fin pitch
on melting and solidification rate of R35 paraffin in fin and tube heat exchanger. An increase in flow rate from
0.2 L/min to 1.6 L/min enhanced turbulent nature of HTF and it resulted in improved melting rate, whereas the
solidification rate was not affected significantly. Similarly, an increase in inlet temperature of HTF from 50 °C
to 60 °C enhanced melting time, whereas, the enhancement was not impressive when inlet temperature was

495 increased from 60 °C to 70 °C. It was noticed that solidification rate was more enhanced as compared to melting 496 rate with employing fins. For 5mm fin pitch, the melting and solidification time decreased from 290 to 190 497 minutes and from 445 to 245 minutes, respectively. Increasing the fin pitch from 5mm to 15mm could not 498 produce a significant difference in transition rates.

500 Fig.12. Effect of mass flow rate on phase transition rates for various fin pitch values: (a) melting rate and (b)501 solidification rate [73].

499

502 Choi and Kim [74] experimentally investigated the radial fins effect on solidification time of PCM in 503 cylindrical container. Due to radial fins, enhancement in both radial and axial heat conduction were observed, 504 which result in better heat recovery. It was also reported that at lower mass flow rate of HTF, solidification front 505 was only found on fins portion nearby tube wall. Whereas for higher flow rate of HTF, solidified front was 506 found on large fin portion and better utilization of fins could be made.

Velraj et al. [75] experimentally verified the increase in solidification rate of PCM in vertical concentric double tube, with PCM stored in inner tube with longitudinal fins. It was reported that the portion of liquid PCM which was at furthest from heat transfer surface could be covered by using longitudinal fins, which results in minimal resistance and higher thermal contact. It was noticed that increasing the number of fins in large tube was more effective and solidification time was 1/nth times with fins to that without fins.

Rathod et al. [76] analysed the performance enhancement of LHS system by installing three longitudinal fins in shell and tube arrangement. It was noticed that an increase in inlet temperature of HTF is more effective than mass flow rate of HTF. Due to installation of fins, the melting time percentage decrease was 12.5% and 24.52% for the inlet temperature 80 °C and 85 °C, respectively. Similarly, the percentage decrease in solidification time was reported to be 43.6%. An experimental study was carried by F. Agyenim et al. [77], to compare the thermal performance of erythritol in various geometric configurations of horizontal concentric tube, such as concentric tube without fins, with radial fins and with longitudinal fins. PCM charging cycle was carried out for 8 hours. It was reported that only longitudinal fin configuration has completely melted the PCM. During the discharging cycle, longitudinal fin configuration showed insignificant subcooling. Therefore, the longitudinal fin configuration was recommended for enhanced performance in concentric tube LHS system.

523 Medrano et al. [78] experimentally investigated the melting and solidification rate of organic PCM RT 35 524 in five commercially available heat exchangers. It was noticed that double pipe heat exchanger and plate type 525 heat exchanger are not appropriate to be used as PCM containers. However, the double pipe with graphite 526 matrix, double pipe with fins and compact heat exchanger can be utilized as heat storage containers. It was 527 reported that compact heat exchanger produced highest average thermal power i.e. 1kW for both melting and 528 solidification case. The normalized thermal power was found maximum in double pipe with graphite matrix, in 529 range of 700–800 W/m²–K.

As discussed, the inclusion of fins in LHS system enhances the storage performance and reduces the phase transition time. The number and size of fins play an important role in LHS system performance and promotion of natural convection. External fins have more impact on LHS system performance during solidification process than melting process. It is because melting process is dominant by convection, whereas solidification is governed by conduction. In addition, the number of fins in a LHS system can affect the thermal storage capacity of container due to small volume for PCM. Therefore, the fins number and size should be optimized for the system thermal performance enhancement and thermal energy storage capacity.

537

Fig.13. Comparison of thermal performance of erythritol in various geometric configurations: (i) Control system
(no fins), (ii) Circular finned system and (iii) Longitudinal finned system [77].

540 4.3 PCM additives to increase the thermal conductivity

Despite the fact that PCMs possess higher thermal storage density, the slower rate of melting and solidification limits the potential practical applications of LHS system. This is due to lower thermal conductivity of both organic and inorganic PCMs which ranges from 0.1 to 0.7 W/mK, as shown in Table 3 and Table 4. In recent years, a subchapter of a book by Mehling and Cabeza [20], and portions of few review papers [52, 53, 79, 80] are published on this topic. However, this section thoroughly reviews the latest research developments in thermal conductivity enhancement of both paraffins and salt hydrates by using metal matrices and structures, expanded graphite, metal nanoparticles and carbon fibers. This section is focused on effect of addition ofadditives on thermal conductivity, latent heat storage capacity and transition rate of PCMs.

Melting and solidification rate can be enhanced by adding naturally available materials such as graphite, carbon fibers, copper, aluminium, metal matrices etc. Copper matrices enhanced the thermal conductivity of paraffin by approximately 80% as compared to aluminium matrices. Moreover, diamond coated copper matrices can further increase the thermal conductivity [81].

553 Mesalhy et al. [82] performed a numerical parametric study to identify the effects of employing solid 554 matrices with different porosities of 0.85, 0.90 and 0.95; and thermal conductivity ratios on thermal performance 555 of paraffin based LHS system. Thermal conductivity ratio, ks/kf ranged from 50-200. The term ks and kf 556 represented the thermal conductivity of solid porous matrix and PCM, respectively. It was reported that thermal 557 performance of LHS system was dependent on both porosity and thermal conductivity of employed matrix. 558 Compared to pure paraffin, the addition of porous matrix increased the rate of melting and heat transfer rate. A 559 decrease in matrix porosity resulted in increased thermal conductivity and melting rate of paraffin but it also 560 dampened the convection motion. It was suggested that a matrix with high thermal conductivity and high 561 porosity can enhance the storage performance in best way.

Due to high thermal conductivity and absorbability of graphite, it is used by many researchers as an additive in LHS system to improve thermal performance. Thermal conductivity of graphite ranges from 24 to 270 W/mK. Haillot et al. [83] characterized and elaborated composites of expanded graphite and several PCMs and reported an increase of thermal conductivity from 0.2 - 1 W/mK for pure PCM to 5 - 50 W/mK for composite. However, the inclusion of expanded graphite to RT-65 paraffin decreased the latent heat capacity from 170 - 140 kJ/kg. It showed that thermal capacity and thermal conductivity of LHS system depended on the amount of expanded graphite in composite.

569 Similarly, the effect on melting time, thermal conductivity and thermal capacity on composite of n-570 docosane (paraffin) and different mass fractions of expanded graphite is investigated by Sari and Karaipekli 571 [84]. Liquid paraffin absorbed in pores of expanded graphite of 2%, 4%, 7% and 10% mass fraction, making a 572 form-stable composite with no leakage due to capillary force and surface tension of expanded graphite. The 573 density of 10% expanded graphite composite was less than pure paraffin. The increase in mass fraction of 574 expanded graphite showed an increase in thermal conductivity but a decrease in thermal capacity. An optimum 575 mass fraction of 10% expanded graphite resulted in four time increased thermal conductivity, causing about

Fig.14. Melting time of pure paraffin and composite paraffin/EG [84].

579 An experimental investigation on thermal conductivity enhancement of CaCl₂.6H₂O and expanded 580 graphite composite was conducted by Z. Duan et al. [85]. OP-10 was added as a surfactant to improve the 581 bonding energy and sealing performance of the composite. Various samples were prepared with expanded 582 graphite mass fraction of 50%, 40%, 30%, 20% and 10%. DSC results showed that composite sample with 40% 583 mass fraction of expanded graphite produced comparatively higher latent heat of fusion (145 kJ/kg), whereas 584 sample of 50% mass fraction of expanded graphite provided lower latent heat of fusion (49.10 kJ/kg). TG 585 analysis of composite samples evidently showed that the inclusion of OP-10 surfactant enhanced the thermal 586 stability. Moreover, thermal constant analyser tests presented that that 50% mass fraction of expanded graphite 587 improved the thermal conductivity of CaCl₂.6H₂O (8.796 W/mK) by 14 times to that of pure CaCl₂.6H₂O (0.596 588 W/mK).

Thermal performance enhancement of $Na_2SO_4.10H_2O$ and $Na_2HPO_4.12H_2O$ with expanded graphite was examined by Y. Wu and T. Wang [86]. Impregnation and physical blending techniques were used to prepare the composite sample of 3.5g of each salt hydrates with 1g of expanded graphite. The composite sample was coated with 0.2g of paraffin wax to restrain salt hydrates from phase segregation. It was reported that the composite sample demonstrated good thermal stability after 100 thermal cycles and presented good latent heat of fusion
(172.3 kJ/kg). Moreover, the inclusion of expanded graphite increased the thermal conductivity of hydrated salts
to 3.643 W/mK.

596 H.K. Shin et al.[87] investigated the thermal performance enhancement of sodium acetate trihydrate by 597 inserting various weight percentages of expanded graphite. Carboxymethyl cellulose (CMC) was added as a 598 thickening agent. It was reported that the PCM composite containing 2.5 wt% of expanded graphite and 5 wt% 599 of thickening agent exhibited a high thermal conductivity of 1.85 W/mK and excellent thermal stability. On the 600 contrary, the same PCM composite sample with 5 wt% of graphite powder (particle size \leq 50 µm) and 5 wt% of 601 CMC was prepared and investigated by M. Dannemand et al.[88]. The maximum thermal conductivity of 602 composite was reported to be 1.1 W/mK.

603 The results from various research shows that graphite is an excellent additive to enhance thermal 604 performance of LHS system. However, its porosity plays a vital role in effectiveness of improved thermal 605 performance. If the composite of small mean pore size graphite is selected then it may cause difficulty in 606 impregnation of PCM in porous media of graphite and hinders the molecular moment, which can decrease the 607 latent heat capacity. On the contrary, if the mean pore size is increased then it can cause leakage problem as 608 reduction in capillary forces. Moreover, the composite of graphite and PCM can be prepared by using chemical 609 or mechanical processes, which are time and energy consuming. Therefore, to avoid these shortcomings, another 610 simple technique to enhance thermal conductivity is dispersion of high thermal conductivity particles.

611 An experimental study was conducted on thermal conductivity enhancement of paraffin was by 612 incorporating aluminium particles of 80 µm, with a mass fraction of 0.1, 0.3, 0.4 and 0.5, by Mettawee and 613 Assassa [89]. Mass fraction was the ratio of mass of aluminium powder to mass of compound of paraffin wax 614 and aluminium powder. During charging time, the heat transfer from solar collector to paraffin wax/aluminium 615 composite was increased as the mass fraction increase from 0.1 to 0.5. However, the increase in mass fraction 616 beyond 0.5 resulted in insignificant increase in heat transfer rate. For aluminium mass fraction of 0.5, the 617 thermal conductivity of composite increased and produced 60% reduction in charging time as compared to pure 618 paraffin wax. Similarly for discharging process, the composite of 0.5 mass fractions showed more homogenous 619 solidification. The highest mean daily efficiency of the LHS system increased from 54.8% for pure paraffin wax 620 to 94% for composite.

621 Performance enhancement of 1-tetradecanol (TD) and silver nanoparticle composite was investigated by 622 Zeng at al. [90], using TG-DSC, IR, TEM, XRD and thermal conductivity evaluation method. The investigated 623 composite samples were based on various mass fractions of 0.98, 0.94, 0.80, 0.50, 0.20 and 0.06. Mass fraction 624 was the ratio of mass of pure TD to the combined mass of TD and silver nanoparticles. It was reported that 625 thermal conductivity of composite increased with increase in the amount of silver nanoparticle. Thermal 626 conductivity enhancement was examined by the increase in temperature at particular time. It was noticed that 627 after 150 seconds of melting process, the pure TD was at 26 °C, whereas the composite of mass fraction of 0.06 628 was at 30 °C. Also, no interaction between TD and silver nanoparticle was noticed and the stability of composite 629 was found to be almost the same as to that of pure TD. However, thermal storage capacity of composite 630 decreased with increase in silver nanoparticle (234.2 kJ/kg for pure TD, 216.5 kJ/kg for composite of mass 631 fraction of 0.98 and 119.4 kJ/kg for composite of mass fraction of 0.50, respectively) and the phase transition 632 temperature was also reduced as compared to pure TD.

633 To improve the thermal conductivity of paraffin, various techniques such as vertical cylinder with 634 internal longitudinal fins, lessing rings and bubble agitation are studied by Velraj et al. [91]. In case of lessing 635 rings, hollow steel rings of 1 cm diameter were added in cylindrical paraffin container. Reduction in 636 solidification time was reported for both fins and lesser rings based LHS system. It was found that solidification time for fins and lesser rings were 1/4th and 1/9th that of plain tube LHS system, respectively. However, the 637 638 inclusion of fins and lesser rings occupied 7% and 20% of total storage volume of container respectively and 639 thus reducing the storage capacity of LHS system, as shown in Fig. 15. Therefore for large container size of 640 LHS system, lesser rings will perform better than fins.

641 Due to higher density of metal particles and metal structures, there is a possibility that the additives can settle at 642 the bottom of container and increasing the weight of container. As discussed in section 3.2, there are 643 compatibility concerns between metals and PCMs. Therefore, researchers have been searching for low density 644 but high thermal conductivity additives, which are compatible with all PCMs. Carbon fibers is much lighter as 645 compared to metal particles and its thermal conductivity is almost equal to copper and aluminium. Also, it has a 646 good corrosive resistant nature and possesses good compatibility with almost all PCMs, thus it can qualify for 647 better alternative to improve thermal performance of LHS system. Elgafy and Lafdi [92] analytically and 648 experimentally investigated the performance enhancement of Paraffin wax based LHS system by adding carbon 649 nanofibers of 100nm outer diameter and 20µm average length. Samples of different mass ratio (1%, 2%, 3% and 650 4%) of carbon nanofibers were made using shear mixing and melting process. The composite showed an almost 651 linear increase in thermal conductivity and output power with increase in mass ratio of carbon nanofibers, which 652 resulted in increased solidification rate and insignificant reduction in storage capacity. The solidification time 653 was reduced by 23% by using 1% mass ratio of carbon nanofibers. It was reported that further improvement in 654 thermal performance can be achieved by uniform distribution of fibers.

655

656

Fig.15. Solidification time and total heat storage capacity for various configurations [91].

657

Fig.16. Solidification temperature with respect to time for various mass ratios of Carbon nanofibers [92].

659 Fukai et al. [93] inspected the effect of randomly and uniformly oriented carbon fibers on the thermal 660 performance enhancement of paraffin wax based LHS system. Carbon fibers of 10µm diameter, 220 W/mK 661 thermal conductivity and 2170 kg/m³ density were packed with paraffin wax in a steel cylindrical capsule. It was 662 found that effective thermal conductivity of uniformly oriented brush type was three times to that of randomly 663 oriented type. Moreover, in case of small mass fraction of carbon fibers, the randomly oriented carbon fibers 664 dampened the natural convection and thus resulted in lower melting rate than pure paraffin. Whereas, the higher 665 melting rate in brush type orientation was not affected by loss in convection. Similarly, Fukai et al. [94] 666 experimentally and numerically investigated the effect of inclusion of carbon fiber brushes in paraffin wax 667 based LHS system. It was reported that an enhancement of 20% and 30% in charging and discharging 668 respectively was achieved as compared to normal paraffin wax.

669

670

Fig.17. Transient temperature response to random type and brush type orientation of carbon fibers [93].

As reviewed in this section, the thermal conductivity of LHS system can be increased significantly by incorporating high conductivity additives and it can enhance the melting and solidification rate. However, the addition of additives can reduce the storage volume of PCM and it can lead to loss in storage capacity. Thus, an optimum mass of additives should be selected for enhancing thermal performance.

675 4.4 Multiple PCMs method

676 Instead of single PCM, using multiple PCMs technique has reported an increase in LHS system
677 performance and storage capacity. During the charging and discharging process of the LHS system, the rate of
678 heat transfer depends largely on the temperature difference between PCM melting temperature and HTF

temperature. In single PCM case, the temperature of HTF decreases along the length of flow which results in temperature difference reduction. As a consequence, the rate of heat transfer decreases and therefore the LHS capacity reduces and most part of stored thermal energy is sensible energy. Whereas in multiple PCMs case, the storage medium consist of different PCMs in descending order of their melting temperatures, even if the temperature of HTF decreases the unit maintain almost a constant temperature difference. Multiple PCMs method yields constant heat flux to the PCM in melting process and to the HTF in solidification process.

685

686

Fig.18. A schematic of multiple PCMs based LHS unit [95].

Wang et al [96] numerically investigated the performance enhancement of LHS system by employing multiple PCMs (PE, PG and NPG). It was suggested that an increase in number of PCMs would reduce the phase transition time. Numerical results indicated that phase transition for all PCMs were almost homogenous and with constant rate.

Mosaffa et al [97] numerically investigated the improved performance of free cooling system using multiple PCM based LHS system. The PCMs selected for investigation were CaCl₂.6H₂O, Paraffin C18 and RT25. Energy based optimization were used to find out the effect of length and thickness of PCM slab, and fluid passage gap on storage performance. It was reported that CaCl₂.6H₂O and RT25 composite was very effective in maintaining the outlet air temperature below 27 °C for 8 hours and providing maximum heat absorbing capacity.

Gong and Mujumda [98] developed a one dimensional finite element heat conduction phase change model for melting and freezing processes of composite PCMs slabs. The model was used to investigate the performance of various arrangements of PCMs with descending order of their melting temperatures, thermophysical properties and various boundary conditions for both melting and heating processes as shown in Table 6. E_T and E_M represent the actual energy stored or retrieved in a cycle and maximum energy stored or retrieved, respectively. The ratio between E_T and E_M represents the LHS system performance. Upon reaching to steady

702	reproducible state, the multiple PCM slab resulted in enhanced melting and solidification rate as compared to
703	single PCM slab. The charge and discharge rate was enhanced from 21.9% to 31.7% by decreasing the thermal
704	conductivity ratio from 1.0 to 0.1, and the percentage enhancement was decreased by periodic reduction in
705	thermal diffusivity ratio. Increase in latent heat of multiple PCMs resulted in improved charge and discharge
706	rate. It can also be observed from the table 6 that the melting and solidification rate can be enhanced by
707	minimizing the temperature differences between boundary temperatures using multiple PCMs.

Table 6

Performance enhancement using multiple PCM [98]

	Property	$t_{m}=t_{s}\left(s\right)$	Slab	E _T	E _T /E _M	Enhancement
			type	(J/m ²)		(%)
Case	Thermal conductivity kl/ks					
1	1	650	Single	404,508	0.632	
			3-PCM	493,178	0.771	21.9
2	0.4	1150	Single	439265	0.774	
			3-PCM	534425	0.941	21.7
3	0.2	1950	Single	415613	0.764	
			3-PCM	517257	0.969	26.9
4	0.1	3375	Single	393120	0.723	
			3-PCM	517790	0.955	31.7
Case	Thermal diffusivity al/as					
1	1	650	Single	404508	0.632	
			3-PCM	493178	0.771	21.9
2	0.4	800	Single	552627	0.674	
			3-PCM	627102	0.765	13.5
3	0.2	1000	Single	704900	0.629	
			3-PCM	758942	0.678	7.67
Case	Latent heat (J/kg)					
1	2000	375	Single	263161	0.598	
			3-PCM	304540	0.692	15.7

2	4000	650	Single	404508	0.632	
			3-PCM	493178	0.771	21.9
3	8000	1200	Single	754818	0.726	
			3-PCM	945164	0.909	25.2
4	16000	2150	Single	1329710	0.723	
			3-PCM	1756840	0.955	32.1
Case	Temperature swing (°C)					
1	T_{wm} = 80, T_m = 70, T_{wf} = 60	1750	Single	363228	0.757	-
2	T_{wm} = 80, T_{m1} = 75, T_{m2} =	1750	3-PCM	457240	0.953	25.9
	70, T_{m3} = 65, T_{wf} = 60					
3	T_{wm} = 120, T_m =90, T_{mf} = 60	650	Single	404508	0.632	-
4	T_{wm} = 120, T_{m1} = 105, T_{m2} =	650	3-PCM	493178	0.771	21.9
	90, T_{m3} = 75, T_{wf} = 60					
5	T_{wm} = 160, T_m = 110, T_{wf} =	400	Single	465331	0.582	-
	60					
6	T_{wm} = 160, T_{m1} = 135, T_{m2} =	400	3-PCM	545623	0.682	17.3
	110, T_{m3} = 85, T_{wf} = 60					
7	T_{wm} =200, T_m = 130, T_{wf} =	350	Single	579027	0.603	-
	60					
8	T_{wm} = 200, T_{m1} = 165, T_{m2} =	350	3-PCM	670265	0.698	15.8
	130, T _{m3} = 95, T _{wf} =60					

708

Farid and Kansawa [99, 100] numerically and experimentally studied the performance enhancement of LHS system by employing three commercial waxes of different temperatures (44 °C, 53 °C and 64 °C) and reported an increase of 10-15% in heat transfer rate to that of single PCM unit. It was also reported that the phase transition of all PCMs started simultaneously.

Aldoss and Rahman [101] investigated the improvement in performance of multiple paraffins based LHS system by increasing the number of stages. Spherical capsule containing paraffin 40, paraffin 50 and paraffin 60 were used in various stages along the length of bed. It was observed that an increase in number of stages of 716 multiple paraffins based LHS system resulted in enhanced rate of charge and discharge, increased heat transfer 717 rate and improved storage capacity. However, increasing the number of stages more than three could not 718 enhance the system significantly.

Wang et al [102] experimentally investigated the decrease in melting time of LHS unit consisting of three coaxial cylindrical containing stearic acid, sliced paraffin and lauric acid, respectively. LHS unit was dipped in water and experiments were conducted for different temperatures, for both multiple PCMs unit and single PCM (sliced paraffin) unit. The experimental results demonstrated that charging rate of multiple PCMs unit was enhanced and resulted in 37-42% reduction in melting time compared to single PCM.

724 4.5 PCM encapsulation

725 PCM encapsulation is a process of shelling the PCM with suitable coating material to keep it isolated 726 from surrounding. The encapsulation process was invented by Barrett K Green in 1940s. Encapsulation ensures 727 the sustainability of true composition of PCM that can be altered by connection with surrounding, reduces the 728 possibility of surrounding reaction with PCM, improves thermal and mechanical stability, improves heat transfer 729 rate and compatibility with hazardous PCMs that cannot be exposed to surrounding such as building temperature 730 control, food storage and blood transport applications. Encapsulation of organic PCMs is given preference over 731 salt hydrates for its non-corrosive nature and insignificant solubility in water. However, the inflammable nature 732 of organic materials can be controlled by using inorganic coating materials. As shown in Fig. 19, chemical and 733 physical are two broad manufacturing methods of PCM encapsulation. Physical encapsulation methods deal 734 with large amount and rough surface encapsulation as compared to chemical techniques. Chemical 735 encapsulation techniques result in better heat storage capacity than that of physical methods. In-situ 736 polymerization manufacturing technique with its smaller capsule size and excellent shell structure is preferred 737 over others techniques. PCM encapsulation can be also be classified by different sizes such as macro, micro and 738 nano encapsulation and various container shapes as spherical, cylindrical, tubular or rectangular. In last decade, 739 several review articles and subchapters of books are published on this topic. Review articles on 740 nanoencapsulation [103, 104] and microencapsulation [3, 105-107] are focused on various encapsulation types, 741 techniques and applications. Similarly, the subchapters of books by Cabeza [20, 108] are focused on macro and 742 micro encapsulation. This section reviews the updated research on thermal performance enhancement and 743 thermo-physical stability of micro and macro encapsulated PCMs. This section is focused on effects of rade encapsulation on thermo-physical stability, latent heat storage capacity, thermal conductivity and phase

747

Fig.19. Various methods of PCM encapsulation.

748 4.5.1 Microencapsulation

749 Mechanical strength of encapsulated PCM can be identified by the core to coating ratio. An increase in 750 core to coating ratio proceeds in deteriorating coating strength and increases possibility of PCM leakage from 751 encapsulation, while a decrease in core to coating ratio can reduce the amount of PCM in encapsulation. 752 Ohtsubo et al. [109] examined the mechanical stability of microcapsules by using mass median diameter factor 753 (D) and wall thickness factor (T). It was noticed that for larger ratio of D and T, a smaller pressure is enough to 754 break 50% of coating material of encapsulation. Zhang and Wang [110] synthesized microencapsulated PCM 755 with n-octadecane as core material and polyurea as coating material. Core to coating ratio of 70/30 and 75/25 756 were examined, with mean particle size of 6.9 µm and 7.1µm, respectively. Lower core to coating ratio (70/30) 757 produced better thermal stability, while the higher core to coating ratio (75/25) caused slippage of PCM at 200 758 °C.

759 Namwong et al. [111] investigated the latent heat capacity of microencapsulated PCM with octadecane as 760 core material and divinylbenzene and methyl methacrylate (DVB-MMA) polymer as coating material. The 761 average diameter of microcapsule was 3.2 µm. Three polymer samples were tested. The samples contained 762 different percent weights of DVB and MMA such as 100:0, 50:50 and 30:70 wt%, respectively. The latent heat 763 of all samples of microencapsulated PCM was reported to be 189 kJ/kg, 218 kJ/kg and 223 kJ/kg, respectively. 764 It was observed that the latent heat of microencapsulated PCM increased as the percent weight of hydrophilic 765 MMA increased to 70 wt%. Yu et al. [112] examined the thermal conductivity enhancement of 766 microencapsulated n-octadecane. CaCO₃ was used as shell material. The spherical microencapsulated PCM was 767 having a diameter of 5 µm. Three samples of various percent weights of core and shell material were tested such 768 as 30:70, 40:60 and 50:50 wt%, respectively. Thermal conductivity of pure n- octadecane was 0.153 W/mK. It

769 was reported that thermal conductivity of all samples of microencapsulated PCM improved to 1.674 W/mK, 770 1.325 W/mK and 1.264 W/mK, respectively. Also, the microencapsulated PCM samples were subjected to 200 771 thermal cycles and it showed a good thermal stability and structural reliability. Yang et al. [113] examined the 772 performance enhancement of thermo-physical properties of microencapsulated n-octadecane. Silicon nitride and 773 polymethyl methacrylate polymer was used as shell material. Four samples of microencapsulated PCM were 774 tested. The percent weight of core materials ranged from 82.3 - 66.4 wt%. It was noticed that latent heat of 775 fusion reduced from 151.30 - 122.07 kJ/kg as the percent weight of core material decreased from 82.3 - 66.4 776 wt%. However, the mechanical strength of sample with 66.4 wt% of core material appeared to be four time 777 higher (16.24 mN) than ordinary PCM.

778 Sarier et al.[114] evaluated the thermal performance enhancement of two microencapsulated PCMs with 779 n-hexadecane and n-octadecane as core materials. Urea-formaldehyde was used as coating material. Silver 780 nanoparticles were added to core materials to improve the thermal performance of microencapsulated PCMs. 781 The average particle size of silver nanoparticles ranged from 163-496 nm. Six samples of microencapsulated 782 PCMs were tested. Four samples were containing 176.6 mmol of n-hexadecane and 0, 26, 52 and 104 mmol of 783 silver nanoparticles as core material, respectively. Likewise, two samples were containing 157.2 mmol of n-784 octadecane and 0 and 26 mmol of silver nanoparticles as core material, respectively. For all samples, the core to 785 coating ratio by mass was kept constant at 1:1. It was reported that the latent heat capacity of microencapsulated 786 n-hexadecane increased from 115-137 kJ/kg as the amount of silver nanoparticles increased from 0-52 mmol. 787 Likewise, the thermal conductivity improved from 0.0557- 0.1231 W/mK as the amount of silver nanoparticles 788 increased from 0-104 mmol. In case of microencapsulated n-octadecane, the latent heat capacity improved from 789 117-168 kJ/kg and thermal conductivity increased from 0.0695- 0.0978 W/mK with addition of 26 mmol of 790 silver nanoparticles. The samples were also subjected to 100 thermal cycles and the results indicated a good 791 thermal stability and durability. Jiang et al.[115] used emulsion polymerization to synthesise paraffin wax 792 microencapsulates with methyl methacrylate-co-methyl acrylate (MMA-MA) as coating material and nano-793 Al₂O₃ as additives to enhance thermal performance. Six samples were evaluated with varied mass ratio of nano-794 Al₂O₃ (0, 5, 16, 27, 33 and 38 wt%). It was reported that thermal conductivity of microencapsulated PCM 795 samples improved from 0.2442-0.3816 W/mK as the mass ratio of nano-Al₂O₃ increased from 0-38 wt%. 796 However, the latent heat capacity of microencapsulated PCM decreased from 110.40-75.40 kJ/kg as the mass 797 ratio of nano-Al₂O₃ increased from 0-38 wt%, due to drop in content of paraffin wax. It was also noticed that the 798 microencapsulated PCM samples with nano-Al₂O₃ additives displayed better thermal stability.

Alkan et al. [116] studied the experimental preparation, characterization and calculating the thermal behaviour of microencapsulated docosan-PMMA. The microencapsulated docosane was subjected to 5000 thermal cycles and the results depicted a good thermal stability and no chemical degradation. Ma et al. [117] prepared spherical shape encapsulated paraffin-PMMA by UV irradiations to emulsion polymerization. The size of encapsulated paraffin-PMMA was $0.5 - 2 \mu m$. Thermal stability tests were conducted for 1000 thermal cycles. The results showed a good thermal stability with melting point varied in a range of 33.40 – 35.71 °C and latent heat varied from 99.8 – 95.6 kJ/kg.

806 4.5.2 Macroencapsulation

807 Howlader et al. [118] investigated the chemical and physical stability and thermal performance of larger 808 capsules of size (2.833 mm diameter) with paraffin as core material. It was reported that after 1000 thermal 809 cycles, the encapsulated paraffin showed a good thermal and structural stability, and stable thermal storage 810 capacity. Alam et al. [119] experimentally investigated the thermo-physical stability of spherical encapsulated 811 NaNO₃. The diameter of hemispherical pellets of NaNO₃ ranged from 12.5-25.5 mm. Firstly, the PCM was 812 encapsulated by a layer of polymer (PTFE), having a thickness of 0.5-0.7 mm. Subsequently, it was coated with 813 a thin layer of nickel (10-80 µm). Due to polymer layer in between molten PCM and nickel, the possibility of 814 corrosion was reduced. The capsule was subjected to 2200 thermal cycles and the results showed excellent 815 thermo-physical stability.

816 Cabeza et al. [120] studied the thermal storage behaviour of solar pilot plant with several modules of 817 encapsulated PCM-graphite. A granular compound of sodium acetate trihydrate (90 vol.%) and graphite (10 818 vol.%) was encapsulated in aluminium container of size 8.8 cm x 31.5 cm. As shown in the Fig. 20, the 819 inclusion of 2, 4 and 6 PCM modules carried a weight of 2.1 kg, 4.2 kg and 6.3 kg, and it occupied 2.05 vol.%, 820 4.1 vol.% and 6.16 vol.% of storage tank, respectively. An increase in thermal density of 40%, 57.2% and 821 66.7% was noticed for 1 K temperature difference in case of 2, 4 and 6 PCM modules, respectively. Thermal 822 density increase was 6%, 12% and 16.4% for 8 K temperature difference, respectively. The inclusion of 823 encapsulated PCM-graphite maintained the temperature of water top layer in storage tank above 54 °C for 10-12 824 hours. Similarly, Mehling et al. [121] investigated the inclusion of encapsulated paraffin-graphite in brass 825 cylinders of size 10 cm x 30 cm. Thermal storage capacity was increased by 20% to 45% and the hot water 826 storage duration was increased by 50% to 200%.

828

Fig.20. Schematic of 2 PCM modules embedded on the top portion of hot water storage tank [120].

829 Veerappan et al. [122] performed analytical study on influence of encapsulation size on melting and 830 solidification rate. It was noticed that as the diameter of capsule increased from 4 cm to 12 cm, the melt time of 831 encapsulated CaCl₂.6H₂O also increased from 26 minutes to 192 minutes, respectively. Similarly, it was 832 reported that increase in capsule diameter will reduce the solidification rate and therefore the encapsulated PCM 833 will take more time to solidify as compared to small diameter. Calvet et al. [123] conducted numerical and 834 experimental examination of improvement in phase transition rate of PCM composite in a spherical 835 encapsulation. The diameter of capsule was 98mm. Graphite flakes and expanded graphite was incorporated as 836 thermal conductivity enhancement additives. It was reported that the addition of 13% wt. of graphite flakes 837 reduced both the melting and solidification time by 30% each. Whereas, the addition of 13% wt. of expanded 838 graphite reduced the melting and solidification time by 60% and 40%, respectively. Zhang et al. [124] 839 conducted numerical and experimental investigation to find the increase in solidification rate of NaNO₃ (60 840 wt%) and KNO₃ (40 wt%) composite in cylinder encapsulation. The capsule material was AISI 321. The outer 841 diameter and height of capsule was 75mm and 77mm, respectively. Metallic foam was inserted as thermal 842 conductivity enhancement additive. The cylindrical capsules were heated in electric furnace to melt the 843 composite PCM and then subjected to air and water to measure the solidification time. In case of air cooling, the solidification time was reduced from 3600s for PCM composite with no enhancement to 2800s for PCM 844

composite with metallic foam. However in case of water cooling, the solidification time of PCM composite withmetallic foam reduced further to 700s.

847 Wai et al. [125] studied the effect of capsules shape, diameter and coating thickness on thermal 848 performance of encapsulated PCM. It was reported that spherical capsule produced an excellent heat release 849 performance as compared to cylindrical, plate and tube type capsules. It was observed that with increase in PCM 850 diameter from 2mm to 5mm, the heat release rate decreased. As the coating thickness increase from 0.2 mm to 851 0.4 mm, the mechanical stability increased but it reduced the amount of PCM in capsule and therefore it affected 852 the thermal storage capacity. Ismail and Henriquez [126] developed a model to study the effect of spherical 853 capsule size, coating thickness and material, initial PCM temperature on solidification rate. It was observed that 854 coating material of high thermal conductivity and smaller capsule size with low external temperature reduced 855 the solidification time. Increase in internal radius of spherical capsule lead to increased solidification time. As 856 constant mass of PCM resulted in constant internal radius of 0.05m, the critical external radius for copper, PVC 857 and glass were found to be 17.46 m, 0.003 m and 0.054 m, respectively. Increase in coating thickness could 858 enhance solidification rate, therefore external radius of copper and glass could be increased up to their critical 859 values, whereas, PVC critical radius was found to be lower than internal radius, thus an increase in PVC 860 external radius would reduce the solidification rate. Ismail and Moraes [127] also observed that solidification 861 rate could be increased by using coating material of high thermal conductivity, smaller capsule diameter and 862 lower external temperature.

Fig.21. Various techniques used for enhancing thermal performance of LHS system. In this figure, the various techniques adopted by researchers are sequenced on the basis of subchapters of this review paper such as initially various configurations of fins are presented and it is followed by PCM additives to enhance thermal conductivity and lastly the PCM encapsulation techniques.

868 5. Conclusion

This review paper presents a detail literature survey focused on PCMs categorization, long term stability of PCMs and compatibility with container materials, thermal performance analysis and thermal performance enhancement techniques. Literature survey encouraged to draw the below given conclusions:

For long term thermal performance of LHS system, the PCM needs to ensure thermal stability, chemical
 stability and corrosion resistance with container material upon subjecting to extended amount of repeated

thermal cycles. After repeated cycles, the thermo-physical properties of PCM shall not change significantly. It can be deducted from the review that paraffins yield better thermal and chemical stability than salt hydrates after repeated thermal cycles. Salt hydrates faces phase segregation and supercooling, which can be controlled by adding suitable thickener and nucleating agents. CaCl₂.6H₂O is found as the most studied salt hydrate. Before using industrial grade PCMs, it is advised to run the repeated thermal cycle test to check the stability of thermo-physical properties.

It is noticed that conduction heat transfer and natural convection are responsible for melting behaviour of
 PCMs in containers with different shapes. In early stages, conduction heat transfer is dominant and as the
 PCM melts down, natural convection dominates the melting of PCM. Container orientation and
 geometric parameters have great influence on the melting behaviour of PCMs, such as aspect ratio of
 rectangular and cylindrical containers, spherical capsules radius and annular cavity eccentricity. Thus, it
 is important to make sure that the geometric configuration is suitable for certain PCM.

- An enhanced storage performance and phase transition rate can be achieved by using fins in LHS system.
 The size and number of fins are vital in improving thermal performance of LHS system. It is noticed that
 inclusion of fins has more impact on improving solidification rate than melting rate. The size and number
 of fins should be optimized as inclusion of fins reduces storage volume for PCM in container and thus
 the thermal storage capacity is also affected.
- The melting and solidification rate of PCM can be enhanced significantly by incorporating high thermal
 conductivity additives as it will increase the thermal conductivity of LHS system. However, the inclusion
 of high density additives can reduce storage volume for PCM in container and it can lead to loss in
 storage capacity. Therefore, an optimized amount of additives can only be added to enhance thermal
 performance.

Utilization of multi-PCM can produce an increased thermal storage performance of LHS system. It is
 useful in storing thermal energy at constant temperature difference. Multiple PCMs method yields
 constant heat flux to the PCM in melting process and to the HTF in solidification process. Most of the
 studies have been carried out on combination of arbitrary PCMs, thus there is a need of experimental
 investigation of various combinations of actual PCMs.

Thermal and mechanical stability is dependent on core-to-coating ratio of encapsulated PCM. Increased
 ratio will produce weak shell and lower ratio will result in less amount of PCM in encapsulation.
 Optimization of core-to-coating ratio is required. Similarly, encapsulate material shall possess high

thermal conductivity. Metallic encapsulates like copper, aluminium and steel can be good options but it is
 challenging to manufacture. Salt hydrates for their high thermal conductivity, diffusion values and
 mechanical strength can be a good choice as encapsulate materials for organic PCMs. Encapsulation
 having higher thermal conductivity, lower temperature at external surface and smaller diameter of
 capsule can increase solidification rate of LHS system.

909 Acknowledgment

910 The corresponding author's PhD is match funded by Bournemouth University, UK and National
911 University of Science and Technology (NUST), Pakistan. The author would like to extend sincere gratitude to
912 both parties.

913 References

- 914 [1] D. Morrison, S. Abdel-Khalik. Effects of phase-change energy storage on the performance of air-based and
 915 liquid-based solar heating systems. Solar Energy. 20 (1978) 57-67.
- 916 [2] A. Ghoneim. Comparison of theoretical models of phase-change and sensible heat storage for air and water-917 based solar heating systems. Solar Energy. 42 (1989) 209-20.
- 918 [3] J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández. Types, methods, techniques, and applications for
- 919 microencapsulated phase change materials (MPCM): A review. Renewable and Sustainable Energy Reviews. 53
 920 (2016) 1059-75.
- 921 [4] R. Jacob, F. Bruno. Review on shell materials used in the encapsulation of phase change materials for high
- temperature thermal energy storage. Renewable and Sustainable Energy Reviews. 48 (2015) 79-87.
- 923 [5] M. Kenisarin, K. Mahkamov. Passive thermal control in residential buildings using phase change materials.
- 924 Renewable and Sustainable Energy Reviews. 55 (2016) 371-98.
- 925 [6] B. Tang, L. Wang, Y. Xu, J. Xiu, S. Zhang. Hexadecanol/phase change polyurethane composite as form-
- stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells. 144 (2016) 1-
- **927** 6.
- 928 [7] B. Tang, Y. Wang, M. Qiu, S. Zhang. A full-band sunlight-driven carbon nanotube/PEG/SiO 2 composites
- 929 for solar energy storage. Solar Energy Materials and Solar Cells. 123 (2014) 7-12.

- 930 [8] Y. Wang, B. Tang, S. Zhang. Single-Walled Carbon Nanotube/Phase Change Material Composites:
 931 Sunlight-Driven, Reversible, Form-Stable Phase Transitions for Solar Thermal Energy Storage. Advanced
 932 Functional Materials. 23 (2013) 4354-60.
- 933 [9] M. Liu, Y. Ma, H. Wu, R.Y. Wang. Metal Matrix-Metal Nanoparticle Composites with Tunable Melting
- Temperature and High Thermal Conductivity for Phase-Change Thermal Storage. ACS nano. 9 (2015) 1341-51.
- 935 [10] A. Abhat. Low temperature latent heat thermal energy storage: heat storage materials. Solar energy. 30936 (1983) 313-32.
- 937 [11] A. Sharma, V. Tyagi, C. Chen, D. Buddhi. Review on thermal energy storage with phase change materials938 and applications. Renewable and Sustainable energy reviews. 13 (2009) 318-45.
- 939 [12] B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling. Review on thermal energy storage with phase change:
- 940 materials, heat transfer analysis and applications. Applied thermal engineering. 23 (2003) 251-83.
- 941 [13] L.F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A. Fernández. Materials used as PCM in thermal
- 942 energy storage in buildings: a review. Renewable and Sustainable Energy Reviews. 15 (2011) 1675-95.
- 943 [14] M.K. Rathod, J. Banerjee. Thermal stability of phase change materials used in latent heat energy storage
- 944 systems: a review. Renewable and Sustainable Energy Reviews. 18 (2013) 246-58.
- 945 [15] M. Kenisarin, K. Mahkamov. Solar energy storage using phase change materials. Renewable and
- 946 Sustainable Energy Reviews. 11 (2007) 1913-65.
- 947 [16] A.M. Khudhair, M.M. Farid. A review on energy conservation in building applications with thermal storage
- by latent heat using phase change materials. Energy conversion and management. 45 (2004) 263-75.
- 949 [17] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj. A review on phase change energy storage:
- materials and applications. Energy conversion and management. 45 (2004) 1597-615.
- 951 [18] Rubitherm® Technologies GmbH, http://www.rubitherm.eu/en/. 2015.
- 952 [19] A. Sari, R. Eroglu, A. Bicer, A. Karaipekli. Synthesis and thermal energy storage properties of erythritol
- tetrastearate and erythritol tetrapalmitate. Chemical Engineering & Technology. 34 (2011) 87-92.
- 954 [20] H. Mehling, L.F. Cabeza. Heat and cold storage with PCM. Springer2008.
- 955 [21] M. Esen, A. Durmuş, A. Durmuş. Geometric design of solar-aided latent heat store depending on various
- parameters and phase change materials. Solar Energy. 62 (1998) 19-28.
- 957 [22] H.A. Adine, H. El Qarnia. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit
- using phase change materials. Applied mathematical modelling. 33 (2009) 2132-44.

- 959 [23] M. Lacroix. Numerical simulation of a shell-and-tube latent heat thermal energy storage unit. Solar energy.
 960 50 (1993) 357-67.
- 961 [24] M. Huang, P. Eames, B. Norton. Thermal regulation of building-integrated photovoltaics using phase962 change materials. International Journal of Heat and Mass Transfer. 47 (2004) 2715-33.
- 963 [25] C. Alkan, K. Kaya, A. Sarı. Preparation, thermal properties and thermal reliability of form-stable
- 964 paraffin/polypropylene composite for thermal energy storage. Journal of Polymers and the Environment. 17965 (2009) 254-8.
- 966 [26] M. Hadjieva, J. Argirov. Thermophysical properties of some paraffins applicable to thermal energy storage.
 967 Solar Energy Materials and Solar Cells. 27 (1992) 181-7.
- 968 [27] A. Sharma, S. Sharma, D. Buddhi. Accelerated thermal cycle test of acetamide, stearic acid and paraffin
- wax for solar thermal latent heat storage applications. Energy Conversion and Management. 43 (2002) 1923-30.
- 970 [28] A. Shukla, D. Buddhi, R. Sawhney. Thermal cycling test of few selected inorganic and organic phase
- 971 change materials. Renewable Energy. 33 (2008) 2606-14.
- 972 [29] H. Mehling, L.F. Cabeza. Phase change materials and their basic properties. Thermal energy storage for973 sustainable energy consumption. Springer2007. pp. 257-77.
- 974 [30] H. Kimura, J. Kai. Feasibility of trichlorofluoromethane (CCl 3 F, R11) heptadecahydrate as a heat storage
- 975 material. Energy conversion and management. 25 (1985) 179-86.
- 976 [31] F.C. Porisini. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal
- 977 performance. Solar Energy. 41 (1988) 193-7.
- 978 [32] V.V. Tyagi, D. Buddhi. PCM thermal storage in buildings: a state of art. Renewable and Sustainable
- **979** Energy Reviews. 11 (2007) 1146-66.
- 980 [33] H. Kimura, J. Kai. Phase change stability of CaCl 2· 6H 2 O. Solar Energy. 33 (1984) 557-63.
- 981 [34] V. Tyagi, D. Buddhi. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent
- heat storage. Solar Energy Materials and Solar Cells. 92 (2008) 891-9.
- 983 [35] H. Feilchenfeld, S. Sarig. Calcium chloride hexahydrate: A phase-changing material for energy storage.
- 984 Industrial & engineering chemistry product research and development. 24 (1985) 130-3.
- 985 [36] S. Marks. An investigation of the thermal energy storage capacity of Glauber's salt with respect to thermal
- 986 cycling. Solar Energy. 25 (1980) 255-8.
- 987 [37] I. Dincer, M. Rosen. Thermal energy storage: systems and applications. John Wiley & Sons2002.

- [38] T. Wada, R. Yamamoto, Y. Matsuo. Heat storage capacity of sodium acetate trihydrate during thermal
 cycling. Solar Energy. 33 (1984) 373-5.
- [39] H. Kimura, J. Kai. Phase change stability of sodium acetate trihydrate and its mixtures. Solar energy. 35
 (1985) 527-34.
- 992 [40] A. El-Sebaii, S. Al-Amir, F. Al-Marzouki, A.S. Faidah, A. Al-Ghamdi, S. Al-Heniti. Fast thermal cycling
- 993 of acetanilide and magnesium chloride hexahydrate for indoor solar cooking. Energy conversion and994 Management. 50 (2009) 3104-11.
- [41] A. El-Sebaii, S. Al-Heniti, F. Al-Agel, A. Al-Ghamdi, F. Al-Marzouki. One thousand thermal cycles of
 magnesium chloride hexahydrate as a promising PCM for indoor solar cooking. Energy Conversion and
 Management. 52 (2011) 1771-7.
- 998 [42] S. Sharma, D. Buddhi, R. Sawhney. Accelerated thermal cycle test of latent heat-storage materials. Solar
 999 Energy. 66 (1999) 483-90.
- [43] A. Lázaro, B. Zalba, M. Bobi, C. Castellón, L.F. Cabeza. Experimental study on phase change materials
 and plastics compatibility. AIChE journal. 52 (2006) 804-8.
- 1002 [44] L. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, et al. Immersion corrosion tests on metal-salt
- hydrate pairs used for latent heat storage in the 32 to 36° C temperature range. Materials and Corrosion. 52
 (2001) 140-6.
- 1005 [45] L. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, et al. Middle term immersion corrosion tests
- 1006 on metal-salt hydrate pairs used for latent heat storage in the 32 to 36° C temperature range. Materials and
 1007 Corrosion. 52 (2001) 748-54.
- 1008 [46] L. Cabeza, J. Roca, M. Nogués, H. Mehling, S. Hiebler. Immersion corrosion tests on metal-salt hydrate
- pairs used for latent heat storage in the 48 to 58° C temperature range. Materials and Corrosion. 53 (2002) 9027.
- 1011 [47] A.J. Farrell, B. Norton, D.M. Kennedy. Corrosive effects of salt hydrate phase change materials used with
- aluminium and copper. Journal of materials processing technology. 175 (2006) 198-205.
- 1013 [48] K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, H. Ogoshi. Performance of heat charge/discharge of
- 1014 magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture to a single vertical tube for a
- 1015 latent heat storage system. Applied thermal engineering. 24 (2004) 209-20.

- 1016 [49] A. García-Romero, A. Delgado, A. Urresti, K. Martín, J. Sala. Corrosion behaviour of several aluminium
- alloys in contact with a thermal storage phase change material based on Glauber's salt. Corrosion Science. 51(2009) 1263-72.
- 1019 [50] P. Moreno, L. Miró, A. Solé, C. Barreneche, C. Solé, I. Martorell, et al. Corrosion of metal and metal alloy
- 1020 containers in contact with phase change materials (PCM) for potential heating and cooling applications. Applied1021 Energy. 125 (2014) 238-45.
- 1022 [51] F. Agyenim, N. Hewitt, P. Eames, M. Smyth. A review of materials, heat transfer and phase change
 1023 problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable
 1024 Energy Reviews. 14 (2010) 615-28.
- 1025 [52] M. Liu, W. Saman, F. Bruno. Review on storage materials and thermal performance enhancement
 1026 techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy
 1027 Reviews. 16 (2012) 2118-32.
- 1028 [53] J. Khodadadi, L. Fan, H. Babaei. Thermal conductivity enhancement of nanostructure-based colloidal
 1029 suspensions utilized as phase change materials for thermal energy storage: a review. Renewable and Sustainable
 1030 Energy Reviews. 24 (2013) 418-44.
- [54] P. Lamberg, R. Lehtiniemi, A.-M. Henell. Numerical and experimental investigation of melting and
 freezing processes in phase change material storage. International Journal of Thermal Sciences. 43 (2004) 27787.
- 1034 [55] B. Kamkari, H. Shokouhmand, F. Bruno. Experimental investigation of the effect of inclination angle on
 1035 convection-driven melting of phase change material in a rectangular enclosure. International Journal of Heat and
- 1036 Mass Transfer. 72 (2014) 186-200.
- 1037 [56] F. Tan. Constrained and unconstrained melting inside a sphere. International Communications in Heat and1038 Mass Transfer. 35 (2008) 466-75.
- 1039 [57] B.J. Jones, D. Sun, S. Krishnan, S.V. Garimella. Experimental and numerical study of melting in a cylinder.
- 1040 International Journal of Heat and Mass Transfer. 49 (2006) 2724-38.
- 1041 [58] H. Shmueli, G. Ziskind, R. Letan. Melting in a vertical cylindrical tube: numerical investigation and
 1042 comparison with experiments. International Journal of Heat and Mass Transfer. 53 (2010) 4082-91.
- 1043 [59] M. Esapour, M. Hosseini, A. Ranjbar, Y. Pahamli, R. Bahrampoury. Phase change in multi-tube heat
- 1044 exchangers. Renewable Energy. 85 (2016) 1017-25.

- 1045 [60] N. Vyshak, G. Jilani. Numerical analysis of latent heat thermal energy storage system. Energy Conversion1046 and Management. 48 (2007) 2161-8.
- 1047 [61] B. Zivkovic, I. Fujii. An analysis of isothermal phase change of phase change material within rectangular1048 and cylindrical containers. Solar Energy. 70 (2001) 51-61.
- 1049 [62] S. Seddegh, X. Wang, A.D. Henderson. A comparative study of thermal behaviour of a horizontal and
- vertical shell-and-tube energy storage using phase change materials. Applied Thermal Engineering. 93 (2016)348-58.
- [63] M.J. Allen, N. Sharifi, A. Faghri, T.L. Bergman. Effect of inclination angle during melting and
 solidification of a phase change material using a combined heat pipe-metal foam or foil configuration.
 International Journal of Heat and Mass Transfer. 80 (2015) 767-80.
- 1055 [64] R. Akhilesh, A. Narasimhan, C. Balaji. Method to improve geometry for heat transfer enhancement in PCM
- 1056 composite heat sinks. International Journal of Heat and Mass Transfer. 48 (2005) 2759-70.
- 1057 [65] M. Gharebaghi, I. Sezai. Enhancement of heat transfer in latent heat storage modules with internal fins.
- 1058 Numerical Heat Transfer, Part A: Applications. 53 (2007) 749-65.
- 1059 [66] M. Lacroix, M. Benmadda. Numerical simulation of natural convection-dominated melting and1060 solidification from a finned vertical wall. Numerical Heat Transfer, Part A Applications. 31 (1997) 71-86.
- 1061 [67] V. Shatikian, G. Ziskind, R. Letan. Numerical investigation of a PCM-based heat sink with internal fins.
- 1062 International Journal of Heat and Mass Transfer. 48 (2005) 3689-706.
- 1063 [68] U. Stritih. An experimental study of enhanced heat transfer in rectangular PCM thermal storage.
- 1064 International Journal of Heat and Mass Transfer. 47 (2004) 2841-7.
- 1065 [69] Y. Tao, Y. He. Effects of natural convection on latent heat storage performance of salt in a horizontal
- 1066 concentric tube. Applied Energy. 143 (2015) 38-46.
- 1067 [70] C. Guo, W. Zhang. Numerical simulation and parametric study on new type of high temperature latent heat
- thermal energy storage system. Energy Conversion and Management. 49 (2008) 919-27.
- 1069 [71] M. Lacroix. Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned
- tube. International Journal of Heat and Mass Transfer. 36 (1993) 2083-92.
- 1071 [72] Y. Zhang, A. Faghri. Heat transfer enhancement in latent heat thermal energy storage system by using an
- 1072 external radial finned tube. Journal of Enhanced Heat Transfer. 3 (1996).

- 1073 [73] M. Rahimi, A. Ranjbar, D. Ganji, K. Sedighi, M. Hosseini, R. Bahrampoury. Analysis of geometrical and
- 1074 operational parameters of PCM in a fin and tube heat exchanger. International Communications in Heat and
- 1075 Mass Transfer. 53 (2014) 109-15.
- 1076 [74] J.C. Choi, S.D. Kim. Heat-transfer characteristics of a latent heat storage system using MgCl 2· 6H 2 O.
- **1077** Energy. 17 (1992) 1153-64.
- 1078 [75] R. Velraj, R. Seeniraj, B. Hafner, C. Faber, K. Schwarzer. Experimental analysis and numerical modelling
- 1079 of inward solidification on a finned vertical tube for a latent heat storage unit. Solar Energy. 60 (1997) 281-90.
- 1080 [76] M.K. Rathod, J. Banerjee. Thermal performance enhancement of shell and tube Latent Heat Storage Unit
- using longitudinal fins. Applied Thermal Engineering. 75 (2015) 1084-92.
- 1082 [77] F. Agyenim, P. Eames, M. Smyth. A comparison of heat transfer enhancement in a medium temperature
- thermal energy storage heat exchanger using fins. Solar Energy. 83 (2009) 1509-20.
- 1084 [78] M. Medrano, M. Yilmaz, M. Nogués, I. Martorell, J. Roca, L.F. Cabeza. Experimental evaluation of
- 1085 commercial heat exchangers for use as PCM thermal storage systems. Applied Energy. 86 (2009) 2047-55.
- 1086 [79] D. Chung. A review of exfoliated graphite. Journal of Materials Science. 51 (2016) 554-68.
- 1087 [80] L. Fan, J. Khodadadi. Thermal conductivity enhancement of phase change materials for thermal energy
- storage: a review. Renewable and Sustainable Energy Reviews. 15 (2011) 24-46.
- 1089 [81] T. Fiedler, A. Öchsner, I.V. Belova, G.E. Murch. Thermal conductivity enhancement of compact heat sinks
 1090 using cellular metals. Defect and Diffusion Forum. Trans Tech Publ2008. pp. 222-6.
- 1091 [82] O. Mesalhy, K. Lafdi, A. Elgafy, K. Bowman. Numerical study for enhancing the thermal conductivity of
- 1092 phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Conversion and
- 1093 Management. 46 (2005) 847-67.
- 1094 [83] D. Haillot, X. Py, V. Goetz, M. Benabdelkarim. Storage composites for the optimisation of solar water1095 heating systems. Chemical engineering research and design. 86 (2008) 612-7.
- 1096 [84] A. Sarı, A. Karaipekli. Thermal conductivity and latent heat thermal energy storage characteristics of
 1097 paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering. 27 (2007) 12711098 7.
- 1099 [85] Z.-j. Duan, H.-z. Zhang, L.-x. Sun, Z. Cao, F. Xu, Y.-j. Zou, et al. CaCl2· 6H2O/Expanded graphite
- 1100 composite as form-stable phase change materials for thermal energy storage. Journal of Thermal Analysis and
- 1101 Calorimetry. 115 (2014) 111-7.

- 1102 [86] Y. Wu, T. Wang. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-
- stabilized phase change material for thermal energy storage. Energy Conversion and Management. 101 (2015)164-71.
- 1105 [87] H.K. Shin, M. Park, H.-Y. Kim, S.-J. Park. Thermal property and latent heat energy storage behavior of
- sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phasechange materials. Applied Thermal Engineering. 75 (2015) 978-83.
- 1108 [88] M. Dannemand, J.B. Johansen, S. Furbo. Solidification behavior and thermal conductivity of bulk sodium
- acetate trihydrate composites with thickening agents and graphite. Solar Energy Materials and Solar Cells. 145(2016) 287-95.
- [89] E.-B.S. Mettawee, G.M. Assassa. Thermal conductivity enhancement in a latent heat storage system. Solar
 Energy. 81 (2007) 839-45.
- 1113 [90] J. Zeng, L. Sun, F. Xu, Z. Tan, Z. Zhang, J. Zhang, et al. Study of a PCM based energy storage system
- 1114 containing Ag nanoparticles. Journal of Thermal Analysis and Calorimetry. 87 (2006) 371-5.
- 1115 [91] R. Velraj, R. Seeniraj, B. Hafner, C. Faber, K. Schwarzer. Heat transfer enhancement in a latent heat
 1116 storage system. Solar energy. 65 (1999) 171-80.
- 1117 [92] A. Elgafy, K. Lafdi. Effect of carbon nanofiber additives on thermal behavior of phase change materials.1118 Carbon. 43 (2005) 3067-74.
- 1119 [93] J. Fukai, M. Kanou, Y. Kodama, O. Miyatake. Thermal conductivity enhancement of energy storage media
- using carbon fibers. Energy Conversion and Management. 41 (2000) 1543-56.
- 1121 [94] J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake. Improvement of thermal characteristics of latent heat
- thermal energy storage units using carbon-fiber brushes: experiments and modeling. International Journal of
- 1123 Heat and Mass Transfer. 46 (2003) 4513-25.
- 1124 [95] F. Dinter, M.A. Geyer, R. Tamme. Thermal energy storage for commercial applications: a feasibility study
- on economic storage systems. Springer1991.
- **1126** [96] J. Wang, G. Chen, H. Jiang. Theoretical study on a novel phase change process. International journal of
- energy research. 23 (1999) 287-94.
- 1128 [97] A. Mosaffa, C.I. Ferreira, F. Talati, M. Rosen. Thermal performance of a multiple PCM thermal storage
- unit for free cooling. Energy Conversion and Management. 67 (2013) 1-7.
- 1130 [98] Z.-X. Gong, A.S. Mujumdar. Enhancement of energy charge-discharge rates in composite slabs of different
- phase change materials. International Journal of Heat and Mass Transfer. 39 (1996) 725-33.

- [99] M.M. Farid, A. Kanzawa. Thermal performance of a heat storage module using PCM's with different
 melting temperatures: mathematical modeling. Journal of solar energy engineering. 111 (1989) 152-7.
- 1134 [100] M.M. Farid, Y. Kim, A. Kansawa. Thermal performance of a heat storage module using PCM's with
- different melting temperature: experimental. Journal of Solar Energy Engineering. 112 (1990) 125-31.
- 1136 [101] T.K. Aldoss, M.M. Rahman. Comparison between the single-PCM and multi-PCM thermal energy storage
- design. Energy Conversion and Management. 83 (2014) 79-87.
- 1138 [102] J. Wang, Y. Ouyang, G. Chen. Experimental study on charging processes of a cylindrical heat storage
- capsule employing multiple-phase-change materials. International journal of energy research. 25 (2001) 439-47.
- 1140 [103] C. Liu, Z. Rao, J. Zhao, Y. Huo, Y. Li. Review on nanoencapsulated phase change materials: Preparation,
- 1141 characterization and heat transfer enhancement. Nano Energy. (2015).
- 1142 [104] T. Khadiran, M.Z. Hussein, Z. Zainal, R. Rusli. Encapsulation techniques for organic phase change
- materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells. 143 (2015) 7898.
- [105] M. Delgado, A. Lázaro, J. Mazo, B. Zalba. Review on phase change material emulsions and
 microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renewable
 and Sustainable Energy Reviews. 16 (2012) 253-73.
- 1148 [106] A. Jamekhorshid, S. Sadrameli, M. Farid. A review of microencapsulation methods of phase change
 1149 materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews. 31
- **1150** (2014) 531-42.
- 1151 [107] C.-Y. Zhao, G.H. Zhang. Review on microencapsulated phase change materials (MEPCMs): fabrication,
- characterization and applications. Renewable and Sustainable Energy Reviews. 15 (2011) 3813-32.
- [108] L.F. Cabeza. Advances in Thermal Energy Storage Systems: Methods and Applications. Elsevier Science
 & Technology2014.
- [109] T. Ohtsubo, S. Tsuda, K. Tsuji. A study of the physical strength of fenitrothion microcapsules. Polymer.
 32 (1991) 2395-9.
- 1157 [110] H. Zhang, X. Wang. Synthesis and properties of microencapsulated n-octadecane with polyurea shells
- 1158 containing different soft segments for heat energy storage and thermal regulation. Solar Energy Materials and
- 1159 Solar Cells. 93 (2009) 1366-76.

- [111] S. Namwong, M.Z. Islam, S. Noppalit, P. Tangboriboonrat, P. Chaiyasat, A. Chaiyasat. Encapsulation of
 octadecane in poly (divinylbenzene-co-methyl methacrylate) using phase inversion emulsification for droplet
 generation. Journal of Macromolecular Science, Part A. 53 (2016) 11-7.
- 1163 [112] S. Yu, X. Wang, D. Wu. Microencapsulation of n-octadecane phase change material with calcium
- 1164 carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and
- 1165 performance evaluation. Applied Energy. 114 (2014) 632-43.
- 1166 [113] Y. Yang, X. Ye, J. Luo, G. Song, Y. Liu, G. Tang. Polymethyl methacrylate based phase change
- microencapsulation for solar energy storage with silicon nitride. Solar Energy. 115 (2015) 289-96.
- [114] N. SARIER, E. ONDER, G. UKUSER. Silver Incorporated Microencapsulation of n-Hexadecane and nOctadecane Appropriate for Dynamic Thermal Management in Textiles. Thermochimica Acta. (2015).
- 1170 [115] X. Jiang, R. Luo, F. Peng, Y. Fang, T. Akiyama, S. Wang. Synthesis, characterization and thermal
- properties of paraffin microcapsules modified with nano-Al 2 O 3. Applied Energy. 137 (2015) 731-7.
- 1172 [116] C. Alkan, A. Sari, A. Karaipekli, O. Uzun. Preparation, characterization, and thermal properties of
- microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells. 93(2009) 143-7.
- 1175 [117] S. Ma, G. Song, W. Li, P. Fan, G. Tang. UV irradiation-initiated MMA polymerization to prepare
 1176 microcapsules containing phase change paraffin. Solar Energy Materials and Solar Cells. 94 (2010) 1643-7.
- 1177 [118] M. Hawlader, M. Uddin, H. Zhu. Encapsulated phase change materials for thermal energy storage:
- experiments and simulation. International Journal of Energy Research. 26 (2002) 159-71.
- 1179 [119] T.E. Alam, J.S. Dhau, D.Y. Goswami, E. Stefanakos. Macroencapsulation and characterization of phase
- change materials for latent heat thermal energy storage systems. Applied Energy. 154 (2015) 92-101.
- 1181 [120] L.F. Cabeza, M. Ibanez, C. Sole, J. Roca, M. Nogués. Experimentation with a water tank including a PCM
- 1182 module. Solar Energy Materials and Solar Cells. 90 (2006) 1273-82.
- 1183 [121] H. Mehling, L.F. Cabeza, S. Hippeli, S. Hiebler. PCM-module to improve hot water heat stores with
- stratification. Renewable energy. 28 (2003) 699-711.
- 1185 [122] M. Veerappan, S. Kalaiselvam, S. Iniyan, R. Goic. Phase change characteristic study of spherical PCMs in
- solar energy storage. Solar Energy. 83 (2009) 1245-52.
- 1187 [123] N. Calvet, X. Py, R. Olivès, J.-P. Bédécarrats, J.-P. Dumas, F. Jay. Enhanced performances of macro-
- 1188 encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity.
- **1189** Energy. 55 (2013) 956-64.

- 1190 [124] H. Zhang, J. Baeyens, J. Degrève, G. Cáceres, R. Segal, F. Pitié. Latent heat storage with tubular-
- encapsulated phase change materials (PCMs). Energy. 76 (2014) 66-72.
- 1192 [125] J. Wei, Y. Kawaguchi, S. Hirano, H. Takeuchi. Study on a PCM heat storage system for rapid heat supply.
 1193 Applied thermal engineering. 25 (2005) 2903-20.
- [126] K. Ismail, J. Henriquez. Solidification of PCM inside a spherical capsule. Energy conversion andmanagement. 41 (2000) 173-87.
- 1196 [127] K. Ismail, R. Moraes. A numerical and experimental investigation of different containers and PCM
- options for cold storage modular units for domestic applications. International Journal of Heat and Mass
 Transfer. 52 (2009) 4195-202.
- 1199

1200