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Abstract
Marine organisms possess a series of cellular strategies to counteract the negative effects

of toxic compounds, including the massive reorganization of gene expression networks.

Here we report the modulated dose-dependent response of activated genes by diatom poly-

unsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary

metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the

reproduction and development of planktonic and benthic organisms that feed on these uni-

cellular algae and with anti-cancer activity. Our previous results showed that PUAs target

several genes, implicated in different functional processes in this sea urchin. Using interac-

tomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are corre-

lated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been

previously reported for P. lividus. We propose a working model describing hypothetical

pathways potentially involved in toxic aldehyde stress response in sea urchins. This repre-

sents the first report on gene networks affected by PUAs, opening new perspectives in

understanding the cellular mechanisms underlying the response of benthic organisms to

diatom exposure.

Introduction
Marine organisms are constantly exposed to environmental stimuli and natural and/or dis-
solved anthropogenic compounds, including both physical (e.g. cold, heat and osmotic condi-
tion) and chemical (e.g. endocrine disruptor chemicals and hydrocarbons) stressors [1].
Organisms may react to these stressors by activating a series of cellular defence systems, by
changing gene expression levels and altering interactions among genes [2]. Studying changes
in expression levels is straightforward, but examining the extent to which cells rewire gene net-
work connections is more difficult [3]. Knowledge of these gene interactions provides a more
comprehensive view of cellular responses to stressors and is important for the development of
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interventions that improve responses to perturbations. Genes that are induced during stress
protect cells not only through the production of important metabolic proteins (functional pro-
teins) but also by regulating signal transduction genes in the stress response [4].

Natural toxins can also represent a major source of stress for marine organisms. Examples
include algal neurotoxins that can cause mass mortalities in fish, sea birds and marine mam-
mals. Although diatom-derived cytotoxic compounds are less toxic than neurotoxins, some
induce negative effects on grazers, including reproductive failure, abortions and abnormal
development. Diatoms are eukaryotic unicellular plants and are among the dominant photo-
synthetic organisms in the world’s oceans. They are considered essential in the transfer of
energy through marine food chains including important fisheries. Several studies, however,
have shown that some diatom species produce secondary metabolites, collectively termed oxy-
lipins (e.g. polyunsaturated aldehydes or PUAs) and other products, deriving from the oxida-
tion of fatty acids with negative effects on copepods [5,6], cladocerans [7], sea urchins [8], sea
stars [9,10], polychaete worms and ascidians [11,12]. The first molecular studies on the effects
of PUAs on the sea urchin, Paracentrotus lividus, were reported only very recently [13–15].
These studies showed that PUAs induced teratogenesis (i.e. developmental malformations) in a
dose dependent manner. Moreover, the expression levels of thirty-one genes, having a key role
in a broad range of functional responses, such as development, differentiation and detoxifica-
tion processes, were followed by real-time qPCR to identify potential target genes [15]. Our
findings revealed that the expression levels of a large number of genes were modulated by the
PUAs decadienal, heptadienal and octadienal. These molecular results supported morphologi-
cal findings that revealed that the majority of malformations affected the skeleton, the develop-
mental plan and differentiation of sea urchin embryos [15]. In fact, several genes belonging to
the skeletogenic, developmental and differentiation classes were affected by PUAs.

The aim of this work was to further explore the toxic effects of these PUAs on gene expres-
sion in the sea urchin P. lividus. Firstly, we treated embryos with increasing concentrations of
the three PUAs in order to study a possible dose-dependent response of genes highlighted in
Varrella et al. [15]. Then, we performed an interactomic analysis on modulated genes to under-
stand if these were inter-correlated and if they were involved in specific gene networks.

Materials and Methods

Ethics statement
Paracentrotus lividus (Lamarck) sea urchins were collected from a location that is not pri-
vately-owned or protected in any way, according to Italian legislation of the Marina Mercantile
(Decreto del Presidente della Repubblica DPR 1639/68, 09/19/1980 confirmed on 01/10/2000).
The field studies did not involve endangered or protected species. All animal procedures were
in compliance with the guidelines of the European Union (Directive 609/86).

Gamete collection, exposure to aldehydes and embryo cultures for RNA
extraction, cDNA synthesis
Adult P. lividus were collected during the breeding season by scuba-diving in the Gulf of
Naples, transported in an insulated box to the laboratory within 1 h of collection and main-
tained in tanks with circulating sea water until required for experimentation. Sea urchins were
injected with 2M KCl through the peri-buccal membrane to bring about the release of gametes.
Following shedding, eggs were washed with filtered sea water (FSW) and kept in FSW until
use. Concentrated (dry) sperm was collected, and kept undiluted at +4°C until use.
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Before fertilization about 30,000 eggs in 200 mL of FSW were incubated at room temperature
for 10 min in the presence of different concentrations of the three PUAs: 2-trans,4-trans-deca-
dienal at 1.0, 1.3, 1.6, 2.0, 2.3 μM (similar to the concentrations tested in Varrella et al., 2014); 2-
trans,4-trans-heptadienal at 2.0, 2.5, 3.0, 5.5, 6.0 μM; 2-trans,4-trans-octadienal (Sigma-Aldrich,
Milan, Italy) at 2.5, 4.0, 4.5, 7.0, 8.0 μM; the controls were performed in FSWwithout PUAs.
PUAs were diluted in methanol, considering a methanol to FSW ratio of 10 μL:1 mL, so as to
avoid interference with embryo development. Controls were also performed in FSW and in
FSW in the presence of methanol without PUAs. Eggs were then fertilized, utilising sperm-to-
egg ratios of 100:1 for both controls and treated embryos. Fertilized eggs were kept at 20°C in a
controlled temperature chamber on a 12 h:12 h light:dark cycle (fluorescent white lamps, light
intensity 150 μmol photon m-2 sec-1) and collected at different developmental times. Samples
were collected at 5, 9, 24 and 48 hours post fertilization (hpf) by centrifugation at 1800 relative
centrifugal force for 10 min in a swing out rotor at 4°C. The pellet was washed with phosphate
buffered saline and then frozen in liquid nitrogen and kept at −80°C. Experiments were con-
ducted in triplicate using three egg groups collected from three different females. Embryos were
fixed in formaldehyde (4% in FSW) and then observed under a light microscope (Zeiss Axiovert
135TV, Carl Zeiss, Jena, Germany).

Total RNA was extracted from each developmental stage using TRIzol (Invitrogen, Life
Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Extraction
with chloroform/isoamyl alcohol (24:1) was performed following RNA precipitation by addi-
tion of glycogen and isopropyl alcohol. Contaminating DNA was degraded by treating each
sample with a DNase RNase-free kit (Roche, Milan, Italy) according to the manufacturer’s
instructions. The amount of total RNA extracted was estimated by the absorbance at 260 nm
and the purity by 260/280 and 260/230 nm ratios, by a NanoDrop spectrophotometer (ND-
1000 UV-Vis Spectrophotometer; NanoDrop Technologies, Wilmington, DE, USA). The
integrity of RNA was evaluated by agarose gel electrophoresis. Intact rRNA subunits (28S and
18S) were observed on the gel indicating minimal degradation of the RNA. For each sample,
600 ng of total RNA extracted was retrotranscribed with an iScript cDNA Synthesis kit (Bio-
Rad, Milan, Italy), following the manufacturer’s instructions. Synthetized cDNA was used in
real-time qPCR experiments without dilution.

To evaluate the efficiency of cDNA synthesis, a PCR was performed with primers of the ref-
erence gene, ubiquitin. The reaction was carried out on the C1000 Touch Thermal Cycler Gen-
eAmp PCR System 9700 (Applied Biosystem, Monza, Italy) in a 30 μL final volume with 3 μL
10× PCR reaction buffer (Roche, Milan, Italy), 3 μL 10× 2 mM dNTP, 1 μL 5 U/μL Taq (Roche,
Milan, Italy), 100 ng/μL of each oligo, template cDNA and nuclease free water to 30 μL. The
PCR program consisted of a denaturation step at 95°C for 5 min, 35 cycles at 95°C for 45 s,
60°C for 1 min and 72°C for 30 s and a final extension step at 72°C for 10 min.

Gene expression by Real-Time qPCR
The expression level of thirty-one genes was detected at five increasing concentrations of the
three PUAs (see Results section). Moreover, in this work we also analyzed four new genes (S1
Table): nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [16], tumor pro-
tein p53 (p53), cadherin-associated protein (catenin) delta 2 (Ctnnd2), hypoxia inducible factor
1-alpha (HIF1A). NF-κB was studied by using the primers suggested in Russo et al. [16]. Since
p53, Ctnnd2 and HIF1A have never been studied in P. lividus and the gene sequences were not
available, specific primers were designed on the basis of nucleotide sequences of these genes
from Strongylocentrotus purpuratus, retrieved from SpBase (http://www.spbase.org/SpBase/;
see Table 1).
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The amplified fragments using a Taq High Fidelity PCR System (Roche, Milan, Italy) were
purified from agarose gel using the QIAquick Gel Extraction kit (Qiagen, Milan, Italy), and the
specificity of the PCR products for p53, Ctnnd2 and HIF1A genes were checked by DNA
sequencing.

PCR amplifications were performed in a ViiATM7 Real Time PCR System (Applied Biosys-
tems, Monza, Italy) thermal cycler using the following thermal profile: 95°C for 10 min, one
cycle for cDNA denaturation; 95°C for 15 s and 60°C for 1 min, 40 cycles for amplification;
72°C for 5 min, one cycle for final elongation; one cycle for melting curve analysis (from 60°C
to 95°C) to verify the presence of a single product. Each assay included a no-template control
for each primer pair. To capture intra-assay variability, all real-time qPCR reactions were car-
ried out in triplicate. Fluorescence was measured using ViiATM7 software (Applied Biosys-
tems, Monza, Italy). The expression of each gene was analysed and internally normalized
against ubiquitin as a reference gene, using REST software (Relative Expression Software Tool,
Weihenstephan, Germany) based on the Pfaffl method [17,18]. The two-fold expression level
was therefore chosen as the threshold for significance of target genes. However, to validate our
results, a statistical analysis was also performed using GraphPad Prism version 4.00 for Win-
dows (GraphPad Software, San Diego California USA).

Interactomic analysis
The network analysis was performed by Ingenuity Pathway Analysis Version 7.1 (IPA, Ingenu-
ity Systems, Inc., Redwood City, CA, United States) to identify relationships between relevant
P. lividus genes analyzed in this work, on the basis of associated functions and data mining
from experimental studies reported in the literature.

Ingenuity Pathway Analysis (IPA) is a system that transforms a list of genes (with or without
accompanying expression information) into a set of relevant networks based on extensive records
maintained in the Ingenuity Pathways Knowledge Base (IPKB). This knowledge base has been
abstracted into a large network, called the Global Molecular Network, composed of thousands of
genes and gene products that interact with each other. The network is displayed graphically as
nodes (genes) and edges (the biological relationships between nodes). Two genes are connected if
there is a path in the network between them, i.e., a series of genes and edges that connect one
gene to another. HUB nodes are viewed as important nodes in a network: they are nodes with the
largest degrees, i.e., nodes that share the largest number of connections with the other nodes.

Because sea urchin genes are not annotated in the IPA database, we used the name of the
human orthologous genes to search the P. lividus genes. In fact, species supported with full con-
tent in IPA are human, mouse and rat.

Table 1. Accession numbers, primer sequences and lengths of PCR amplified fragments are reported for the four new genes analyzed.

Gene Acronym Acc. Number Primer Sequence (5' = >3') PCR fragment (bp)

Nuclear factor kappa-light- NF-κB Pl-NF-kB_F TCCCATGGAGGACTGCCGTGTCA 116

chain-enhancer of activated B cells Pl-NF-kB_R TCGTTGGTTACCAAGGAGACCACA

(Russo et al., 2013)
Tumor protein p53 p53 SPU_023158.1 Sp_p53_F1 GCGTTGGTGGATCATACTGG 163

Sp_p53_R1 GATCTTGGTCTGAGCGTAGTG

Cadherin-associated protein Ctnnd2 SPU_001161.1 Sp_Catenin_F1 GGATACTCAATCAAGATCACAAC 229

(catenin) delta 2 Sp_Catenin_R1 CTCTGACAGTACAATGAGATATGG

Hypoxia inducible factor HIF1A SPU_030140.1 Sp_HIF1A_F1 CGATAGAAGAGATCATCGACTC 158

1-alpha Sp_HIF1A_R1 GTAGTCGTAGATGCTCTGGC

doi:10.1371/journal.pone.0149734.t001

Gene Defence Networks Affected by Diatom-Derived Aldehydes

PLOS ONE | DOI:10.1371/journal.pone.0149734 February 25, 2016 4 / 21



Results

Dose-dependence effects of PUAs on gene expression
Developing embryos of P. lividus were incubated in the presence of five increasing PUAs con-
centrations (decadienal at 1.0, 1.3, 1.6, 2.0, 2.3 μM; heptadienal at 2.0, 2.5, 3.0, 5.5, 6.0 μM; octa-
dienal at 2.5, 4.0, 4.5, 5.0, 7.0, 8.0 μM). The concentrations for decadienal were the same as
those used in Marrone et al. [14]; since the effects induced by heptadienal and octadienal were
not strong as with decadienal, we tested concentrations of heptadienal and octadienal that pro-
duced the same percentage of abnormal plutei as in the case of decadienal fromMarrone et al.
([14]; 5%, 10%, 35%, 50% and 70%; see also Fig 2 in ref. [15]), so as to have comparable results
with the three PUAs. Samples were collected at 5, 9, 24 and 48 hpf, corresponding to the stages
of early blastula, swimming blastula, prism and pluteus.

We studied the possible dose-dependent effects on the thirty one genes analyzed in our pre-
vious work only at the teratogenic concentrations of the three PUAs (decadienal 1.6 μM, hepta-
dienal 3.0 μM, octadienal 4.5 μM), producing about 35% of abnormal plutei [13–15]. These
genes belong to four different classes: eight canonical stress genes, eight genes involved in
detoxification processes, eight genes involved in developmental and differentiation processes,
and seven skeletogenic genes, as reported in Fig 1.

Our results showed a PUAs dose- and stage-dependent effect at the gene level for most of
the analysed genes of all four functional classes. The histograms with the relative expression
ratios of the analyzed genes detected by Real Time qPCR (with respect to the control without

Fig 1. Gene functional classes. The scheme indicates the four functional classes of genes used to which the thirty one genes analyzed in the present study
belong: canonical stress genes, genes involved in detoxification processes, genes involved in developmental and differentiation processes and skeletogenic
genes.

doi:10.1371/journal.pone.0149734.g001
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PUAs) are reported in Figs 2, 3 and 4. The exact values of x-fold changes for all the genes are
reported in S2 Table.

1. Stress genes
All stress genes (see green histograms in Figs 2, 3 and 4) were targeted at the different PUAs
concentrations and also at the different developmental stages, except for the 14-3-3 ε gene.
More specifically:

• hsp70 was up-regulated only after heptadienal treatment at concentrations of 3.0, 5.5 and
6.0 μM at 9 hpf;

• hsp60 was up-regulated with heptadienal at 5 hpf (at 2.0, 2.5, 5.5 and 6.0 μM) and at 48 hpf
(at 2.5, 5.5 and 6.0 μM) and down-regulated with octadienal at 24 hpf (at 2.5, 4.5, 7.0 and
8.0 μM);

• hsp56 was down-regulated at 9 hpf (at 1.0 and 1.3 μM) and up-regulated at 24 hpf (at 1.3
and 2.3 μM) after decadienal treatment; octadienal induced an increase in expression levels
at 24 hpf (at 2.5 and 4.0 μM) and at 48 hpf (at 2.5, 4.0 and 8.0 μM);

• MTase was targeted by the three PUAs: decadienal induced a down-regulation at 5 hpf and
up-regulation at 9 and 24 hpf (at 1.0, 1.3 and 2.3 μM); heptadienal upregulated only at 24
hpf (at 2.0, 2.5 and 6.0 μM); octadienal induced an up-regulated at 9 hpf and down-regula-
tion at 24 hpf at all concentrations tested;

• cytb was upregulated by decadienal at 5 hpf (at 1.0, 1.3 and 2.3 μM) and at 48 hpf (at 1.0,
1.3 and 2.3 μM) but remained at the basal level with heptadienal. This gene was down-reg-
ulated by octadienal at 5 hpf (at 2.5 μM and especially at 7.0 μM), at 24 hpf (at 7.0 and
8.0 μM), and at 48 hpf at all the concentrations tested;

• p38 MAPK increased in expression levels at 9 hpf with decadienal (1.0, 1.3 and 2.3 μM);
heptadienal induced increase of expression levels at 24 hpf with (at 2.0, 2.5 and 6.0 μM) but
decreased at 48 hpf (at 2.0, 3.0 and 6.0 μM); increase of expression levels was also observed
with octadienal at 9 hpf (at 2.5, 4.0 and 8.0 μM) and at 48 hpf (at 7.0 and 8.0 μM).

2. Detoxification genes
For these genes the dose-dependent effects was closely related to the developmental stages
(see yellow histograms in Figs 2, 3 and 4):

• MT4 was down-regulated by octadienal at 5 hpf, with a decrease in expression levels at all
concentrations tested;

• MT6 was down-regulated by decadienal at 24 hpf (at 1.0, 1.6) whereas with heptadienal
and octadienal this gene was up-regulated at 48 hpf (heptadienal 2.0, 2.5, 3.0 and 6.0 μM;
octadienal 4.0, 4.5 and 7.0 μM);

• MT8 was targeted at 48 hpf only after treatment with decadienal (at 1.6 and 2.3 μM) and
with heptadienal (at all the concentrations tested, except for 5.5 μM);

• MDR1showed dose-dependent effects with decadienal at 48 hpf (at 1.0, 1.3 and 2.3 μM)
and octadienal at 5 hpf (at 7.0 and 8.0 μM);

• CAT was down-regulated at 48 hpf by decadienal (at 1.0 and 1.3 μM) and octadienal (at
2.5, 4.5, 7.0 and 8.0 μM).
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Fig 2. Dose-dependent variation of gene expression levels induced by decadienal for the genes analyzed.Histograms show dose-dependent
variations in expression levels of decadienal modulated genes. Samples incubated with increasing decadienal concentrations (1.0, 1.3, 1.6, 2.0, 2.3 μM)
were collected at different stages of development: early blastula (5hp), swimming blastula (9hpf), prism (24hpf) and pluteus (48 hpf) Data are reported as a
fold difference (mean ± SD), compared to the control embryos in sea water without decadienal. Fold differences greater than ±2 (see the dotted horizontal
guide lines at the values of +2 and −2) were considered significant. A colour code has been used in the histograms to distinguish the four functional classes of
genes: green for stress genes, grey for genes involved in detoxification processes, blue for genes involved in developmental and differentiation processes,
and red for skeletogenic genes.

doi:10.1371/journal.pone.0149734.g002
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Fig 3. Dose-dependent variation of gene expression levels induced by heptadienal for the genes analyzed.Histograms show dose-dependent
variations in expression levels of heptadienal modulated genes. Samples incubated with increasing heptadienal concentrations (2.0, 2.5, 3.0, 5.5, 6.0 μM)
were collected at different stages of development: early blastula (5hp), swimming blastula (9hpf), prism (24hpf) and pluteus (48 hpf). For further details see
also legend to Fig 2.

doi:10.1371/journal.pone.0149734.g003
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Fig 4. Dose-dependent variation of gene expression levels induced by octadienal for the genes analyzed.Histograms show dose-dependent
variations in expression levels of octadienal modulated genes. Samples incubated with increasing octadienal concentrations (2.5, 4.0, 4.5, 5.0, 7.0, 8.0 μM)
were collected at different stages of development: early blastula (5hp), swimming blastula (9hpf), prism (24hpf) and pluteus (48 hpf). For further details see
also legend to Fig 2.

doi:10.1371/journal.pone.0149734.g004
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3. Developmental and differentiation genes
Developmental and differentiation genes were all affected by the three PUAs (see blue histo-
grams in Figs 2, 3 and 4):

• hat showed a very strong dose-dependent effect with a significant increase in gene expres-
sion after treatment with heptadienal at all concentrations tested; the effect was less evident
with octadienal at 9 hpf whereas a decrease was observed with heptadienal at 48 hpf (at 2.0,
3.0, 5.5 μM);

• sox9 showed a strong dose-dependent effect with decadienal, decreasing at 5 hpf (at 1.0, 1.3
and 2.3 μM) and increasing at 48 hpf (at 1.0, 1.3, 2.0 and 2.3 μM) compared to the controls;
heptadienal induced a very significant up-regulation at 24 hpf (at 2.0, 2.5 and 6.0 μM);

• Alix, showed a decrease in expression levels with the three PUAs (decadienal at 5 hfp at
1.0, 1.3 and 2.3 μM, and 9 hpf at 1.3 and 2.3 μM; heptadienal at 24 and 48 hpf; octadienal at
24 hpf);

• Wnt6 was switched on by decadienal at 48 hpf (down-regulated at 1.3, 1.6 and 2.3 μM)
whereas was activated by heptadienal at 5 hpf (down-regulated at 3.0 μM and up-regulated
at 2.0, 5.5 and 6.0 μM) and 48 hpf (down-regulated at all concentrations tested);

• Wnt8 showed a dose-dependent effect only with heptadienal at all concentrations tested.

4. Skeletogenic genes
The gene expression of these genes resulted in PUA-specific effects (see red histograms in
Figs 2, 3 and 4):

• SM30 showed a strong dose-dependent effect only with octadienal, with expression levels
increasing at 9 hpf at all concentrations tested;

• SM50 showed strong dose-dependent effect with decadienal with a down-regulation in
expression levels at 5 and 48 hpf at all concentrations tested; with heptadienal the effects
were somewhat less evident; octadienal induced an up-regulation at 9 hpf and a down-reg-
ulation at 48 hpf at all concentrations tested;

• BMP5/7 was switched on specifically by octadienal at 5 hpf (from 4.0 to 8.0 μM);

• uni was down-regulated by decadienal at 24 hpf (from 1.0 to 2.0 μM) and up-regulated at
2.3 μM; heptadienal induced a strong dose-dependent effect at 48 hpf (at all concentrations
tested)

• p16 was down-regulated only by heptadienal at 48 hpf (at 2.0, 3.0, 5.5 and 6.0 μM);

• p19 expression levels increased (at 4.0 μM) and decreased (at 4.5 and 8.0 μM) expression
level with octadienal at 5 hpf.

A synopsis showing the patterns of dose-dependent up- and down-regulation of different
classes of genes is shown in Fig 5.

Network analysis and RT qPCR of HUB genes
Interactomic analysis indicated that there were four HUB genes (Fig 6): RELA (nuclear factor
NF-kappa-B p65 subunit), CTNNB1 (Catenin, Cadherin-Associated Protein, Beta 1), HIF1A
(hypoxia inducible factor 1-alpha) and TP53 (tumor protein p53). HUB nodes are viewed as
important nodes in a network: they are nodes with the largest degrees, i.e., nodes that share the
largest number of connections with the other nodes.
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Fig 5. Synopsis of dose-dependent gene expression of genes analyzed. Patterns of dose-dependent up- (red arrows) and down-regulation (blue arrows)
of the four classes of genes in the sea urchin, P. lividus, in the presence of the PUAs decadienal, heptadienal and octadienal. Genes with two arrows are up-
and down-regulated at different concentrations. The arrows correspond to fold differences greater than ±2, considered significant levels of down- or up-
regulation.

doi:10.1371/journal.pone.0149734.g005
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These four genes represent nodes having a large degree of interaction, indicating that they
have connections with many other genes. None of these genes has been studied before in P. livi-
dus, with the exception of NF-κB (of which RELA represents a subunit) [16,19]. Therefore, we
used annotated genes from S. purpuratus (for more details see Methods section) and we ana-
lyzed tumor protein p53 (p53; corresponding to TP53 in humans), cadherin-associated protein
(catenin) delta 2 (Ctnnd2 or δ-2-catenin, for human CTNNB1), and hypoxia inducible factor
1-alpha (HIF1A). Fig 3 shows the close functional association between HUB nodes and signifi-
cant genes (see also Table 2): i) RELA gene interacts with ABCB1,MAPK14,MT-CYB and
HSPA4; ii) CTNNB1 interacts withWNT6, HSPD1, ABCB1, SOX9 and PRDM1; iii)HIF1A
interacts with ABCB1,HSPA4 and SOX9; iv) TP53 interacts with FKBP4, CAT, PDCD6IP,

Fig 6. Interactomic analysis by Ingenuity Pathway Analysis (IPA) software. The network is displayed
graphically as nodes (genes) and edges (the biological relationships between nodes). HUB nodes, genes
that share the largest numbers of connections with other genes, are indicated by symbols of different colors:
RELA in green;CTNNB1 in red, HIF1A in light blue and TP53 in yellow. The biological relationships between
HUB nodes and the other significant genes are indicated by coloured arrows (indicating that a molecule
modulates the expression of another), according to the colours of the HUB to which they are connected. The
connections between CTNNB1-HIF1A, CTNNB1-RELA are indicated by edges and not by arrowheads
because the solid edges indicate direct relationships between molecules due to real chemical modifications
and, hence, to formation of direct physical contacts. Interaction between HUB nodes are indicated with grey
arrows. Genes associated with HUB genes are reported with grey symbols. For further details on IPA
analysis see also Materials and Methods section.

doi:10.1371/journal.pone.0149734.g006
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HSPD1, ABCB1,MAPK14,MT-CYB and PRDM1. HUB nodes also interacted between them-
selves. YWHAE gene is the only not directly connected with HUB genes, but it interacts with
HSPA4 (connected withHIF1A) and FKBP4 (connected with TP53). All the genes associated
with HUB nodes were targeted by the three PUAs, with the exception of YWHAE and PRDM1.

The expression levels of these four genes were followed by Real Time qPCR, to detect if they
were targets of PUAs at teratogenic concentrations (decadienal 1.6 μM, heptadienal 3.0 μM and
octadienal 4.5 μM). The histograms reported in Fig 7 show the relative expression ratios of these
genes with respect to control embryos in FSW without PUAs. Only expression values greater
that a two-fold difference with respect to the control were considered as significant.

At the early blastula stage (5 hpf), the expression levels of all four genes remained at basal lev-
els and were comparable to the control after decadienal treatment. Interestingly, heptadienal
and octadienal affected the expression levels ofHIF1A, δ-2-catenin and p53. At the swimming
blastula stage (9 hpf) decadienal and heptadienal down-regulated the gene p53 (6.7- and 3.8
fold, respectively). The expression level of δ-2-catenin was significantly down-regulated by deca-
dienal and octadienal (5.0- and 3.4-fold change, respectively). A down-regulation ofNF-κB was
recorded after treatment with heptadienal. At the prism stage (24 hpf) decadienal and octadienal
differentially affected the expression levels of three genes: whereas decadienal down-regulated
the expression levels of δ-2-catenin, NF-κB and p53. Octadienal up-regulated all these genes. At
this developmental stageHIF1A showed a 3.7-fold decrease in expression level only with deca-
dienal. At the pluteus stage (48 hpf)HIF1A was targeted by decadienal and heptadienal (4.5-
and 2.7-fold decrease, respectively). Heptadienal and octadienal affected the expression levels of
δ-2-catenin gene (4.0- and 5.9-fold decrease, respectively). NF-κB was targeted only after octa-
dienal treatment (4.7-fold decrease). Finally, a down-regulation of the expression levels of p53
was recorded for decadienal (2.4-fold decrease) and heptadienal (4.2-fold decrease).

A PUAs dose- and stage-dependent effect was also detected by Real Time qPCR at the gene
level for these HUB genes (S2 Table for the corresponding values). Decadienal induced a signifi-
cant dose-dependent effect specifically on δ-2-catenin and p53 at 9 hpf, onHIF1A, δ-2-catenin
and p53 at 24 hpf and onHIF1A at 48 hpf (S1A Fig). In the case of heptadienal, the dose-depen-
dent effect was detectable at 5 and 48 hpf forHIF1A, δ-2-catenin and p53 (S1B Fig). Octadienal
induced similar results to heptadienal with a dose-dependent effect at 5 hpf forHIF1A, δ-2-cate-
nin (as well as at 48 hpf) and p53 (S1C Fig).NF-κB was rarely activated at the five different con-
centrations tested (see as an example decadienal and heptadienal at 9 hpf, decadienal at 24 hpf).

Table 2. The corresponding names of P. lividus and human genes are reported.

Gene name P. lividus Human

Heat shock protein 70 hsp70 HSPA4

Heat shock protein 60 hsp60 HSPD1

heat shock protein 56 hsp56 FBKP4

cytochrome b cytb MT-CYB

14-3-3 epsilon protein 14-3-3 ε YWHAE

p37 mitogen-activated protein kinase p38 MAPK MAPK14

DNA-methyltransferase 1 Mtase DNMT1

SRY (sex determining region Y)-box 9 sox9 SOX9

ALG-2 interacting protein X/1 Alix PDCD6IP

Blimp Blimp PRDM1

Wnt6 Wnt6 WNT6

Multi drug resistance protein 1 MDR1 ABCB1

Catalase CAT CAT

doi:10.1371/journal.pone.0149734.t002
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Fig 7. Gene expression level of HUB genes. The histograms show the differences in the expression levels of the four HUB genes followed by real-time
qPCR, identified in P. lividus: NF-κB, δ-2-catenin, HIF1A and p53. Embryos were grown in the presence of decadienal, heptadienal and octadienal at
teratogenic concentrations (1.6, 3.0 and 4.5 μM, respectively) and collected at different times of development (5, 9, 24 and 48hpf). Data are reported as a fold
difference (mean ± SD), compared to the control, embryos in sea water without aldehydes. Fold differences greater than ±2 (see the dotted horizontal guide
lines at the values of +2 and −2) were considered significant.

doi:10.1371/journal.pone.0149734.g007
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Discussion
Our previous results (reported in ref. [15]) showed that treatment with the three aldehydes
induce similar malformations at the morphological level in sea urchin embryos. Interestingly, at
the molecular level the three PUAs have very few common targets and specifically affect different
classes of genes and at different developmental stages. These results suggest that PUAs may affect
different physiological processes, considering that genes targeted by PUAs have a key role in a
broad range of functional responses, such as stress, development, differentiation, skeletogenesis
and detoxification processes (Fig 1). These findings are in according with the data reported by
Sansone et al. (2014) [20] who also found that the same three PUAs triggered different cell sig-
nalling death pathways in the lung adenocarcinoma cell lines A549. Further investigations are
needed to clarify why the three PUAs elicit differing changes in gene expression, considering that
the fundamental reactive elements of the aldehyde molecules are the same (Michaels acceptor).

In our study we demonstrated a PUA dose-dependent effects on the expression of most
genes, already switched on at low concentrations (decadienal 1.0 and 1.3 μM; heptadienal 2.0
and 2.5 μM; octadienal 2.5 and 4.0 μM), while the percentage of abnormal plutei is still low (as
showed in the Figure 2 in ref. 15). More specifically, our study shows that some target genes
respond differently to PUAs than others (see Figs 2, 3, 4 and 5 and S2 Table). This is the case
for example for SM50 after treatment with decadienal at 48 hpf (S1A Fig) and octadienal at 9
hpf (S1C Fig); hsp60 at 5 hpf,MTase and sox9 at 24 hpf and uni at 48 hpf after treatment with
heptadienal (S1B Fig);MTase with octadienal at 9 and 24 hpf (S1C Fig); δ-2-catenin and p53 at
9 hpf with decadienal (S1A Fig), δ-2-catenin andHIF1A with decadienal at 24 hpf (S1A Fig);
p53, δ-2-catenin andHIF1A with heptadienal at 48 hpf (S1B Fig).

Some genes showed a dose-dependent variation in their expression levels at all concentra-
tions tested, with the only exception of the highest concentrations (decadienal 2.3 μM; hepta-
dienal 6.0 μM; octadienal 8.0 μM): for example the gene SM50 at 5 hpf (see Fig 1) and HIF1A a
48 hpf (see S1A Fig) with decadienal (from 1.0 to 2.0 μM), the gene δ-2-catenin at 5 hpf with
heptadienal (from 2.0 to 5.5 μM; see S1B Fig). Moreover, aldehyde treatments at teratogenic
concentrations did not affect the expression level of some genes, the activation of which by var-
ious stress conditions is well-documented. This is the case of p38 MAPK that was a target gene
only for heptadienal at 24 and 48 hpf; Alix at 48 hpf was targeted only by heptadienal;MDR1
and cytb were not target genes after treatment with the three aldehydes. Different extracellular
stimuli (including UVB irradiation, heat shock, high osmotic stress, pro-inflammatory cyto-
kines and certain mitogens) trigger a stress-regulated protein kinase cascade culminating in
activation of p38 MAPK through phosphorylation [21–25].MDR1 gene products are thought
to play a role in the protection of organisms against toxic xenobiotics [26]; response to environ-
mental stress was also reported for cytb [27]. No reports on the stress response of Alix gene
have been reported, with the exception of Varrella et al. [15], who showed that this gene is
modulated by heptadienal at 48 hpf. In the present study we recorded that the expression levels
of these four genes were affected by the three PUAs treatments, confirming that these were
markers of stress conditions but their induction required certain PUAs concentrations. An
example of this is represented by p38 MAPK that was already activated at the lowest concentra-
tions of heptadienal (2.0 and 2.5 μM; Fig 1) than the teratogenic concentration (4.5 μM) at 24
hpf and octadienal (2.5 and 4.0 μM; Fig 3) at 9 hpf.

In this study we show for the first time that the Alix gene responds to stress because its
expression levels are targeted after decadienal treatment at 9 and 24 hpf at the lowest concen-
trations (1.3 and 1.0 μM). The same findings were also recorded with octadienal at the higher
concentrations with high levels of variation of expression levels at the prism stage (10.8- and
6.9-fold at 7.0 and 8.0 μM, respectively). Decadienal and octadienal switched on theMDR1

Gene Defence Networks Affected by Diatom-Derived Aldehydes

PLOS ONE | DOI:10.1371/journal.pone.0149734 February 25, 2016 15 / 21



gene at the pluteus and blastula stages, respectively; decadienal switched on cytb at the highest
concentrations at 5, 24 and 48 hpf; the same was also true for octadienal. These data suggest a
very subtle adjustment to diatom-derived PUAs effects in developmental processes of sea
urchin embryos. Moreover, our study provides the first evidence on the strong effects of hepta-
dienal compared to other PUAs on sea urchins, supporting the data reported by Sansone et al.
[20] on a human lung cancer cell line.

All P. lividus genes were analyzed by Ingenuity Pathway Analysis, which created a network
on the basis of associated functions and data mining from experimental studies reported in the
literature (Fig 6). It is important to consider that IPA software only supported vertebrate models
with full content (for further details see also Materials and Methods Section), so gene interac-
tions likely hold true in sea urchins as well as could be some differences. Our data indicate four
HUB genes, including NF-κB (RELA represents a subunit of NF-κB), p53 (corresponding to
TP53 in humans), δ-2-catenin (corresponding to human CTNNB1) andHIF1A in P. lividus.
NF-kB is a protein complex that controls transcription of DNA and regulates the activities of
many signalling pathways within the intracellular network, playing a role in immune response,
inflammation, infection, oncogenesis and apoptosis, and in determining cellular responses to
extracellular stimuli [28]. NF-κB is found in almost all animal cell types and is involved in cellu-
lar responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation [16], oxi-
dized LDL, and bacterial or viral antigens [29–32]. Moreover, this gene is a homo- or
heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB,
NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex that
appears to be the most abundant. The p53 protein is crucial in multicellular organisms, where it
regulates the cell cycle and, thus, functions as a tumor suppressor, preventing cancer. The cell
cycle checkpoint gene p53 allows a multicellular organism to repair or delete cells exposed to
agents that cause DNA damage, like hypoxia, UVR, ROS or mutagens [33–36]. Up-regulation
and expression of p53 allows DNA editing and repair to occur followed either by normal cell
division [37] or apoptosis [38]. Moreover, p53 promotes proteasomal degradation of the HIF-1a
subunit of hypoxia-inducible factor 1 (HIF-1) [39]. Tumor suppressor p53 is a regulator of NF-
kB repression by the glucocorticoid receptor [40]. However, both control many physiological
processes, including cell cycle arrest, DNA repair, death, etc. Some authors have constructed a
crosstalk model of the p53- NF-kB network in order to demonstrate that NF-kB upregulates the
transcription of p53, whereas p53 attenuates NF-kB transcription [41]. In sea urchins exposure
to ultraviolet radiation provokes the down-regulation of p53, leading to apoptosis, as shown by
the significant increase in DNA strand breaks in the nuclei of developing embryos [42]. Protein
δ-2-catenin is normally expressed in the brain where it is important for normal cognitive devel-
opment [43]. The catenin-presenilin interaction has implications for cadherin function and reg-
ulation of cell-to-cell adhesion [44]. Moreover, δ-2-catenin has been implicated as a regulator of
the NF-κB transcription factor [45].HIF1A is a heterodimeric transcription factor that regulates
cellular energy metabolism and angiogenesis in response to oxygen deprivation. In fact, it func-
tions as a master regulator of cellular and systemic homeostatic response to hypoxia by activat-
ing transcription of many genes, including those involved in energy metabolism, angiogenesis,
apoptosis, and other genes whose protein products increase oxygen delivery or facilitate meta-
bolic adaptation to hypoxia. This gene thus plays an essential role in embryonic vascularization,
tumour angiogenesis and pathophysiology of ischemic disease. HIF1A abundance (and its sub-
sequent activity) is regulated transcriptionally in an NF-κB-dependent manner [46]. Moreover,
Ben-Tabou de-Leon et al. [47] demonstrated that the initial activation of aboral genes in sea
urchin depends directly on the redox sensitive transcription factorHIF1A. Our results show
very clearly that all four HUB genes are molecular targets of PUAs, which are able to induce sig-
nificant variations in the expression of these genes with respect to the controls in a dose-
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dependent manner (see Fig 7 and S1 Fig). Fig 6 shows that the four HUB genes are interconnec-
ted and modulated each other. According this interactomic analysis, we hypothesize that HUB
genes in turn could be able to modulate the expression levels of thirteen P. lividus genes reported
in the network (see also Table 2): six stress genes (hsp70, hsp60, hsp56,MTase, cytb, p38MAPK),
four genes implicated in development and differentiation (sox9, blimp, Alix,Wnt6), and two
genes implicated in detoxification processes (MDR1 and CAT).

Fig 8 proposes a working model describing the hypothetical pathways potentially involved
in the diatom-derived PUAs stress response in sea urchins.

PUAs initially down-regulated (probably through transmembrane receptors) the four
nuclear HUB genes: they initially down-regulated δ-2-catenin, which regulates NF-κB, and
then HIF1A, which in turn is regulated by p53; p53 and NF-κB regulate each other. On the

Fig 8. Workingmodel of hypothetical pathways potentially involved in the toxic PUAs stress response. PUAs may be able to activate four HUB genes
(δ-2-catenin regulatesNF-κB, which regulates HIF1A, which in its turn is regulated by p53; a crosstalk between p53 andNF-κB has been reported in ref. 41)
or several genes (belonging to different functional responses). All these genes may induce teratogenesis and/or to apoptosis in the sea urchin embryo.

doi:10.1371/journal.pone.0149734.g008
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other hand, PUAs may also affect several genes, having a key role in different functional
responses, such as stress, development, differentiation and detoxification. A crosstalk is possi-
ble between HUB genes and target genes. All these genes may drive sea urchin embryos
towards teratogenesis and/or apoptosis (or cell death), depending on the PUAs exposure dose,
as also shown in Varrella et al. [15].

Summarising, the present work represents the first molecular report of the effects of dia-
tom-derived PUAs on gene networks, using the sea urchin as a bioindicator. We demonstrate
how changes in gene expression levels may be used as an early indicator of stressful conditions
in the marine environment. In fact, as observed in most adaptive responses, control of gene
expression is tightly regulated and has fast response kinetics, which enables the cell to change
its transcriptional capacity within minutes in the presence of stress and to return to its basal
state after the stress is removed [48]. According to our data it is possible to hypothesize that the
three PUAs are not only capable of switching on their target genes (including HUB genes) at
certain concentrations, but its mechanism of action could be highly sophisticated. More in
details, we probably detected different effects at different PUA concentrations, because the
three PUAs could not directly act on their target genes (including HUB genes), but their
actions could be mediated through other genes. Hence, future efforts will regard the evaluation
of the entire transcriptome and/or proteome to understand what factors, such as mRNAs and/
or proteins, can be modulated by the three PUAs at the different concentrations.

Our study shows how marine organisms may attempt to defend themselves from environ-
mental toxicants, benefitting from the protection provided by an integrated network of genes,
the defensome [14,49]. Further investigations are needed to better clarify the negative effects at
the molecular level of these molecules on benthic organisms, causing deleterious effects during
diatom blooms at sea [50].

Supporting Information
S1 Fig. Dose-dependent variation of gene expression levels for the HUB gens.Histograms
show A) decadienal, B) heptadienal and C) octadienal dose-dependent variations in expression
levels of the four HUB genes. Samples incubated with increasing decadienal (1.0, 1.3, 1.6, 2.0,
2.3 μM), heptadienal (2.0, 2.5, 3.0, 5.5, 6.0 μM) and octadienal (2.5, 4.0, 4.5, 5.0, 7.0, 8.0 μM)
concentrations were collected at different stages of development: early blastula (5hp), swim-
ming blastula (9hpf), prism (24hpf) and pluteus (48 hpf) Data are reported as a fold difference
(mean ± SD), compared to the control embryos in sea water without aldehydes. Fold differ-
ences greater than ±2 (see the dotted horizontal guide lines at the values of +2 and −2) were
considered significant.
(PPT)

S1 Table. Function for the four new genes analyzed in the present study.
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S2 Table. Data of expression level were reported as a fold difference from control at 5, 9, 24
48 hpf at different aldehyde concentrations: decadienal 1.0, 1.3, 1.6, 2.0, 2.3 μM; heptadie-
nal 2.0, 2.5, 3.0, 5.5, 6.0 μM; octadienal 2.5, 4.0, 4.5, 7.0, 8.0 μM. Fold differences greater
than ± 2 were considered significant.
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