
Towards automatic composition of
multicomponent predictive systems

Manuel Martin Salvador, Marcin Budka, and Bogdan Gabrys

Bournemouth University, Data Science Institute, United Kingdom
{msalvador,mbudka,bgabrys}@bournemouth.ac.uk

Abstract. Automatic composition and parametrisation of multicompo-
nent predictive systems (MCPSs) consisting of chains of data transfor-
mation steps is a challenging task. In this paper we propose and describe
an extension to the Auto-WEKA software which now allows to compose
and optimise such flexible MCPSs by using a sequence of WEKA meth-
ods. In the experimental analysis we focus on examining the impact
of significantly extending the search space by incorporating additional
hyperparameters of the models, on the quality of the found solutions.
In a range of extensive experiments three different optimisation strate-
gies are used to automatically compose MCPSs on 21 publicly available
datasets. A comparison with previous work indicates that extending the
search space improves the classification accuracy in the majority of the
cases. The diversity of the found MCPSs are also an indication that fully
and automatically exploiting different combinations of data cleaning and
preprocessing techniques is possible and highly beneficial for different
predictive models. This can have a big impact on high quality predic-
tive models development, maintenance and scalability aspects needed in
modern application and deployment scenarios.

Keywords: KDD process; CASH problem; Bayesian optimisation; Data mining
and decision support systems; Data preprocessing

1 Introduction

Performance of data-driven predictive models heavily relies on the quality and
quantity of data used to build them. However, in real applications, even if data
is abundant, it is also often imperfect and considerable effort needs to be in-
vested into a labour-intensive task of cleaning and preprocessing such data in
preparation for subsequent modelling. Some authors claim that these tasks can
account for as much as 60-80% of total time spent on development of a predictive
model [1,2]. Therefore, approaches and practical techniques that allow to reduce
this effort by at least partially automating some of the data preparation steps,
can potentially transform the way in which predictive models are typically built.

In many scenarios one needs to sequentially apply multiple preprocessing
methods to the same data (e.g. outlier detection → missing value imputation →



dimensionality reduction), effectively forming a preprocessing chain. Composi-
tion of a preprocessing chain is a challenging problem that has been addressed
in different fields (e.g. clinical data [3,4], historical documents [5] and process
industry [6]). Despite these works attempting to be as abstract as possible, the
frameworks they propose are optimised for a particular case study. Hence their
underlying approaches are lacking in the context of cross-domain generalisation,
and potentially require additional manual work to improve the results.

After the data has been pre-processed in an appropriate way, the next step
in a data mining process is modelling. Similarly to preprocessing, this step can
also be very time-consuming, requiring evaluation of multiple alternative models.
Hence automatic model selection has been attempted in different ways, e.g. active
testing [7], meta-learning [8] and information theory [9]. A common theme in the
literature is comparison of different models using data always pre-processed in
the same way. However, some models may perform better if they are built using
data specifically pre-processed with a particular model type in mind.

Hyper-parameter optimisation is an additional step which is usually per-
formed after the model has been selected (see e.g. [10,11,12]). However, the
problem is in fact very similar to model selection since different parametrisa-
tions of the same model (e.g. different kernels in an SVM, different structures of
a neural network) can be treated as different models. Therefore it makes sense to
approach both model and hyper-parameter selection problems jointly. The Com-
bined Algorithm Selection and Hyper-parameter optimisation (CASH) problem
was presented in [13]. A limitation of that study was the use of only two native
types of attributes (i.e. numerical and categorical). This paper extends the ap-
proach presented in [13] to support complex categorical attributes, which consists
of a WEKA class and therefore can contain additional hyper-parameters.

We refer to a sequence of preprocessing steps followed by a machine learn-
ing model as a multicomponent predictive system (MCPS). The motivation for
automating composition of MCPS is twofold. In the first instance it will help to
reduce the amount of time spent on such activities and therefore allow to ded-
icate the human expertise to other tasks. The second motivation is to achieve
better results than a human expert could, given a limited amount of time. The
number of possible methods and hyperparameter combinations increases expo-
nentially with the number of components in an MCPS and in majority of cases
it is not computationally feasible to evaluate all of them.

This paper is organised as follows. The next section reviews previous work
in automating the CASH problem and available software. Section 3 describes
multicomponent predictive systems and the challenges related to automation of
their composition. In Section 4, our contributions to Auto-WEKA software, now
allowing to optimise additional hyperparameters, are presented. The methodol-
ogy used to automate MCPS composition is discussed in Section 5 followed by
the results in Section 6, and conclusions in Section 7.



2 Related work

The Combined Algorithm Selection and Hyper-parameter configuration (CASH)
problem [13] consists of finding the best combination of learning algorithm A∗

and hyperparameters λ∗ that optimise an objective function L (e.g. Equation 1
minimises the k-fold cross-validation error) for a given dataset D. Formally,
CASH problem is given by:

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid) (1)

where A = {A(1), . . . , A(k)} is a set of algorithms with associated hyper-parameter
spaces Λ(1), . . . , Λ(k). The loss function L takes as arguments an algorithm con-
figuration Aλ (i.e. an instance of a learning algorithm and hyperparameters), a
training set Dtrain and a validation set Dvalid.

The CASH problem can be approached in different ways. One example is grid
search – an exhaustive search over all the possible combinations of discretized
parameters. Such technique can however be computationally prohibitive in large
search spaces or with big datasets. Instead, a simpler mechanism like random
search, where the search space is randomly explored in a limited amount of time,
has been shown to be more effective in high-dimensional spaces [12].

A promising approach that is gaining popularity in the last years is Bayesian
optimization [14]. In particular, Sequential Model-Based Optimization (SMBO)
[15] is a framework that incrementally builds a regression model using instances
formed of an algorithm configuration λ and its predictive performance c. Such a
model is then used to explore promising candidate configurations.

Examples of SMBO methods are SMAC (Sequential Model-based Algorithm
Configuration [15]) and TPE (Tree-structure Parzen Estimation [16]). SMAC
models p(c|λ) using a random forest, while TPE maintains separate models for
p(c) and p(λ|c). Both methods support continuous, categorical and conditional
attributes (i.e. attributes whose presence in the optimisation problem depend
on the values of some other attributes – e.g. Gaussian kernel width parameter
in SVM is only present if SVM is using Gaussian kernels).

Two other methods falling into the same category are ROAR (Random On-
line Aggressive Racing [15]) which randomly selects the set of candidates instead
of using a regression model, and Spearmint [17] which uses Gaussian processes to
model p(c|λ) similarly to SMAC. However, due to their limitations (it has been
shown that SMAC outperforms ROAR [15], while Spearmint does not support
conditional attributes) we are not using these methods in this study.

Currently available software tools supporting SMBO methods are:

– SMAC1 [15] tool, which includes both SMAC and ROAR methods.
– Hyperopt2 [16] is a Python library including random search and TPE.

1 http://www.cs.ubc.ca/labs/beta/Projects/SMAC
2 https://github.com/hyperopt/hyperopt



– HPOLib3 [18] is a wrapper for SMAC, TPE and Spearmint methods.
– Auto-Sklearn4 [19] uses HPOLib and meta-learning to automate the selection

of scikit-learn methods.
– Auto-WEKA5 [13] allows to use either SMAC or TPE to automatically select

and optimise 39 classifiers and 24 possible feature selection methods included
in WEKA6.

3 MCPS description

A multicomponent predictive system can be represented as a directed acyclic
graph, where the vertices correspond to data transformations and the edges
represent the flow of data between the components. In this study we focus on
MCPSs of the F = 〈f1, ..., fN 〉 form, which as shown in Figure 1, are directed lin-
ear graphs of length N . The components f1 to fN−1 are preprocessing methods
while component fN is either a predictive model or an ensemble of models. Al-
though post-processing methods can also be included as additional components,
without the loss of generality, we are not investigating such MCPSs here.

Fig. 1. N-component predictive system

The ith component is a function Di = fi(Di−1) that takes a data frame Di−1
as input and returns a data frame Di. Such data frames can have any size and
contain any type of data (e.g. continuous or categorical). However, values of a
single column are assumed to be of identical type.

The connection between components must be consistent, i.e. output of com-
ponent fn must be compatible with the input of fn+1. For example, if component
fn+1 cannot handle missing values, output from fn should not contain any.

Typically, the first component receives the raw data as input, and the last
component returns the predictions (i.e. a label in case of classification problems
or a continuous value in regression problems). The number of components in an
MCPS can vary from 1 (i.e. when no preprocessing is used) to N ∈ N>1. Some
flows in OpenML experiments repository7 contain up to 7 components, while
data mining tools like RapidMiner or Knime allow building even longer flows.

3 https://github.com/automl/hpolib
4 https://github.com/mfeurer/auto-sklearn
5 http://www.cs.ubc.ca/labs/beta/Projects/autoweka
6 An open-source data mining package developed at the University of Waikato
7 http://openml.org



An MCPS can be seen as a type of workflow that can be found in platforms
like Taverna8. However, we prefer to avoid such generic term in this paper in
order to highlight the predictive nature of this type of systems.

Building an MCPS is typically a manual process. Even though some efforts
are being made to automate such process (see e.g. [20] for a survey), a reliable
fully automated approach is still far from being available.

The main reason that makes MCPS composition a challenging problem is
the potentially huge size of the search space. To begin with, the undetermined
number of components can make the flow very simple or very complex. Secondly,
we do not know a priori the order in which the components have to be connected.
Also, the type of each hyper-parameter can be either continuous, categorical or
conditional. Therefore, defining a range for each of the hyperparameters is an
additional problem in itself.

The search space size can be reduced by applying constraints like limiting the
number of components, restricting the list of methods using meta-learning [21],
prior knowledge [22] or surrogates [23].

In this paper we use the predictive performance as a single optimisation
objective. We note however, that some problems may require to optimise several
objectives at the same time (e.g. error rate, model complexity and runtime [24]).

4 Contribution to Auto-WEKA

Auto-WEKA is a software developed by Thornton et al. [13] which allows algo-
rithm selection and hyper-parameter optimisation both in regression and clas-
sification problems. The current Auto-WEKA version is 0.5 and it provides an
interface for a CASH problem, where the search space is defined by WEKA
predictors and feature selection methods. Available optimisation strategies are
SMAC and TPE.

We have developed a new feature consisting of automatic expansion of WEKA
classes during the creation of the search space. That is, if a hyper-parameter is
a category formed of several WEKA classes, Auto-WEKA will now add the
hyperparameters of such class recursively. For example, the kernel of an SVM
classifier can be either NormalizedPolyKernel, PolyKernel, Puk, or RBFKernel;
and each of them contains different hyperparameters.

While the space restriction does not allow us to include more implementation
details, all the scripts for the analysis of the extended Auto-WEKA results such
as the creation of plots and tables have been also released in our repository9.

5 Methodology

The three main characteristics which define a CASH problem are: a) the search
space, b) the objective function and c) the optimisation algorithm.

In this study we have considered two search spaces:

8 http://www.taverna.org.uk
9 https://github.com/dsibournemouth/autoweka



– PREV: This is the search space used in [13] where predictors and meta-
predictors (which take outputs from one or more base predictive models
as their input) were considered (756 hyperparameters). Feature selection is
also performed as a preprocessing step before the optimisation process (30
hyperparameters). We use it as a baseline.

– NEW: This search space only includes predictors and meta-predictors. In
contrast with PREV space, no preprocessing steps are involved. Instead,
we take into account that a categorical hyperparameter can be either sim-
ple or complex (i.e. when it contains WEKA classes). In the latter case,
we increase the search space by adding recursively the hyperparameters of
each method belonging to such complex parameter (e.g. the ‘DecisionTable’
predictor contains a complex hyperparameter whose values are three differ-
ent types of search methods with further hyperparameters). That extension
increases the search space to 1186 hyperparameters.

The objective function guides the optimisation process. Since the datasets we
use in our experiments are intended for classification, we have chosen to minimise
the classification error averaged over 10 cross-validation folds.

Two SMBO strategies (SMAC and TPE) have been compared against two
baselines (WEKA-Def and random search). The following experimental scenarios
have been devised:

– WEKA-Def: All the predictors and meta-predictors are run using WEKA’s
default hyperparameter values. Filters are not included in this strategy, al-
though some predictors may perform specific preprocessing steps as part of
their default behaviour.

– Random search: The whole search space is randomly explored allowing 30
CPU-hours for the process.

– SMAC and TPE: An initial configuration is randomly selected and then the
optimiser is run for 30 CPU-hours to explore the search space in an intelligent
way, allowing for comparison with the random search.

In order to compare our results with the ones presented in [13] we have repli-
cated the experimental settings as closely as possible. We have evaluated different
optimisation strategies over 21 well-known datasets representing classification
tasks (see Table 1). For each strategy we performed 25 runs with different ran-
dom seeds and a 30 CPU-hours optimisation time limit. In case a configuration
exceeds 30 minutes or 3GB of RAM to evaluate, it is stopped and not considered
further. Once the optimisation process has finished, the returned configuration
is used to build a model using the whole training set and produce predictions
over the testing set.

6 Results and discussion

Classification performance for each dataset are presented in Tables 2 and 3,
which show the 10-fold cross-validation error and the test error achieved by each



Table 1. Datasets, number of continuous attributes, number of categorical attributes,
number of classes, number of instances, and percentage of missing values.

Dataset Cont Disc Class Train Test %Miss

abalone 7 1 28 2924 1253 0
amazon 10000 0 50 1050 450 0
car 0 6 4 1210 518 0
cifar10 3072 0 10 50000 10000 0
cifar10small 3072 0 10 10000 10000 0
convex 784 0 2 8000 50000 0
dexter 20000 0 2 420 180 0
dorothea 100000 0 2 805 345 0
germancredit 7 13 2 700 300 0
gisette 5000 0 2 4900 2100 0
kddcup09app 192 38 2 35000 15000 69.47
krvskp 0 36 2 2238 958 0
madelon 500 0 2 1820 780 0
mnist 784 0 10 12000 50000 0
mnistrot 784 0 10 12000 50000 0
secom 590 0 2 1097 470 4.58
semeion 256 0 10 1116 477 0
shuttle 9 0 7 43500 14500 0
waveform 40 0 3 3500 1500 0
wineqw 11 0 11 3429 1469 0
yeast 8 0 10 1039 445 0

strategy, respectively. Random search, SMAC and TPE results have been calcu-
lated using the mean of 100,000 bootstrap samples (i.e. randomly selecting 4 out
of the 25 runs and keeping the one with the lowest cross-validation error in order
to simulate a 4-core CPU), while only the lowest errors are reported for WEKA-
Def. PREV columns contain the values reported in [13], while NEW columns
contain the results of the strategies using extended search space investigated in
this paper. An upward arrow indicates an improvement when using extended
search space (NEW) in comparison to previous results (PREV) reported in [13].
Boldfaced values indicate the lowest classification error for each dataset.

As shown in the tables, in the majority of the cases, expanding the search
space has been beneficial for finding better solutions (i.e. NEW < PREV). The
potential negative impact on predictive accuracy by optimising many more pa-
rameters has not been observed. Although, we still found some cases with higher
classification error (i.e. NEW > PREV).

Figure 2 compares CV error and test error for all the runs. Although both
errors are in general consistent, we found some cases in which the model seems
to overfit. That is the case for example in ‘germancredit’ and ‘amazon’ datasets.
A possible explanation is given below, at the end of this section.

The best MCPSs found for each dataset are reported in Table 4. Each row of
this table represents a sequence of data transformations and predictive models.
It is not feasible to include all the hyperparameters in the table due to limited



Fig. 2. CV vs Test error of all runs

Fig. 3. Range of CV errors for ‘amazon’

space, but they do play a crucial role in the final performance. We can see that
all the MCPSs include at least one or more preprocessing steps.

As shown in Table 4 the solutions found are quite diverse for different datasets
but they often also vary a lot across the 25 random seed runs performed for
each dataset. In order to better understand all of the observed differences in
the MCPSs found we have therefore also measured the average pairwise simi-
larity of the 25 MCPSs found for each dataset and the variance between their
performances. While in this paper there is no space for full analysis or explana-
tion of how the pairwise similarity was measured, below we have selected three
interesting cases for a brief discussion:

– Low error variance and high MCPS similarity. Most of the best solutions
found follow a very similar sequence of methods. Therefore similar classi-
fication performance is to be expected. For example, a repeated sequence



in ‘wineqw’ dataset with SMAC optimisation is RandomForest (22/25) →
MultiClassClassifier (8/25).

– Low error variance and low MCPS similarity. Despite having different so-
lutions, classification performance in a group of analysed datasets does not
vary much. This can mean that the classification problem is not difficult and
a range of different models can perform well on it. This is for instance the
case of the solutions found by using random search for the ‘secom’ dataset.

– High error variance and low MCPS similarity. In such cases, there are many
differences between both the best MCPSs found and their classification per-
formances. For instance, it is the case of ‘amazon’ dataset (with 50 different
classes) for which a high error variance was observed in all of the optimisation
strategies (see Figure 3 for CV error and Figure 2 for test error). We believe
such difference likely results from a combination of difficulty of the classi-
fication task (i.e. high input dimensionality, large number of small classes)
and/or an insufficient exploration from the random starting configuration in
a very large search space.

Table 2. 10-fold Cross Validation error (% missclassification). An upward arrow in-
dicates an improvement with respect to PREV space. Boldfaced values indicate the
lowest classification error for each dataset.

dataset WEKA-DEF RANDOM SMAC TPE
PREV = NEW PREV NEW PREV NEW PREV NEW

abalone 73.33 72.03 72.53 71.71 72.21 72.14 72.01 ↑
amazon 43.94 59.85 45.72 ↑ 47.34 39.57 ↑ 50.26 40.27 ↑
car 2.71 0.53 0.47 ↑ 0.61 0.38 ↑ 0.91 0.21 ↑
cifar10 65.54 69.46 58.89 ↑ 62.36 56.44 ↑ 67.73 55.59 ↑
cifar10small 66.59 67.33 60.45 ↑ 58.84 57.90 ↑ 58.41 56.56 ↑
convex 28.68 33.31 25.02 ↑ 25.93 21.88 ↑ 28.56 23.19 ↑
dexter 10.20 10.06 7.54 ↑ 5.66 6.42 9.83 6.19 ↑
dorothea 6.03 8.11 6.25 ↑ 5.62 5.95 6.81 5.92 ↑
germancredit 22.45 20.15 21.31 17.87 19.65 21.56 19.88 ↑
gisette 3.62 4.84 2.30 ↑ 2.43 2.21 ↑ 3.55 2.35 ↑
kddcup09app 1.88 1.75 1.80 1.70 1.80 1.88 1.80 ↑
krvskp 0.89 0.63 0.42 ↑ 0.30 0.28 ↑ 0.43 0.31 ↑
madelon 25.98 27.95 19.20 ↑ 20.70 15.61 ↑ 24.25 16.03 ↑
mnist 5.12 5.05 3.78 ↑ 3.75 3.50 ↑ 10.02 3.60 ↑
mnistr 66.15 68.62 58.10 ↑ 57.86 55.73 ↑ 73.09 57.17 ↑
secom 6.25 5.27 5.85 5.24 6.01 6.21 5.85 ↑
semeion 6.52 6.06 4.82 ↑ 4.78 4.48 ↑ 6.76 4.28 ↑
shuttle 0.0328 0.0345 0.0121 ↑ 0.0224 0.0112 ↑ 0.0251 0.0104 ↑
waveform 12.73 12.43 12.50 11.92 12.33 12.55 12.43 ↑
wineqw 38.94 35.36 33.08 ↑ 34.65 32.64 ↑ 35.98 32.67 ↑
yeast 39.43 38.74 37.16 ↑ 35.51 36.50 35.01 36.17



Table 3. Test error (% missclassification). An upward arrow indicates an improvement
with respect to PREV space. Boldfaced values indicate the lowest classification error
for each dataset.

dataset DEF RANDOM SMAC TPE
PREV = NEW PREV NEW PREV NEW PREV NEW

abalone 73.18 74.88 72.92 ↑ 73.51 73.41 ↑ 72.94 73.04
amazon 28.44 41.11 39.22 ↑ 33.99 36.26 36.59 35.69 ↑
car 0.7700 0.0100 0.1300 0.4000 0.0526 ↑ 0.1800 0.0075 ↑
cifar10 64.27 69.72 58.23 ↑ 61.15 55.54 ↑ 66.01 54.88 ↑
cifar10small 65.91 66.12 59.84 ↑ 56.84 57.87 57.01 56.41 ↑
convex 25.96 31.20 24.75 ↑ 23.17 21.31 ↑ 25.59 22.62 ↑
dexter 8.89 9.18 8.29 ↑ 7.49 7.31 ↑ 8.89 6.90 ↑
dorothea 6.96 5.22 5.27 6.21 5.12 ↑ 6.15 5.25 ↑
germancredit 27.33 29.03 25.40 ↑ 28.24 25.42 ↑ 27.54 25.49 ↑
gisette 2.81 4.62 2.28 ↑ 2.24 2.34 3.94 2.37 ↑
kddcup09app 1.7405 1.74 1.72 ↑ 1.7358 1.74 1.7381 1.74
krvskp 0.31 0.58 0.34 ↑ 0.31 0.23 ↑ 0.54 0.36 ↑
madelon 21.38 24.29 19.10 ↑ 21.56 16.80 ↑ 21.12 16.91 ↑
mnist 5.19 5.05 4.00 ↑ 3.64 4.10 12.28 3.96 ↑
mnistr 63.14 66.4 57.16 ↑ 57.04 54.86 ↑ 70.20 56.31 ↑
secom 8.09 8.03 7.88 ↑ 8.01 7.87 ↑ 8.10 7.84 ↑
semeion 8.18 6.10 4.78 ↑ 5.08 5.10 8.26 4.91 ↑
shuttle 0.0138 0.0157 0.0071 ↑ 0.0130 0.0070 ↑ 0.0145 0.0069 ↑
waveform 14.40 14.27 14.26 ↑ 14.42 14.17 ↑ 14.23 14.34
wineqw 37.51 34.41 32.99 ↑ 33.95 32.90 ↑ 33.56 32.93 ↑
yeast 40.45 43.15 37.68 ↑ 40.67 37.60 ↑ 40.10 37.89 ↑

7 Conclusion and future work

We have shown that it is possible to automate the composition of a multicompo-
nent predictive system. Our contribution to Auto-WEKA demonstrates that a
lot of time and effort can be saved in the process of building predictive systems.

Extending the search space has led optimisation strategies to find solutions
that improve the predictive performance in the majority of cases. Results have
indicated that SMBO strategies perform better than random search giving the
same time for optimisation in most of the cases. While we have performed op-
timisation for each of the datasets starting with 25 random seeds, in the future
it would be interesting to investigate further how the best performance changes
over time while varying the number of starting seeds.

The datasets used in the study have been chosen primarily for the purpose
of comparison with previous work [13]. As it turned out, the datasets have been
relatively ‘clean’, hence not requiring much preprocessing. In future work we will
focus on datasets that require extensive preprocessing. Furthermore, the use of
custom preprocessing chains will allow optimising the data that is being used to
build predictive models.

In addition, it would also be valuable to investigate if using a different data
partitioning like DPS [25] would make any difference in the optimisation process.



Table 4. Best MCPS for each dataset and its test error. MC = Remove instances
with missing class. MV = Remove/Replace instances with missing values. N2B =
NominalToBinary. NOR = Normalization. DIS = Discretize. FS = Random Feature
Selection. BAG = Bagging. BOOST = Boosting.

dataset MC MV N2B NOR DIS FS BAG BOOST Predictor Meta-predictor Error

abalone • • • • MLP RandomCommittee 71.43
amazon • • • • SimpleLogistic RandomSubSpace 26.67
car • • • • • SMO AdaBoostM1 0.00
cifar10 • • • RandomForest MultiClassClassifier 52.28
cifar10small • • RandomTree MultiClassClassifier 54.48
convex • • • • RandomForest AdaBoostM1 18.47
dexter • • DecisionStump AdaBoostM1 5.00
dorothea • • • OneR RandomSubSpace 4.64
germancredit • • • • LogisticModelTree Bagging 23.33
gisette • NaiveBayes LWL 1.95
kddcup09app • ZeroR LWL 1.67
krvskp • • JRip AdaBoostM1 0.10
madelon • • REPTree RandomSubSpace 15.64
mnist • • • • SMO LWL 3.28
mnistr • • • RandomForest RandomCommittee 52.20
secom • • J48 AdaBoostM1 7.66
semeion • NaiveBayes LWL 3.98
shuttle • • • • RandomForest AdaBoostM1 0.0069
waveform • • • • • SMO RandomSubSpace 14.00
wineqw • • • • RandomForest AdaBoostM1 32.33
yeast • • • RandomForest Bagging 36.40

We believe that it could have a considerable impact in SMAC strategy since it
discards potential poor solutions early in the optimisation process based on the
performance on only a few folds. In case the folds used are not representative
of the overall data distribution, which as shown in [25] can happen quite often
in the case of cross-validation, this can have a detrimental effect on the final
solutions found.

At the moment, available SMBO methods only support single objective opti-
misation. However, it would be useful to find solutions that optimise more than
one objective, including for instance a combination of prediction error, model
complexity and running time as discussed in [24].

References

1. Pyle, D.: Data preparation for data mining. Morgan Kaufmann (1999)
2. Linoff, G.S., Berry, M.J.A.: Data mining techniques: for marketing, sales, and

customer relationship management. (2011)
3. Teichmann, E., Demir, E., Chaussalet, T.: Data preparation for clinical data mining

to identify patients at risk of readmission. In: IEEE 23rd International Symposium
on Computer-Based Medical Systems. (2010) 184–189

4. Zhao, J., Wang, T.: A general framework for medical data mining. In: Future
Information Technology and Management Engineering. (2010) 163–165

5. Messaoud, I., El Abed, H., Märgner, V., Amiri, H.: A design of a preprocess-
ing framework for large database of historical documents. In: Proc. of the 2011
Workshop on Historical Document Imaging and Processing. (2011) 177–183



6. Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Martin Salvador, M., Schwan, S.,
Tsakonas, A., Žliobaitė, I.: From Sensor Readings to Predictions: On the Process
of Developing Practical Soft Sensors. In: Advances in IDA XIII. Volume 8819.
(2014) 49–60

7. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active
testing. In: LN in Computer Science. Volume 7376 LNAI. (2012) 117–131

8. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast
combination. Neurocomputing 73(10-12) (2010) 2006–2016

9. MacQuarrie, A., Tsai, C.L.: Regression and Time Series Model Selection. (1998)
10. Bengio, Y.: Gradient-based optimization of hyperparameters. Neural computation

12(8) (2000) 1889–1900
11. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel LS-SVMs

hyper-parameter selection based on particle swarm optimization. In: Neurocom-
puting. Volume 71. (2008) 3211–3215

12. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. Jour-
nal of Machine Learning Research 13 (2012) 281–305

13. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Proc.
of the 19th ACM SIGKDD. (2013) 847–855

14. Brochu, E., Cora, V.M., de Freitas, N.: A Tutorial on Bayesian Optimization of
Expensive Cost Functions with Application to Active User Modeling and Hierar-
chical Reinforcement Learning. Technical report, University of British Columbia,
Department of Computer Science (2010)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. LN in Computer Science 6683 (2011) 507–523

16. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B.: Algorithms for Hyper-Parameter
Optimization. In: Advances in NIPS 24. (2011) 1–9

17. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Ma-
chine Learning Algorithms. Advances in NIPS 25 (2012) 2960–2968

18. Eggensperger, K., Feurer, M., Hutter, F.: Towards an empirical foundation for as-
sessing bayesian optimization of hyperparameters. In: NIPS Workshop on Bayesian
Optimization in Theory and Practice. (2013) 1–5

19. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Methods for Improving Bayesian Optimization for AutoML. In: ICML. (2015)

20. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent
assistants for data analysis. ACM Computing Surveys 45(3) (2013) 1–35

21. Feurer, M., Springenberg, J.T., Hutter, F.: Using Meta-Learning to Initialize
Bayesian Optimization of Hyperparameters. In: Proc. of the Meta-Learning and
Algorithm Selection Workshop at ECAI. (2014) 3–10

22. Swersky, K., Snoek, J., Adams, R.P.: Multi-Task Bayesian Optimization. In:
Advances in NIPS 26. (2013) 2004–2012

23. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-brown, K.: Efficient Benchmark-
ing of Hyperparameter Optimizers via Surrogates Background: Hyperparameter
Optimization. In: Proc. of the 29th AAAI Conf. on Art. Int. (2012) 1114–1120

24. Al-Jubouri, B., Gabrys, B.: Multicriteria Approaches for Predictive Model Genera-
tion: A Comparative Experimental Study. In: IEEE Symposium on Computational
Intelligence in Multi-Criteria Decision-Making. (2014) 64–71

25. Budka, M., Gabrys, B.: Density-Preserving Sampling: Robust and Efficient Al-
ternative to Cross-Validation for Error Estimation. IEEE Transactions on Neural
Networks and Learning Systems 24(1) (2013) 22–34


	Towards automatic composition of multicomponent predictive systems

