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Abstract
Facial expression transfer is currently an active
research field. However, 2D image wrapping
based methods suffer from depth ambiguity and
specific hardware is required for depth-based
methods to work. We present a novel marker-
less, real time online facial transfer method
that requires only a single video camera. Our
method adapts a model to user specific facial
data, computes expression variances in real
time and rapidly transfers them to another
target. Our method can be applied to videos
without prior camera calibration and focal
adjustment. It enables realistic online facial
expression editing and performance transferring
in many scenarios, such as: video conference;
news broadcasting; lip-syncing for song per-
formances; etc. With a low computational
demand and hardware requirement, our method
tracks a single user at an average of 38 fps.
Our tracking method runs smoothly in web
browsers despite their slower execution speed.

Keywords: facial tracking, expression transfer

1 Introduction

Facial performance tracking and editing have at-
tracted attention from both research community
and industries, due to its successful application
in film making and game production. Real time
methods in particular are being actively stud-
ied due to their effectiveness and many poten-
tial applications. Traditionally, such technolo-
gies were only available to institutional users
with high-end hardwares such as laser scanners
and motion capture devices. Nowadays, with the
wide spread availability of video recording de-
vices, there has been an increasing demand for

real time systems that can track and edit facial
performances using only video input. Such sys-
tems feel more natural to users because they of-
fer instant feedback.

Color and depth information on their own do
not carry much semantic meaning and cannot
be used to directly track facial performance. In
order to transfer an expression between the ac-
tor and the target, it has to be encoded in the
same system. Virtually all methods are based
on the assumption that all faces can be repre-
sented by a linear combination of blend shapes
or training data, which is usually represented by
coefficients. One can adjust the combination
to fit the input and derive the expression coef-
ficient from its discrepancy when compared to
the neutral expression. Since methods that use
color information only have access to the pro-
jected shape of the face, generally depth is esti-
mated from the same face through different ex-
pressions and poses derived from multiple im-
age frames. However, the facial mesh differs
drastically between individuals. Some of the
tracking methods require a preprocessing step
to build a user specific facial mesh in advance
to achieve real time performance.

The easiest way to animate and transfer facial
expressions would only require a single depth-
less video camera, and the system would run
in real time. As these methods would only use
2D images, they have the potential of process-
ing videos collected in uncontrolled settings and
using common consumer devices such as phone
cameras and webcams. Online methods are par-
ticularly appealing as user can get instant feed
back.

Still, after years of research in computer vi-
sion and graphics, many existing image-based
facial tracking systems still are not able to pro-



duce results with high frequency detail, since
they use only a coarse set of 2D or 3D facial
landmarks. Facial regions that are not tracked by
the systems are typically ignored and the infor-
mation is discarded. However, high frequency
detail is necessary to generate a convincing re-
sult. Most research on transferring expression to
another target focuses on virtual avatars [26, 4],
where the human actor drives the expression of a
virtual character. Creating a realistic morphable
model for a real human is difficult due to factors
such as skin folding and wrinkling, and change
in eye and mouth shape. Transferring expression
using only color information is even more chal-
lenging, because without depth information as
guidance it has to be robust against depth ambi-
guity, illumination variation, noisy background
and occlusion.

In this paper, we present a fully real time on-
line facial expression transfer method with a sin-
gle RGB camera that can be applied to both
static images and video. Our approach requires
low computational resource and is robust in un-
controlled environments.

Contributions: Firstly, we propose a novel
method to model the appearance variance of a
target user with different facial expressions in
real time. Secondly, a new 3D mesh tracking
method that is both robust and simple is intro-
duced. Finally, the learned appearance models
can be used to validate the accuracy of new in-
put, which prevents outliers from being taken
into consideration.

2 Related Work

Facial performance capture and tracking is a
well established research field[11, 12, 13, 14].
Traditionally, 3D facial performance capture
methods use marker-based motion capture sys-
tems such as [15], which track a sparse set of
markers on a person’s face. These kind of meth-
ods are dependent upon using a specific envi-
ronment and require the person to wear mark-
ers, which is both time consuming and invasive.
Recently, with the development of stereo vision
and depth camera, modern methods no longer
require markers and are able to produce superior
results under less constraints.

Currently, marker-less real time facial track-

(a) Predefined set of con-
tour vertices

(b) Points uniformly sam-
pled from convex hull

Figure 1: Contour index generation.

ing methods can be categorized into two groups
in terms of the input they use. One group,
[1, 2, 3, 4] uses depth information and the other
one relies solely on RGB input [5, 6, 7, 8, 9].

Lately consumer-level depth capture devices
are becoming more widely available, and state-
of-the-art methods [2, 3] that use depth informa-
tion as input have achieved good performance.
However, a vast majority of videos readily avail-
able online or captured by mobile devices are
typically not accompanied with depth informa-
tion.

RGB-based methods generally rely on a fa-
cial landmark detector to coarsely align the face.
Numerous techniques have been proposed to lo-
cate facial landmarks from image input. These
methods reduce the facial alignment error by us-
ing a linear combination of the training data or
the descent direction to update the average face
to explain the input image, e.g., Active Shape
Models[16, 17], Cascaded Pose Regressors[18,
19, 20], Supervised Descent Methods[21, 22]
and Deformable Part Based Models[23, 24, 25].
New techniques are in constant development,
with higher robustness and accuracy. Funda-
mentally, our method can use any of these facial
landmark detection methods provided that they
provide reliable results.

Recently [5] proposed a method that tracks
the 3D mesh of a user in real time using RGB
cameras. Essentially, the mesh is driven by a lin-
ear combination of faces in a 3D face database
[10] consisting of different individuals and ex-
pressions. However, it mainly focuses on track-
ing and driving the animation, and not transfer-
ring realistic expression onto a real human tar-
get from video streams. Thus the applications
are limited to driving game characters or virtual
avatars.
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Figure 2: Overview of our method

3 Overview

The overview of our method is illustrated in
Fig.2. To initialize, both images of the actor and
the transfer target are first scanned by a face de-
tector [27]. We use an object tracker [28] to get
the bounding box of the face. First, we use a
2D landmark detector to localize the facial land-
marks from within the bounding box of the de-
tected face. Next, we solve the pose, expression
coefficient and camera matrix by minimizing
difference between the projection of their com-
bination and the 2D landmarks using an average
identity. After a sufficient number of frames are
processed we solve for the user specific identity
coefficients. This process can be repeated many
times if necessary during the whole runtime. We
learn the transfer target’s appearance using all
images available offline and solve for its pose,
expressions and identity, or we can learn the tex-
tures online and update them iteratively. Finally,
given the actor’s expression we generate appro-
priate texture for the target and we render the
target’s face with the actor’s expression.

4 Facial Mesh

We use Facewarehouse [10] as our underlying
3D mesh database. It consists of the facial ge-
ometry of 150 persons, and 47 expression for
each of the said people. This database is ac-
companied with a dataset of 2D facial images
and their corresponding manually labeled 74 fa-
cial landmarks. We train a 2D landmark detec-
tor on this dataset and use it to track 2D land-
marks. Since all faces shared the same topol-
ogy we select only the frontal facial vertices and
rearrange them into a rank-three(3 mode) data
tensor. The tensor is compressed into a 4k ver-

tices × 50 identities × 25 expressions core us-
ing [29]. Uncompressed original data is repre-
sented as blendshapes and has semantic mean-
ings such as closing eyes, opening mouth and
frowning. However, the computational cost of
fitting new expression and identity is smaller on
the compressed core. The compressed core also
carries no semantic meaning and we cannot use
it to directly transfer facial expressions. Since
the landmark prediction produced by the detec-
tor can be noisy at times, in order to generate
realistic results we have to regularize the expres-
sion coefficients to make sure they are within
valid ranges. Thus, we reconstruct the origi-
nal expression blendshapes and weights given
an identity coefficient, and use them instead of
the compressed weights. Uncompressed blend-
shapes can be reconstructed using the product of
150 × 50 or 47 × 25 orthonormal matrices and
the product of compressed coefficient.

Bexp = C × Uid (1)

Bid = C × Uexp (2)

Intuitively, Bexp represents a person with differ-
ent facial expressions, whereas Bid represents
the same expression performed by different in-
dividuals. When solving for identity we always
use the compressed core with early stopping to
prevent over-fitting while transferring expres-
sion and animating virtual characters we solve
with the reconstructed blendshapes, with early
stop and clamping as a regularization to gener-
ate plausible results.



5 Mesh Tracking

5.1 Pose Estimation

First we rigidly align the 3D mesh to the 2D
landmarks. 3D coordinates of the inner land-
marks such as the ones on nose, eyes, mouth and
eyebrow are located using fixed indices. How-
ever the vertex indices on the face contour have
to be updated in regard to different poses and
expressions. We can find the contour indices
by projecting the vertices onto a plane and sam-
pling its convex hull uniformly. To reduce com-
putational cost we only project a predefined set
of vertices as in Fig.1. First we project the
predefined set of vertices, which are organized
into horizontal lines in a clockwise order, onto
a plane and compute their convex hull. Next
we find the closest point to its first and last
point. Finally we connect the two points with
uniformly sampled points on the convex hull,
and the indices are copied from the closest ver-
tices to these points.

After all the landmarks have been found we
estimate the pose by minimizing distance be-
tween its projection and 2D landmarks. We for-
mulate rotation in the pose estimation step as
a compact 3D Rodrigues vector. First we use
Direct Linear Transform [30] to get an initial
estimate of rotation and translation. Then we
use L-BFGS [31] algorithm to iteratively refine
the Rodrigues and translation vector r and T
by summing the errors and residuals of every
points. Finally we convert the Rodrigues vector
to a 3× 3 rotation matrix R.

5.2 Expression Estimation

Next we solve for the expression coefficient. We
define the projection operator of a vertex V as∏

, which is a scaled orthogonal∏
(V ) = (V ×R+ T )xy/Tz (3)

for the actor and perspective∏
(V ) = (f×V ×R+T )xy/(V ×R+T )z (4)

for the target. f stands for the focal length. A
vertex on facial mesh of different expressions
can be represented by the product of a expres-
sion coefficient E and a set of identity specific

blendshapes B, as in

Vxyz = E ×B (5)

Given an identity coefficient I , which represent
the same individual performing the different ex-
pressions. We minimize squared distance be-
tween the 2D landmarks L as in

D =
1

2
||L−

∏
(E ×B)|| (6)

and save the blended vertices as Fxyz and their
projection as P which are reused when comput-
ing the derivative.

We omit the focal length for the orthogonal
operator. Accordingly, derivative of the two op-
erators in respect to the ith expression coeffi-
cient are

B
(i)
xy

Tz
(L− 1

T
(Fxy + Txy)) (7)

for orthogonal projection and

(f × P − L)(f
B

(i)
xy +B

(i)
z × P

Fz
) (8)

for perspective projection. Since rotation ma-
trix is orthogonal, we rotate the blendshapes in
advance for both projection operator and scale
the 2D landmark by 1

T the orthogonal case,

which makes its derivative become B
(i)
xy × D.

Again, we use a L-BFGS solver for the ex-
pression coefficient, which allows early stop-
ping which speeds up the estimation and pre-
vents over-fitting.

Using fixed pose parameters, we use the or-
thogonal projection operator on the actor as its
computational cost is lower. For the transfer tar-
get we use the perspective operator as it pro-
duces more realistic results as shown in Fig.3.
The rendering in the third column generated by
slightly rotating the tracked face to show depth.
Since the orthogonal operator use a uniform
depth assuming the object is small enough that
its appearance will not be greatly affected by
focal length and depth, the fitted mesh seems
squashed with rotation. Nevertheless, we are
able to successfully recover expressive facial ex-
pression for both projection operator. Although
the two operators are different but the expression
coefficients are interchangeable.
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Figure 3: Projection Operator

As discussed in Section 4, when transferring
the users’ expression we need to use the uncom-
pressed original data. By subtracting the neutral
expression from every other expressions the ver-
tex can be represented similarly

Vxyz = E × (B −N) +N (9)

, where N is the neutral face. We don’t need to
change the way we compute derivative as we re-
place the parts involving adding the neutral with
blended vertices saved as Fxyz .

5.3 Identity Estimation

The identity coefficient can be solved similarly.
Given a specific expression, we can create a set
of blendshapes which represent different indi-
viduals performing the same expression. How-
ever, unlike expression coefficient solving iden-
tity on a single frame is not sufficient and often
leads to weird looking results. Thus, we solve it
using a set of frames with distinctive poses and
expressions. We denote the ith blendshapes with
expression j as B(i,j) and minimize the distance∑

i,j,k

1

2
||L(j,k) −

∏
(I(i) ×B(i,j,k))|| (10)

while fixing all the other parameters.
It is also unnecessary to solve for the focal

length for single frames. Given a set of 2D land-
marks and projected vertices, we can solve the
focal length by minimizing∑

j,k

1

2
||
∏

(F (j,k)
xy ) ∗ fxy − L(j,k)|| (11)

The routine of updating the focal length and
identity coefficient is summarized in Algorithm
1. How to update the texture is described in Sec-
tion 6.

Algorithm 1: User Adaption
Data: New Frame
while not converged do

if New frame is valid then
Add frame;

end
forall the frames do

Solve pose;
Solve identity;
Solve expression;

end
Solve identity for all frames;
Solve focal length for all frames;
Update texture;

end
Result: Updated Identity
Result: Updated Focal Length
Result: Updated Texture

5.4 User Adaptation

We regularly select distinctive frames to solve
for users’ identity coefficients. The first few
initial expression, pose and the flattened land-
mark vector joined together in row major order
to form a parameter base A. When a new frame
arrives, we try to use this base to reconstruct the
solved parameters. If the reconstruction error
is larger than a threshold we add this frame to
the base. Once there are enough newly added
frames we recompute the identity coefficient fo-
cal length, which can be repeat multiple time
during runtime if necessary. We denote b as the
new frame’s parameters.

Since the landmarks produced by the detec-
tor are often noisy, we use double exponential
smoothing to smooth them and accounts for its
trend. We also use double exponential smooth-
ing to smooth the fitted result, after converting
rotation matrix to quaternion than back. Al-
though we don’t have cross frame regulariza-
tion as in [5], our system is still able to pro-
duce smooth and accurate result. Furthermore,
we use our learned appearance model to quickly
verifies whether a frame is valid by thresholding



the sum of pixel differences of the extracted tex-
ture to the texture produced from the learned ap-
pearance model. After a while base size become
stable and most of the possible combinations of
users’ expression and pose will be collected.

6 Appearance Learning

After the identity coefficients and correspond-
ing blendshapes have been computed, we can di-
rectly transfer low frequency information from
actor to target. However, details such as wrin-
kles cannot be transfered because these high fre-
quency information are not captured by the 2D
facial landmarks.

6.1 Appearance Learning

The original uv coordinates of the models in
Facewarehouse includes the whole head, again
we crop the frontal facial uv coordinates and
use the holes formed by the eyeballs and inner
mouth to place our uv coordinate for transfer-
ring eyes and inner mouth texture. Texture is
extracted by rendering the uv coordinates as the
vertices and their corresponding vertex projec-
tion as uv coordinate. This helps us to normal-
ize different textures to the same format, which
makes learning possible. Since the structure of
our uv map is the same for different person and
expression, we can transfer our the new texture
to different targets.

After the 3D mesh’s projection is matched to
its corresponding image, we use the texture map
as vertex position and the projected vertex of
the mesh to extract a texture. We categorized
the extracted textures by their corresponding ex-
pressions. The appearance model is updated by
finding the most similar expression from the col-
lected parameter base and using the new tex-
ture, which is passed through a low-pass filter
to avoid outliers and exponential smoothing to
void outliers.

Finally, we compute an average texture from
all the collected textures. Each textures can be
represented by a linear combination of their dif-
ference from the average texture. We denote the
differences as Bd and use it to construct a tex-
ture variance base.

Figure 4: UV coordinates.

6.2 Texture Generation

When transferring the expression of the actor to
the target, we need to generate appropriate tex-
ture for the actor’s expression. Given a learned
appearance texture variance base, we compute
a vector that contains the distance between the
given expression and the expressions from pa-
rameter base. We normalize this vector and use
it as a coefficient to generate a texture, which is a
linear combination of the texture base and over-
layed onto the texture of the new frame. This
new texture contains high frequency details and
makes the result realistic. To keep the compu-
tational cost low we need keep the length of the
texture coefficient short. Thus, instead of using
dimension reduction methods such as Principle
Component Analysis[32], we omit textures with
low variance from the average texture and keep
the expression indices unchanged, which allows
us to deliver real time performance.

The generated texture can also be used to val-
idate whether the parameters estimated for the
current frame is valid by checking its sum of
pixel differences to the extracted texture. We re-
ject inaccurate frames from the texture updating,
identity and focal length solving process. The
texture variance base is shown in Fig. 5, where
the first row are the input/query frames, the sec-
ond row are the extracted textures and the third
row are their variances from the base texture
colored in JET colormap. Note that the color
intensity of the third row between each frames
does not necessarily reflect its real value as we
normalize them individually instead of jointly to
make regions with different high frequency de-
tails highlighted.

7 Results

We use all the frames from a certain user to solve
for the identity, texture and focal length offline.



By treating it as ground truth we produce Fig. 7
to show the its difference from the identity, tex-
ture and focal length solved online. Our method
is able to converge to good result within 400
hundred frames.

The tracked mesh are shown in Fig.8, which
shows that our system can robustly track the
rough movement and expression. Although high
frequency details are missing, combined with
the texture generated from our learned appear-
ance model we can still deliver realistic results
as shown in 6.

8 Conclusion

We have introduced a novel online facial expres-
sion transfer method using a single video cam-
era. A novel online appearance learning method
has been proposed to generate more convincing
results. We have shown that our method is ro-
bust and accurate. It has relatively low com-
putational cost and hardware requirement. Not
only does our method provides facial expression
transfer but it also can drive virtual characters,
the learned appearance learning scheme we pro-
posed allows us to generate high frequency de-
tails on the target.

Our facial mesh tracking pipeline is ro-
bust against occlusion and illumination changes.
Even if it fails in extreme situations it is able
to quickly recover and our appearance model
is able to reject the outliers from contaminating
the long term parameters such as identity, focal
length and expression specific textures. Never-
theless, although we have accounted for possi-
ble noise and brief occlusion, our method can-
not deal with long term partial occlusion and
gadgets such as glasses will influence the final
transfer result.

With our demo we have already set a up
live demo demonstrating that our mesh track-
ing method is simple enough to run smoothly on
web browsers. For future work, we will save the
learned model on client machines as a live pup-
petry and transfer only expression coefficient to
greatly reduce bandwidth requirement for real
time video conference.
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Figure 7: Online tracking error.

Figure 8: Tracked mesh.



Figure 5: Texture generation

Figure 6: Expression transfer
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