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Abstract
Predicting the environmental impact of a proposed development is notoriously difficult,

especially when future conditions fall outside the current range of conditions. Individual-

based approaches have been developed and applied to predict the impact of environmental

changes on wintering and staging coastal bird populations. How many birds make use of

staging sites is mostly determined by food availability and accessibility, which in the case of

many waterbirds in turn is affected by water level. Many water systems are regulated and

water levels are maintained at target levels, set by management authorities. We used an

individual-based modelling framework (MORPH) to analyse how different target water lev-

els affect the number of migratory Bewick’s swans Cygnus columbianus bewickii staging at

a shallow freshwater lake (Lauwersmeer, the Netherlands) in autumn. As an emerging prop-

erty of the model, we found strong non-linear responses of swan usage to changes in water

level, with a sudden drop in peak numbers as well as bird-days with a 0.20 m rise above the

current target water level. Such strong non-linear responses are probably common and

should be taken into account in environmental impact assessments.

Introduction
Human development is increasingly conflicting with nature [1, 2]. In order to prevent, reduce
or offset negative effects on natural values, environmental impact assessments are often carried
out in order to predict the environmental consequences of a new policy or development proj-
ect. In ecology, however, these predictions are notoriously difficult, and usually are based on
observed ecological relationships. However, such an approach is risky, especially when future
environmental conditions fall outside the current range, because many ecological relationships
are non-linear [3–5].
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When considering effects on animal abundance, an alternative approach is to use models
through which we can scale up from behavioural and ecological processes acting at individual
level to patterns at population level. The reasoning behind this alternative approach is that
these processes are shaped by evolution, and remain valid under new conditions. This
approach has been successfully used to predict the impact of environmental developments
(shell-fishing, building, sea level rise, and warm-water outflow from nuclear power stations) on
numbers of migratory shorebirds wintering in estuaries [6–8], and to model foraging and
departure behaviour of migratory birds at stopover sites [9, 10].

The number of migratory birds that make use of a wintering or staging site is often deter-
mined by the food supply [11]. However, the carrying capacity of a site is rarely a simple divi-
sion of the amount of food present by the total consumption of a single individual, because
many factors influence food availability and consumption rates, and these ecological relation-
ships are often non-linear [12, 13]. In the case of waterbirds, for instance, water depth is an
important determinant of available foraging grounds [14–16]. Hence, calculations of the carry-
ing capacity of a site should consider the food availability dynamics and foraging costs, and not
just the standing food biomass [17, 18]. Competition, both between and within species, and by
direct and indirect processes such as behavioural interference and resource depletion, should
also be taken into account [19–21]. Moreover, individuals may differ in important foraging
attributes, such as reserve state, foraging efficiency or competitive ability [22]. More impor-
tantly, many of these processes interact, and these interactions are not revealed when studying
them separately. Such processes acting at the individual level can be taken into account simul-
taneously by individual-based modelling (IBM), scaling up to patterns at the population level,
such as animal distribution densities and carrying capacity [6]. Population traits arise from
characteristics of the individuals and interactions among them, which can lead to a more realis-
tic representation and even emerging properties of the study system [23].

In this study, we used an IBM to gain insight into the short-term effects of changes in water
regime on the carrying capacity of a shallow lake for staging Bewick’s swans Cygnus columbia-
nus bewickii during their autumn migration. Carrying capacity is here defined as the number of
birds that can be supported by the available food supply during a stopover period. Water levels
in the shallow lake are controlled and currently set at a target level. In order to simulate a more
natural water regime, a more dynamic water level regime is envisaged, with lower target water
levels in summer and higher target water levels in winter [24]. With the IBM we can evaluate
the consequences of several water regime scenarios on the number of staging Bewick’s swans.

During migration, Bewick’s swans forage on aquatic macrophytes [25, 26]. Previous studies
revealed that water depth determines resource accessibility and foraging costs [27], that intake
rate and foraging costs are dependent on substrate as well as water depth [28], and that resource
density and associated depletion determine changes in body condition of the swans [29]. More-
over, interference competition can negatively affect intake rates [30]. In those previous studies
we were able to predict with hindsight (i.e. “retrodict”) swan numbers based on foraging pro-
cesses in a single, well-studied inlet (BBL in Fig 1) [31–33]. In the current study, we scaled up to
the whole lake, measuring resource density, water depth, and sediment type on patch type level
across the entire lake. Next, we parameterized an IBM using published field and laboratory mea-
surements (Table 1). With this model we inferred the distribution of the swans over the patches
according to behavioural rules, assuming intake rate maximization under interference competi-
tion, and predicted staging swan numbers at the lake level. The model was calibrated by varying
the number of immigrating individuals, and by fitting modelled cumulative swan numbers to
observations. Using the calibrated model, predictions were made about what the effect of lower
and higher target water levels would be on swan numbers staging in the lake in autumn. Rather
than making predictions about specific future water regime scenarios, we aimed to deliver a
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proof of concept, i.e. demonstrate that this approach might be useful in an assessment of the
impact of water regime changes on numbers of staging waterbirds.

Methods

Study system
The study was carried out in National Park Lauwersmeer in the north of the Netherlands (53°
22’N, 06° 13’E) in four autumns (2005–2008), under permits issued by Staatsbosbeheer. The
Lauwersmeer is a former part of the Wadden Sea, which turned into a shallow freshwater lake
(2000 ha) after dykes and sluices were built in 1969 [25]. The lake consists of nine inlets (for-
mer creeks), with a gradient from sandy to clayey sediments from north to south (Fig 1). Soon
after the lake’s creation, fennel pondweed Potamogeton pectinatus appeared in the shallower
parts (<1m) [42], and this remained the most common macrophyte species [43]. Fennel pond-
weed mainly overwinters by belowground tubers [44], and these energy-rich tubers are con-
sumed by Bewick’s swans during autumn migration [25]. While foraging, the swans trample
with their feet to loosen the tubers from the sediment, and subsequently head-dip or up-end to
extract these tubers [45]. The foraging swans are accompanied by diving ducks, mainly
pochards Aythya ferina and tufted ducks Aythya fuligula, that dive for tubers that are excavated
by trampling of the swans [25]. Experiments showed that these diving ducks do not affect
intake rates of the swans [46], and are therefore ignored. Transparency, measured with Secchi

Fig 1. Map of the Lauwersmeer. Three letter abbreviations indicate the nine inlets. Inset to the right shows
the location of the Lauwersmeer in the Netherlands. Inset to the left shows the patch types within inlets:
sandy-shallow (light brown), sandy-deep (dark brown), clayey-shallow (light grey) and clayey-deep (dark
grey). Parts of the lake that are shallower than 0.10 m or deeper than 0.86 m are not shown in this inset.

doi:10.1371/journal.pone.0147340.g001
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disc, was c. 0.5 m (data water board Waterschap Noorderzijlvest). After depletion of pondweed
beds, which is also dependent on water levels, the swans switch to beet fields surrounding the
National Park, or continue migration [32, 47].

Field Data Collection
In October and November 2005–2007, and mid-October until mid-December 2008, swans
were counted in the nine inlets from vantage points using a 20–60× telescope (Swarovski ATS
80 HD) on a near-daily basis (observation gaps, 6%, were linearly interpolated).

Table 1. Parameter values used in the model, with symbols, units and references.

Parameter Symbol Unit Value Reference

On pondweed beds (tuber foraging)

Water level pursued by water manager m -0.93** a

Minimum water depth suitable for foraging m 0.10 b

Maximum water depth for head-dipping m 0.51 [32]

Maximum reachable depth m 0.86 [27]

Tuber burial depth shape factor β(Sand) - 0.00077 [32]

β (Clay) - 0.00090 [32]

Energy density of food e J g-1 16866 [34]

Proportion of time spent foraging f - 0.66 [35]

Proportion of foraging time spent underwater φ(Sand) - 0.76 [32]

φ(Clay) - 0.72 [32]

Attack rate a(Sand) m2 s-1 0.00102 [34]

a(Clay) m2 s-1 0.000612 [32]

Handling time h s g-1 1.82 [34]

Benefit from area-restricted search b - 1.38 [36]

Assimilation efficiency q - 0.9 [34]

Metabolic rate while foraging cf (S-S*) J s-1 45.1 [27]

cf (S-D*) J s-1 56.7 [27]

cf (C-S*) J s-1 58.6 [32]

cf (C-D*) J s-1 73.7 [32]

Metabolic rate while resting cr J s-1 22.2 [34]

Metabolic rate while preening cp J s-1 33.8 [34]

Metabolic rate while flying J s-1 204 [37]

Flight speed m s-1 12.8 [34]

Mean flight distance (between inlets) m 3317 c

Mean costs per flight (between inlets) J 52699 c

Lean body mass g 4660 [38]

Energy density of stores J g-1 27.5 103 [39]

Initial energy store of swans J 14.3 106 [40, 41]

Target energy store of swans J 49.0 106 [40, 41]

On fields (sugar beet foraging)

Fraction of pondweed gain at switch to fields p - 0.65 [34]

Daily metabolizable energy intake MEIb J day-1 7.50 106 [34]

Daily energy expenditure DEEb J day-1 2.61 106 [34]

*S-S: sandy-shallow; S-D: sandy-deep; C-S: clayey-shallow; C-D: clayey-deep;

**above sea level (Normaal Amsterdam’s Peil, NAP).

References: a: Waterschap Noorderzijlvest; b: Personal observations; c: This study.

doi:10.1371/journal.pone.0147340.t001
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In early October of 2005–2008, sampling points were stratified among the nine inlets, and
randomly located within inlets (10 points/inlet), with a minimum distance of 100 m between
points to avoid autocorrelation [48]. At these points (1 m2), 12–16 sediment cores (0.10 m in
diameter) were taken, sieving the upper 0.35 m of the sediment. For each sampling point, water
depth (and current water level in the lake in order to calculate standardized water depth) and
sediment type were recorded, and the dry mass of the tubers determined. Final tuber biomass
density was measured by revisiting all sampling points after the swans had left the lake
(November 2005–2007 and December 2008), and repeating the sampling procedure.

Individual-Based Model
Framework. We used the MORPH IBM framework [49] to model the Lauwersmeer,

where swans forage and move between pondweed patches in order to maximize fitness (see
‘forager variables’ for further details). The variables of the model framework are grouped into
three categories: global variables, patch variables and forager variables (see below). Parameter
values were based on previous studies (Table 1). The total number of bird-days was selected as
the output variable, i.e. the sum of the daily number of swans that visited the lake. Model fit
was evaluated by comparing predicted daily number of swans with the daily swan counts. For a
description of MORPH according to the standard (“ODD”) protocol, see [49].

Global variables
The model simulated two months (2005–2007: October—November; 2008: mid October—mid
December) with a time step of one hour. Water level was recorded every 15 minutes by the
water board (Waterschap Noorderzijlvest) in two different inlets (Zoutkamperril ZKR and
Nieuwe Robbengat NRG, Fig 1) in the lake. We took hourly means of ZKR and NRG to calcu-
late the average water level per hour. Water flows into the Lauwersmeer from the hinterland;
above the target level of -0.93 m NAP (NAP being the reference level in the Netherlands, see
footnote Table 1), water is let out by a sluice into the Wadden Sea at low tide.

Patch variables
Patches (of pondweed) were characterized by combinations of two sediment classes and two
water depth classes, resulting in four different patch types (Fig 1). Sediment s was classified into
sandy and clayey [17]. Water depth, standardized to the water level targeted by the water board
(Waterschap Noorderzijlvest), was divided into shallow (0.10 m-0.51 m) and deep (0.52 m-0.86
m), based on the feeding behaviour of the swans (head-dipping vs up-ending). Standardized
water depths shallower than 0.10 m and deeper than 0.86 m were basically too shallow and too
deep, respectively, for fennel pondweed to grow (A. Gyimesi & B.A. Nolet, unpubl. data), there-
fore, areas out of the range 0.10 m– 0.86 m were excluded from the model. The average water
depths were respectively 0.33 and 0.62 m for the shallow and deep water classes. Because water
levels fluctuated, the actual water depth (d in m) per patch varied. Actual water depth was calcu-
lated by correcting for the observed hourly water level (described under Global variables), and
accessibility and foraging costs were adapted accordingly (see below). The size of each patch
type in each inlet was calculated using ArcGIS (version 9.2, ESRI, Redlands, USA). The total
number of patches was 30 since not all patch types were present in all inlets (Fig 1).

In order to calculate initial tuber biomass density D (g m-2) per patch type, the mean tuber
biomass of all cores per patch type, irrespective of inlet, was taken (Table 2). This variable was
year-specific, because of differences in tuber biomass among years [50]. No change in tuber
density besides depletion was modelled; in autumn the tubers stop growing as aboveground
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plant parts are already washed away before the visit of the swans, and tuber mortality is negligi-
ble over the short exploitation period [51].

The proportion of accessible tuber biomass A(d) was calculated per patch depending on
actual water depth d. If, at a given time step, a patch was shallower than 0.51 m or deeper than
0.86 m, A(d) = 1 or 0, respectively [27]. For all depths in between, accessibility was calculated
as [derived from 32]:

AðdÞ ¼ bðsÞ:ðð0:86� dÞ � 100Þ2 ð1Þ
where β(s) is a tuber burial depth shape factor depending on sediment type (Table 1).

The attack rate a(s) (m2 s-1), the proportion of foraging time spent with their heads under-
water φ(s), and the metabolic rate while foraging cf(s) (J s

-1) differed among the four patch
types. The attack rate and proportion of foraging time spent underwater depended on sediment
type, because it takes the swans more time to extract tubers from clayey soils compared to
sandy soils [28, 32]. The metabolic rate while foraging depended on both sediment type and
actual water depth, with foraging on clay and in deep water being more costly [27, 28].

Forager variables
The model contained a total of 3000–6000 swans (corresponding to the range in numbers pres-
ent in the northern Netherlands in autumn 2003–2007; [52]), comprised of super-individuals
of 20 swans each. Bewick’s swans rarely operate in flocks smaller than this, and usage of super-
individuals speeds up the simulations considerably [53]. At the start of a simulation no swans
were present in the model. Arrival date varied among years in the model, reflecting differences
in derived arrival dates among years (2008 being particularly late; Table 3). This is relevant
because water level also varied with date. The influx was modelled to consist of two peaks

Table 2. Tuber densities before and after the swan autumn stopover period. Measured tuber densities (mean ± SE, (N)) in four patch types in the Lau-
wersmeer in four years. Samples were taken in autumn shortly before the arrival of swans (“Initial”) and after swan departure (“Final”). N is number of sam-
pling points.

Year 2005 2006 2007 2008

Patch Type Initial Final Initial Final Initial Final Initial Final

Sandy—Shallow 13.2 ± 2.2
(43)

8.8 ± 1.4 (43) 19.4 ± 2.2
(39)

11.4 ± 1.2
(39)

13.3 ± 2.0
(28)

8.5 ± 0.7 (28) 14.7 ± 2.1
(28)

11.6 ± 1.4
(28)

Sandy—Deep 16.4 ± 3.5 (5) 20.6 ± 1.6 (5) 13.9 ± 1.6 (6) 7.5 ± 1.5 (6) 7.9 ± 1.9 (12) 7.0 ± 1.6 (12) 17.5 ± 4.9
(11)

15.4 ± 3.1
(11)

Clayey—
Shallow

9.9 ± 2.6 (31) 9.2 ± 1.4 (31) 14.2 ± 2.2
(35)

14.2 ± 2.3
(35)

14.9 ± 2.0
(30)

10.0 ± 1.6
(30)

19.3 ± 3.5
(33)

14.8 ± 2.6
(33)

Clayey–Deep 22.2 ± 4.9
(11)

18.1 ± 5.9
(11)

27.0 ± 4.9
(10)

24.4 ± 4.1
(10)

12.4 ± 1.4
(15)

12.5 ± 1.7
(15)

30.7 ± 6.0
(13)

22.6 ± 4.0
(13)

Weighted Mean 14.5 13.2 17.7 12.3 12.0 8.8 18.2 14.5

doi:10.1371/journal.pone.0147340.t002

Table 3. Immigration peaks of swans to the model. Immigration dates of the swans followed a normal dis-
tribution with a mean and standard deviation (= 3 days) based on arrival dates derived from the observed
numbers in the field. Arrivals (and departures) in the field were approximated by taking the difference in daily
bird numbers counted at subsequent days (Fig 2).

Year 2005 2006 2007 2008

First peak 19 Oct 18 Oct 19 Oct 9 Nov

Second peak 2 Nov 1 Nov 2 Nov 23 Nov

doi:10.1371/journal.pone.0147340.t003
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(simulating non-breeders and breeders; [25]), the second peak (half the size of the first one)
occurring 14 days after the first peak. (Table 3)

Tuber intake rate I (g s-1) depended on tuber biomass density, sediment type, actual water
depth, and swan density (see below), and was modelled as a type II functional response [34,
54]. By moving adaptively within patches, swans make use of the positive spatial autocorrela-
tion in the abundance of pondweed biomass, encountering high-density patches more often,
and low density patches less often than their frequencies on offer. This results in a higher long-
term intake rate (benefit from area-restricted search b = 1.38) [36]. Bewick’s swans refuelling
on tubers of pondweed are time-limited, and the model swans could therefore maximally for-
age an estimated 66% of the time (proportion of time spent foraging f = 0.66) [35]. We included
interference competition in the model by reducing the intake rate with higher densities of
super-individuals in a certain patch according to the results of Gyimesi et al. [30], who mod-
elled the effect of interference competition on tuber intake rates of Bewick’s swans at the Lau-
wersmeer using a polynomial equation for the relative intake rate i as function of swan density
N (m2):

iðNÞ ¼ �530344� N4 þ 60100� N3 � 1976:3� N2 � 0:7284� N þ 1 ð2Þ

Tuber intake rate was thus modelled as:

I ¼ f :b:iðNÞ:φðsÞ: aðsÞ:AðdÞ:D
1þ aðsÞ:h:AðdÞ:D ð3Þ

where h is the handling time (s g-1).
The metabolizable energy intake rate is the tuber intake rate multiplied by the energy den-

sity of tubers e (J g-1) and metabolizability q [34]. The energy costs while on the pondweed
beds were calculated as the proportion of time spent foraging (f) times the costs of foraging (cf
in J s-1), and the proportion of time not spent foraging (1 –f) times the costs of non-foraging,
taken as the average of the costs of resting (cr in J s-1) and the costs of preening (cp), the main
alternative activities [35]. As energetic costs were determined under field conditions [34], they
were assumed to include heat increment of feeding, and no further correction was made.
Therefore, the (net) energy gain rate at tubers Gt (J s

-1) was:

Gt ¼ q:e:I � f :cf þ ð1� f Þ: cr þ cp
2

� �
ð4Þ

At each time step, each super-individual could make the decision to stay at the same patch,
go to another patch, or to emigrate. These decisions were based on the expected obtainable fit-
ness (i.e., gain rate or net energy intake rate) for each patch, assuming perfect knowledge of the
swans. Because the model uses time steps of one hour, the costs and time of travelling between
patches were simplified. Travelling time between patches was dependent on a threshold dis-
tance. Moving to patches that were<3316 m (the mean distance between inlets) from the cur-
rent patch did not take any time nor energy, whereas travelling by flying to patches>3316 m
from the current patch took one time step (i.e. 1 h, including settling time) and cost 3316/
12.8×0.204 = 53 kJ (see Table 1 for details).

The initial energy store (J) of arriving swans was based on their abdominal profile index
(API). We assumed a lean body mass of 4660 g [38], and that stores had an energy density of
27.5 103 J g-1 [39]. At arrival, API = 2 [41], which was converted into individual swan mass
(5182 g) using an equation based on body mass and tarsus length [40, 55]. The swans left the
model either when they reached their target energy store (API = 5 or 6441 g) [41], or when the
expected fitness of emigration (foraging outside of the model area, i.e. on beet fields) was above
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the fitness that could be obtained from foraging on pondweed patches. The swans tended to
switch to beet fields when the gain rate of tuber-feeding Gt had fallen well below the gain rate
they could attain at beet fields Gb (i.e., Gt � p. Gb; p = 0.65 [34]), as an effect of the perceived
higher predation risk at beet fields. Therefore, emigration occurred when the gain rate of
tuber-feeding, Gt dropped to:

Gt < ðp:ðMEIb � DEEbÞÞ=86400 ð5Þ
whereMEIb is the daily metabolizable energy intake rate on beet fields (J day-1), and DEEb is
the daily energy expenditure on beet fields (J day-1) [34].

Simulations
As stated above, water level, tuber density and time of arrival varied with year in accordance
with observations. For each year, we further varied, in steps of 500, the total number of incom-
ing swans to calibrate the predicted staging swan numbers against the observations, in terms of
pattern of swan presence, peak numbers and total bird-days.

A sensitivity analysis (see S1 File) showed that the model outcome in terms of total number
of bird-days was robust to changes in parameter values except for changes in water depth
(Figure C in S1 File). Hence, we subsequently simulated the effect of changes in water regime
(i.e., target water level) on the total number of bird-days. Water is drawn from the Lauwersm-
eer whenever its water levels are higher than the target water level. However, in practice this is
only possible when the water level in the Wadden Sea is lower than that in the Lauwersmeer.
This usually occurs during low tide, except in periods of neap tide when the water level in the
Wadden Sea tends to remain higher than in the Lauwersmeer even during low tide. This means
that a given target water level cannot always be maintained. Whenever water level in the Wad-
den Sea was higher than the water level in the Lauwersmeer, the latter gradually rose, because
drawdown from the Lauwersmeer was not possible. When the water level in the Wadden Sea
permitted drawdown, and the water level in the Lauwersmeer was above the target level, the
water level was lowered until the target water level was reached (Figure A in S1 File). Impor-
tantly, the dynamics of water levels above target water levels depend on the chosen target water
level. This is because drawdown might already be possible with a higher target water level
before being possible with a lower target water level, or continue with a lower target water level
after being stopped with a higher target water level. In order to account for this effect, we mod-
elled water levels in the Lauwersmeer in response to observed water levels in the Wadden Sea
(at the sluice, provided by the water board, Waterschap Noorderzijlvest). The best least-squares
fit was obtained with a rate of decrease in water level at drawdown of 0.15 m h-1 and a rate of
increase during water build-up of 0.01 m h-1. These rates explained a good proportion of the
observed variation in water levels (Figure B in S1 File; R2 = 0.63, 0.63, 0.64, 0.70, for 2005–
2008, respectively). We varied target water levels between -0.73 m and -1.13 m NAP in steps of
0.10 m, using these modelled water levels.

Results
The best fit between observed and modelled swan numbers was obtained with incoming swan
numbers varying among years, from a minimum of 3000 in 2007, a maximum of 6000 in 2006,
and an intermediate number of 4500 in both 2005 and 2008. Those incoming numbers resulted
in a good agreement between observations and model outcome in the pattern of swan presence.
In 2005, 2006 and 2008, the daily pattern was characterized by a large peak in swan presence
followed by a smaller peak about 2 weeks later, whereas in 2007 three smaller peaks 1–2 weeks
apart were observed. These general patterns were captured by the model (Fig 2).

Predictive Modelling of Staging Swans

PLOS ONE | DOI:10.1371/journal.pone.0147340 February 10, 2016 8 / 17



For 2005 and 2006, the model predicted that the (super-)individuals arriving in the first
peak stayed on average longer than those of the second peak (2005: 4.22 ± 0.17 and 2.52 ± 0.55
days; 2006: 2.95 ± 0.10 and 0.84 ± 0.10 days; mean ± SD, N = 4), whereas for 2007 and 2008 it
was the other way around (2007: 2.75 ± 0.06 and 4.11 ± 0.17 days; 2008: 2.16 ± 0.05 and
3.14 ± 0.15 days). Accordingly, on average, (super-)individuals reached higher energy stores
(expressed as percentage of the target energy store) in the first peak in 2005 and 2006 (2005:
69 ± 3 and 16 ± 5%; 2006: 89 ± 2 and 8 ± 3%), whereas in 2007 and 2008 there was not much
difference between the (super-)individuals of the first and second peak (2007: 55 ± 14 and
68 ± 5%; 2008: 44 ± 11 and 42 ± 15%).

Also, in terms of aggregate numbers such as peak numbers and bird-days, the agreement
between counts and model outcomes was satisfactory. Indeed, no significant differences
between observed and modelled peak numbers nor between observed and modelled bird-days
were apparent (paired t-test, Table 4). Also, for peak numbers, the intercept of the linear
regression was not significantly different from 0 and the slope not significantly different from 1
(Table 4) when plotting the observed numbers against the numbers modelled under the
observed water levels (Fig 3, left panels). It should be noted however that sample size (numbers
of years) is limited, so the power to detect such a difference is low. When using water levels
modelled under the current target water level of -0.93 m NAP, for peak numbers, the intercept
was significantly different from 0 and the slope from 1 (Table 4), but even in this case, over the
range of observed peak numbers, there was a good agreement with the modelled peak numbers
(Fig 3 upper right panel). For bird-days, the slope was however significantly larger than 1 when
plotting the observed numbers against the numbers modelled under the observed water levels
(Table 4).

Another way to test the performance of the model is to compare observed and modelled
tuber biomass densities after the swans have left the lake. Again, the agreement between

Fig 2. Autumn stopover of Bewick’s swans in the Lauwersmeer in four years. Top row gives the number
of arriving swans, derived from the day-to-day difference in counted numbers of swans (blue, only positive
values given), and modelled in two peaks (red and orange). Middle row gives the numbers of swans counted
each day on the lake. Bottom row gives one example run of the daily number of swans modelled with a target
water level of -0.93 m above sea level (NAP, see footnote Table 1).

doi:10.1371/journal.pone.0147340.g002
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measurements and model outcomes was generally satisfactory, with no significant differences
between observed and modelled final tuber biomass densities (paired t-test, Table 5). Apart
from 2008, the intercept of the linear regression was not significantly different from 0 and the
slope not significantly different from 1 (Table 5) when plotting the observed final tuber density
against the ones modelled under the observed water levels (Fig 4). Again, it should be noted
that sample size (numbers of classes) is limited, so the power to detect such a difference is low.

The water regime was changed by altering the target water level. Target water levels 0.10 m
or 0.20 m lower (down to -1.13 m NAP) had little effect on peak numbers and bird-days; this
can be seen in Fig 5 by comparing the predicted peak numbers and bird-days with those pre-
dicted under the current target water level (green bars). A slightly higher (+0.10 m) target
water level (-0.83 m NAP) did not have much of an effect either. However, raising the target
water level even more (+0.20 m) to -0.73 m NAP led to a dramatic decrease in the numbers of
swans staging at the lake, both measured in peak numbers (Fig 5a) and in bird-days (Fig 5b).

Discussion
Previous research demonstrated, in qualitative terms, that more Bewick’s swans were, in total,
staging in inlets where they could obtain the highest net energy intake rate [17] and that yearly
variation in staging swans in the lake was to a large extent explained by annual differences in
tuber biomass density and water level fluctuations [33]. Also in quantitative terms, previous
research was successful in predicting (or more precisely “retrodicting”) how many swan-days
were spent in a well-studied inlet, taking temporal and small-scale spatial differences in tuber
biomass density into account [25, 31, 32]. The current study extends this to a prediction of
swan usage of the whole lake, depending on the tuber biomass on offer, the water level fluctua-
tions, and the timing and numbers of arriving swans. We modelled the swan usage as occurring
in two peaks: while the first peak was accurately predicted, the second peak tended to be under-
estimated. Overall differences were however not significant, therefore the study demonstrates
that—based on annual differences in both tuber biomass density and water level fluctuations—
we can “predict” the total number of swans as well as the temporal pattern of swan usage of the
lake, as a whole.

Individual-based models are parameter-rich [56, 57]. This type of modelling is however
suitable when resource supply and availability are temporally and spatially varying. These

Table 4. Comparison of observed andmodelled Bewick’s swan numbers during autumn stopover in the Lauwersmeer in four years. Results of
paired t-tests and linear regressions of observed against modelled numbers, for peak numbers and bird-days separately. Significant results in bold.

Paired t-test Linear regression

t3 P R2 Intercept LL UL Slope LL UL

Peak numbers

Obs vs. Mod(Obs) -0.006 0.99 0.95 155 -577 888 0.90 0.45 1.35

Obs vs. Mod(Mod) 0.30 0.79 0.99 -554 -988 -120 1.38 1.10 1.65

Mod(Obs) vs. Mod(Mod) 0.21 0.85 0.95 -689 -1825 448 1.46 0.74 2.18

Bird-days

Obs vs. Mod(Obs) 2.25 0.11 0.98 -6883 -34680 21564 1.88 1.22 2.53

Obs vs. Mod(Mod) 0.70 0.53 0.74 -6558 -14327 561 1.60 -0.54 3.74

Mod(Obs) vs. Mod(Mod) -1.88 0.16 0.59 1410 -16939 19760 0.75 -0.65 2.15

Obs: observed; Mod(Obs): modelled with observed water levels; Mod(Mod): modelled with modelled water levels at current target water level of -0.93 m

below sea level (NAP, see footnote Table 1).

LL: lower limit, UL: upper limit of 95%-confidence interval.

doi:10.1371/journal.pone.0147340.t004
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Fig 3. Comparison of observed andmodelled Bewick’s swans numbers during autumn stopover in
the Lauwersmeer in four years. Swan numbers were either expressed in maximum daily numbers (“peak
numbers”) or in the sum of daily numbers (“bird-days”). Water levels were either observed or modelled with
the current target water level (-0.93 m NAP, see footnote Table 1). Lines are y = x and linear regressions with
95%-confidence intervals. Error bars indicate SD (N = 4).

doi:10.1371/journal.pone.0147340.g003

Table 5. Comparison of observed andmodelled final tuber biomass density after autumn swan stopover in the Lauwersmeer in four years. Results
of paired t-tests and linear regressions of observed against modelled (with observed water levels) final tuber biomass densities. Significant results in bold.

Paired t-test Linear regression

t3 P R2 Intercept LL UL Slope LL UL

2005 0.16 0.88 0.72 3.56 -12.65 19.76 0.76 -0.31 1.84

2006 -1.51 0.23 0.83 -1.25 -18.18 15.68 0.94 -0.02 1.89

2007 -1.48 0.23 0.50 3.60 -10.12 17.32 0.53 -0.67 1.73

2008 -1.63 0.20 0.96 5.44 0.53 10.37 0.56 0.32 0.80

LL: lower limit, UL: upper limit of 95%-confidence interval.

doi:10.1371/journal.pone.0147340.t005
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dynamics, further enhanced by resource depletion, can cause different individuals to experi-
ence different fuelling trajectories. In our case, for example, the timing of arrival determined
resource levels and water levels encountered, and hence affected whether swans left the lake
because they had completely refuelled or because their net energy intake rate fell below the crit-
ical threshold level. Arrival time of the swans is determined by conditions further upstream the
migratory trajectory [58], and they are therefore largely unable to tune their arrival to favour-
able water levels. Overall residence time (days; mean ± SD, N = 4) of swans in the model (2005:
3.83 ± 0.06; 2006: 2.60 ± 0.12; 2007: 3.27 ± 0.05; 2008: 2.43 ± 0.07) is in line with observed min-
imum residence times derived from marked individuals (1995: 1.82 ± 1.56, N = 115; 1996:
2.24 ± 2.31 days, N = 74) (B.A. Nolet, unpublished data). However, individual differences in
departure conditions were reflected in the different staging durations and final energy stores
predicted for swans arriving in the first or second peak, and in different years.

Individual-based models are also known for their emerging properties [23]. In fact, the pat-
tern of stopover use and the bird-days spent at the lake are emerging properties. We had to

Fig 4. Comparison of observed andmodelled tuber biomass density after swan stopover in autumn in
the Lauwersmeer in four years in four patch types. Patch types were characterized by sediment type
(sandy or clayey) and standardized water depth (shallow or deep). Lines are y = x and linear regression with
95%-confidence intervals. Error bars indicate SE for observations and SD (N = 4) for model predictions (the
latter hidden by symbols). Modelled with observed water levels.

doi:10.1371/journal.pone.0147340.g004
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assume a large annual variation in the number of arriving swans to replicate the yearly patterns.
Such variation is also apparent in autumn counts on migration sites of passing Bewick’s swans
(see www.trektellen.nl; hourly mean observed number passing in autumn against modelled
number of arriving swans: R = 0.878, one-tailed P< 0.07, N = 4), suggesting that this interan-
nual variation is realistic.

Swans were assumed to have complete information about their fitness in all patches in the
system, but because tubers of fennel pondweed are not visible for the swans, assuming

Fig 5. Modelled numbers of staging Bewick’s swans at varying target water levels in four years. Swan
numbers were either expressed in maximum daily numbers (“peak numbers”) or in the sum of daily numbers
(“bird-days”). Water levels were modelled with a target water level varying between -0.73 m and -1.13 m
above sea level (NAP, see footnote Table 1). Error bars indicate SD (N = 4).

doi:10.1371/journal.pone.0147340.g005
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incomplete information might be more realistic. However, red knots (Calidris canutus), that
also feed on hidden prey items, behave as if they have complete knowledge on food distribution
[59]. On the other hand, a modelling study of white-fronted Geese (Anser albifrons) foraging
on crop remains found that a model assuming incompletely informed foragers resulted in the
best fit with observed data [60]. So, the amount of information Bewick’s swans actually have on
the food distribution and how this influences their decision making requires further
investigation.

Having developed the individual-based model, we can actually predict the dynamics of
swan stopover. It should be noted that we only modelled short-term changes in target water
levels. In the longer term, we expect the submerged plants like fennel pondweed to respond to
new target levels also, which will affect the surface area and biomass density of patches, and
hence the stopover dynamics of the swans.

Our study suggests strong non-linear responses at the population level to changes in water
regime and that, beyond a certain threshold, small changes in water level will have a large
impact on the numbers of staging waterbirds. Part of this non-linearity may be due to our
modelling of shallow and deep patches. However, the largest drop in staging swan numbers
occurred when the water level rose to such height that even the shallow patches became nearly
inaccessible to the swans. This finding can be important for the quantitative evaluation of man-
agement options at our study wetland. Further research using this or another framework to
develop individual-based models might reveal this non-linearity to be an important aspect in
other wetlands also.

Supporting Information
S1 File. Water level in Lauwersmeer andWadden Sea in autumn in four years (Figure A in
S1 File), modelled against observed hourly water levels in the Lauwersmeer in autumn in
four years (Figure B in S1 File), sensitivity analysis (Text in S1 File) and elasticity of 19
parameters for the total number of bird-days (Figure C in S1 File).
(DOCX)
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