Default mode hypoconnectivity underlies a sex-related autism spectrum

Rolf J. F. Ypma*1,2, Rachel L. Moseley*1,3, Rosemary J. Holt4, Naresh Rughooputh1, Dorothea L. Floris4, Lindsay R. Chura4, Michael D. Spencer4, Simon Baron-Cohen4,5, John Suckling1,6,7, Edward T. Bullmore1,6,7,8, & Mikail Rubinov1,9,10

*equal contribution
1Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 3EB, UK.
2Hughes Hall, University of Cambridge, Cambridge CB1 2EW, UK.
3Bournemouth University, Dorset BH12 5BB, UK.
4Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK.
5CLASS clinic, Cambridgeshire and Peterborough Foundation Trust, Cambridge CB21 5EF, UK.
6Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, UK
7Cambridgeshire & Peterborough Foundation Trust, Cambridge PE29 3RJ, UK.
8ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline, Stevenage SG1 2NY, UK.
9Churchill College, University of Cambridge, Cambridge CB3 0DS, UK.
10Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.

Running title: DMN connectivity defines a sex-related autism spectrum

Key words: autism; default mode network; functional connectivity; extreme male brain theory; neuroimaging; connectomics

Word count
abstract: 250
text: 3530

Figures: 2
Tables: 0
Supplemental Information: 1

Corresponding author: R. J. F. Ypma
rjfy2@cam.ac.uk
Brain Mapping Unit, Sir William Hardy Building, Cambridge CB2 3EB
+44 (0)1223 769499
Abstract

Background Females and males differ significantly in the prevalence and presentation of autism spectrum conditions. One theory of this effect postulates that autistic traits lie on a sex-related continuum in the general population, and autism represents the extreme male end of this spectrum. This theory predicts that any feature of autism in males should 1) be present in autistic females, 2) differentiate between the sexes in the typical population and 3) correlate with autistic traits. Here we tested these three predictions for default mode network (DMN) hypoconnectivity during resting state, one of the most robustly found neurobiological differences in autism.

Methods We analyzed a primary dataset of adolescents (n=121, 12-18 years) containing a relatively large number of females, and a replication multisite dataset including children, adolescents and adults (n=980, 6-58 years). We quantified the average connectivity between DMN regions, and tested for group differences and correlation with behavioral performance using robust regression.

Results We found significant differences in DMN intra-connectivity 1) between female controls and females with autism (p = .001, primary dataset; p = .009, replication dataset), and 2) between female controls and male controls (p = .036, primary dataset; p = .002, replication dataset). We additionally found 3) a significant correlation between DMN intra-connectivity and performance on a mentalizing task (p = .001) in the primary dataset.

Conclusions Collectively, these findings provide the first evidence for DMN hypoconnectivity as a behaviorally relevant, neuroimaging phenotype of the sex-related spectrum of autistic traits, of which autism represents the extreme case.
Introduction

The strikingly high male to female prevalence ratio is one of the most obvious and robust characteristics of autism spectrum conditions (ASC) (1–3). While it is not known whether this bias reflects differential rates of diagnosis or genuine sex differences in prevalence (4; 5), the link between autism and the male sex is common in pervasive public stereotypes and originates with the first descriptions of these conditions. Asperger, having never encountered a female patient, informally described his eponymous syndrome as an “extreme variant of male intelligence” (6). A later formulation of this original observation noted population-level differences between the sexes in systemizing (a tendency to think mechanistically and logically, to perceive patterns and systems) and empathizing (the ability to identify and affectively share the emotional states of others), which are respectively stronger and weaker in ASC (7; 8). As males typically show an attenuated version of the same trend (greater systemizing and lower empathizing), these observations have led to the hypothesis that autistic traits exist on a continuum in the typical population (a prediction borne out by studies in genetics (9)) and that ASC represent an extreme form of the typical male brain (7; 8; 10; 11).

The neurobiological underpinnings of this framework have received little attention. Most neuroimaging studies have focused on identifying neurobiological features of autism, usually in predominantly male populations. The parsimonious prediction generated by the framework is that such neurobiological differences in ASC would further reflect the ‘extreme’ position of these individuals on the spectrum on which typical males and females differ. More specifically, a robust neurobiological feature of autism in males, would 1) be
similarly present in females with ASC, 2) show sex-specific differences in the typically
developing population, and 3) correlate with autistic behavioral traits. However, these
predictions have not been previously tested.

Rather than examining brain areas in isolation, much autism research has focused on
functional connectivity patterns between brain regions (12). Functional connectivity is
defined as the statistical association between pairs of brain regions, and may be inferred
across a range of spatial and temporal scales, with a variety of measures. In the present article
we focus on the most common operationalization of this concept in human neuroimaging: the
computation of functional MRI connectivity using Pearson correlation (13). The default
mode network (DMN) has been of particular interest in ASC due to its putative role in
mentalizing and social cognition (14–18). This network, a group of brain regions which
reduce their activity during cognitive processing, fail to deactivate in ASC (19–21). Altered
functional connectivity between DMN regions at rest (22–29) and during tasks (30) is among
the most commonly reported functional connectivity findings in ASC. Differences in
functional connectivity within this network have been found across a range of methods
including independent component analysis (22; 24), ROI or seed-based analyses (23; 26–29)
and graph-theoretical analyses (25; 30). Furthermore, these differences correlate with core
ASC symptoms (22; 23; 27; 28), and constitute an endophenotype (21; 30) – a genetically
mediated biomarker (31) which distinguishes biological relatives of people with ASC from
other members of the population. However the current literature on sex differences in DMN
connectivity is sparse and inconsistent (32–34). Alteration of DMN connectivity thus
represents a natural target for investigation of the hypothesized sex-related spectrum of
autistic traits.

Here, we leveraged a primary dataset with a relatively large number of females with
ASC and female siblings of individuals with ASC, and a replication multisite dataset, to
robustly test the predictions made by this framework. All participants were scanned during resting state, that is, a condition of lying still and quietly, unengaged in cognitive tasks. We specifically tested whether weaker functional connectivity between regions of the DMN is 1) a feature and endophenotype for autism in females, as has previously been shown in males with autism, 2) present in males relative to females in the typically developing population and 3) correlates with decreased mentalizing ability, typically affected in autism. We also tested the specificity of DMN hypoconnectivity by leveraging a positive control dataset of participants with a distinct psychiatric condition, major depressive disorder.

Materials and methods

Primary dataset: the Cambridge Family Study of Autism (CFSA)

The Cambridge Family Study of Autism (CFSA) comprises resting state and task scans from control females (n=20), control males (n=20), females with ASC (n=16), males with ASC (n=35) and non-affected female (n=30) and male (n=13) siblings of subjects with ASC (21; 30; 35–39). We used only the resting state scans from this sample for analysis. All participants were aged 12-18 and had no history of psychotropic drug usage and no other documented psychiatric conditions. Diagnostic status of the ASC group was confirmed with the ADOS-G and ADI-R, gold-standard tools in autism diagnosis (40; 41). See Supplemental Information (SI) 1 for full demographic details of all participants.

Replication dataset: Autism Brain Imaging Data Exchange (ABIDE)

To test the reproducibility of findings from the CFSA data, we analyzed resting state scans from 408 males with ASC, 428 control males, 55 females with ASC and 89 control females, obtained from the Autism Brain Imaging Data Exchange (ABIDE:
These data were collected from 15 imaging sites, and participants spanned a wide age range between 6-58 years old. However, 456 (47%) participants were in the same age range (12-18 years old) as the CFSA participants. This replication dataset offers a considerable increase in statistical power, at the expense of a more heterogeneous population. We discuss our control for this heterogeneity below.

Positive control dataset: MR-IMPACT study of depression.

To test the specificity of our findings, we analyzed a positive control dataset of a distinct psychiatric disorder, major depression. We obtained data from the MR-IMPACT study of depression, which comprises resting state scans from adolescent male (n=6) and female (n=18) controls, and adolescent male (n = 17) and female (n = 46) patients with moderate-to-severe major depressive disorder (43) but otherwise typical development (44).

Preprocessing

FMRI scanning parameters for the primary and replication dataset are provided in SI 2. A preprocessing pipeline using AFNI (45) and FSL (46) was applied to all scans. The pipeline included removal of the first five scans of each functional EPI series, skull-stripping, brain segmentation, non-linear registration to MNI space, and co-registration of anatomical images to re-aligned and slice-time corrected functional scans. Motion parameters, and mean signal from trimmed binary masks (partial volume estimates > 0.99) of cerebrospinal fluid and white matter, their derivatives and quadratic terms, were regressed out as confounds, resulting in a total of 32 regressors (47; 48); we did not perform global signal regression (49). Each participant’s time-series were despiked, band-pass filtered in the range 0.01-0.1Hz,
denoised by removal of the 32 regressors (band-pass filtered in the same range), and
smoothed with an 8-mm FWHM Gaussian kernel, all using the AFNI 3dBandpass command
issue of high concern in analyses of functional connectivity (50–53), and we provide details
of our pipeline and an analysis of the effect of motion on our results in SI 3.

The DMN was defined as 58 8mm-radius spherical regions of interest derived
from a meta-analysis of fMRI studies (54) (SI 4). To remove weak and spurious correlations
we analyzed binary networks obtained by thresholding the matrices, and preserving only the
strongest 20% of connection weights for each participant.

Statistical analysis

We computed functional DMN intra-connectivity as the density of all binary
intra-DMN edges minus a constant number of such edges expected in a random network (0.2
for a 20% density, see SI 5 for additional discussion). We defined functional connectivity
using Pearson correlation and subtracted the constant to increase interpretability and decrease
dependence of the measure on the chosen binarizing threshold. In the primary dataset, we
tested for a difference between control females and 1) females with ASC, 2) sisters of
subjects with ASC, 3) control males and 4) males with ASC, and between control males and
males with ASC, using multiple regression controlling for effects of age and IQ. In the
replication dataset we conducted the same tests (with the exception of the sibling contrast)
but included an additional regressor of study site (thus correcting for age, IQ and study site).
As the residuals of the test on the replication dataset failed a Shapiro-Wilk test for normality
(p = .03), we employed robust regression for all analyses in this study, although results were
similar with standard least squares regression. Robust regression, in comparison to standard
regression, is less affected by violations of normality and by the potential presence of outliers (55).

We quantified the final effect sizes by pooling all available data from the primary and replication datasets, and performing a multiple regression analysis, correcting for age, IQ and study site. We quantified differences in connectivity between groups as a percentage change of mean DMN intra-connectivity relative to a baseline of control males (SI 6). We tested the specificity of observed effects by repeating the multiple regression analysis on all data including the positive-control dataset, specifically testing for an effect of depression diagnosis. We repeated this test separately for both sexes. Finally, we explicitly investigated the effect of age, repeating the analysis on the pooled data of the primary and replication datasets stratified by age group: children (aged 6-11 years), adolescents (12-18 years) and adults (>18 years).

Robustness analyses

We conducted a number of robustness analyses, including the additional preprocessing step of scrubbing, exclusion of high-moving subjects, regressing out motion parameters, using a threshold-independent quantification of intra-network connectivity, and excluding three sites in the ABIDE dataset associated with previous studies of DMN connectivity (to exclude a possible circular argument). We also further explored the impact of motion. See SI 7 for full details on these analyses.

Behavioral analysis

Data was collected for all CFSA participants on performance on the “Reading the Mind in the Eyes” mentalizing task (38; 56). This task, performed during fMRI recording,
is a popular test of mentalizing and emotion recognition: presented with just a pair of eyes, participants were required to choose one of two words to describe the expression of the eyes and the congruent mental state. Although we do not have direct measures of systemizing or empathizing, this task is related to mentalizing as well as the empathizing construct. In a control, non-mentalizing condition, participants simply judged whether the eyes belonged to a male or female. Previously, we found performance on this mentalizing task to be related to diagnosis; such that subjects with autism performed worse than controls (38). Here we examined whether DMN intra-connectivity correlated with the percentage of incorrect responses in the mentalizing and the control condition beyond this diagnosis effect, by regressing out the effects of age, IQ and the six groups (ASC, sibling and control groups split by sex). We also performed this analysis separately for the two sexes and three groups.

Results

DMN hypoconnectivity was previously shown to characterize autism in male-only or heavily male-biased studies (22–30) and to appear as an endophenotype in male siblings (30). Here, controlling for heterogeneity in age and IQ, we found that DMN hypoconnectivity is likewise robustly present in females with ASC (primary dataset p = .001; replication dataset p = .009, Fig 1A,C) and also represents an endophenotype with unaffected female siblings of individuals with ASC placed between typically developing and autism participants, with significantly lower connectivity than the former (p = .035). The endophenotype analysis of the females complements our previous report of an endophenotype for the male-only subset of this dataset in a previous study (30). Furthermore, consistent with the hypothesized difference in autistic traits between typical males and females, DMN intra-connectivity was lower in control males than control females (primary dataset p = .036; replication dataset p = .002, Fig 1B,D).
We quantified the effect sizes for the four groups by pooling the primary and replication datasets (Fig 2A). The mean connectivity for control females was 27% higher than the mean value for control males, while the mean for males with ASC was 16% lower. Females with ASC were intermediate between males with ASC and control males, with mean 9% lower than the latter (not statistically significantly different from either group, p > .1).

Our pooled data covered a substantial age range from 6.5 to 58. Although DMN intra-connectivity appears variable across the lifespan (Fig. 2B), the contrasts we identified were present to some extent in all three age groups. We replicated all three testable comparisons, control females – females with ASC, control females – control males, control males – males with ASC, for children (effect size [p-value]: .08 [.009], .06 [.01], .04 [.02]) and adolescents (.06 [.02], .05 [.002], .03 [.004]). For adults, effect sizes were reduced and differences were trend-level or non-significant (.08 [.1], .02 [.5], .03 [.1]). See SI 8 for details of this analysis. We could not evaluate the endophenotype effect in the replication dataset as it did not contain siblings.

We found no significant default-mode connectivity effect in a positive control dataset of participants (n=63) diagnosed with a distinct psychiatric condition, major depressive disorder (p > .1; Fig. 2C). The effect remained absent when allowing for a sex by diagnosis interaction (SI 9).

Behavioral data are available from the CFSA sample only. The observed differences in DMN connectivity were significantly associated with performance on the “Reading the Mind in the Eyes” task (56), a task known to reveal mentalizing impairments in autism (Fig. 1E,F). A higher percentage of errors on this task was associated with lower DMN intra-connectivity in the whole sample of males and females with ASC, siblings and controls (p = .001), beyond the effects of diagnosis, age and IQ. The same effect was separately found in the female (p = .034) and male (p = .016) groups. A negative effect was also found when
analyzing each of the three (ASC, siblings, controls) groups separately, but only significantly so for the ASC group (p = .008). See SI 10 for full results. Furthermore, there was no relationship between DMN intra-connectivity and percentage errors in a control task of gender-judgment (p > .1), and performance on neither task correlated with movement (SI 10).

Discussion

To our knowledge, this is the first direct investigation of functional connectivity in the default mode network as neurobiological correlate of the sex-related spectrum of autistic traits. We used two independently acquired datasets to test three specific predictions. Firstly, we showed a robust and specific reduction in DMN intra-connectivity in females with ASC and in unaffected female siblings of subjects with ASC, replicating previous results in males (30). Secondly, we found that control females had an increased DMN intra-connectivity compared to control males, and that people with ASC tended to have lower intra-connectivity still. Thirdly and in line with this, we found that DMN intra-connectivity correlated with performance in a behaviorally relevant mentalizing task that typically reveals deficits in autism. These findings bring together two strands of research in the autism literature, suggesting that abnormal DMN connectivity may underlie the spectrum of autistic traits that extends into the general population. As reduced DMN intra-connectivity is consistently found across males and females on the spectrum, and indeed differs in typically developing males and females, we suggest it may be highly relevant to the autistic phenotype and autistic traits, which appear to a greater extent in males.

Originally, the idea that ASC resembled an exaggerated manifestation of typical sexual dimorphism was linked to the expression of systemizing and empathizing (7; 8), psychological processes linked respectively to strengths and weaknesses in autism. To a
lesser extent than people with autism, typically developed males also tend to show strengths
in the former and weaknesses in the latter; consequently, people with autism were said to
show a form of the “extreme male brain” (7; 8). This theory has been extended in later years
following the tentative relationship found between empathizing, systemizing, autistic traits
and prenatal androgen exposure (10; 11), which is believed to permanently modify brain
structure (57; 58). Although we cannot comment on this aspect of the male brain hypothesis,
we add to this original theory by revealing that the most robust difference in functional
connectivity in ASC is expressed on the same sex-related spectrum.

Many studies suggest that ASC in females is distinct at the level of brain and behavior
from ASC in males (4; 59–66). Research continues to search for differences in genetics and
for protective features that might set apart females with ASC (4; 67). There are nevertheless
some brain and behavioral commonalities between males and females with ASC (4; 59; 60),
and our study is to our knowledge the first functional connectivity investigation to report that
reduced DMN intra-connectivity is shared across the sexes, with both males and females with
ASC down the more ‘male’ end of the spectrum (Fig 2A). This finding, consistent with
behavioral results (68), indicates that DMN connectivity may underlie some of the shared
symptomatology of autism in males and females, and is consistent with the putative role of
DMN in mentalizing and social cognition (14–18), known to be impaired in both males and
females with ASC. Further evidence of this role was given by the correlation we observed
between DMN intra-connectivity and performance on the mentalizing task, which relies on
some of the same cognitive mechanisms as empathy (7), and lack of correlation with
performance in a condition unrelated to mentalizing (gender-judgments). An EMB trend has
recently been reported for females in whole brain connectivity during resting state (69), but
future research should investigate whether these hypotheses apply to other aspects of brain
and network structure and function,
The effects of age on functional connectivity in ASC has been a topic of recent interest (70). DMN intra-connectivity has been studied in children (23; 71), adolescents (22; 25; 28; 30) and adults (27) with ASC, and in wide-ranging groups spanning late adolescence to adulthood (24; 26; 29). On the whole, these lean towards hypoconnectivity with the exception of three studies which, on greater scrutiny, report hyperconnectivity between some individual nodes of the DMN (23; 25; 71) in contrast to the more expansive approach we take here. This may explain why, when studying the DMN as a larger whole, we saw reductions in DMN intra-connectivity that were common across age groups in ASC, appearing both in a tight age-matched group (aged 12-18 years) and a larger dataset with wide age range (between 6-58 years). Additional analyses on the latter revealed the effects to be significant for children (6-11 years) and adolescents (12-18 years) but only at trend level for adults (between 19-58 years). This seems consistent with the view that ASC are developmental conditions in which neurobiological differences may be at their most apparent in early life (72; 73). There has previously been suggestion, in ASC, of general hyperconnectivity in early life (70) and this was indeed seen between some nodes of the DMN (23; 71) but does not appear to be the case for DMN as a whole. Other studies, finding smaller and absent effects in adulthood and adolescence respectively, suggest that DMN connectivity develops on a markedly different trajectory in ASC (74; 75). This may be why there are null findings in some studies, if there is greater than average variability in the rate of development in people with ASC. As the current study employed a cross-sectional sample, longitudinal analysis in future research may help to clarify age-related changes in the DMN. Further research should also clarify whether effects of sex, as defined in the extreme male brain theory, are modulated by age.

It is important to note that our results apply to group differences, tendencies in large populations, and may not fully explain individual differences. For example, even though
people with ASC tend to fall on the (extreme) male end of the distribution (76), this is not true of every individual. This is well depicted in the distribution of the data in Figure 2: the different groups show clearly different profiles, all characterized by a large amount of within-group heterogeneity. In line with current views on insufficient emphasis on effect sizes (77–79), it is important to realize that heterogeneity can mask considerable effects. Indeed, we found an increase of 27% (respectively a decrease of 16%) in DMN connectivity for control females (respectively for ASD males) relative to control male participants. These findings suggest that DMN intra-connectivity represents an important risk factor in a multifactorial interplay underpinning the biological presentation of autism.

Motion can have a profound effect on estimates of functional connectivity (50–53). Non-trivial patterns of distance-dependent alterations of functional connectivity have been shown to be the result of motion artifacts, and many preprocessing strategies, such as the one we employed, have been used to correct for these. Motion is particularly problematic for studies of autism, as participants with ASC tend to move more in the scanner. However, our results were robust against a range of methods aimed to reduce motion artifacts (SI 7), including the additional step of scrubbing (SI 7.2). It is however noteworthy that a correlation with motion remained after these preprocessing steps. This remaining correlation is consistent with recent findings from Zeng et al (80). These authors presented evidence that DMN hypoconnectivity is a stable, biological trait that predisposes to movement, rather than an artifact caused by scanner movement: that individuals with lower connectivity in the DMN actually move more. We likewise found that DMN intra-connectivity correlated with motion in repeat scans for the same subjects, even after removing the effect of motion in the current scan (SI 3.3). Importantly, we additionally found a strong relationship between DMN intra-connectivity and performance on a mentalizing task, providing additional evidence for the claims of Zeng et al. that the correlation may represent biological, rather than artifactual
effects. Future research should further evaluate this hypothesis in more detail, investigating to
which groups and under which circumstances it applies.

A notable feature of our study is the inclusion of a positive control group of patients
with a distinct psychiatric disorder, major depression. This inclusion differentiates our work
from the majority of neuroimaging autism literature, which does not include positive control
subjects. In contrast to autism, there seems to be, on balance, greater evidence for DMN
hyperconnectivity, rather than hypoconnectivity, in adults with major depression (81; 82).

Another study, reporting more complex patterns of hyper- and hypoconnectivity within and
between DMN and other brain regions, suggest that developmental changes with age may
impact findings (83). While our adolescent depression data set was comparatively small, the
absence of DMN hypoconnectivity in these data, at least, represents some evidence for
specificity of our studied connectivity measure. More generally, the inclusion of positive
controls in future studies represents an important goal towards more clinically relevant
conclusions, and constitutes an important step towards translation of this and other
neuroimaging phenotypes in ASC (84; 85).

In summary, our analyses suggest that the default-mode network shows a robust,
heritable, specific and behaviorally relevant reduction across the autism spectrum. The
analyses simultaneously reconcile two distinct strands of autism research, the extreme male
brain theory of autism, and default-mode connectivity in autism, into a convergent and
unified picture of biological abnormalities in autism.
Acknowledgements

The authors thank the participants and their families for their participation and the autism support organizations who assisted with recruitment. We thank colleagues at the Brain Mapping Unit for methodological discussions. The present analysis was funded by a Rubicon Fellowship from the Netherlands Organization for Scientific Research (RJFY), a NARSAD Young Investigator award (MR) and by the Isaac Newton Trust (MR). Data collection was funded by a Clinical Scientist Fellowship from the UK Medical Research Council (MRC) (G0701919) to MDS, imaging data acquired from the depressed adolescents was from the MR-IMPACT study funded by the Medical Research Council. NR was supported by the Cambridge Trust; LRC was supported by the Gates Cambridge Scholarship Trust; RH was supported by the MRC and the Innovative Medicines Initiative (IMI) during the period of this work. The study was conducted in association with the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for Cambridgeshire, and Peterborough National Health Service (NHS) Foundation Trust. The Brain Mapping Unit (RJFY, RLM, NR, JS, ETB and MR) is part of the Behavioral & Clinical Neuroscience Institute, which is funded by the MRC and the Wellcome Trust. High performance computing facilities were supported by the NIHR Cambridge Biomedical Research Centre.
Financial Disclosures

E.T.B. is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline (GSK); he holds stock in GSK. All other authors reported no biomedical financial interests or potential conflicts of interest.
References

446
5: 2.
448
default-mode resting state networks: Do male and female brains “rest” differently? Hum
Brain Mapp. 31: 1713–1726.
452
(2012): Atypical activation during the Embedded Figures Task as a functional magnetic
455
to facial expression of emotion. Transl Psychiatry. 1: e19.
458
(2013): Psychological correlates of handedness and corpus callosum asymmetry in
autism: the left hemisphere dysfunction theory revisited. J Autism Dev Disord. 43:
1758–72.
462
“Reading the Mind in the Eyes”: an fMRI study of adolescents with autism and their
465
white matter microstructure in autism phenotype and corresponding endophenotype
during adolescence. Transl Psychiatry. 5: e529.
468
Autism Diagnostic Observation Schedule-Generic: A standard measure of social and
30: 205–223.
472
474
475 42. Di Martino a, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K, et al. (2014): The
autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic
477
479
(2013): Magnetic resonance imaging of a randomized controlled trial investigating
predictors of recovery following psychological treatment in adolescents with moderate
to severe unipolar depression: study protocol for Magnetic Resonance-Improving Mood
484

77. Greenwald AG, Gonzalez R, Harris RJ, Guthrie D (1996): Effect sizes and p values:
What should be reported and what should be replicated? *Psychophysiology*. 33: 175–183.

Figure Legends

Figure 1. Predictions for default-mode connectivity in a sex-related autistic trait spectrum. Group differences in DMN intra-connectivity, for (a) 66 and (b) 75 participants from the primary dataset (20 female controls present twice) and (c) 144 and (d) 925 participants from the replication dataset (89 female controls present twice). (e, f) Relationships between DMN intra-connectivity and performance on a mentalizing task, Spearman’s ρ is given. All data are shown in (e), and split by sex in (f). Box-plots give quartiles, asterisks reflect significant differences: *p<.05, **p<.01, ***p<.001.

Figure 2. DMN intra-connectivity distributions derived from pooling the primary and replication datasets. The effects of age, IQ and site have been regressed out. (a) The distribution of DMN intra-connectivity for the four groups (top) and the four groups and positive control participants with major depressive disorder (bottom). The latter category does not differ from the control subjects. The panel illustrates both a clear difference between the mean values of the groups and large within-group heterogeneities. (b) The effect of age on these values. The lines for females are more volatile due to lower numbers, especially for adult ages.