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Abstract. Serious gaming often requires high level of realism for training and 

learning purposes. Haptic technology has been proved to be useful in many ap-

plications with an additional perception modality complementary to the audio 

and the vision. It provides novel user experience to enhance the immersion of 

virtual reality with a physical control-layer. This survey focuses on the haptic 

technology and its applications in serious gaming. Several categories of related 

applications are listed and discussed in details, primarily on haptics acts as cog-

nitive aux and main component in serious games design. We categorize haptic 

devices into tactile, force feedback and hybrid ones to suit different haptic inter-

faces, followed by description of common haptic gadgets in gaming. Haptic 

modeling methods, in particular, available SDKs or libraries either for commer-

cial or academic usage, are summarized. We also analyze the existing research 

difficulties and technology bottleneck with haptics and foresee the future re-

search directions. 
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1 Introduction 

Serious gaming based on videogames has achieved great success in the past 20 years. 

The effectiveness of learning from videogames is that it will intrigue the motivation to 

spend time on the tasks so to master skills, the design elements as narrative context, 

rules, goals, rewards, multisensory cues and interactivity can also stimulate the desire 

of learning [1]. Virtual simulation also helps reduce the potential hazard of dangerous 

tasks, solves ethical issues and saves the cost. Various training applications featuring 

haptics have been developed as in medical [2] and rehabilitation [3] areas. 

Haptic feedback has recently become an indispensable component in serious 

games. It provides an additional perception modality of touch, together with vision 

and audio to generate a more immersive user experience. Immersive learning envi-

ronment and interaction require system stability and real-time feedback for all sensory 
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including vision, audio and touch. Integration of haptics into serious gaming has 

brought great challenges for both hardware and software development. This paper 

provides a survey of haptic application in serious gaming, and current research status 

of haptic hardware and modeling that are available for videogames design. 

Touch perception can be divided into cutaneous and kinesthetic sensations, so hap-

tics are correspondingly composed of two parts of perceptual feedback, tactile feed-

back and force/torque feedback. Devices can be categorized by different feedbacks 

they provide. Based on the game concept and budgets estimation, a suitable device 

genre is selected. The specifications of devices that are normally taken into considera-

tion include degree of freedom (DOF), degree of force feedback (DOFF), size of 

workspace, max force/torque, stiffness, compatibility and extensibility of software 

development kit (SDK) etc. Commercial oriented games usually have a priority of 

being economic/affordable. The low-cost solution is to embed vibrotactile actuator 

into game devices, such as gamepads, mobile phones, etc. However, it restricts the 

rendering of abundant and detailed haptic feedback into unitary vibration. Medical 

and pedagogic oriented applications take advantage of more expensive devices, and 

produce more delicate feedback. 

Generally, with the learning and training purposes, the force/torque and tactile per-

ception gained from haptics provide user with better cognition of how they have per-

formed in the task and helps them improve their performance in a more intuitive and 

efficient way. Especially for tasks that rely largely on haptic feedback, merely visual 

feedback helps little with improving performance or even causes errors. For instance, 

endoscopic surgical training is extremely difficult to achieve expected results without 

haptic feedback [4]; applications that focus on improving motor skills are also the 

same. More concretely, users who are visually impaired or blind benefit mostly from 

auditory and haptic inputs. Haptics, as the new approach to interact with virtual envi-

ronments (VEs), also benefits the game industry to enlarge their market to users who 

are not previously reachable [5]. 

The remainder of this paper is structured as follows. Section 2 reviews the applica-

tions of serious games with haptic feedback. Section 3 comprehensively introduces 

available haptic devices, including tactile devices, force feedback devices, hybrid 

devices and commercial game devices. A summary of available haptic modeling is 

also presented in section 3. Section 4 discusses the related research challenges and 

future directions and section 5 concludes the paper. 

2 Applications 

Applying haptics in serious gaming introduces an additional dimension of perception. 

For some applications, haptic feedback is purely for improving user experience; some 

applications provide real-time haptic feedback for users to evaluate their performanc-

es during the tasks to enhance training effect, where haptics acts as an auxiliary func-

tion; others use it as an alternative of vision or a substitute of motor, haptics plays a 

main role in these applications. For the first type, discussions about how haptics im-



prove immersive user experience and related applications can be found in previous 

literature. This review focuses on the latter two types. 

One thing in common among the applications reviewed is that they are built on top 

of virtual simulation games. As stated in [4], the advantages of virtual simulation in 

education include:  

 Applicability to students of all range of ages and levels 

 Low cost and risk of complex tasks that may require expensive equipment and 

dangerous procedures 

 Practicality of theories integrated with math, science and technical skills 

 Introduction of new methodology of problem solving 

 Variety of career fields requiring skills training with high fidelity of simulation 

Serious gaming concepts in virtual simulation help develop more engaging game-

like application with stories, rules, scoring evaluation, rewards or collaboration tasks. 

2.1 Applications with Haptics as Cognitive Aux 

Training and learning tasks are processes of cognition. Our brain integrates every 

channel of input perception to form our own understanding of a new concept, or a 

new set of motor manipulation. With haptic feedback, it provides intuitive perception 

to achieve better understanding, because it delivers an improved cognitive process 

with fully accessible perception of the abstract scene or phenomena. To generate long 

term memory of new knowledge or motor dexterity, our brain requires repetitive prac-

tice. Serious gaming with incentive of repetitiveness has been applied in areas like 

science education and surgical training from long time ago. 

Science Education. Chan and Black [6] investigated the mental acquisition perfor-

mance based on three different formats of presentation, text only, text with static vis-

uals, and text with haptic enabled animation game. Experiments were designed for 

middle school students to learn Newtonian mechanics with the three learning formats 

respectively. The results showed that for difficult tasks, the students who learnt using 

haptic animation game format outperformed the others. User learning experience was 

also reported to be easier and more understandable than other formats. 

Haptic-featured teaching helped students obtain the abstract concept more easily. 

Eigenvalues and eigenvector could be seen and felt directly from the physical dynam-

ic experiments designed in [7]. The force in molecular docking could be mapped from 

real microscopic world to virtual macroscopic environment [8], and haptics helped 

students construct mental representation of the concept, as well as binding energy and 

strength of interactions [9]. 

Surgical Training. Chui et al. presented a computer-game-like surgical training sim-

ulator using force feedback joystick, Delta haptic device, wearable motion capture 

device CyberGlove and haptic feedback actuator CyberGrasp in [10]. Although mul-

tiple haptic devices helped improve the accuracy of haptic feedback and visual ren-



dering, it also easily introduced system instability and asynchronization. The expen-

sive cost of all the devices was not suitable in real application. 

A blood management game for orthopedic surgery has been developed in [11]. Be-

sides graphic simulation, the training aid integrated game features as task-oriented 

time-attack scenarios. It designed four difficulty levels based on blood-loss severity. 

Collaboration, bonus and performance evaluation were also featured in this game. The 

task was to stop bleeding by conducting proper rescue procedures or the game ended 

with over loss of blood. A 6-DOF haptic device was applied to act as surgical tools in 

the VE. This application set a good example of the full process of designing a surgical 

training game with integration of haptic devices. It illustrated the detailed game 

framework, game design specifications and task flowcharts of the simulation system, 

with the position and functions of haptic device and haptic rendering clearly shown. 

A serious game for training on laparoscopic suturing surgery has been presented in 

[12]. It designed and developed a first prototype for suturing game using a pair of 

haptic devices. More advanced virtual reality (VR) simulator (see Fig. 1) using double 

haptic devices has been reported in [13]. Challenges have been raised in simulation of 

the soft tissues with visual deformation and haptic force feedback with good accuracy. 

 

Fig. 1. VR simulator in Laparoscopic Rectum Surgery [13] 

2.2 Applications with Haptics as Main Component 

Human central nervous system takes account of all sensory inputs to generate percep-

tion of the environment. One impaired modality can be compensated by other modali-

ties. As for visually impaired users, they can hardly enjoy video games. Haptic ena-

bled games provide them with new experience of gaming. Yuan et al. [14] talked 

about game accessibility in detail, and offered insights of challenges in future related 

research. 

When the haptic perception is the impaired one, the users are in need of external 

stimuli to help them recover, so haptics have been widely applied in post stroke reha-

bilitations. The augmented force helps indicate correctness or incorrectness efficiently 

in the process of motor training. It also provides guidance force for skills regain. 



Motor Rehabilitation. Fig. 2 shows a game design conceptual model for stroke reha-

bilitation [15]. Training game examples have been developed based on this taxonomy. 

They created a VE and connected it to a haptic workbench as the design prototype. By 

adding new game patterns as shown italicized in Fig. 2, it could easily vary the core 

game and create new games for different purposes, so to personalize and customize 

specific rehabilitation game for all variation of training purposes. Using the same 

concept, a haptic immersive workbench for stroke rehabilitation games has been pre-

sented in [16]. 

Delbressine et al. proposed a novel playful arm-hand rehabilitation using a weara-

ble haptic jacket supporting tilt-sensing and vibrotactile feedback with tabletop inter-

action [17]. The task of this game was to trap a bug, and the bug would get smaller 

and more difficult to catch if compensatory movement exceeded a threshold detected 

by the haptic vest. This design solved the problem of compensatory movements with 

shoulder and trunk.  

 

Fig. 2. A subset of the taxonomy [15] 

A collaborative game “social maze” has been presented in [18]. They set up a ro-

bot-assisted rehabilitation device facilitated with haptic feedback as the central hard-

ware component, allowing patients to train together and interact with therapist. 

Haptic handwriting and games have been applied in the rehabilitation system de-

signed in [19]. The haptic Ten Pin bowling game was combined with Novint Falcon 

haptic device. Handwriting is an essential skill but in a high potential to lose after 

stroke, since the loss of motor control will harm the complex visuo-motor coordina-

tion required by handwriting. Similarly, haptics helped children improve graphmotor 

skills and grip strength by haptic guidance of the trajectory path [20, 21]. A virtual 

soccer game was also stated in [22], for children who had walking problems to play 

soccer with assistance of the haptic driven gait orthosis device. 

Henschke et al. presented a new approach for building appropriate serious games 

for children with cerebral palsy [23]. Children with cerebral palsy lack the tactile 



sensation, so they developed a series of haptic enabled games for this purpose. It fo-

cused on a fully accessible game design pattern for providing all available perception 

for impaired sensory.  

Games for Visually Impaired Users. In games for blind or visually impaired users, 

the main outputs are audio and haptics, some with assistance of salient visual feed-

back. Existing literature showed satisfied gaming performance. 

Yuan and Folmer designed a glove with haptic motor on the tip of each finger for 

blind users to play Guitar Hero [24]. It interpreted visual stimuli to haptic stimuli by 

mapping each button to each finger of the glove. The motor would page the user be-

fore the corresponding button that needed to be pressed. Nemec et al. [25] inspected 

the performance of haptic and audio based navigation in VE for visually impaired 

users. It showed an equal usability with tactile exploration of paper models. 

3 Haptic Modeling 

3.1 Haptic Device 

A typical haptic device contains bidirectional haptic input and output interfac-

es/sensors between the device and user. Compared with visual feedback, haptic devic-

es require much higher refresh rate (≥1000Hz) to achieve continuous and real-time 

perception [26]. 

Tactile Devices. Tactile Devices simulates temperature, texture, pressure, puncture, 

friction, roughness, shape that are perceived by cutaneous receptors under our skin. 

The tactile sensory is generated by actuators which can be developed in different 

types, mostly are electromagnetic, Shape Memory Alloy (SMA) wire, motor, pneu-

matic, piezoelectric, polymeric, and Electro Rheological Fluid (ERF). As stated in 

[27], the most popular technology is electromagnetic and the SMA wire actuation. 

However, each brings drawbacks in application, weight reduces the portability of 

electromagnetic actuated devices and low bandwidth limits the performance of SMA. 

A typical tactile device consists of a set of tactile elements/pins. Various spatial to-

pologies of the pins have been proposed. Pin-matrix is most common as shown in [28-

33]. Some are shown in the form of a ring [34]. The number of pins, frequency and 

the pin density are the main parameters concerned in design. Higher density and fre-

quency brings smoother user experience [35]. The current focus of tactile devices 

research is to simplify system design and materials, to reduce the number of actuators, 

weight and cost to achieve equally good performance [36-38]. Non-contact tactile 

interfaces are emerging. An ultrasound-based tactile display using the principles of 

acoustic radiation pressure and hand tracking was proposed in [39]. It has achieved 

vibration up to 1 kHz for a volume of L51 × W26 × H19 mm
3
 space. 



Force Feedback Devices. The force feedback devices can be also called kinesthetic 

devices, which emulate motion, force, location and compliance that perceived by 

receptors in our muscles, tendons and joints. A detailed table of commercial force 

feedback hardware manufactures and devices has been given in [2]. It described the 

detailed specification of the most prominent devices either in commercial or research.  

Similarly with tactile devices, force feedback devices also need one or multiple 

electromechanical transducers to generate force feedback. Common actuation types 

include DC motors, electromagnetic, piezoelectric, ERF, and pneumatic etc. Force 

feedback devices can be divided into grounded and ungrounded categories based on 

their portability. The popular devices such as SensAble Phantom product, Novint 

Falcon, Omega, Delta and Virtuose are grounded devices. Ungrounded devices such 

as the Immersion CyberGrasp glove and the Rutgers Master II [40] come with the 

shape of gloves. Others are shaped as exoskeleton arm [41, 42]. 

For most human perception experiment, force feedback need not be set too large 

(maximum force output of 2-3N can be sufficient), but some rehabilitation exercises 

expect large force output and workspace.  

A dilemma of force feedback devices design exists between high stiffness and low 

mass since higher stiffness requests larger mass of the material which is normally 

metal. Portability is limited by the grounded design and large weight. Better perfor-

mance also associates with larger workspace and more DOF, which leads to higher 

price. Trade-offs between functional requirements and budget restriction can be ana-

lyzed when selecting the proper device. 

Hybrid Devices. Hybrid haptic devices incorporate tactile and force feedback but 

also introduce design challenges from both, as well as synchronization issues and 

greater complexity of the hardware.  

In general, the structure of a hybrid device is implemented by attaching the tactile 

elements on the end effector of the force feedback device. By manipulating the end 

effector, the tactile elements will move along with it and provide tactile feedback. An 

early implementation of hybrid multimodality device is designed based on a mouse 

[43]. It applied a solenoid pin (tactile element) resting on the mouse button providing 

tactile feedback for index finger and an electromagnet on the bottom of the mouse 

paired with an iron mouse pad that providing drag feedback. However, the mouse 

model is restricted by the low DOF. With force feedback devices that featured with 

higher than 3-DOF, a thimble with tactile element built-in is attached on the end ef-

fector. Users can insert one of their fingers into the thimble to gain both tactile and 

force feedback [44]. With the restriction of space and the concern of not interfering 

the force feedback functions, the functionalities of the tactile components on hybrid 

devices are relatively simpler compared to pure tactile devices. Only one actuator can 

be fitted into the thimble, so it can only provide single perception. Consequently, 

thimble design attracted lots of research attention. Kuchenbecker et al. [45] proposed 

a design that could detect contact location on the fingertip arc, Kuchenbecker et al. 

[46] had a novel design of the thimble structure for shape and surface recognition. A 

more complex pin-matrix tactile display component was integrated with a robotic arm 

WAM (Whole-Arm Manipulator) for simulation of deformable surface [47].  



Haptic Devices for Entertainment and Gaming. Haptic feedback in gaming is de-

voted to providing immersive game experience but with more affordable price and 

portability for common acceptance compared with the research oriented haptic devic-

es. More specifically, to reduce extra cost, vibration actuators have been integrated 

with the variety of game controllers. Distinguished by their shapes, gaming haptic 

devices normally appear as mice, joysticks, game pads, vest/jackets, wheels, mobile 

phones etc. 

Microsoft’s Explorer Touch Mouse and Arc Touch Mouse both provided light vi-

bration that signals scrolling speed [48]. An optical mouse with friction feedback has 

been proposed in [49]. As in [43, 50], there was a magnetic iron pad underlays for 

energizing the mouse with electromagnet to generate 2-DOF force feedbacks. 

Game pads/controllers are very common nowadays as XBOX, Wii or PlayStation 

dominate the game console markets. Feedbacks as rumble or vibration have become 

standard built-in features in these game controllers. For specific games the controller 

can be transformed to adapt the game environment by embedding it into extra acces-

sories. For example, the Wii controller comes as a cuboid originally, with Wii Wheel 

it can be turned into a wheel for racing games, while Wii Zapper turns the controller 

into a snapshotting gun [51]. Joysticks can either be an individual gadget or integrated 

with gamepads. A haptic one provides 2-DOF force feedbacks that can mimic gear 

stick for controlling vehicles and planes [52].  

Haptic vest/jackets are emerging gaming devices in recent years. TN Games com-

mercialized the 3RD Space Vest [53] while Saurabh Palan et al. demonstrated a Tac-

tile Gaming Vest (TGV) [54]. Both of them simulated the gunshot feedback by ar-

ranging tactile elements around the vest. TGV used solenoids instead of pneumatic to 

provide a faster experience with shorter responding time. 

Haptic steering wheels were specifically for racing games or driving simulation as 

discussed in [55, 56]. There were also haptic chairs and seating pads incorporated into 

gaming. 

With the development and popularization of smart phones, mobile games became 

graphically intense and the prevailing phone platforms also provided haptic feedback 

interfaces for both hardware and SDK. 

Haptic devices mentioned in [2] have also been utilized in game development but 

not commercially viable due to their high cost. One exception would be Novint Fal-

con, which was originally designed for video games but also used in academic re-

search because of its high cost-effectiveness. 

3.2 Haptic Modeling 

The definition of haptic modeling has been given in [57], “a series of processes to 

create haptic content on graphic models that are components of virtual reality, aug-

mented reality, or mixed reality”. 

Various haptic modeling libraries are available as listed in Table 1. These libraries 

or toolkits provide programming interfaces (API) for rapid prototyping. Most of them 

come with not only haptic but also graphic components using either OpenGL or Di-

rectX. Normally commercial haptic hardware will come with SDKs that are only ap-



plicable to their own devices. For example, OpenHaptics toolkit is only viable for 

SensAble devices that are the most popular haptic products; Virtual Hand is specifi-

cally for the CyberGlove Systems hand tracking devices. Some libraries have specifi-

cally been developed hardware independent to adapt more devices. Some provide 

virtual device adaptation for simulation without requiring a real device connected. 

Reachin API, HAPTIK and Virtual Hand have network support built in which enables 

haptic interaction between users. HaptX is designed for game haptics, especially 

Novint Falcon. The libraries will provide relatively basic haptic features, but they also 

offer extensibility for customized physical modeling, shape rendering, force effects, 

collision detection, dynamics and other third-party engines. More haptic modeling 

libraries are available but not widely applied as the ones listed in Table 1 [57-61]. 

Table 1. Common Available Haptic Modeling Libraries 

By investigation of the available libraries, an abstract architecture of haptic model-

ing is shown in Fig. 3. At the lower level, the interface for different devices should be 

provided, or the library is customized to be hardware independent. At the top level, 

programming utilities are necessary, like wrappers for programming languages that 

are different with the coding language of the library itself will be provided for adap-

tion of various development environments. Force rendering components are the core 

of haptic modeling libraries and it is triggered by collision detection component that 

will also work on graphics components. For lightweight libraries without graphics 

Name Devices 
Lan-

guages 
Network Graphics 

Open-

source 
Platform 

OpenHap-

tics [62] 
SensAble C++ No Yes No 

Windows, 

Linux 

CHAI 3D 

[63] 

Hardware Inde-

pendent, Virtual 

Device 

C++ No        Yes Yes 
Windows, 

Linux, Mac 

H3DAPI 

[64] 

SensAble, Novint, 

Force Dimension, 

MOOG FCS,  

G-Coder Systems  

X3D, 

C++, 

Python 

No Yes Yes 
Windows, 

Linux, Mac 

Reachin 

API [65] 

Hardware Inde-

pendent 

C++, 

VRML, 

Python 

Yes Yes No Windows 

HaptX[66] Novint, SensAble C++ No Yes No Windows 

HAPTIK 

[67] 

Hardware Inde-

pendent (need 

related plugin) 

C++, 

Java, 

Matlab, 

Sim-

ulink 

Yes No Yes 
Windows, 

Linux, Mac 

Virtual 

Hand 

CyberGlove Sys-

tems, Virtual 

Hand 

C++ Yes Yes No Windows 



rendering, there must be extendible interfaces provided. For different purposes, the 

library can be tailored for specific applications. Each component comes with customi-

zation abilities for implementing user-defined functions. 

Programming Wrapper

Graphic Rendering

Geometry Shapes

Material Properties

Force Rendering

Dynamics

Force Effects

Device Interface

Collision 
Detection

 

Fig. 3. General Architecture of Haptic Modeling 

4 Research Challenges 

From the perspective of what we are focusing in this paper, the challenges for integra-

tion of haptics into serious gaming are similar to the challenges exist in other haptic 

applications. Common issues in haptic rendering has been discussed in [68]. 

One of the concerns attracts most attention is the computational latency of haptic 

rendering. The time complexity of haptic rendering algorithms increases with the 

more complicated scenarios, which designed to simulate Six or higher DOFs and 

deformable or viscous object/environment [69]. Although the computing techniques 

and hardware have been improved significantly these days, it is still not good enough 

for haptic rendering of complicated virtual environment interaction, nor are the exist-

ing physical models efficient enough to compensate computational delay [70-73]. 

Trade-off still exists between computational resources and real-time performance.  

In terms of different game specification, different issues emerge. In training games 

and therapy sessions that have collaboration between experts-novices or physicians-

patients, it requires local or network based haptic interactivity support for a shared 

virtual environment (SVE). Multiuser introduces multiple collision and mutual force 

impact, which means even more loaded computational task. Haptic data compression 

and transmission latency are additional issues brought by networks. Some efforts have 

been made to solve this problem [74-76]. 

Another major issue is the accuracy of eye-hand coordination, which is the training 

objective in some rehabilitation applications, for example, writing skills. Occlusion 

between virtual objects and real objects (hand/tool) is one of the obstacles that prevent 

getting a better user experience of eye-hand coordination. Techniques as chroma-key 

and head tracking have been applied for eliminating occlusion [77-79]. 

Even more sensory modalities have been integrated into VR. It is stated that in a 

haptic featured environment, sound generated by physical modeling and auditory 

synthesis techniques can highly improve fidelity [80]. The difficulty would be syn-

chronization of sound and the impact force that caused it. 



5 Conclusion 

Serious games based on virtual reality share same technology basis with virtual simu-

lation for both hardware and software development. Serious gaming introduces the 

entertainment and pedagogy features into virtual reality, which marks the main differ-

ence. Based on the overview given in this paper, haptics bring advantages to serious 

gaming in three ways: (1) introduce one more dimension of sensory modality for a 

more immersive game experience; (2) enhance cognitive process with one more layer 

of proprioception; (3) augment or compensate impaired perception system. 

Challenges are confronted for both game designer and haptic engineer. Game de-

sign for education purpose requires psychological knowledge of cognition; it is neces-

sary to figure out what cognitive process benefits from haptic modality and how the 

game characteristics can be applied for an optimal learning result. Haptic technology 

still has bottlenecks to be improved. Hardware models are mostly bulky and expen-

sive; rendering algorithms need to be more computational effective to cope with com-

plex VEs. It is believed that haptics in serious games will request interactivity, multi-

modality and portability. 
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