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Introduction
Cognitive	fatigue	arises	from	prolonged	exposure to the demands 
of	 a	 task	 that	 require	 continued	 mental	 efficiency	 [1].	 Such	
tasks	 often	 give	 rise	 to	 the	 cortisol	 stress-response	 within	 the 
hypothalamic-pituitary-adrenal	(HPA)	axis.

Cortisol and fatigue
The	link	between	fatigue	and	cortisol	is	dependent	upon chronic 
or	acute	stress;	with	chronic	fatigue	syndrome	being	linked	with	
cortisol	level	fluctuations	[1].	

Fatigue	manipulation	is	usually	achieved	using	neuropsychological	

tasks	to	generate	cognitive	exhaustion,	or	by	introducing	either	
motor	 (physical)	 or	 mental	 (psychological)	 stimuli	 to	 cause	
stressful	conditions.

Cortisol	regulation	is	the	domain	of	the	central	nervous	system	
where	binding	occurs	with	limbic	system	receptors,	hippocampus	
(HC),	amygdala	(AG),	and	prefrontal	cortex	(PFC)	[2,3]	(Figure 1).

Levels	 of	 cortisol	 secretion	 and	 the	brain	 regions	 activated	 are	
dependent	 upon	 the	 stressor	 factors	 being	 of	 either	 “motor”	
(physical)	or	“mental”	(psychological).	Diverse	neuroimaging	and	
animal	studies	on	brain	activity	changes	in	response	to	stressors	
suggest	 contribution	 of	 the	 brainstem	 in	 physical	 stress,	 while	
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psychological stressors tend to engage limbic system regions such 
as	the	HC,	the	AG,	and	the	PFC	in	regulating	the	HPA	axis.	

Dedovic	 and	 colleagues	 [4]	 found	 significant	 interaction	
between	 cortisol	 release	 and	 fatigue	 in	 the	 right	 hippocampus	
with	 significantly	decreased	activation	over	time.	This	 region	 is	
responsible	for	short-term	changes	in	cortisol	in	association	with	
levels	of	fatigue.	

The	amygdala	is	important	in	regulating	glucocorticoid	secretion	
during	 the	 stress	 response	 [5];	 and	 adjusts	 vigilance	 levels	
whether	positive	or	negative	in	nature	[6].

Prefrontal	cortex	and	its	specific	components	(orbitofrontal	PFC,	
ventrolateral	 PFC	 and	 medial	 PFC)	 emerge	 as	 candidates	 for	
the	 processing	 of	 the	 stress	 response	 and	 cortisol	 regulation.	
Decreased	activity	 in	orbitofrontal	PFC	has	been	demonstrated	
with	 increased	cortisol	secretion	 in	response	to	a	psychological	
stress	task	[7,8].

Similarly,	increased	activity	in	medial	PFC	regions	correlates	with	
decreased	 cortisol	 secretion	 [9],	 because	 projections	 emanate	
from	the	ventrolateral	PFC	towards	the	HC.	This	mechanism	could	
allow	ventrolateral	PFC	to	decrease	activity	in	orbital	and	medial	
PFC areas related to stress processing since this inappropriate 
control	level	could	be	associated	with	sustained	cortisol	secretion.

Yawning and cortisol
Hippocrates,	 the	 famous	 philosopher,	 writing	 in	 400	 BC	 in	 his	
book,	 De	 Flatibus	 Liber	 (A	 Treatise	 on	Wind),	 wrote	 that	 large	
quantities	of	air	are	exposed	during	yawning	like	steam	escaping	
from	 hot	 cauldrons	 as	 temperature	 rises	 dramatically	 [10].	 His	
theory	was	 interesting	since	we	need	to	protect	against	critical	
rises	 in	 brain	 temperature,	 particularly	 when	 we	 are	 fatigued	
[11,12].	In	multiple	sclerosis	(MS),	fatigue	is	a	common	symptom	
[13-15]	and	this	may	be	related	to	yawning	excessively	with	high	
rises	in	brain	temperature	[16-18].

It	 is	 known	 that	 the	 pituitary	 gland	 oxytocin	 regulates	 social	
bonding,	 and	 circadian	 rhythm	 and	 temperature	 regulation	 is	
the	 responsibility	 of	 the	hypothalamus	 [19].	 Together	with	 the	
adrenal	glands,	they	control	the	maintenance	of	hormones	within	

the	HPA-axis	to	prepare	the	body	for	exercise	and	to	protect	the	
body	from	stressors	[20-22].

Thompson	 [12]	 has	 found	 a	 link	 between	 yawning	 excessively	
and	 neurological	 diseases;	 Lano-Peixoto,	 and	 colleagues	 [23]	
have	 also	 noted	 excessive	 yawning	 in	 their	 five	 patients	 who	
has	 neuromyelitis	 optica	 spectrum	 disorder	 (NMOSD).	 From	
MRI	brain	 scans,	 their	patients	 shoed	 lesions	 in	 the	brain-stem	
and	hypothalamus,	with	the	conclusion	that	yawning	may	be	a	
neglected	(but	not	a	rare	symptom)	of	NMOSD.	Similarly	adrenal	
insufficiency	and	Parkinson’s	disease	is	associated	with	excessive	
yawning	 [24];	 possibly,	 due	 to	 an	 irregularity	 in	 the	 level	 of	
hormones	within	the	HPA-axis.

The	 first	 evidence	 based	 announcement	 of	 the	 link	 between	
yawning	and	cortisol	was	made	by	Thompson	[25]	in	his	Thompson	
Cortisol	Hypothesis	and	describes	the	rise	 in	cortisol,	produced	
by	the	adrenal	cortex	zona	fasciculate	yawning	to	control	brain	
temperature.

The	British	neurologist,	Sir	Francis	Walshe,	reported	to	his	stroke	
patients	 in	 1923.	He	noted	 that	 those	with	 brain-stem	 lesions,	
had	the	capacity	to	raise	their	paralyzed	arm	when	yawning	[26].	
This	has	since	been	evidenced	by	a	number	of	other	researchers	
(Walusinski,	et	al.,	Kang	&	Dhand)	[27,28].	

It	is	probable	that	there	is	a	critical	threshold	for	the	level	of	cortisol	
before	yawning	occurs	and	 is	dependent	upon	 fatigue,	 level	of	
perception,	and	sleep	deprivation.	Communicative	yawning	may	
involve	several	brain	regions	–	frontal	lobes,	parietal	lobes,	insula	
and	amygdala	 [29,30].	 In	addition	to	brain	 fMRI	studies,	others	
have implicated the mirror-neuron	system	[31];	and	endogenous	
levels	of	cortisol	have	implicated	in	pathological	gamblers	where	
striatal	sensitivity	fluctuates	[32].

Materials and Methods 
Participants
13	 healthy	 participants	 (6	 male,	 7	 female)	 aged	 between	 21-
35	 years	 with	 no	 known	 history	 of	 neurological,	 psychiatric	
or	 sensorimotor	 disorders	 gave	 their	 prior,	 written,	 informed	
consent	to	participation	in	the	study.	Participants	were	assessed	
using	the	Edinbrgh	inventory	[33]	for	right-handedness,	and	with	
consent,	 were	 recruited	 at	 ‘Hôpital	 Universitaire	 Amiens	 and	
Julues Verne Université de Picardie, France.

Paradigm
Saliva	samples	were	collected	at	the	start	and	again	at	the	end	of	
the	condition	from	each	participant.	Each	sample	was	analyzed	
and	destroyed	after	analysis.	Data	was	held	securely	and	coded	
to	 ensure	 anonymity	 of	 participants.	 Cortisol	 levels	 are	 easily	
and	 reliably	measured	 in	 saliva	 and	 it	 is	 far	 less	 intrusive	 than	
intravenous	collection	methods.	Presence	of	cortisol	 in	saliva	 is	
highly	correlated	with	blood	assay	and	cheaper	to	analyze	in	the	
specialized	laboratory.	

Participants	 are	 randomly	 allocated	 to	 one	 of	 two	 conditions:	
mental	task	(intrinsic	or	extrinsic)	or	motor	(physical)	task.	Inside	

 
Brain	activation	by	physical	(motor)	and	psychological	
(mental)	tasks.

Figure 1 
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the	fMRI	scanner,	the	participant	was	presented	with	a	slide	that	
states	"The	experience	will	begin.	Do	not	move	your	head,	and	pay	
attention	to	all	 instructions."	The	protocol	was	programmed	so	
that	the	transition	from	the	first	slide	to	the	second	is	performed	
manually	by	pressing	the	keyboard	space	bar	in	synchronism	with	
the	start	of	fMRI.

The	 second	 slide	 lasted	 12s	 with	 the	 instruction:	 "Read	 all	
instructions	 carefully	 and	 practice	 fast	 and	 accurate	 pressures	
without	moving	your	head.”	Apart	from	the	first	slide,	subsequent	
slides	were	programmed	to	automatically	follow	for	each	task.

So	that	fatigue	set	in	gradually	and	fairly	throughout	the	paradigm,	
a	pseudo-random	sequence	was	implemented	for	the	3	levels	of	
strength	and	for	each	task	(Table 1).

The	participant	lay	in	the	fMRI	watching	slides	that	appear	in	front	
of	him/her.	The	participant	was	 required	 to	press	 the	handgrip	
with	the	left	hand	each	time	the	white	square	appears	respecting	
the	 required	 levels	 of	 strength.	 The	 participant	was	 instructed	
not	 to	 move	 his/her	 head	 for	 the	 duration	 of	 the	 acquisition	
and	 should	 always	 be	 focused.	 Before	 entering	 the	 fMRI,	 the	
participant	was	familiarized	with	the	protocol.

The	protocol	 included	4	 repetitions	of	3	blocs:	T1:	Motor	Task;	
T2:	 Intrinsic	 Task	 without	 Warning	 signal;	 T3:	 Extrinsic	 Task	
with	 warning	 signal.	 In	 Task	 1	 (motor),	 the	 instruction	 lasted	
6s	and	specifies	the	level	of	force	to	execute:	"Press	with	HIGH	
STRENGTH,	 quietly	 and	 fixing	 the	 flashing	 square".	 Alternation	
between	the	image	of	a	white	square	and	the	image	of	a	black	
screen,	followed.	The	duration	of	each	of	these	two	images	was	
100	ms	(Table 2).

In	Task	2	(intrinsic	without	warning	signal),	the	task	began	with	a	

statement	that	lasted	6s:	"Press	as	soon	as	possible	as	soon	as	the	
square	appears	and	release	quickly."	A	cross	and	a	white	square,	
followed	(Figure 2 and Table 3).

In	Task	3	(extrinsic	with	warning	signal),	the	task	began	with	an	
instruction	that	 lasted	6s:	"The	cross	will	 turn	off,	Concentrate.	
Press	 as	 soon	 as	 possible	 as	 soon	 as	 the	 square	 appears	 and	
release	 quickly."	 A	 cross,	 a	 black	 screen,	 and	 a	 white	 square,	
followed	(Figure 3 and Table 4).	Summary	of	sequences	is	shown	
in Figure 4 and Table 5.

Results
Mean	 age	 of	 participants	was	 26.4	 years	 (sd	 =	 4.70);	 standard	
range	 from	 cortisol	 is	 (i)	 morning	 collection:	 3.7	 –	 9.5	 Nano	
grams	(one	billionth	of	a	gram	or	10-9)	per	milliliter	of	saliva;	(ii)	
noon	collection:	1.2	–	3.0	Nano	grams	per	milliliter;	(iii)	evening	
collection:	1.9	Nano	grams	per	milliliter.

In	saliva	cortisol	sample	1,	the	means	for	participants	in	the	mental	
condition	was	7.0	(sd	=	7.21),	and	for	the	physical	condition	was	
2.6	(sd	=	0.74).	In	sample	2,	the	means	were	5.6	(sd	=	5.56)	for	
those	 in	 the	mental	 condition,	 and	2.5	 (sd	=	0.83)	 for	 those	 in	
the	physical	condition.	Hence,	those	in	the	mental	condition	had	
higher	levels	of	resting	and	post-experiment	saliva	cortisol	levels	
than	those	in	the	physical	condition	(Table 6).

Using	 Paired	 Samples	 Test,	 there	 were	 significant	 correlations	
between	saliva	cortisol	sample	1	and	sample	2	(p=0.000)	(Table 7)	
but	not	when	comparing	means	(p=0.247)	(Table 8).	There	were	
significant	correlations	between	samples	in	the	mental	condition	
(p=0.002)	 (Table 9)	 but	 not	 for	 those	 in	 the	 physical	 condition	
(P=0.469)	 (Table 10).	Means	 testing	 did	 not	 reveal	 differences	
between	samples	in	either	condition	(Tables 11 and 12).	

Bloc N°1
T3 T1 T2

Low Medium High High Medium Low Low High Medium

Bloc N°2
T2 T1 T3

High Low Medium	 High Medium Low High Medium Low

Bloc N°3
T3 T1 T2

Medium High Low Low Medium High Medium Low High

Bloc N°4
T2 T1 T3

Low	 Medium High Low Medium High Low High Medium	

Table 1	Sequence	of	tasks.

T1 High Press	with	HIGH	STRENGTH,	quietly	and	fixing	the	flashing	square

T1 Medium Press	with	MEDIUM	STRENGTH,	quietly	and	fixing	the	flashing	square

T1 Mild Press	with	MILD	STRENGTH,	quietly	and	fixing	the	flashing	square

Duration (ms) 6000 100 100

Table 2 Tasks.
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participant	in	the	physical	condition	(P4)	(Figure 5).	Similar	results	
were	shown	for	these	participants	on	comparing	hypothalamus	
activity	 (Figure 6).	However,	when	comparing	participants	with	
the	highest	levels	of	cortisol	in	both	conditions,	P9	(mental)	had	
a	wider	spread	of	activity	in	the	brain-stem	region	corresponding	
physical	condition	participant	P10	(Figure 7).

Comparison	 of	 participants’	 brain	 scans	 between	 the	 two	
conditions,	 as	 an	 average	 across	 participants,	 revealed	 more	
spread	 of	 activity	 across	 the	 brain-stem	 and	 hypothalamus	
regions	in	the	mental	condition;	however,	this	might	be	skewed	
in	favor	of	the	high	cortisol	levels	found	in	the	mental	condition	
participants,	particularly	P9	(22.7)	(Figure 8).	

Discussion
Findings	of	 this	 study	are	consistent	with	 the	action	of	 cortisol	
on	 specific	 brain	 regions	 including	 the	 hypothalamus.	 I	 the	
physical	condition,	participants	showed	lower	changes	in	cortisol	
and	 fewer	 changes	 than	 compared	with	 the	mental	 condition.	
This	might	 be	 due	 to	 the	 effort	 involved	 in	 the	mental	 task	 as	
compared	with	the	physical	task.

Participants	with	lower	levels	of	cortisol	and	with	smaller	(or	no)	
changes	in	level	of	cortisol,	were	found	in	the	physical	condition.	
In	 contrast,	 greater	 changes,	 often	 in	 reduction	of	 levels,	were	
found	in	the	mental	condition,	signifying	greater	demands	of	the	
mental	 task	 as	 compared	with	 the	 physical	 task.	 Hence,	 if	 the	
mental	task	was	perceived	by	the	participants	as	being	stressful,	
this	might	explain	the	higher	levels	of	cortisol;	although	the	actual	
exertion	is	lower	than	in	the	physical	condition	and	is	seen	by	a	
reduction	in	levels	after	completion	of	the	mental	task.

In	 terms	 of	 cortical	 activity,	 the	 brain-stem	 and	 hypothalamus	
regions	appear	 to	be	more	active	during	the	physical	condition	
at	 low	 levels	 of	 cortisol	 but	 the	 activity	 is	more	widespread	 in	
the	brain-stem	region	in	the	mental	condition	at	higher	levels	of	
cortisol	in	participants.	

Therefore,	it	would	seem	that	participants	in	the	mental	condition	
have	 the	 greatest	 reductions	 in	 their	 cortisol	 levels	 during	 the	
mental	task	but	when	their	 levels	are	particularly	high	(e.g.	P9)	
then	there	is	greater	spread	of	cortical	brain-stem	activity.	In	the	
physical	condition,	the	level	of	cortisol	activity	is	greater	during	
the	 task	 in	 the	brain-stem	 region	and	hypothalamus.	However,	

T2
 H

ig
h

High strength
   

Duration

1500 1750 280 1000 3030

 1750 310 1000 3060

 1690 250 1000 2940

 1720 250 1000 2970

 1720 310 1000 3030

 1690 280 1000 2970

 1720 280 1000 3000

T2
 M

ed
iu

m

Medium	
strength Duration

1500 1720 250 1000 2970

 1690 310 1000 3000

 1750 280 1000 3030

 1750 310 1000 3060

 1720 280 1000 3000

 1690 250 1000 2940

 1690 310 1000 3000

T2
 M

ild

Mild	strength Duration

1500 1720 250 1000 2970

 1690 280 1000 2970

 1750 250 1000 3000

 1750 310 1000 3060

 1690 250 1000 2940

 1720 310 1000 3030

 1750 280 1000 3030

Table 3	Order	of	T2	tasks.

Order	of	T2	tasks.Figure 2 

Brain	scans	for	each	participant	were	reviewed	with	the	following	
results.	 For	participants	with	 the	 lowest	 level	of	 cortisol	 in	 the	
mental	condition	(P2),	there	was	less	activity	and	less	spread	of	
activity	in	the	brain-stem	region	compared	with	the	corresponding	

Order	of	T3	tasks.Figure 3 
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this	activity	seems	to	be	less	spread	when	the	cortisol	levels	were	
highest	(e.g.	P10).

These	 findings	 suggest	 that	 the	 mental	 task	 is	 more	 initially	
demanding	on	cortisol	levels	which	reduce	during	the	task;	and	
when	 cortisol	 levels	 have	 reached	 a	 higher	 point	 (e.g.	 22.7	 for	
P9)	 then	 they	 activate	 more	 widely	 the	 brain-stem	 region	 as	
compared	with	the	physical	task	which	requires	less	demand	on	
cortisol	but	more	cortical	brain-stem	and	hypothalamus	activity.

T3
 H

ig
h

HHigh strength
    

Duration	

1500 1350 400 310 1000 3060

 1350 400 280 1000 3030

 1290 400 250 1000 2940

 1320 400 250 1000 2970

 1320 400 310 1000 3030

 1290 400 280 1000 2970

 1320 400 280 1000 3000

T3
 M

ed
iu

m

Medium	strength Duration

1500 1350 400 280 1000 3030

 1290 400 310 1000 3000

 1320 400 250 1000 2970

 1350 400 310 1000 3060

 1290 400 310 1000 3000

 1290 400 250 1000 2940

 1320 400 280 1000 3000

T3
 M

ild

Mild	strength Duration

1500 1350 400 280 1000 3030

 1350 400 250 1000 3000

 1290 400 280 1000 2970

 1290 400 250 1000 2940

 1350 400 310 1000 3060

 1320 400 310 1000 3030

 1320 400 250 1000 2970

Table 4 Order	of	T3	tasks

Total Duration of the protocol: 15min 17s 76ms
Boot	set	=	12s
Sets	T3/T2	=	6s	*	8	=	48s
Sets	T1	=	6s	*	12	=	72s
Images	T3/T2	=	1.5s	*	24	=	36s	(High,	Medium,	Low	strength	)
Blocs	T1	=	21	*	12	=	245.76s	
Blocs	T2	=	21	*	12	=	252s
Blocs	T3	=	21	*	12	=	252s	

Table 5	Summary	of	timings

P M/F AGE S1 S2 PERIOD MentPhys
P1 M 34 2.3 2.3 Morning P
P2 F 30 2.6 2.3 Noon M
P3 M 35 4.5 4.0 Morning M
P4 M 27 1.9 1.9 Noon P
P5 F 23 3.6 6.9 Noon M
P6 F 21 2.8 3.1 Noon P
P7 F 21 5.9 3.6 Morning M
P8 F 29 4.0 1.6 Noon P
P9 M 23 22.7 17.7 Morning M
P10 F 27 2.2 3.8 Morning P
P11 M 25 1.8 2.0 Noon M
P12 F 27 2.5 2.1 Evening P
P13 M 21 7.6 3.0 Morning M

Key:	S1,	S2	=	cortisol	saliva	sample	1,	2;	MentPhys	=	Mental	
(M),	Physical	(P)

Table 6	Cortisol	level	of	all	participants
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Paired Samples Correlations
 N Correlation Sig.

Pair 1 Sample	1	&	Sample	2 13 0.925 0

Table 7	All	participants	–	correlation	of	S1	compared	with	S2.

Paired Samples Test

 

Paired	Differences

t df Sig.	(2-tailed)
Mean Std.	Deviation Std.	Error	Mean

95%	Confidence	Interval	of	the	Difference

Lower Upper

Pair 1 Sample	1	–	
Sample	2 0.77692 2.29933 0.63772 -0.61255 2.16639 1.218 12 0.247

Table 8	All	participants	–	means	of	S1	compared	with	S2.

Paired Samples Correlations
 N Correlation Sig.

Pair 1 Sample	1	&	Sample	2 7 0.929 0.002

Table 9	Mental	condition	–	correlation	of	S1	compared	with	S2.

Paired Samples Correlations
 N Correlation Sig.

Pair 1 Sample	1	&	Sample	2 6 -0.371 0.469

Table 10	Physical	condition	-	correlation	of	S1	compared	with	S2.

Paired Samples Test

 

Paired	Differences

t df Sig.	
(2-tailed)Mean Std.	Deviation Std.	Error	Mean

95%	Confidence	Interval	of	the	Difference

Lower Upper

Pair 1 	Sample	1	–	
Sample	2 1.31429 2.90484 1.09793 -1.3722 4.00081 1.197 6 0.276

Table 11	Mental	condition	–	means	of	S1	compared	with	S2.

Paired Samples Test

 
Paired	Differences

T df Sig.	(2-tailed)
Mean Std.	Deviation Std.	Error	

Mean
95%	Confidence	Interval	of	the	Difference
Lower Upper

Pair 1 Sample	1	–	
Sample	2 0.15 1.29885 0.53025 -1.2131 1.51305 0.283 5 0.789

Table 12	Physical	condition	-	means	of	S1	compared	with	S2.

Summary	of	schema.Figure 4 
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The	results	of	this	study	are	intriguing	because	they	might	explain	
the	role	of	cortisol	as	a	hormone	that	protects	against	stressful	
situations.	 It	 is	known	that	cortisol	 is	enlisted	to	cope	with	 the	
demands	of	a	perceived	stressful	task,	as	in	the	mental	condition.	
This	 is	demonstrated	by	the	high	 levels	of	cortisol	 found	 in	the	

mental	 condition	 participants.	 At	 the	 highest	 levels	 of	 cortisol,	

the	brain-stem	region	has	a	wider	spread	of	activity;	and	in	the	

less	 demanding	 physical	 condition,	 less	 cortisol	 is	 enlisted	 but	

there	is	a	wider	spread	of	cortical	brain-stem	activity.

 
Brain	scans	comparing	brain-stem	activity	in	P2	(mental)	and	P4	(physical).Figure 5

 
Brain	scans	comparing	hypothalamus	activity	in	P2	(mental)	and	P4	(physical).Figure 6

 

Brain	scans	comparing	brain-stem	activity	in	P9	(mental)	and	P10	(physical).Figure 7
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It	would	seem	that	cortisol	works	in	two	ways:	for	mental	tasks,	
the	demand	for	cortisol	is	high	but	recruitment	of	brain	regions	
is	 lower	 than	 for	physical	 tasks	where	 the	demands	on	cortisol	
levels	 are	 lower,	 consistent	 with	 elite	 athletes	 where	 cortisol	
activity	 is	 lowered	with	more	 training	and	possibly,	more	brain	
regions	are	recruited	with	an	increase	in	skills	set	[34-36].

Averaging	 brain	 scan	 results	 across	 participants	 revealed	 that	
overall,	recruitment	of	brain	region	activity	is	slightly	greater	than	
in	the	physical	condition.	Since	the	greater	level	of	cortisol	was	
found	in	the	mental	condition,	it	is	likely	that	this	contributed	to	
the	resultant	average.	However,	it	supports	further	the	case	that	
great	recruitment	of	brain	regions	is	seen	in	the	mental	condition	
where	cortisol	 levels	diminish	and	in	participants	who	have	the	
greatest	reduction	in	levels	during	the	task.

Potential	 application	 of	 these	 findings	 is	 in	 the	 diagnosis	 of	
neurological diseases such as immune suppression syndromes 
where	 cortisol	 is	 important	 for	 good	 health	 maintenance.	
Diffusion	 Tensor	 Imaging	 (DTI)	 and	 Voxel-Based	 Morphometry	
(VBM)	 [37,38]	 is	 a	 useful	 tool	 for	 identifying	 atrophy	 in	 brain	
regions in neurological disease. 

For	example,	in	multiple	sclerosis,	grey	matter	atrophy	occurs	as	a	
regional	versus	global	process	[39,40].	This	study	shows	that	the	
recruitment	of	brain	regions	changes	with	cortisol	level	and	the	

type	of	task	being	carried	out.	It	is	possible	that	atrophy	causes	
cortisol	levels	to	change	in	these	brain	regions.

Conclusions
Clinical	scientists	are	particularly	interested	in	cortisol	because	of	
its	role	in	the	HPA-axis.	The	implications	of	cortisol	in	tasks	and	
in	 association	with	 yawning,	makes	 it	 intriguing	 and	 important	
to	neurologists,	neuroscientists	and	practitioners	because	of	the	
potential	benefits	of	findings	to	neurological	patients.	Identifying	
threshold	 levels	of	cortisol	and	 the	 recruitment	of	brain	 region	
activity	 may	 be	 important	 in	 determining	 future	 functioning	
deficits	and	neuronal	damage.

Implications	 of	 these	 findings	 are	 potentially	 far	 reaching.	 For	
example,	if	known	parameters	of	cortisol	levels	can	be	established	
across	 varying	 conditions,	 then	 they	 can	 become	 indicative	 of	
poor	 performance.	 Perhaps	 more	 interesting	 is	 the	 possibility	
that	 these	 findings	 might	 point	 towards	 a	 new	 biomarker	 of	
neurological	disease	where	cortisol	is	particularly	salient,	such	as	
in	multiple	sclerosis	or	Cushing’s	disease.
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Brain	scans	comparing	brain-stem	and	hypothalamus	activity	as	an	average	across	Mental	versus	Physical	participants.Figure 8
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