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ABSTRACT
Various flavours of a new research field (socio-)physical or
personal analytics have emerged in the past couple of years,
with the goal of deriving semantically-rich insights from peo-
ple’s low-level physical sensing combined with their (on-
line) social interactions. In this paper, we argue for more
comprehensive data sources, including environmental (e.g.
weather, infrastructure) and application-specific data, to bet-
ter capture the interactions between users and their context,
in addition to those among users. To illustrate our newly
proposed concept of synergistic user ↔ context analytics,
we first provide some example use cases. Then we present
our ongoing work towards a synergistic analytics platform:
a testbed, based on mobile crowdsensing and the Internet
of Things (IoT), a data model for representing the different
sources of data and their connections, and a prediction en-
gine, for analyzing the data and producing the insights.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Information Networks

Keywords
crowd-sensing; information fusion; crowd-sensing analytics

1. INTRODUCTION
Various flavours of a new research field (socio-)physical

or personal analytics have emerged in the past couple of
years and are getting more and more attention, both from
researchers [?, ?, ?, ?] and from practitioners (mostly star-
tups). As the name suggests, the goal is to derive semantically-
rich insights (high-level activity, preferences, intentions) from
people’s low-level physical sensing (location, type of activ-
ity etc), from their (online) social interactions, or more com-
pellingly from a combination of these. The results of such
analytics could be valuable in a variety of contexts, from bet-
ter and more accurate customer engagement for businesses
to space and event planning that accounts for the self-organising
phenomena in pedestrian crowds, and including higher value
location-based services for users.

We argue here that people’s mobility and behavior are
substantially influenced by their broader environment as well.
Conditions such as weather, infrastructure state, air quality,
food quality, radiation level etc do determine to a great ex-
tent the way a person moves and acts. For example: on a
rainy day, someone may decide to take the bus to work,
rather than cycle; or during pollen peak times, an allergic
person may skip their regular jogging sessions. Moreover,
depending on the application scenario, specialized informa-
tion (e.g., in retail, items currently on sale or number of shop
assistants currently available) may also be very meaningful.
For example, when analyzing shopper behavior, if a big sale
is announced, someone may reschedule their regular shop-
ping to be able to attend the sale. The ever wider availability
and usage of mobile devices, sensors, as well as their sup-
porting infrastructures means that such data could be just as
readily available as the more personal, user-centric type, for
example via crowdsourcing and/or crowdsensing.

In light of this, we argue here for building a much more
comprehensive user context. We propose the concept of syn-
ergistic user↔ context analytics, illustrated in Fig. ??, as a
way to promote the generalizability of an analytic initiative.
Synergistic analytics is a modular construction, consisting
of the above-cited personal analytics core (based on smart-
phone and online media data), enriched with extra layers of
additional information, such as environmental, infrastructure-
related or specialized data (e.g. retail). It is a shift from in-
dividual analytic disciplines (e.g. prediction of next place
or activity, of the next device interaction, mining (crowd-
)sensed context data etc) towards a more holistic, yet still
user-centric perspective. True to its name, the results of syn-
ergistic analytics will be much more than the sum of its parts:
instead of isolated predictions of limited scope, deeper, se-
mantically richer inferences are possible.

In addition, collecting and processing user data poses sig-
nificant privacy challenges. While in some of the related
research, privacy is more of an afterthought, we strongly
believe that privacy-protection must be developed alongside
and in full synergy with the other components of a system.
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Figure 1: Synergistic User↔ Context Analytics

To illustrate our proposal of synergistic analytics, we present
here our ideas and ongoing work on a platform for providing
privacy-preserving, location- and context-based services to
users. The platform should support a variety of applications,
such as highly personalized navigation, user-optimized coupon
dispensing, dissemination of localized, user-centric recom-
mendations, etc., discussed more in detail in Sec. ??.

The illustrating scenarios for synergistic analytics under-
score several scientific challenges, to be addressed by rely-
ing on the following four intertwined research pillars, also
shown in Fig. ??: (i) location and activity prediction; (ii) con-
text (environment, infrastructure etc) awareness via crowd-
sensing analytics; (iii) social profile and behavioral analyt-
ics; and (iv) privacy-preservation methods for each of the
above. The first and third pillar correspond to the aforemen-
tioned personal analytics core, while the second pillar repre-
sents a first layer of information on the broader context.

The interactions among the four components are the key
to illustrating our concept, we hence focus on them in this
paper. In particular, after a brief review of related efforts
(Sec. ??) and a more detailed description of our motivating
use cases (Sec. ??), we present our ongoing work on three
main aspects of the proposed privacy-preserving location-
and context-based platform: a testbed with two units that
we aim at integrating (a crowdsensing unit with smartphones
and an Internet of Things (IoT) unit with sensors/actuators)
in Sec. ??; a data model and storage solution, for efficiently
representing and processing the highly heterogeneous infor-
mation collected from the smartphones and from the sen-
sors/actuators in Sec. ??; and a predictive analytics engine ??.

2. RELATED WORK
In this section, we briefly summarize the recent efforts in

the area of (socio-)physical analytics, as well as research on
individual components of physical analytics systems (e.g.,
crowdsensing, privacy etc).

(Socio-)physical analytics. In [?], the authors present
their ongoing efforts in creating a system that can integrate
mobile sensing data with data from online social networks,
to provide insights into user mobility, and more importantly

their interactions (both online and physical). A similar sys-
tem, SocialFusion, is presented in [?]. However, SocialFu-
sion focuses on the immediate context of individuals, rather
than on their interactions. A third similar work [?] pro-
posed the PA (personal analytics) engine to generate high-
level user states (e.g., emotions, preferences, engagements),
that can be used to helpfully intervene in the user’s actions.

Finally, [?] goes more in the direction of our current work,
in the sense that the authors recognize the importance of a
more comprehensive user context (including, weather, light
or sound level, scenario-specific data etc). However, the pa-
per mainly offers a nice collection of highly specialized use
cases, along with preliminary ideas on how to technically
realize each of them separately. In contrast, we aim at de-
scribing a more unifying and complete system.

Mobile crowdsensing. Besides location, a user’s con-
text consists of a variety of other factors, both immediate,
personal (activity, heart rate etc) and of a broader nature
(weather, pollution etc). Traditionally, these factors are mea-
sured via standalone, specialized sensors, which may be costly
and hard to install. However, recently, the concept of mo-
bile crowdsensing (MCS) has emerged [?], whereby the cur-
rent wide availability of smart mobile devices (smartphone,
smart watches, gaming systems etc) is exploited for measur-
ing the above factors, via the numerous sensing capabilities
of the devices (inertial, GPS, light, camera etc). While this
solves the issue of acquiring and installing new sensors, it
does come with a variety of other challenges: from resource
limitations (energy, bandwidth and computational power) to
privacy issues and including the lack of a unifying architec-
ture (to optimize the cross-application usage of sensors on
the same or even across multiple devices). In our current
work on MCS [?], we have already defined the fundamen-
tal components of a mobile crowdsensing system – crowd,
server, task) – and their interactions, and we have identified
incentives for engaging the crowd. Our proposed synergistic
analytics platform will tackle the additional issues raised by
integrating and jointly analyzing data from different MCS
sensors to extract very comprehensive patterns and predic-
tions about user behavior and/or their context.

Privacy and security. Mobile crowdsensing (including
location and activity sensing) raises many privacy and secu-
rity concerns. First, as explained above, the crowd provides
sensed data to a server, which may or may not be trusted. If
the server is not trusted, computation must be performed on
encrypted data, which can be achieved via homomorphic en-
cryption [?] or, more generally, through secure multi-party
computation [?]. Even if the server is trusted, private infor-
mation may still leak, for example, when a third party con-
structs clever queries that, if answered truthfully, cause the
server to divulge private information. A characterisation of
resistance to this is given by the concept of differential pri-
vacy [?]. To our knowledge, these issues have not yet been
addressed in the context of mobile crowdsensing, and it is
our goal to design efficient algorithms, fitted for these cases.

3. SYNERGISTIC ANALYTICS USE CASES
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As argued in the introduction, our privacy-preserving location-
and context-based platform aims at being generic enough to
support a number of diverse applications. Some examples
are described below.

3.1 Highly Personalized Navigation
Mobility and navigation are important for a modern lifestyle.

However, current navigation applications are typically lim-
ited to a few transportation modes and miss complex con-
text and user related data. Exploiting data on user prefer-
ences, transportation modes, and the environment, allows
a more effective user-oriented navigation and recommender
system. The data may include real-time traffic data, pub-
lic transportation, rental vehicles, air quality, weather con-
ditions, safety ratings and user habits. The system suggests
places to visit, transportation modes, as well as important
traffic and environmental data to city officials. Users bene-
fit by improved social interactions, handling mobility more
sustainably and efficiently. Security and privacy issues may
arise, such as untruthful users, non-trusted local infrastruc-
ture (easy to tamper with), and protecting user privacy.

3.2 User-Optimized Coupon Dispensing
An empirical study presented in [?] found that proximity

drives coupon redemption. In particular, the study consid-
ered the behavior of people, while moving in the proximity
of Subway restaurants: the authors showed that the distance
to a restaurant is inversely proportional to the amount of
monetary incentive needed to prompt people to redeem the
restaurant coupons. However, the physical distance to a shop
is not the only driving factor for an optimized coupon distri-
bution. In fact, a better insight into potential customers’ pro-
file would allow a more effective optimization of coupon dis-
pensing. Along with proximity, other user-related informa-
tion may be important driving factors, for example: personal
preferences (i.e., a user who likes Italian food is most likely
to visit nearby Italian restaurants) and social network (i.e., a
user tends to go where their friends have already been). Con-
sequently, a coupon distribution service could optimize the
process of customer selection and coupon distribution, by
exploiting the synergistic platform proposed in this paper,
for retrieving location- and context-related user information.

3.3 Dissemination of Localized and User-centric
Recommendations

With respect to data dissemination, synergistic analytics
could be exploited to optimize the propagation of informa-
tion to users, according to their location and social profile
similarity. For example, in the crowded environment of a
very touristic city, the dissemination of localized recommen-
dations (i.e., interesting events and places in the city) among
users would be a more effective solution than a static, provider-
based data distribution, both in terms of resource usage (al-
location of the downlink communication resources) and in
terms of time for the recommendations to reach the target
users [?]. Such an environment is usually populated by peo-
ple (e.g., tourists, workers, students, unemployed, etc) with
various social profiles and interests. The availability of rich

information about users (e.g., location, context, activity, so-
cial interest, etc.) may improve the dissemination of local-
ized recommendations by identifying the people and/or com-
munities with similar profiles and interests. On the other
hand, this also raises the question of whether users should
trust a local municipal network with their information.

4. EARLY EXPERIENCES IN SYNERGIS-
TIC USER↔ CONTEXT ANALYTICS

Considering the above use case examples, as well as the
discussed challenges, we present in the following our ongo-
ing efforts on three main aspects of the proposed privacy-
preserving location- and context-based platform: a testbed
with two units that we aim at integrating (a crowdsensing
unit with smartphones and an Internet of Things (IoT) unit
with sensors/actuators); a data model and storage solution,
for efficiently representing and processing the highly het-
erogeneous information collected from the smartphones and
from the sensors/actuators; and a predictive analytics engine.

4.1 Data Collection
As a first step towards a generic platform for location- and

context-based services, we need access to real(istic) data and
to be able to easily develop, deploy and debug software on
real(istic) end devices. To this end, we are building VIVO, a
novel human- and sensor-based testbed with volunteers.

4.1.1 The VIVO volunteer testbed
The VIVO testbed is based on the concept of enrolled

crowdsourcing, that allows the deployment of several exper-
iments, as opposed to the traditional usage of crowdsourc-
ing for a single experiment. VIVO provides a secure and
privacy-respecting platform for testbed users, to collect so-
cial, physical and environmental information. The infor-
mation can be accessed remotely, as in traditional testbeds.
However, VIVO differs from traditional testbeds in that it
allows to test algorithms and solutions by scheduling and
running them in real time, on real mobile phones of people
participating in the testbed (also called volunteers, not to be
confused with users). Further, VIVO also provides an emu-
lation environment for users to run and test experiments on
already existing data, stored in the VIVO database.

Unlike recent similar efforts LiveLab [?] and SmartLab [?]
(where a single specific and static application is installed on
each smartphone to constantly save the data collected from
the sensors), VIVO aims to offer more flexibility. More
precisely, VIVO testbed users can dynamically deploy their
own application on each volunteer’s device, as in PhoneLab[?].
However, while PhoneLab requires volunteers to run a modi-
fied version of the Android OS on their mobile (thus limiting
the set of potential participants), VIVO applications run on
normal Android versions, with no hardware extra require-
ments. In addition, VIVO also promotes reproducibility of
the experiments, via its emulation environment.

Fig. ?? represents the architecture of the VIVO testbed,
including Syndesi 2.0 [?], our existing IoT unit that can in-
teract with smartphones. Besides the IoT unit (described in

3



Sec. ??), the VIVO testbed has three main components: the
VIVOTestbed-UserInterface, the VIVOServer and the VIVO-
Client; and two main actors VIVOTestbed-Users and VIVO-
Volunteers, which we describe below.
• The VIVOTestbed-UserInterface enables the communi-

cation between VIVOTestbed-Users and the VIVOServer.
Through this interface, users reserve time slots and upload
experimental code to be run on the VIVO testbed. Users
specify the environment where they want the experiments
to be run (i.e., the real or the emulated environment).
• The VIVOServer is the main component of the VIVO

testbed and it consists of the following elements:
1. The VIVOManager handles incoming requests from VI-

VOTestbed-Users and, based on their preferences, for-
wards experiments to be run either on RealVIVO or
EmulVIVO. Once an experiment is completed, it sends
back the secured and anonymized results to the request-
ing VIVOTestbed-User.

2. RealVIVO manages and schedules the experiments to
be executed by available VIVO-Volunteers, with the
support of RealVIVO Manager. While the experiments
are running, all data collected through VIVO-Volunteers
is temporarily stored into the RealVIVO-DB. Addition-
ally, part of the collected data is dumped to the EmulVIVO-
DB by the RealVIVO Manager, in order to make it
available for the emulation environment. Once an ex-
periment is completed, the RealVIVO Manager trans-
mits the secured collected data to the VIVOManager.

3. EmulVIVO offers an environment to run experiments
on existing data, available in the EmulVIVO-DB. The
reasoning component of this module is the EmulVIVO
Manager, which is in charge of receiving requests from
VIVOManager, retrieving the corresponding data from
the EmulVIVO-DB and allocating the emulation-running
environment for the requested experiments.

4. The EmulVIVO-DB stores anonymized data collected
by VIVO-Volunteers while running experiments. This
data can be used to emulate and reproduce a running
environment through EmulVIVO.

• The VIVO-Volunteers are people equipped with smart-
phones (nodes), who accept to run VIVO experiments.
Volunteers are enrolled for each experiment, based on their
characteristics and availability.
• The VIVOClient is a VIVO dynamic service, which is

in charge of hosting the scheduled experiments, on the
volunteer’s smartphone.

4.1.2 A Crowd-augmented Experimenting Facility
Syndesi 2.0 [?] is an IoT testbed architecture for smart

buildings, that enables the seamless and scalable integra-
tion of crowdsourced resources, provided by the end-users1

of the facility. This integration increases the awareness of
the facility both in terms of sensory capabilities as well as
in terms of end-user preferences and experienced comfort.

1The end-users of the smart building are equivalent to VIVO vol-
unteers, and different from testbed users. End-users of the building
are not necessarily also VIVO volunteers and vice versa.
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Figure 2: VIVO Testbed Architecture

Combining smart actuation, IoT communication and network-
ing technologies, the testbed user is provided with an agile
experimenting platform.

The purpose of integrating crowdsourced resources, such
as smartphones and tablets, is dual. First, the embedded sen-
sory capabilities of the resources provided by the crowd are
combined with the sensing capabilities of the building for
efficient smart actuations. Second, the system is able to in-
teract with its end-users in a direct, personal way, both for in-
centivizing them to provide sensory data from their devices
and to receive feedback on their preferences and experienced
comfort. Supported testbed functionalities like the these will
be abstracted (i.e. exposed) to the experimenters as services
via RESTful APIs, thus enabling their usage in the con-
text of webservices. In fact, given the implemented testbed
APIs, an experimenter will be able to use them (or even de-
velop) in custom made experimentation tools (e.g. for post-
experiment data processing and visualisation) while being
agnostic of the technical details regarding the provided func-
tionalities. Such architectures, in which testbed function-
alities are exposed as services, have lead to the notion of
Testbed as a Service (TBaaS).

We have demonstrated the use of Syndesi 2.0 via a crowd-
enabled, smart luminance scenario. In this scenario, the
embedded sensory infrastructure of the building (based on
an IPv6-enabled wireless sensor network (WSN)) is oppor-
tunistically augmented, by integrating any available smart
devices located in its area of operation. Since such devices
are carried by people, the system initially provides incen-
tives to their owners in exchange for providing access to their
devices. The system then pulls data on the ambient lumi-
nance conditions from the devices of the end-users that have
accepted the incentives (volunteers) and combines them with
the data collected from the WSN infrastructure. This way
live luminance maps of the building are composed and then
used to optimize indoor lighting towards achieving a tradeoff
between energy efficiency and user comfort.

Thanks to its modular, service-oriented architecture, Syn-
desi 2.0 can be further leveraged by integrating it into the
VIVO testbed presented above. All testbed resources of Syn-
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desi 2.0, along with the accompanying mechanisms (e.g. defin-
ing the incentivization strategies towards the end-users) are
exposed as services over RESTful APIs. These services can
be consumed by the VIVO testbed, thus leading to the inte-
gration of the two.

4.1.3 VIVO Privacy and Security
The potential security issues facing the VIVO testbed (in-

cluding the IoT unit) can be clearly defined through spec-
ifying different trust models. Firstly, we can assume that
the user trusts the application with their data, but may not
trust the central VIVO Server. The user definitely does not
trust the intervening network. The server, on the other hand,
cannot be sure that the application (or users) are providing
truthful information.

A number of security components are available to make
sure that the system is functioning property. Mechanism de-
sign can be used to give incentives to users to provide truth-
ful information. Differentially private statistical models can
be used so as to optimally trade off user privacy require-
ments with utility of the service, in a task-dependent man-
ner. Finally, cryptographic methods can be used for the se-
cure communication between the server and the users.

The particular provisioning of the VIVO testbed for trust
and privacy preserving issues along with the capability of
supporting a heterogeneous set of information (social, physi-
cal, environmental) will enable the facility to be used in more
diverse experiments, by a higher number of end-users. For
example, for monitoring and collecting data on environmen-
tal conditions in out-door settings (via sensors for ambient
noise and luminance levels, barometric pressure, etc) and
their correlation to user preferences. The extracted data can
then be utilized in order to emulate and study more populous
crowds in the EmulVIVO running environment.

4.2 Tackling the Heterogeneous Data Challenge
In addition to the challenges of collecting and unifying

the data, our proposed platform also needs an appropriate
data model, that allows easy and efficient querying, process-
ing and analytics. As already shown in previous work [?, ?,
?], efficiently storing, processing and analyzing continuous
streams of heterogeneous, dynamic data is a complex task.

Defining the data model is the first step towards solving
this task. In our connected world, data is heavily interrelated
and the main goal of analytics is to identify and exploit both
the obvious and the less obvious relationships among data.
Thus, a graph-based model is the natural choice. Thankfully,
this fact has been increasingly recognized in the past few
years, catapulting graph models and graph databases to the
forefront of the analytics world. Google’s knowledge graph,
Facebook’s social graph and Twitter’s interest graph are the
best known examples of this trend. Other growing commer-
cial uses include cloud management, bioinformatics, content
management, and security and access control.

In the case of synergistic analytics, we are dealing with
multiple node types (users, locations, activities etc) and mul-
tiple link types (“knows”, “is interested in”, “is currently

at” etc). In addition, both nodes and links may have at-
tributes, such a demographic information for users, usage for
locations or statistical information for links. Finally, while
graphs normally only support edges between two nodes, it
would be clearly beneficial to be able to represent links among
several nodes, forming hypergraphs. For example, as shown
in Fig. ??, an interest in art is connected both to the inter-
ested user and to a gallery.

Storing this type of information in an efficient, yet easy
to handle manner is challenging. On the one hand, the new
generation (hyper)graph databases that have become popu-
lar in the past few years seem like the natural choice, since
we are dealing with a graph. On the other hand, the com-
peting RDF (Resource Description Framework) databases
offer a simple, uniform data model and a powerful declar-
ative query language, that have already proven their worth.
Choosing between the two (or potentially additional options)
will highly depend on the type of processing to be done on
the graph, which we discuss in the next section.

4.3 Prediction Tasks
The prediction engine of our synergistic analytics plat-

form enables different types of predictions, such a user mo-
bility, behavior or service use predictions, as shown in Fig. ??.

The prediction engine uses i) location, ii) activity, iii) so-
cial profile and activity, iv) physical environment, v) infras-
tructure and vi) application-specific data to predict the users’
next place and their behavior, the users’ service usage, as
well as any required application-specific predictions (e.g.
shopping behavior). Social data mainly consists of the user’s
social profile (e.g., habits, interests, etc.) and social con-
tacts/activity information. Physical data contains the user’s
mobility history, activity, sensed data from different embed-
ded sensors of mobile phone and physical contacts with other
people. Environmental and infrastructure information may
include ambient noise levels, ambient luminance, baromet-
ric pressure, public transportation schedules, road traffic data
etc. Finally, the application-specific data should be provided
by the contracting entity (e.g. retailer, hotel owner etc).

The heterogeneity of the collected data gives high poten-
tial to the prediction engine, which is then able to perform a
deeper analysis of the user and context related data. In terms
of mobility, it predicts the user’s next-visited physical loca-
tion together with its semantic meaning (i.e., where the user
is willing to go), and additionally it predicts the user’s next
physical contact. The behavioral prediction includes user
activity (i.e., what the user is willing to do), mood (i.e., how
the user feels), social contact and activity (i.e., which people
the user is willing to meet).

The prediction methodology is based on both historical
and current data. The historical data is analyzed to create a
user-dynamic mobility and behavioral model. This allows a
characterization of the user in terms of mobility aspects (i.e.,
more sportive and active or sedentary person) and the identi-
fication of the locations which are relevant both for the user
itself and for the social community he belongs to (according
to users’ social profile similarities). The model changes dy-
namically with time, in order to keep track of the changes
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Figure 3: Graph model for synergistic user↔ context analytics

in the user mobility and behavior. The system exploits also
currently collected data in order to be adaptive to the current
user’s context, therefore allowing more accurate predictions.

Some preliminary analysis on the potentiality of including
social aspects to location prediction confirmed the validity of
the approach presented above. We showed that analysing the
user’s mobility history only, already enables a classification
of the visited locations according to their relevance to the
user. This classification is then used to retrieve the user’s
mobility and behavioral characteristics: a user is identified
as a wanderer, if she spends most of her time visiting new
places; she is instead a creature-of-habits, if she spends most
of her time in very well-known locations (home, work, etc).
Even this simple information about the user profile already
improves the next-visited location prediction [?, ?]. The syn-
ergistic platform presented above will, among others, com-
bine our initial results with personality and social behavior
information, in order to further refine the location prediction.

5. CONCLUSIONS
In this paper, we introduced synergistic user ↔ context

analytics, a concept that extends the recent proposals of (socio-
)physical and/or personal analytics, by including more com-
prehensive data sources. Specifically, we argued that, in
addition to smartphone sensors and (online) social interac-
tions, also the environment (e.g. weather, infrastructure) and
application-sepcific information is valuable for gaining in-
sights into the interactions between users and their context,
and among users. After discussing some example use cases
of synergistic analytics, we presented our ongoing work on a
synergistic analytics platform: a a testbed, based on mobile
crowdsensing and the Internet of Things (IoT), a data model
for representing the different sources of data and their con-
nections, and a prediction engine, for analyzing the data and
producing the insights.
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