
No More Reinventing the Virtual Wheel:

Middleware for Use in Computer Games and Interactive Computer Graphics

Education

Eike Falk Anderson
Interactive Worlds ARG
Coventry University, UK

Christopher E. Peters
Interactive Worlds ARG
Coventry University, UK

Abstract

The creation of application frameworks for teaching computer
graphics has always been a time-consuming task, alleviated by the
use of graphics API’s that allow students more scope in investi-
gating and creating graphics programs. A boom in Open Source
software and the increasing growth of the game middleware indus-
try has created a huge number of alternatives to choose from. De-
spite the adoption of such API’s for teaching and experimentation,
centralised sources of information regarding components are not
commonplace; the process for gathering information about compo-
nents may be cumbersome and is often left to chance. Here, we
provide details of accessible middleware of relevance to the teach-
ing of computer games and graphics curricula. Additionally, we
describe concerns and considerations when introducing the use of
middleware into a curriculum.

1 Introduction

In computer graphics education, one of the main activities that stu-
dents embark on is implementing small graphics programs that al-
low them to experiment with newly acquired knowledge of algo-
rithms and techniques. Similarly, games courses usually involve
“small projects and assignments to exercise the concepts covered
in the reading and lectures” [Jon00]. To enable the students to
complete these assignments, educators often provide them with an
application framework that allows them to concentrate on the task
at hand, an example of which is the SAGE game engine provided
to game programming students at the University of North Texas
[PNS∗07].

While the development of such application frameworks is a time
consuming process, it is now much simpler than it was twenty
years ago. In terms of graphics application development, “the most
significant aspect of software evolution has been the emergence
and acceptance of standardised graphics software API’s (Applica-
tion Programmer Interfaces)” [HS00], such as OpenGL. Computer
graphics courses, from introductory to advanced level, now usu-
ally employ a top-down approach to computer graphics [ACSS06],
using the graphics API’s to allow students to create graphics ap-
plications. While graphics API’s simplify the creation of applica-
tions by removing the burden of having to implement all elements
of the graphics pipeline before images can be created, they often
provide merely the relatively low-level rendering services. How-
ever, there exist a large number of libraries and API’s providing
the required functionality that can be used: thus far, no centralised
source of information about the use of middleware for computer
games and graphics education, and in particular, of the implica-
tions and pitfalls of middleware component usage in courses, has
been evident in the literature. Although often assumed to be com-
mon knowledge, recommendations regarding available systems that
educators can leverage in their classrooms often take the form of
forum postings on the internet. Well-advertised middleware com-
ponents targeted for commercial use in the games industry may be
high-profile, but unsuitable for the contemporary classroom due to

expense, while high-quality, Open Source and/or free alternatives
may exist, but frequently go unnoticed: in our experience, useful
libraries are sometimes found only by coincidence.

To rectify this, in Section 2 we introduce and rationalise the
use of middleware for computer graphics education, enumerating
in Section 3 a list of Open Source and easily accessible middle-
ware that we have found to be particularly useful in our experience
for games and graphics education. Additionally, in Section 4, we
describe some of the concerns and considerations that should be
accounted for when introducing the use of middleware into a cur-
riculum.

2 Application Development in Games and

Graphics Education

The development of small applications that implement recently
learned concepts lies at the core of every computer science pro-
gramming course and thus also occurs in games and graphics
courses. There is considerable overlap between computer games
and computer graphics education, with a high percentage of inter-
active computer graphics topics also featuring in technical games
courses [SSR07]. Consequently the types of assignments and ex-
ercises that make up the students’ activities in these courses are
very similar, usually resulting in the creation of small interactive
graphics applications that demonstrate a specific graphics or games
technique.

2.1 Educational Rationale

Cunningham stresses that it is important to develop “a good set of
projects that are meaningful to the student” [Cun99], i.e. apart
from being relevant, assignments and exercises also need to ap-
pear relevant to the students. This increases the credibility of the
course in the eyes of the students and helps maintain their interest
in the subject. Furthermore the students should be able to exercise
what they have learned and to complete their assignments “without
requiring them to become masters of a particular sub-discipline”
[HS00]. This is especially the case when graphics programming is
not the primary educational goal of application development activ-
ities [Cun08]. Students from other disciplines, for example, who
simply want to use graphics for visualisation of information from
their chosen domain, may not have the low-level knowledge to im-
plement their applications’ graphics from the bottom-up.

To enable students to create their applications, educators need
to provide them with a suitable program infrastructure. Existing
application frameworks that are ready to use may not have the fea-
tures required for the tasks the students have to perform, or may
even complicate the students’ efforts, a problem that can be averted
by creating proprietary application frameworks [DW07]. However,
rather than using such a proprietary framework, the development of
which often takes a long time, it is possible to construct the applica-
tions using existing middleware solutions. The use of middleware
is an approach that can be used in situations where the students are
supposed to learn graphics principles by implementing specific op-



erations. It is also useful for assignments that require the students
to apply more advanced algorithms and techniques.

A common problem, for example, is the multitude of different
file formats that could be used for the provision of content for stu-
dents’ applications. Here, middleware API’s are of use, for example
those described in Section 3.1.3. They can take the shape of small
libraries that address a small and specific problem, up to complex
application frameworks as is the case with many computer game
engines. Apart from their obvious use in game development, it is
possible to use computer game engines as the renderer in graphics
programming assignments [WKS08].

The middleware systems used usually provide API-level access
to the libraries that implement the required functionality, which is
sufficient for most student projects. However, students can benefit
from the additional information that can be gained from systems
that also provide source-level access. In this respect, free software
that includes a source-level distribution can provide a viable alter-
native.

The middleware presented in this paper was selected based on
free availability and portability to provide for the widest possible
audience. It is by no means intended to be exhaustive or complete,
but includes those systems that we have found useful. There ex-
ist many platform and/or vendor dependent API’s that are useful
too. However, these rely on the availability of specific hardware,
programming languages or operating systems, such as DirectX, the
XNA framework or various graphics-card specific libraries. Sim-
ilarly there are many commercial API’s that are priced above the
practical budgets available to most educational institutions. These
are not covered in this paper. A downside to reliance on middleware
is the danger that the distribution of libraries may be discontinued
or the projects, if developed as Open Source, may be orphaned. We
have aimed to only include those systems that are either stable, e.g.
GLUT (see Section 3.1.1), or actively maintained, and accessible
for academic and educational use.

3 Middleware for Games and Graphics Appli-

cations

There are far too many middleware systems to mention here,
many providing basic solutions for almost any conceivable prob-
lem. Some examples include the popular Boost C++ libraries
(http://www.boost.org) that complement the C++ standard, maths
utility libraries, such as the Foundation Library by Geometric Tools
(http://www.geometrictools.com) or the CAL3D Character Anima-
tion Library (http://home.gna.org/cal3d/ ).

3.1 Graphics Middleware

3.1.1 Rendering Context

The creation of a suitable rendering context with framebuffer within
the used windowing system is a fundamental operation that is re-
quired by every interactive computer graphics application. As this
is a fairly low-level operation that needs to be close to the used
hardware platform and operating system, it can be a very complex
task, which is greatly simplified by a range of API’s.

• GLUT
(http://www.opengl.org/resources/libraries/ )
The freely available OpenGL Utility Toolkit GLUT is proba-
bly the most frequently used middleware for OpenGL graph-
ics programming used in education. It provides basic win-
dowing functionality for defining a window hierarchy with
an OpenGL rendering context and additionally includes func-
tions for the display of a number of wireframe and solid 3D
objects, e.g. cube, sphere, torus, and even the famous Utah
Teapot. These may be useful for demonstrating various tech-
niques in the absence of an object loader. GLUT also provides
a means for interpreting user input from mouse, keyboard and

other devices and for creating a simple pop-up menu user in-
terface. The official GLUT distribution, which is free and
distributed as source code, is not under an Open Source li-
cence. However, there are a number of Open Source alter-
natives that implement the GLUT API specification, such as
freeglut (http://freeglut.sourceforge.net). GLUT’s functional-
ity is limited by its narrow scope - the platform independent,
simple and easy to use provision of an OpenGL rendering con-
text. Therefore it may not be the best choice for more complex
applications.

• GLFW (http://www.glfw.org)
GLFW is a modern Open Source alternative to GLUT that
can create an OpenGL rendering context with minimal effort
of two instructions. The API provides a range of alternative
input modes for the keyboard (with Unicode support), mouse
and joysticks. The library, usable with multi-threaded appli-
cations, has built in support for OpenGL extensions allowing
the native use of newer OpenGL versions.

• SDL (http://www.libsdl.org)
The Simple DirectMedia Layer [LH01] was conceived as a
platform-independent Open Source alternative to Microsoft’s
DirectX API for multimedia application development. The
basic functionality of the system includes window manage-
ment, 2D video supporting blit operations, event-driven user
input for keyboard, mouse and joystick, audio file playback,
audio CD playback, support for multithreaded programming
and a multimedia timer. SDL also provides functions for the
seamless integration of OpenGL by providing an OpenGL
rendering context in its video interface. Additional utility
libraries allow the rendering of TrueType fonts, networking,
loading of a wide range of image file formats and multichan-
nel audio with support for different audio and music file for-
mats.

3.1.2 Graphical User Interfaces (GUIs)

Native GUIs

One of the simplest methods for adding a GUI to an application
is to use the GUI components provided by the windowing system
used on the host-platform. This can be done using a wide variety of
GUI systems, which often include a WYSIWYG, or What You See
Is What You Get, editor to simplify the GUI design process.

• GTK+ (http://www.gtk.org)
The GTK+ toolkit, originally created to facilitate the devel-
opment of the GNU Image Manipulation program, GIMP, is
an object oriented and platform independent widget toolkit
for the creation of complex GUIs for modern desktop-
based windowing systems. A separate GUI editor, called
GLADE http://glade.gnome.org, for rapid application devel-
opment (RAD) is also available for the GTK+ system. Al-
though GTK+ itself does not offer functionality for creating
a rendering context for 3D graphics, there is an OpenGL
GTK+ extension provided by a third party which is avail-
able for most of the GTK+ supported platforms. See
http://gtkglext.sourceforge.net.

• wxWidgets (http://www.wxwidgets.org)
wxWidgets is an Open Source C++ library that is free for
commercial and non-commercial use. It provides applications
with a native look and feel by using the platforms own na-
tive API, although this can result in differing behaviour be-
tween systems and requires an awareness of platform specific
bugs. It features a large number of utility classes, relating to
date/time functions, networking, container objects and more.



• FLTK (http://www.fltk.org)
The Fast Light Toolkit focuses on providing a lightweight al-
ternative to other toolkits and is small enough to be statically
linked. This also means that it does not provide utility func-
tions. FLTK includes a UI builder called FLUID and supports
OpenGL by emulating GLUT.

• QT (http://qt.nokia.com)
QT is a cross-platform UI framework that draws its own wid-
gets on each platform rather than using native ports. It con-
tains multiple IDE’s such as QtDesigner, QtCreator and QDe-
velop and also integrates with popular external IDE’s, such as
Microsoft Visual Studio. It features a large number of utility
classes, relating to date/time functions, networking, container
objects and OpenGL functionality.

In-Application GUIs

A different approach for adding GUIs to a graphics application
is to overlay the GUI onto the application’s framebuffer, for which
there are several suitable GUI API’s.

• CEGUI (http://www.cegui.org.uk)
Crazy Eddie’s GUI system is a C++ library targeting the
creation of GUI sub-systems for games, with native support
for Direct X, OpenGL and the OGRE and Irrlicht engines.
CEGUI requires keyboard, mouse and other inputs to be pro-
vided for it, thus requiring the use of an external input library.

• GiGi (http://gigi.sourceforge.net)
The platform independent and extensible GUI API GiGi for
OpenGL based applications includes a range of common GUI
controls and standard dialogs, supporting the rendering of for-
matted text and optional rendering of a mouse cursor. The
system provides bindings to the SDL multimedia library and
the OGRE game graphics engine, in addition to a rudimentary
GUI editor.

3.1.3 Image Loading

Texture information for 3D objects in games and other graphics ap-
plications are usually loaded from files storing 2D images. There
exist a multitude of different file formats, which can be quite com-
plex if the image information is stored in compressed form. Image
loader API’s, most of which also offer some form of image process-
ing functionality, greatly simplify the use of images.

• DevIL (http://openil.sourceforge.net)
The Open Source Developer’s Image Library provides image
loading capabilities for a wide range of commonly used image
file formats, as well as a number of computer games specific
image and texture formats. In addition to image loading and
saving, the library also provides a number of functions for im-
age processing/filtering. The library integrates smoothly with
a number of rendering API’s including OpenGL and DirectX,
but can also be used independent of these. The library’s API
is based on GLUT, making it particularly easy to use for those
familiar with GLUT.

• FreeImage (http://freeimage.sourceforge.net)
FreeImage is an extensible Open Source library that can load
images in a large number of popular image file formats from
different locations, including compressed files and the inter-
net, as well as save image files. The API provides easy access
to all types of image data, allowing seamless integration into
applications that require access to images. For this, the library
provides several colour conversion, colour manipulation and
image processing functions.

• ImageMagick (http://www.imagemagick.org)
The ImageMagick suite for image creation and manipula-
tion can handle over a hundred different 2D image file for-
mats. ImageMagick can be used for standalone image pro-
cessing, including several command-line interface tools, but
also includes API’s that expose its image loading, writing and
powerful image processing functionality to other applications.
The Open Source system implements useful image manipula-
tion operations such as transformations, multiple-image com-
positing and a wide range of graphical special effects.

3.1.4 3D Model Loader

The loading of 3D scenes and models is a common task for
graphics applications. It greatly enriches the virtual environments
created by the applications. Most available model loaders can
only process a single or a few select file types. Others may be
bound to a specific system infrastructure, as is the base for libg3D
(http://automagically.de/g3dviewer/ ) which requires GTK+, or the
model loading utility routines of the OpenSceneGraph (OSG) sys-
tem requiring OSG to be used.

• Assimp (http://assimp.sourceforge.net)
The Open Asset Import Library is the only platform indepen-
dent Open Source solution, that we are aware of, for accessing
different types of 3D model and animation data in a neutral
format. The library loads a wide range of 3D mesh and ani-
mation formats that are commonly used in 3D graphics and
games, including a number of games specific file formats.
These are presented to users in the form of easy-to-use data
structures accessible through the system’s API.

3.1.5 High-level Graphics and Visualisation

If the aim of an application is focussed on context rather than the
underlying technology, then it is useful to use a rendering system
that provides a higher level of abstraction than the commonly used
low-level graphics API’s. The available systems usually integrate
operations for much of the peripheral tasks of rendering systems,
such as the loading of 3D models and textures, greatly simplifying
the construction of complex 3D scenes.

Scene Graphs

The systems that have traditionally provided this type of func-
tionality to CG applications have been scene graph libraries. Bou-
vier notes that “the educational power of the scene graph lies in the
ease with which a complex scene can be represented” [Bou02], as
the intrinsics of the underlying technology are hidden from the ap-
plication developer, who can then focus on the development of the
virtual environment.

• OpenSceneGraph (http://www.openscenegraph.org)
The OpenGL based OpenSceneGraph toolkit provides high-
level functionality not found in low-level graphics API’s, such
as complex scene management, including level of detail and
large-scale terrain handling, particle effects and multithread-
ing support. OSG “also offers a variety of utility classes like
GUI support, camera manipulators, picking functionality and
loaders for many common data formats” [KRW∗03].

• Visualization Library
(http://www.visualizationlibrary.com)
Utilising the features offered by recent OpenGL versions, the
lightweight, portable Visualization Library toolkit employs
data structure separation and specialisation, which is uncom-
mon for this type of library, but offers performance benefits.
The API supports the loading of common 3D model and 2D
image file formats, the use of different scene management



methods and has bindings to some of the most commonly used
GUI systems. The library provides access to the underlying
low-level graphics, making the system highly customisable.

Figure 1: Student project using the OGRE rendering engine by Szy-
mon Marciniewicz.

Game Rendering Engines

For high-performance real-time grahics applications, computer
game rendering engines can be used, as they often integrate many
of the technologies that are required, i.e. they “efficiently use ren-
dering pipelines, special data structures and speed-up techniques”
[FK04] that constitute advanced graphics techniques, providing
“superior platforms for rendering multiple views and coordinat-
ing real and simulated scenes” [LJ02]. Furthermore, many modern
game rendering systems also include content creation pipelines that
greatly simplify the development of rich virtual environments.

• OGRE (http://www.ogre3d.org)
The Object Oriented Graphics Rendering Engine, OGRE
(Figure 1), is a highly-modular 3D multi-platform graph-
ics engine, with OpenGL and Direct3D support through ab-
stracted class libraries. It features a scene graph based engine
with support for a variety of managers, such as octree, BSP,
paging landscapes and portal based managers. It boasts a wide
range of modern features, supporting progressive level of de-
tails for terrains, an animation system that supports hardware
weighted multiple bone skinning, texture and model loading
libraries and Cg, HLSL and GLSL custom shader support.
OGRE explicitly supports the OIS (a simple object-oriented
input library - http://sourceforge.net/projects/wgois/ ), SDL
and CEGUI libraries.

• Horde3D (http://www.horde3d.org)
Horde3D is a modern OpenGL based 3D graphics engine, dis-
tributed under an Open Source licence, which supports some
of the most recent real-time rendering techniques, including
programmable shaders using a sophisticated materials sys-
tem, a resource and scene management system with support
for multiple levels of detail, and postprocessing effects. The
engine also includes subsystems for character animation and
particles. The API provides hooks for easy integration with
other middleware.

3.2 Games Specific Middleware

3.2.1 Physics

Physics has been receiving increased scrutiny by the game indus-
try for providing more credible gaming experiences, leading to
the development of numerous middleware choices. Many of these
are available for educational use, offering environment and object

interaction capabilities in students’ creations and also sandboxes
for physics experimentation. Middleware physics solutions gener-
ally offer collision detection and response, dynamics and constraint
solving capabilities as standard. They may additionally provide
modelling and animation package plug-ins and specialised physics
components, to simulate vehicle physics for example.

• Open Dynamics Engine (http://www.ode.org)
ODE is an Open Source library with a platform independent
C/C++ API for simulating rigid body dynamics. In addition
to other capabilities, ODE boasts simulation of advanced joint
types.

• Newton Game Dynamics
(http://newtondynamics.com)
The Newton Game Dynamics physics engine seeks to provide
accuracy in simulation, with a deterministic solver that is not
based on LCP or iterative methods. A new version of Newton,
currently under development, is intended to provide improved
simulation speed and utilise GPU’s and multi-core CPU’s.

• Bullet (http://www.bulletphysics.com)
Bullet is a collision detection and rigid-body dynamics library,
featuring COLLADA physics support and discrete and contin-
uous collision detection.

• Havok (http://www.havok.com)
Havok Physics, rated in one study as the third most used mid-
dleware in all commercial games development [DeL09], is
available as a free SDK for non-commercial educational and
academic use as part of an Intel-sponsored download that also
includes the animation SDK. It provides an excellent opportu-
nity to expose students to a high-quality, commercial solution.

3.2.2 Sound

While rarely used in pure graphics applications, computer games
and most multimedia applications require either sound or music,
which is loaded for playback during application runtime.

• FMOD (http://www.fmod.org)
The FMOD audio engine provides multimedia applications
with audio playback from a wide range of file formats and
audio CDs. Furthermore, the library allows sound recording,
provides various sound effects to be applied to audio samples
and also supports 3D positioning of sound sources for sur-
round sound. The simplicity of the API and the availability of
the system on most platforms make FMOD the second most
used middleware in commercial games development [DeL09]
and ideal for computer games education [SSR07].

• BASS (http://www.un4seen.com/bass.html)
The BASS audio library, mentioned by Sung et al. [SSR07],
provides routines for loading audio files from several common
sound and music file formats, for recording sound samples
and for audio playback, including support for 3D surround
sound. The small core library supports a large number of add-
ons that provide additional functionality, such as processing
of additional file formats and audio CD playback.

• OpenAL
(http://connect.creativelabs.com/openal/ )
Using an API modelled after the OpenGL graphics API, the
OpenAL library provides audio playback functionality based
on 3D sound positioning. Like OpenGL, there is no integrated
support for the loading of assets, which need to be provided by
external audio file loaders. However, some limited support for
audio file loading is provided by the separate ALUT OpenAL
Utility Toolkit library, modelled after the GLUT API.



3.2.3 Scripting

There is an observable trend towards data-driven applications in
graphics, multimedia and computer games. The embedding of a
scripting system into applications and the exposure of application
functionality to the scripting system is a common approach to ob-
tain data-driven applications.

• TinyXML
(http://www.grinninglizard.com/tinyxml/ )
One of the most frequent uses of scripts is in the form of ini-
tialisation scripts that set application parameters [And08], for
which the eXtensible Markup Language, XML, is ideal. The
TinyXML library provides an XML document parser that is
easily embeddable into applications, which allows data to be
accessed through a Document Object Model, DOM, for ease
of use.

• Lua (http://www.lua.org)
The scripting language Lua is one of the most popular choices
for integrating scripting with computer games. It is a generic
programming language that was originally designed to be
used to extend programs by adding various scriptable features,
the reason why the creators of Lua have dubbed it an “extensi-
ble extension language” [IdFC96]. Lua has a C API, making
it easy to embed in C/C++ based applications. It is easy to
learn, making it ideal for game development environments
in which non-programmers may be required to write some
scripts [Har05]. The language features provided by Lua can
simplify the creation of solutions to various problems in the
development of multimedia and graphics applications, such
as computer games. Lua has been used extensively in com-
puter games development, being embedded in a large number
of best-selling computer games.

• Python (http://www.python.org)
Python is a powerful and feature-rich scripting language
that also allows some object orientation. It is a general
purpose language that can be used as a standalone com-
mand interpreter. It has also been used as an embedded
scripting environment for various computer graphics appli-
cations, such as the Blender modelling and animation editor
(http://www.blender3d.org) and also a number of games and
game engines [Daw02]. While the language syntax may be
considered unusual as it only allows grouping of command
sequences into blocks through code indentation, it has an easy
to use API which simplifies the embedding of Python into ap-
plications, although this may not be as easy to do as with other
embedded languages, such as Lua [Gar06].

3.2.4 Networking

• RakNet (http://www.jenkinssoftware.com)
Raknet is an C++ Open Source networking game engine sup-
porting voice chat with bindings for PortAudio, DirectSound
and FMOD. It has the ability to automatically manage the se-
rialisation, creation and destruction of game objects. The pur-
pose of Raknet is to allow the rapid development of online
games. It also supports the conversion of single player games
to multiplayer.

• ENet (http://enet.bespin.org)
ENet is a thin, simple and robust network communication
layer on top of UDP offering reliable, in-order delivery of
packets, although it is not intended to provide high level ca-
pabilities, such as lobbying, server discovery, encryption or
compression.

4 Teaching with Middleware

As part of a university-wide drive towards attempting to ensure
that students are well-versed in practical, proactive problem-solving
skills in team settings, the creative computing group in the Depart-
ment for Computing and the Digital Environment (CDE) of Coven-
try University’s Faculty of Engineering and Computing has adopted
Activity-Led Learning (ALL) as a pedagogic model.

ALL is a generalisation of problem-based learning [SBM04] that
is student-oriented and focuses on “learning by doing”. Students
engage in the completion of interrelated sets of activities, mod-
elled on practical, real-world scenarios with a view to fostering their
problem-solving and leadership abilities as part of a life-long learn-
ing initiative. Students are required to take the lead in engaging with
all aspects of their subject, while tutors assume supportive roles in
facilitating them. We have already described our formative expe-
riences in applying ALL for computer graphics education [AP09]:
here, we elaborate on how middleware can be adopted when teach-
ing with student-oriented learning methodologies, such as ALL and
PBL, and why it can be particularly desirable for those methodolo-
gies. We start by providing a practical exemplar of how middleware
is used in our games course, and continue by describing advantages
and potential pitfalls to be avoided.

4.1 Example Student Assignment

After an introduction to various games technologies, illustrated
with the aid of middleware API’s corresponding to these technolo-
gies, as well as game engine architecture [AEMC08], students are
tasked with the design and implementation of a rudimentary game
engine by combining different middleware systems, such as those
detailed in Section 3, within a single prototype. This prototype is
used as a basis for creating a simple computer game.

4.2 Assessment by Portfolio

While assessment by portfolio seems desirable, care must be taken
in terms of assessment when middleware is being used. Firstly, the
work conducted by students is not always clearly and easily separa-
ble from functionality provided by third-party components. Separa-
tion of the students code base is advised to ease marking, in addition
to alleviating other problems. However, sometimes this may not be
possible, especially when students alter code relating to the compo-
nents. In such cases, clear reporting by the student seems crucial.
Secondly, integration issues between components, or project build
issues, may consume a large proportion of the student’s task time,
and it is important that these difficulties are reported when work is
submitted. In some cases, the integration of two major middleware
components may represent a challenging project, and its level of
difficulty should not be underestimated by the instructor.

4.3 Advantages and Pitfalls

The use of middleware with a top-down approach can be useful
as an implicit goal guide for students, providing an existing struc-
ture and exemplars towards creating graphics applications. This is
particularly useful for shaping their expectations when they must
proactively pursue learning objectives, with the lecturer fulfilling
the role of facilitator and when they may not yet have extensive
experience in the domain. Given a solid basis in programming,
the use of appropriate middleware can provide a suitable starting
point for students, rather than the formidable blank screen of an
empty project: many of the quality middleware components de-
scribed here contain demonstrators that show students what a work-
ing application is capable of doing. By directly interacting with the
capabilities offered and being able to experiment with them, this
may provide motivation for students towards overcoming bugs and
other difficulties, such as the IDE and build process, to create a
finished application.

Middleware may also help expose students to working with large



bodies of code featuring many unknowns. It can familiarise them
with the notion that they can use classes and functions without nec-
essarily having to fully understanding their internal structure and
detail. Large projects, such as OGRE (see Section 3.1.5), must be
approached in a piecewise manner and require the adoption of a
black-box mindset that students may not have encountered before,
at least in a practical setting. Successful exposure here helps to
build students’ confidence in working successfully with large sys-
tems where there may be many unknowns, and also provides a prac-
tical lesson in terms of the need for the adoption of good software
engineering practice when programming. However, care must be
taken to ensure that exposure to many new issues is gradual, so that
students do not become overwhelmed.

Another issue is integration. Often underestimated, the inte-
grative approach of using middleware components helps to vividly
demonstrate difficulties behind the integration process, particularly
in terms of time-requirement estimation and task difficulty.

Additionally, we have consistently witnessed that a key area of
difficulty for students is the project build process when multiple
components must be considered. Setting dependencies and other
project parameters in IDE’s often may cause more problems than
programming. In such cases, contingency plans should be created
to ensure that problems are alleviated so that students’ focus re-
mains firmly set on the learning of new concepts, rather than strug-
gling with peripheral issues.

Furthermore, time and work considerations for teaching staff are
worthy of mention. In the context of graphics API’s alone, Wilkens
found that “using multiple API’s places a heavy burden on both
instructors and support staff” [Wil01], and it could be argued that
this may be exacerbated by using API’s for different tasks which
need to be combined.

As outlined above, the use of middleware has many potential ad-
vantages, but must be approached with care. On one hand, students
learn practical issues related to integration, project development,
the use of black-box components, the value of good software en-
gineering practices, and most importantly, have the scope to create
more appealing and intricate graphical experiments than might oth-
erwise be possible. However, there may be a steep learning curve:
we identify IDE and project issues as particular areas of concern to
be accounted for. Assessment approaches must also be considered
carefully, as should the implied burden for instructors. Nonetheless,
if presented in a correct manner to students, we believe that the ben-
efits clearly outweigh the potential disadvantages. The successful
completion of a project utilising middleware often provides both a
fulfilling sense of achievement for students and a strong incentive
for further learning.

5 Conclusions

In this work, we have enumerated a list of middleware accessible
for education and relevant to the teaching of computer games and
graphics curricula. Although often assumed common knowledge,
details regarding available systems that educators can leverage in
their classrooms are often not common, particularly with respect
to licensing aspects that may limit the potential for their usage.
This list does not represent an exhaustive middleware list, but rather
those that we have encountered and found useful during the course
of our teaching; it could be considered a starting point for those
considering the introduction of middleware components into their
courses.

Additionally, we described some concerns and considerations
when introducing the use of middleware into a curriculum. There
are many potential advantages, but care must be taken for a variety
of reasons. While students learn practical issues related to integra-
tion, project development, the use of black-box components, the
value of good software engineering practices, and have the scope
to create more appealing and intricate graphical experiments than

might otherwise be possible, there may be a steep initial learning
curve and extra burden for instructors. Nonetheless the successful
completion of a project utilising middleware can provide a fulfill-
ing sense of achievement, a strong incentive for further learning and
important practical skills to students required for their careers.

References

ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG K.: Teach-
ing computer graphics without raster-level algorithms. SIGCSE
Bulletin 38, 1 (2006), 266–267.

ANDERSON E. F., ENGEL S., MCLOUGHLIN L., COMNINOS P.:
The case for research in game engine architecture. In Future
Play ’08: Proceedings of the 2008 Conference on Future Play
(2008), pp. 228–231.

ANDERSON E. F.: On the Definition of Non-Player Character
Behaviour for Real-Time Simulated Virtual Environments. PhD
thesis, Bournemouth University, 2008.

ANDERSON E. F., PETERS C. E.: On the provision of a compre-
hensive computer graphics education in the context of computer
games: An activity-led instruction approach. In Eurographics
2009 - Education Papers (2009), Domik G., Scateni R., (Eds.),
Eurographics Association, pp. 7–14.

BOUVIER D. J.: Assignment: scene graphs in computer graphics
courses. In SIGGRAPH ’02: ACM SIGGRAPH 2002 conference
abstracts and applications (2002), pp. 42–45.

CUNNINGHAM S.: Re-inventing the introductory computer graph-
ics course: providing tools for a wider audience. In GVE ’99:
Proceedings of the Graphics and Visualization Education Work-
shop (1999), pp. 45–50.

CUNNINGHAM S.: Computer graphics in context: an approach to a
first course in computer graphics. In SIGGRAPH Asia ’08: ACM
SIGGRAPH ASIA 2008 Educators Programme (2008), pp. 1–4.

DAWSON B.: Game Scripting in Python. In Proceedings of the
2002 Game Developers Conference (2002).

DELOURA M.: The engine survey: Technology re-
sults. Gamasutra Expert Blogs - available from:
http://www.gamasutra.com/blogs/MarkDeLoura/20090316/903/
The_Engine_Survey_Technology_Results.php, 2009. [Accessed
08/12/2009].

DISTASIO J., WAY T.: Inclusive computer science education us-
ing a ready-made computer game framework. In ITiCSE ’07:
Proceedings of the 12th Annual SIGCSE Conference on inno-
vation and Technology in Computer Science Education (2007),
pp. 116–120.

FRITSCH D., KADA M.: Visualisation using game engines. In
ISPRS commission 5. 2004, pp. 621–625.

GARCÉS D.: Scripting Language Survey. In Game Programming
Gems 6. Charles River Media, 2006, pp. 323–340.

HARMON M.: Building Lua into Games. In Game Programming
Gems 5. Charles River Media, 2005, pp. 115–128.

HITCHNER L. E., SOWIZRAL H. A.: Adapting computer graphics
curricula to changes in graphics. Computers & Graphics 24, 2
(2000), 283–288.

IERUSALEMSCHY R., DE FIGUEIREDO L. H., CELES W.: Lua -
an Extensible Extension Language. Software: Practice & Expe-
rience 26, 6 (1996), 635–652.



JONES R. M.: Design and implementation of computer games: A
capstone course for undergraduate computer science education.
In SIGCSE ’00: Proceedings of the 31st SIGCSE Technical Sym-
posium on Computer Science Education (2000), pp. 260–264.

KADA M., ROETTGER S., WEISS K., ERTL T., FRITSCH D.:
Real-time visualization of urban landscapes using open-source
software. In Proceedings of ACRS ’03 (2003).

LOKI SOFTWARE, INC, HALL J. R.: Programming Linux Games.
No Starch Press, 2001.

LEWIS M., JACOBSON J.: Game engines in scientific research.
Communications of the ACM 45, 1 (2002), 27–31.

PARBERRY I., NUNN J. R., SCHEINBERG J., CARSON E., COLE

J.: Sage: A simple academic game engine. In Proceedings of
GDCSE’07 (2007), pp. 90–94.

SAVIN-BADEN M., MAJOR C.: Foundations of Problem Based
Learning. Open University Press, 2004.

SUNG K., SHIRLEY P., ROSENBERG B. R.: Experiencing as-
pects of games programming in an introductory computer graph-
ics class. SIGCSE Bulletin 39, 1 (2007), 249–253.

WILKENS L.: A multi-api course in computer graphics. Journal of
Computing Sciences in Colleges 16, 4 (2001), 66–73.

WAGNER D., KAINZ B., SCHMALSTIEG D.: Realtime 3d graph-
ics programming using the quake3 engine. CGEMS: Computer
Graphics Educational Materials Source, The CGEMS Project,
2008.


