
Figures 

	

Figure 1. SEM images for three regions of blister initiation and propagation in the presence of coating micro-
crack under the coupling effect of diffusion induced stress and compressive residual stress.  

	

	

	

	

	



 

 

 

 

Figure 2. The stress graph for regions 1, 2 and 3 showing the values of diffusion induced stress and compressive 
residual stress with respect to increasing temperature ∆T. 
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Figure 3. SEM images showing the top view of blistering initiation and propagation due to coupling effect of 
diffusion induced stress and residual compressive stress with respect to increasing temperature ∆T. 
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Figure 4. Debonding driving force as a function of increasing temperature ∆T. The behaviour of trend for 
debonding driving force as a function of increasing temperature ∆T can be divided in to four different zones: A, 
B, C and D.  The debonding driving force is zero for zones A and B because in these two zones the coating is 
intact with the substrate. However, in zone C, the debonding driving starts to increase with the initiation of 
coating blistering. In zone D, the debonding driving force diminishes after reaching maxima Max with 
increasing ∆T. 
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Figure 5. Schematic showing  (a)  a “Two-part” theoretical model for blistering with micro-crack defect in coating. The left 
part of figure shows the diffusion concepts while the right part shows the mechanics concepts utilised in modelling. The 
length of arrow heads in diffusion part of figure shows the diffusion rate of species. (b) circular blister propagating in 
outward direction, which results in the increase in radius r of blister.	
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Figure 6. Simulation results for the effect of increasing temperature ∆T on the normalised debonding driving 
force. Figure also shows that the experiment and simulation trends both have a good qualitative agreement. 
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Figure 7. Effects of various values of coefficient of thermal expansion (CTE) mismatch ⍺c/⍺s on normalised 
debonding driving force. It can be seen that as the CTE mismatch increases from ⍺c/⍺s = 2 to ⍺c/⍺s = 8, the 
normalised debonding driving force as a function of temperature ∆T also increases. 
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Figure 8. The evolution of normalised debonding driving force corresponding to various values of moduli ratio 
Ec/Es. It can be seen that the normalised debonding driving force increases with the decrease in moduli ratio 
Ec/Es 
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Figure 9. The effects of thickness ratio h/s on normalised debonding driving force. It can be seen that the 
normalised debonding driving force F/Go increases with increasing temperature ∆T for various values of h/s 
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Figure 10. The trends of normalised debonding driving force with increasing temperature ∆T for various values 
of coatings poisson’s ratio vc. It can be seen that the normalised debonding driving force increases with the 
increase in value of vc 
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Figure 11. The effect of various values of roughness parameter λ on normalised debonding driving force with 
increasing temperature ∆T. It can be seen that the normalised debonding driving force F/Go increases with the 
increase in λ. 
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