
Covariance Matrix Adaptation Pareto Archived
Evolution Strategy with Hypervolume-sorted Adaptive

Grid Algorithm

Shahin Rostami a and Ferrante Neri b,1

a Department of Computing and Informatics, University of Bournemouth, Bournemouth, United Kingdom

b School of Computer Science and Engineering, De Montfort University, Leicester, United Kingdom

Abstract. Real-world problems often involve the optimisation of multiple conflicting objectives. These problems, referred to as multi-objective
optimisation problems, are especially challenging when more than three objectives are considered simultaneously.

This paper proposes an algorithm to address this class of problems. The proposed algorithm is an evolutionary algorithm based on an evolution
strategy framework, and more specifically, on the Covariance Matrix Adaptation Pareto Archived Evolution Strategy (CMA-PAES). A novel
selection mechanism is introduced and integrated within the framework. This selection mechanism makes use of an adaptive grid to perform a
local approximation of the hypervolume indicator which is then used as a selection criterion. The proposed implementation, named Covariance
Matrix Adaptation Pareto Archived Evolution Strategy with Hypervolume-sorted Adaptive Grid Algorithm (CMA-PAES-HAGA), overcomes the
limitation of CMA-PAES in handling more than two objectives and displays a remarkably good performance on a scalable test suite in five, seven,
and ten-objective problems. The performance of CMA-PAES-HAGA has been compared with that of a competition winning meta-heuristic,
representing the state-of-the-art in this sub-field of multi-objective optimisation.

The proposed algorithm has been tested in a seven-objective real-world application, i.e. the design of an aircraft lateral control system. In this
optimisation problem, CMA-PAES-HAGA greatly outperformed its competitors.
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1. Introduction

Optimisation is a theoretical fundamental concept in
computational intelligence [62, 63] and engineering
[49, 77]. For example, design engineering problems
are intrinsically optimisation problems, see e.g. the de-
sign of steel structures [53, 54, 74]. Engineering mod-
elling [69, 75, 84] as well as parameter identification
[5] are optimisation problems. Optimisation examples
are also in the rail industry [59, 101], routing prob-
lems [12], and time-cost tradeoff analysis [57].

Many real-world optimisation problems in academia
[35, 78, 94] and industry [1, 47, 66], such as civil en-
gineering [29, 76], often involve the simultaneous op-
timisation of multiple conflicting objectives, see e.g.
[7, 45, 87].
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These problems are known as multi-objective op-
timisation problems, see e.g. [20, 65], and their goal
consists of finding a set of solutions which cannot be
outperformed over all of the considered objectives (i.e.
the solutions do not dominate each other) [9,16]. This
set, namely the Pareto set, is often a theoretical ab-
straction and either cannot be found in practice or may
have, on its own, no immediate practical use. The first
case occurs when the objective functions are defined
on a dense set. Under this condition the Pareto set
would be composed of an infinite number of elements,
which cannot be computed. The second case occurs in
applications where one (or at most a few) answers to
the optimisation problem must be given. This is often
the case in engineering design where ultimately one
solution must be chosen, see e.g. [1, 7, 73].

Unless specific hypotheses allow an exact ap-
proach, a good multi-objective optimisation algorithm
works on a set of candidate solutions, often referred



to as a population, to detect a discrete approxima-
tion of the Pareto set also referred to as an approxi-
mation set. This statement is true for diverse frame-
works such as Genetic [20, 21] and Evolutionary Al-
gorithms [81, 98], local search [56], Differential Evo-
lution [64, 93], Memetic Frameworks [42, 79] in both
theoretical and application domains [55]

This approximation is a set of candidate solutions
that represent the theoretical Pareto set. The features
that describe the quality of an approximated Pareto set
have been theorised in [67]. These features are:

• Proximity: The detected approximated Pareto
set is desired to be as close as possible to the
true Pareto-optimal front. Unfortunately, prox-
imity cannot be used as a measure of quality
of the approximation set during the optimisa-
tion process, because the true Pareto set is not
known (otherwise the problem would already
be solved).

• Diversity: The desired approximation set should
be uniformly distributed across the trade-off
surface of the problem. This characterises the
distribution of the approximation set both in
the extent and uniformity of that distribution.

• Pertinence: Ideally, the approximation set should
contain a number of solutions which are within
some area (namely region of interest, see be-
low) of the objective space. With this feature,
the selection of a candidate solution from an
approximation set becomes less complicated.

A representation of the desired features of an ap-
proximation set are graphically represented in the two-
objective case in Fig. 1, see [72].

With reference to the Pertinence of an approxi-
mation set, the process of performing the selection of
the solution among the available candidate solutions
is named Decision Making. The criterion or algorithm
that leads to the decision making is said to be the De-
cision Maker (DM). In other words, the DM implic-
itly classifies ‘interesting and uninteresting’ solutions.
The area of the objective space where the interesting
solutions fall within is named the Region Of Interest
(ROI).

In summary, the solution of a multi-objective
optimisation problem can be interpreted as a two-
stage process: during the first stage the multi-objective
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Figure 1. Proximity, diversity, and pertinence characteristics in an
approximation set in two-objective space.

optimisation algorithm detects the approximation set
while the DM performs the selection of the interest-
ing solution from the approximation set in the second
stage.

During both the stages, the main difficulty of the
problem is the comparison and selection of solutions.
Since one solution can outperform another solution
with respect to one objective and not with respect to
another (the solutions do not dominate each other), the
selection of a set of solutions from a larger set is a chal-
lenging task. This task becomes progressively more
challenging as the number of objectives increases, see
[25].

1.1. Multi-objective optimisation with more than
three objectives: related work

The objectives of a multi-objective problem span a
multi-dimensional space, namely the objective space.
The size of the objective space grows exponentially
with the number of objectives. This is analogous to the
effect of dimensionality on the search space: for ex-
ample a problem with 1000 variables is much harder
(and not just twice) than a problem in 500 variables. A
high-dimensional objective space is very hard to han-
dle when a pairwise comparison is performed. Thus,
the difficulty of a multi-objective problem grows ex-
ponentially with the dimensionality of the objective
space.

A multi-objective optimisation problem with more
than three objectives is often referred to as a many-



objective optimisation problem [25, 40, 58]. The study
of this class of problem as well as the algorithms de-
signed to tackle the difficulties dictated by a high-
dimensional objective space are emerging research
trends in literature. The main challenges have been
highlighted in several articles, see e.g. [13, 14, 40].
These difficulties are detailed in the following list:

• The difficulty of performing pairwise compar-
isons with the aim of selecting a set (a new
population) increases with the number of ob-
jectives, as it is likely that almost all candidate
solutions within a population do not dominate
each other, see [27, 52, 68].

• As a consequence of the dimensionality of the
objective space, the number of candidate solu-
tions required to produce an approximation set
increases exponentially with the number of ob-
jectives, see [37, 46].

• With the increase in the number of objectives,
the computational cost of existing search oper-
ators becomes infeasible [37].

• When the number of objectives increase, the
number of generations required to produce an
approximation set also increases exponentially.

• The increase in the number of objectives makes
the problem less intuitive. Approaches which
rely on spatial information between solutions
in the objective space become ineffective. Fur-
thermore, the visualisation of candidate solu-
tions becomes difficult, often resulting in the
use of heat-maps or parallel-coordinate plots.
This poses a difficulty to the DM as the selec-
tion of a final candidate solution may become
non-intuitive [86].

As a consequence, popular algorithms that per-
form well on multi-objective optimisation with two
or three objectives [15, 20, 82] display poor perfor-
mance when applied to a problem that has many ob-
jectives, e.g. five, see [33, 34, 39]. Studies on specific
problems confirmed this fact [2, 44] while other arti-
cles have observed this phenomenon with the aim of
proposing methods for tackling a high number of ob-
jectives [48, 68, 103] such as an objective space re-
duction by the inclusion of the preferences within the
search [61].

Therefore, several alternative algorithmic solu-
tions have been proposed to tackle the difficulties

posed by a large number of objectives. An interesting
example is the Non-dominated Sorted Genetic Algo-
rithm III (NSGA-III), see [19, 43] based on the pre-
vious NSGA-II. In this case, the dominance selection
is revisited and adapted to the many-objective case by
the use of structured weights (reference-points), in or-
der to maintain high diversity throughout the optimi-
sation process. This approach is similar to that taken
in the Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) introduced in [95] to
address the same difficulty, such that both NSGA-III
and MOEA/D can be initialised with the same set of
weights. Another feature of NSGA-III and MOEA/D
is the use of niching during the selection of parent
solutions for the recombination stage. This mecha-
nism has been proposed to increase the exploitation of
the algorithm. A further development of the MOEA/D
idea has been presented in [96] where the MOAE/D
with Dynamic Resource Allocation (MOEA/D-DRA)
has been introduced. This MOEA/D-DRA decom-
poses the many-objective space into many single-
objective spaces (sub-problems) and then assigns
different computational budgets to the various sub-
problems. This algorithm, which has been a compe-
tition winner at IEEE CEC [97] is currently one of
the most effective solutions to tackle many-objective
problems.

In [99] an acceleration of the search is achieved
by biasing it: the direction of the knee points of the
Pareto set (those points which represent the lack of a
clear preference towards a specific objective) is pre-
ferred. This approach shares with [98] the philosophy
of avoiding extensive pairwise comparisons and han-
dling large objective spaces better. Furthermore, this
approach can be seen as a modern re-interpretation of a
weighted sum approach where each weight coefficient
is set to 1.

In [10, 11] the reference vector, i.e. a vector con-
taining the preference weights for each objective, is
integrated within the selection process in order to ex-
clude solutions which do not fall within the ROI from
the search. The idea of the incorporation of DM prefer-
ences into the algorithmic selection has been proposed
in other contexts, e.g. [60, 70, 71].

Over the past decade, the use of some metrics to
measure the quality of non-dominated solution sets,
namely performance indicators, have been introduced



to effectively perform the selection of solutions in the
presence of many objectives. For example, the Indica-
tor Based Evolutionary Algorithms (IBEAs) [41, 100,
102] use performance indicators as a method of intro-
ducing selection pressure in place of dominance based
selection, such as [21]. Amongst these indicators the
hypervolume indicator, see e.g. [28], is a very power-
ful approach which can lead to high performance re-
sults.

The hypervolume indicator measures how much
of the objective space is dominated by an approx-
imation set. The way the hypervolume indicator is
constructed is very appealing in real-world problems
as it requires no information regarding the theoreti-
cal Pareto-front (which is often unknown in practise.).
Furthermore, the hypervolume indicator encompasses
within it the information about proximity, diversity,
and pertinence, ultimately evaluating the quality of the
approximation set, see [31]. Successful examples of
incorporating the hypervolume indicator into the op-
timisation process during the selection stage can be
found in [22] and [3], where an adapted version of the
hypervolume indicator, named the contributing hyper-
volume indicator, is used. Other successful cases of the
hypervolume indicator being used during the selection
process are given in [36] and [85] within the context of
the Multi-Objective Covariance Matrix Adaptive Evo-
lution Strategy (MO-CMA-ES).

Although hypervolume indicator is a very valu-
able sorting criterion for selection, its calculation
presents the drawback that it depends exponentially on
number of objectives and becomes infeasible in many-
objective problems. For this reason several papers at-
tempted to propose algorithms for a fast calculation of
the hypervolume indicator.

In [91] an algorithm based on a set theory of union
and intersection of sets is proposed to calculate the
hypervolume. The method proposed in [26] calculates
the hypervolume as the sum of contribution given by
the volume dominated by each solution, one by one.
The latter method has been used to perform selec-
tion within an Evolutionary Multi-Objective (EMO)
algorithm in [50] which still resulted in being compu-
tationally onerous. Several approximated calculations
for the hypervolume indicator have been proposed, see
e.g. [24]. In [88], the complexity of the hypervolume
indicator is reduced by considering the objectives one

by one. In [3], the hypervolume indicator is approxi-
mated by means of a Monte Carlo simulator.

1.2. Proposal of this article

While selection processes based on hypervolume in-
dicators can be integrated in all meta-heuristics, not
all the frameworks would be equally suitable to their
embedding and their simplified calculation. Based on
this consideration, this paper proposes a novel meta-
heuristic for multi-objective optimisation which inte-
grates a novel hypervolume indicator based selection
process within the Pareto Archived Evolution Strat-
egy (PAES) [51]. The latter is an algorithm that per-
forms the selection of the individuals by grouping
the solutions into sub-regions of the objective space.
This mechanism is named the Adaptive Grid Algo-
rithm (AGA). The resulting algorithm, namely the Co-
variance Matrix Adaptation Pareto Archived Evolu-
tion Strategy with Hypervolume-sorted Adaptive Grid
Algorithm (CMA-PAES-HAGA) makes use of the
search logic of the Covariance Matrix Adaptation Evo-
lution Strategy (CMAES) [30] and the archive of the
PAES structure. A preliminary version of the proposed
algorithm without the newly proposed selection mech-
anism has been proposed in [72], however, its prim-
itive selection mechanism restricts its application to
two-objective problems only.

CMA-PAES-HAGA proposes an algorithm for
multi-objective optimisation which is specifically suited
for four or more objectives.

The remainder of this article is organised in the
following way. Section 2 introduces the notation and
describes the proposed CMA-PAES-HAGA. Further-
more, Section 2 provides the reader with the motiva-
tion behind CMA-PAES-HAGA and emphasizes the
differences with respect to its predecessor. Section 3
tests the proposed algorithm and compares it against
the state-of-the-art and competition winning algorithm
MOEA/D-DRA. This comparison is carried out over
a set of test problems and over a real-world multi-
objective problem with seven objectives concerning an
aircraft control system. Finally, Section 4 presents the
conclusion to this work.



2. Covariance Matrix Adaptation Pareto
Archived Evolution Strategy with
Hypervolume-sorted Adaptive Grid Algorithm

Covariance Matrix Adaptation (CMA) is a powerful
approach to parameter variation which has demon-
strated promising results in the optimisation of single-
objective problems with CMA-ES [36], and multi-
objective problems with MO-CMA-ES [85] and CMA-
PAES [72]. These optimisation algorithms rely on
CMA entirely for the variation of solution parameters,
and therefore they do not suffer from the curse of di-
mensionality which affects many optimisation algo-
rithms which rely on reproduction operators. CMA-
PAES is a multi-objective evolution strategy which
first incorporated the CMA approach to variation with
an adaptive grid scheme and Pareto archive. However,
when moving to the optimisation of problems consist-
ing of many (greater than three) objectives, it is the se-
lection operators employed by these algorithms which
render them ineffective or computationally infeasi-
ble. The algorithm which is introduced in this section,
named CMA-PAES-HAGA, proposes an approach to
optimisation which is suitable for problems consisting
of many objectives.

The approach to selection employed by MO-
CMA-ES relies on the Contributing Hypervolume In-
dicator (CHV) as a second-level sorting criterion, the
calculation of which increases significantly with the
number of objectives considered. In contrast, the ap-
proach to selection employed by CMA-PAES is driven
by an AGA which incurs little algorithm overhead in
its calculation [72]. This AGA becomes ineffective
when applied to many-objective problems as the num-
ber of grid divisions which controls the division of the
objective space and the size of the sub-populations be-
comes increasingly sensitive with each additional ob-
jective [70].

Whilst CMA-PAES has shown promising results
in comparison to PAES, NSGA-II, and MO-CMA-
ES [70,72], it suffers from the curse of dimensionality
when moving to many-objective problems.

This is because the process of the AGA for diver-
sity preservation was designed with the two-objective
case in mind. The grid location was stored as a scalar
value starting at one, meaning it was not possible to
use auxiliary information e.g. how close one maxi-

mally populated grid location was to another. This in-
formation is beneficial when deciding which grid pop-
ulation, from many which are maximally populated,
will be selected for solution replacement when the
archive is at capacity. The original AGA in CMA-
PAES also replaced a solution at random, this ap-
proach does not cause a significantly negative impact
on its performance in the two-objective case, when
configured with the recommended high number of grid
divisions. However, when moving to problems con-
sisting of a high number of objectives, a smaller num-
ber of grid divisions must be selected, and a more so-
phisticated approach to solution replacement must be
considered.

CMA-PAES-HAGA is an Evolutionary Multi-
objective Optimisation (EMO) algorithm, but more
specifically, it is an evolution strategy for solving op-
timisation problems consisting of many objectives.
CMA-PAES-HAGA achieves many-objective optimi-
sation by: 1) employing CMA for variation and opt-
ing out of the use of reproduction operators; 2) em-
ploying a new approach to selection in the form of a
hypervolume-sorted AGA.

The following section begins by introducing the
notation used throughout the paper, followed by a
description of the CMA-PAES-HAGA algorithm in-
cluding pseudo-code, mathematical procedures, and
worked-through examples of the operators. The sec-
tion concludes by defining the variants of CMA-
PAES-HAGA and how they are implemented.

2.1. Notation and Data Structures

With the aim of defining the notation and data-
structures used throughout this paper, M defines the
number of objectives, N defines the population size,
and a solution is defined by the tuple:

[
Xn,Vn, p̄succ,n,σn,σn

∗, pn,c,Cn

]
(1)

where Xn and Vn are pointers to a solution’s objective
values and decision variables respectively. X is an M
by N matrix of the entries xmn, where every entry xmn
refers to a solution’s objective value:



Xn = 〈x1n,x2n, . . . ,xMn〉 (2)

Similarly, V is an I by N matrix of the entries vin,
where every entry vin refers to a solution’s decision
variable:

Vn = 〈v1n,v2n, . . . ,vIn〉 (3)

An objective function is required to evaluate the
performance of candidate solutions (i.e. those solu-
tions that could be the optimum). There can exist M
objective functions with the definition in (4), these
objective functions can be either minimised or max-
imised.

f (Vn) = ( f1(v), f2(v), f3(v), . . . , fM(v)) (4)

A multi-objective optimisation problem in its gen-
eral form can be described as:

optimise fm(v), m = 1,2, . . . ,M;
sub ject to g j(v)≥ 0, j = 1,2, . . . ,J;

hk(v) = 0, k = 1,2, . . . ,K;
v(L)i ≤ vi ≤ v(U)

i i = 1,2, . . . , I;

 (5)

The constraint functions g j(v) and hk(v) impose
inequality and equality constraints that must be satis-
fied by a solution v in order for it to be considered a
feasible solution. Another condition which affects the
feasibility of a solution, regards the adherence of a so-
lution v to values between the lower v(L)i and upper
v(U)

i boundaries. The set containing all the feasible so-
lutions is referred to as the decision space. The corre-
sponding set of the values that each feasible solution
can take is referred to as the objective space.

Each solution tuple also includes parameters used
by the CMA variation operator, where p̄succ,n ∈ [0,1]
is the smoothed success probability, σn ∈ R+

0 is the
global step size, σn is the previous generation’s global
step size, pn,c ∈ Rn is the cumulative evolution path,
and Cn ∈ Rv×v is the covariance matrix of the search
distribution.

2.2. Algorithm design

The CMA-PAES-HAGA process outlined in Algo-
rithm 1 begins by initialising algorithm parameters and
randomly sampling the search-space to generate an
initial parent population X of size µ , the objective val-
ues of each parent solution are then resolved using an
objective function. X is an M by N matrix of entries
xmn, where every xmn refers to a solution’s objective
value, and Xn refers to a solution (3).

Algorithm 1 CMA-PAES-HAGA execution cycle

1: g← 0
2: E← 〈ε1 = 0,ε2 = 0, . . . ,εM = 0〉
3: initialise parent population X ,V
4: while termination criteria not met do
5: for n = 1, ...,λ do
6: V

′
n←Vn

7: V
′
n←V

′
n +σn ·N (0,Cn)

8: if v(L)i � v
′
in � v(U)

i then

9: v
′
in =

{
v(U)

i if v
′
in > v(U)

i

v(L)i otherwise
10: end if
11: end for
12: X

′
n← f (V

′
n)

13: X∗ = X ∪X
′

14: for m = 1, ...,M do

15: εm =

{
x∗mn if x∗mn > εm

εm otherwise
16: end for
17: X ,V ← HypervolumeSortedAGA(X∗, E)
18: CMAParameterUpdate()
19: g← g+1
20: end while

The global CMA parameters are: the target suc-
cess probability ptarget

succ , success threshold pthresh, step
size damping d, step size learning rate cp, evolution
path learning rate cc, and the covariance matrix learn-
ing rate ccov. The values for these parameters are set
according to the parameters proposed in [36] where
ptarget

succ = (5+
√

1/2)−1, pthresh = 0.44, d = 1+ n/2,
cp = ptarget

succ /
(
2+ ptarget

succ
)
, cc = 2/(n+ 2), and ccov =

2/(n2 +6).
With the initial parent population ready, the gen-

erational loop begins:



Algorithm 2 CMAParameterUpdate()

1: for n = 1, ...,µ do
2: if p̄′ succ,n < pthresh then
3: p

′
c,n←
(1− cc)p

′
c,n +

√
cc(2− cc) ·σn

∗

4: C′n← (1− ccov)C
′
n + ccov p

′
c,n p

′T
c,n

5: else
6: p

′
c,n← (1− cc)p

′
c,n

7: C′n← (1− ccov)C
′
n

+ccov

(
p
′
c,n p

′T
c,n + cc(2− cc)C

′
n

)
8: end if
9: p̄in ← (1− cp)p̄in + cp ·Xsucc

10: σin← σin exp
(

1
d

p̄succ,in−ptarget
succ

1−ptarget
succ

)
11: end for

• The termination criterion is checked to de-
cide whether the EMO process is terminated.
In CMA-PAES-HAGA, the default condition
for termination depends on reaching a maxi-
mum number of function evaluations (specified
a priori).

• The offspring population X
′

of size λ is then
generated using the parent population X and
the CMA operator for variance.

• The offspring population’s solutions are then
evaluated using an objective function, this pop-
ulation is then merged with the parent pop-
ulation to create the intermediate population
X∗ = X ∪X

′
.

• The extreme values εm encountered for each
objective during the optimisation process are
then updated by checking if any objective value
x∗mn is higher than a corresponding stored ex-
treme objective value εm, and if so, replacing
it.

εm =

{
x∗mn if x∗mn > εm

εm otherwise
(6)

where E is a vector containing all of the ex-
treme values encountered for each objective.

E = 〈ε1,ε2, . . . ,εM〉 (7)

• The intermediate population X∗ is then sub-
jected to the hypervolume-sorted AGA selec-
tion mechanism described in Section 2.3. The
mechanism will return a new parent population
of size µ which are considered to offer the best
coverage of the objective space.

• The parameters used for the CMA operator for
variance are then updated according to Algo-
rithm 2. The solutions are considered success-
ful (and marked as Xsucc = 1) if they make it
from the intermediate population X∗ to the par-
ent population for the next generation. Con-
versely, the solutions are considered unsuc-
cessful (and marked as Xsucc = 0) if they are not
transferred to the following generation and are
not retained.

• The optimisation process then continues to the
next generational iteration.

2.3. Hypervolume-sorted Adaptive Grid Algorithm

CMA-PAES-HAGA employs the Hypervolume-sorted
AGA (HAGA) to select solutions to form the parent
population for the next generation of the optimisation
process. HAGA is a two-phase approach to selection,
with the aim of being computationally feasible in the
presence of many objectives. HAGA incorporates the
use of a novel AGA implementation containing a num-
ber of features in order to make the AGA implemen-
tation suitable for many-objective optimisation. These
features consist of:

• A new data structure for storing a solution’s
grid number up to any number of objectives;

• A new grid-proximity method for grid selection
when searching for a solution to remove;

• A new scheme for the maintenance of global
extremes for objectives.

HAGA aims to use a two-phase approach to re-
duce the number of solutions which are to be con-
sidered by the narrow-phase, through the use of a
broad-phase. The grid structure when visualised for
a two-objective approimation set can be seen in Fig-
ure 2, where the grid squares have been indicated with
dashed lines, and the grid locations have been indi-
cated with vectors surrounded by braces. In this ex-
ample, the grid location {2,3} refers to a grid square



which defines a grid population consisting of the solu-
tions X3,X4 and X5.

This is achieved by mean of the execution life-
cycle listed in Algorithm 3, where X is an approxima-
tion set of solutions Xn, A is the archive of parent solu-
tions selected by HAGA, Γ is a grid location consisting
of multiple solutions, and µ and λ are the number of
parent and offspring solutions respectively. CHVΓt is
a vector of entries resulting from the execution of the
contributing hypervolume indicator on the solutions in
the grid population Γt , such that min(CHVΓt ) would
yield the solution which offers the lowest explicit hy-
pervolume indicator contribution in regards to the ob-
served grid population.

Algorithm 3 HypervolumeSortedAGA(X ,λ ,µ)

1: for n = 1 : λ do
2: if |A|< µ then
3: A← A∪Xn
4: else
5: Γt←ClosestGridFromMaxPopulated(Γn)
6: Γt ← Γt ∪Xn
7: CHVΓt ←ContributingHV (Γt)
8: if min(CHVΓt ) = Xn then
9: Discard candidate solution

10: else
11: Discard min(CHVΓt ) solution
12: A← A∪Xn
13: end if
14: end if
15: end for

return A

In Algorithm 3, Line 5 identifies the grid loca-
tion closest to the candidate solution and resolves a
grid population. This is considered the broad-phase of
the two-phase approach. Once a grid location has been
identified, it is used in the calculation of the narrow-
phase (Line 7), which depends on the contributing hy-
pervolume indicator described in the following.

The basic principle of HAGA is to benefit from
the CHV algorithm’s ability to discriminate solutions
based on the explicit hypervolume they contribute to
a population, but to do so in a way that doesn’t in-
troduce the computational infeasibility of using CHV
on populations consisting of many-objective solutions.
HAGA achieves this through the use of the adaptive

grid, where the objective space covered by a popula-
tion is divided into a grid consisting of grid areas. This
grid has a capacity for the number of solutions it can
store, this capacity is set to µ , which is the number
of parent solutions desired for selection. The solutions
within the intermediate population (the parent and off-
spring population) are then added to this grid one by
one. Throughout this process, there is no computation
of the CHV algorithm until the grid reaches capac-
ity, at which point the CHV is only computed at grid
area level. This ensures that the CHV is computed for
only a small number of solutions, in order to determine
which solution is to be evicted from the grid area to
prevent the grid from exceeding capacity. In contrast,
the CHV algorithm simply computes the CHV indica-
tor value for every solution in the population.

The CHV indicator can be calculated by first cal-
culating the hypervolume indicator quality XHV of a
population X :

HV
(

f re f ,X
)
=

Λ

( ⋃
Xn∈X

[
f1(Xn), f re f

1

]
×·· ·×

[
fm(Xn), f re f

m
])

(8)

where f re f
m is the reference point for objective m,

and Xm is a set of objective values for objective m from
the current population.

With the hypervolume indicator quality of the
population calculated, it is possible to calculate the
CHV indicator value of each candidate solution within
the population. For each solution in the population, the
solution is first removed from the population to form
the temporary population XT , and then the hypervol-
ume indicator quality XT

HV is calculated for this tempo-
rary population. The CHV indicator value is then cal-
culated by subtracting XT

HV from XT , this is the explicit
hypervolume contribution of the candidate solution.
Once the CHV indicator value has been calculated for
every candidate solution, it is possible to order them
by descending value so that they are ordered by the
greatest explicit hypervolume indicator contribution.
The first µ solutions are then selected to form the next
parent population. This approach has been listed in Al-
gorithm 4, where X is a set of solutions from a grid
population.



Algorithm 4 Contributing Hypervolume Indicator ex-
ecution life-cycle

ContributingHV( f re f ,X)
1: XHV ← HV ( f re f ,X)
2: for n = 1 : λ do
3: Xt ← X\Xn
4: HVn← HV ( f re f ,Xt)
5: CHVn← XHV −HVn
6: end for

return CHV

It must be noted that the purpose of HAGA is to
return a set of solutions which is of size µ , this size
parameter must be defined before the execution of the
algorithm. The µ size parameter is used within the
HAGA selection approach, and as such the output set
is dependent on its definition. This is unlike the CHV
selection approach, which will return a set of hyper-
volume indicator values for each solution in the set on
which it was executed.

The process for HAGA in its entirety is mathe-
matically described herein. ∆ defines the number of
desired grid divisions for an objective within the ob-
jective space. Γ is an M by N matrix of entries γmn,

Γn = 〈γ1n,γ2n, . . . ,γMn〉 (9)

where Γn refers to a row in the Γ matrix, and every en-
try γmn refers to the grid location of an objective value
xmn in the divided objective space.

To calculate Γn, the grid location γmn of each ob-
jective value xmn for each solution Xn needs to be
resolved. To calculate a solution’s grid location, the
padded grid length Λ

Λ = 〈λ1,λ2, . . . ,λM〉 (10)

for each objective needs to be calculated using the low-
est and highest objective value for each objective in
the population:
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Figure 2. Visualisation of the AGA and its elements on a two-ob-
jective problem with four grid divisions. Vectors within braces indi-
cate the grid location.

λ
p
m =
|min(Xm)−max(Xm)|

2(∆−1)

λ
l
m = min(Xm)−λ

p
m

λ
u
m = max(Xm)+λ

p
m

λm = |λ l
m−λ

u
m|

(11)

where λ l
m is the start point of the grid for objective m in

the objective space, and λ u
m is the end point of the grid

for objective m in the objective space. These elements
have been illustrated in Figure 2.

With the grid length and range calculated, it is
possible to get the grid location of each solution’s ob-
jective value using:

γmn =

⌈
xmn−λ l

m
λm
∆

⌉
(12)

When the entries of Γn have been calculated, it
can be used to identify the grid location of a solution
Xn. In this new method, the grid location Γn is defined
by a vector rather than a scalar, for example in a five-
objective problem a grid location can be described by
being at location Γn = 〈2,4,1,1,2〉.

As an example, a population X of five (N = 5)
solutions Xn for a five-objective problem (M = 5) has
been presented in Table 1.

The population X has been subjected to the
HAGA mechanism to resolve the grid location Γn vec-



Table 1. An example population X of objective values xmn to be
subjected to the HAGA mechanism.

x1n x2n x3n x4n x5n

X1 0.5 0.5 5.0 2.5 1.5
X2 0.6 0 5.0 3.0 1.4
X3 0.5 3.5 4.5 2.5 1.5
X4 0.8 3.2 4.2 3.0 1.2
X5 1 3 4 2 1

tor of each solution Xn, with an adaptive-grid config-
uration of four grid divisions (∆ = 4). The grid loca-
tions resolved by the HAGA mechanism have been
presented in Table 2. In this example, each solution
Xn has been assigned to a grid location Γn, for ex-
ample, solution X2 which consists of the objectives
〈0.5,0.5,5.0,2.5,1.5〉 has been assigned to the grid lo-
cation 〈2,1,4,4,3〉. The solution values for each ob-
jective xmn have been plotted in their respective grid
locations γm in Figure 3.

Table 2. Grid locations Γ for the example population X of objective
values xmn.

γ1n γ2n γ3n γ4n γ5n

Γ1 1 1 4 3 4
Γ2 2 1 4 4 3
Γ3 1 4 2 3 4
Γ4 3 4 2 4 2
Γ5 4 4 1 1 1

The results from this example show that the exam-
ple population does not consist of any solutions which
are in the same grid square (otherwise their Γ entries
would be identical).

The method for selecting a grid location to re-
move a solution when the archive is at capacity is im-
portant when moving to many-objective problems. Se-
lecting at random from grid locations which are at the
same population density increases the probability of
causing genetic drift, and decreases the diversity qual-
ity of the population. This undesirable effect is scaled
exponentially as the number of objectives increase,
and it is for this reason that many modern EMO algo-
rithms now incorporate a niching approach when con-
cerned with selection [19, 96]. Therefore, it is desir-
able to find the grid location which is close to both so-
lutions in the objective space and also at a higher den-
sity.
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Figure 3. One dimensional plots illustrating the grid locations re-
solved by the HAGA mechanism for each objective value.

Storing grid locations as a single scalar value is
not helpful when calculating distance between grid
locations or for storing grid locations for a many-
objective problem. The grid location structure used in
the proposed AGA scheme described above enables
an intuitive method for finding the distance between
grid locations. By establishing the grid location which
a candidate solution would be assigned to if it was part
of the archive, it is possible to find the difference be-
tween its grid location and other grid locations which
are at high density to find out which one it’s closest to
by summing the difference of the grid location vectors.

For example, if a new solution

X6 = 〈0.6,0.5,4,3,1.1〉

was to be included as a candidate solution as part of
the HAGA mechanism, it would resolve a grid loca-
tion of Γ6 = 〈2,1,1,4,2〉. The distance δn between this
grid location and the grid locations of the other solu-
tions can be found by finding the absolute difference
of each corresponding entry of the candidate solution’s
grid location and another solution from the population,
and then summing those values.



δn =
N

∑
n=1
|γ∗m− γmn| (13)

The distances δn between the grid location Γ6 of
solution X6 and all the other solutions in the population
presented in Table 1 have been presented in Table 3.
The results show that the solution closest in proximity
to solution X6 is solution X2.

Table 3. Grid locations Γ for the example population X of objective
values xmn.

Γ1 Γ2 Γ3 Γ4 Γ5

δ6 7 4 8 5 9

Using this method of resolving densely populated
grid locations, which are closest in proximity to a can-
didate solution, it is possible to implement the ap-
proach listed in Algorithm 5.

Algorithm 5 ClosestGridFromMaxPopulated(Γn)

1: if |max(Γ)|> 1 then
2: for γ in max(Γ) do
3: δc← δ (γn,γ)]
4: end for
5: Γt ← Γmin(δc)

6: else
7: Γt ←max(Γ)
8: end if

return Γt

This algorithm is invoked by Line 5 of Algorithm
3 by ClosestGridFromMaximallyPopulated(Xn). Line
1 checks to see if there is a single grid location which
contains the most solutions, if there is more than one
grid location that contains the most number of so-
lutions then the algorithm identifies the grid square
which is closest in proximity to the candidate solu-
tion. δnc refers to the difference between the candidate
solution’s grid location and other grid locations, and
Γmin(δc) refers to the grid location which is the clos-
est in proximity among those containing the maximal
number of solutions.

In previous AGA implementations, the extreme
values for each objective were preserved at grid level.
In the proposed AGA scheme, solutions containing ex-

treme values for objectives (with the candidate solu-
tion taken into consideration) are removed from the
population before it is subjected to the AGA. No
special treatment is given to solutions containing lo-
cally (within their grid location) extreme objective val-
ues. This ensures candidate solutions are given a bet-
ter chance of entering the archive than they would
have had if they had come up against those solutions
containing extreme values. This preserves the overall
spread whilst encouraging new solutions to enter the
archive.

3. Numerical Results

In order to test the proposed CMA-PAES-HAGA scal-
able WFG multi-objective test suite proposed in [32]
has been considered in five, seven and ten objectives
where each objective had 24 variables.

The proposed CMA-PAES-HAGA has been run
with a parent population of size µ = 100 individuals,
archive capacity of 100 individuals, number of grid di-
visions equal to 3. The chosen value of 3 has been set
subsequent to a tuning where the values between 2 and
20 have been taken into consideration. The 3 setting
has been chosen as it proved to give the best perfor-
mance in terms of computational cost. A lower value
of grid divisions would result in fewer grid squares
and therefore larger grid square populations. This will
result in worst performance in the computation of the
CHV indicator which is used at grid level. In con-
trast, higher numbers of grid divisions will result in
many more grid locations which may hold only a few
solutions and often only a single solution. This sce-
nario does not ensure the best performance out of the
CHV indicator, as often only a single solution will
be in each grid square. The CMA-PAES-HAGA al-
gorithm has been compared with MOEA/D-DRA [96]
with both µ and λ populations of 100 individuals,
niche size of 20, and maximum update number equal
to 2. A population size of 100, in combination with the
number of grid divisions set to 3, prevents the com-
putationally infeasible scenario where a large number
of solutions are considered when calculating the hy-
pervolume indicator values. Both algorithms consid-
ered in the pairwise comparisons use diversity opera-
tors in order to offer a well-distributed representation



of the trade-off surface for each problem, with CMA-
PAES-HAGA using the hypervolume indicator driven
approach, and MOEA/D-DRA using the weighted ap-
proach. Both the algorithms have been run for 50,000
function evaluations. Each algorithm for each problem
has been run 30 times. The choice of this algorithm
has been made considering that this is currently one of
the algorithms which displayed the best performance
on five-objective problems, see [70].

All test cases have been executed on a desktop
computer with the configuration listed in Table 4.

Table 4. Hardware and software configurations of the computer
used to generate the results.

Configuration name Configuration value

Architecture Linux-x64
RAM 16 GB
CPU Intel(R) Xeon(R) CPU E5-1620 v2

@ 3.70GHz
Total CPU Cores 4
MATLAB version R2014a 64-bit (glnxa64)
Hypervolume Indicator WFG HV 1.0.3

In order to evaluate the performance the hypervol-
ume indicator has been chosen by following the indi-
cations in [31, 83]. The hypervolume indicator is se-
lected because it is scaling independent and requires
no prior knowledge of the true Pareto-optimal front,
this is important when working with real-world prob-
lems which have not yet been solved. The hypervol-
ume indicator allows for a measurement as to which
algorithm covers the greatest amount of the search
space. A greater hypervolume indicator value indi-
cates superior performance.

Tables 5, 6, and 7 show the hypervolume indica-
tor on average and in the best and worst cases over the
30 runs available in the cases of five, seven and ten ob-
jectives, respectively. The best results are indicated in
bold for clarity. The hypervolume indicator values can
only be compared within a specific test-case for each
of the considered algorithms. For example, the results
for CMA-PAES-HAGA on the five-objective WFG1
test-case are directly comparable to the correspond-
ing MOEA/D-DRA results on the same row of Table
5. This is because each test case requires a reference
point, which is formed by using the extreme values en-
countered for each of the objectives in all of the 60 ap-

proximation sets (30 runs for CMA-PAES-HAGA and
30 runs for MOEA/D-DRA).

In order to enhance the statistical significance of
the results Wilcoxon test [89] has been performed.
In each table, the p value as well as the result of
the Wilcoxon tests are shown: a “+” indicates that
the proposed CMA-PAES-HAGA statistically out-
performed MOEA/D-DRA, a “-” indicates that the
proposed MOEA/D-DRA statistically outperformed
CMA-PAES-HAGA, while a “=” indicates that the al-
gorithm statistically have the same performance.

Table 5. Hypervolume results from 30 executions of CMA-PAES-
HAGA and MOEA/D-DRA on the WFG test suite with five objec-
tives. The boldface values indicate superior performance

CMA-PAES-HAGA MOEA/D-DRA
Worst Mean Best Worst Mean Best p-value

WFG1 0.4139 0.4163 0.4194 0.3794 0.3906 0.397 3.019e-11 +
WFG2 0.8506 0.8900 0.9041 0.7602 0.8920 0.9324 0.001302 –
WFG3 0.5940 0.6194 0.6398 0.5464 0.5843 0.6129 2.438e-09 +
WFG4 0.6984 0.7175 0.7415 0.6109 0.6534 0.7056 4.077e-11 +
WFG5 0.52795 0.5638 0.5866 0.5779 0.6051 0.6501 6.066e-11 –
WFG6 0.7449 0.7529 0.7620 0.6746 0.7001 0.7219 3.019e-11 +
WFG7 0.6130 0.6430 0.6756 0.5953 0.6487 0.7091 0.7172 =
WFG8 0.5896 0.6293 0.6555 0.5700 0.6098 0.6697 0.0002 +
WFG9 0.6331 0.6548 0.6767 0.5359 0.5901 0.6339 3.338e-11 +

Table 6. Hypervolume results from 30 executions of CMA-PAES-
HAGA and MOEA/D-DRA on the WFG test suite with seven ob-
jectives. The boldface values indicate superior performance

CMA-PAES-HAGA MOEA/D-DRA
Worst Mean Best Worst Mean Best p-value

WFG1 0.3472 0.3509 0.3552 0.3191 0.3261 0.3348 3.019e-11 +
WFG2 0.8555 0.8999 0.9272 0.7817 0.9285 0.9598 2.01e-08 –
WFG3 0.5835 0.6048 0.6154 0.4917 0.5513 0.5936 4.0e-11 +
WFG4 0.6834 0.7056 0.7247 0.5881 0.6509 0.7067 6.1e-10 +
WFG5 0.4755 0.5281 0.5605 0.4775 0.5253 0.5823 0.3710 =
WFG6 0.8484 0.8546 0.8592 0.8216 0.8326 0.8472 3.0e-11 +
WFG7 0.6342 0.6829 0.7222 0.5957 0.6634 0.7392 0.0127 +
WFG8 0.6245 0.6771 0.7188 0.6013 0.6671 0.7335 0.5011 =
WFG9 0.5786 0.6231 0.6532 0.4302 0.5228 0.6312 1.95e-10 +

Table 7. Hypervolume results from 30 executions of CMA-PAES-
HAGA and MOEA/D-DRA on the WFG test suite with ten objec-
tives. The boldface values indicate superior performance.

CMA-PAES-HAGA MOEA/D-DRA
Worst Mean Best Worst Mean Best p-value

WFG1 0.2998 0.3045 0.3112 0.2713 0.2789 0.2910 3.019e-11 +
WFG2 0.9397 0.9559 0.9656 0.9516 0.9719 0.9786 5.072e-10 –
WFG3 0.6545 0.6609 0.6673 0.5315 0.5896 0.6260 3.012e-11 +
WFG4 0.6744 0.7075 0.7679 0.6189 0.6990 0.765 0.3871 =
WFG5 0.4658 0.4927 0.5127 0.4064 0.4522 0.5040 1.856e-09 +
WFG6 0.6314 0.6430 0.6679 0.5458 0.5694 0.5981 3.019e-11 +
WFG7 0.6727 0.7250 0.8051 0.5841 0.6627 0.7738 2.377e-07 +
WFG8 0.5742 0.5988 0.6341 0.4698 0.5827 0.6813 0.3112 =
WFG9 0.5444 0.6046 0.6348 0.3673 0.4414 0.5574 3.689e-11 +



It must be remarked that the calculation of the
hypervolume indicator is, albeit a very reliable mea-
sure, computationally extremely onerous when more
than three objectives are considered [6]. The calcu-
lation of a single hypervolume indicator value for a
ten-objective approximation set can in some cases, re-
quire up to twelve hours with the hardware configu-
ration specified in Table 4. For this reason we had to
limit this comparison to only two algorithms. On the
other hand we know from the literature, see e.g. [96],
that MOEA/D-DRA outperforms many popular multi-
objective optimisation algorithms on this test-suite.

Numerical results show that in the five-objective
case, CMA-PAES-HAGA outperforms MOEA/D-DRA
since the proposed algorithm displays a better perfor-
mance for six problems and is outperformed in two
cases. In the seven and ten objective cases, the per-
formance of CMA-PAES-HAGA is clearly superior to
that of MOEA/D-DRA. The proposed CMA-PAES-
HAGA significantly outperforms MOEA/D-DRA for
six problems and is outperformed in only one case,
that is WFG2 where the performance of MOEA/D-
DRA appears to be quite good. Although there is no
general rigorous proof for the No Free Lunch Theo-
rem for multi-objective optimisation [17, 90] the per-
formance of multi-objective algorithms is also prob-
lem dependent.

Fig. 4, 5, and 6, show the variation in the hyper-
volume value of the algorithmic generations in five,
seven, and ten objectives, respectively, in the case of
WFG9. In each figure the hypervolume values associ-
ated to individual and average runs are highlighted.

Results in the figures clearly show how the perfor-
mance of the proposed CMA-PAES-HAGA improves
with the increase of the number of objectives with
respect to the performance of MOEA/D-DRA. This
trend is evident for WFG9 but is also generally true for
the other test problems.

3.1. Multi-objective Optimisation of Aircraft Control
System Design

An important engineering problem, here used as an
application example, is the design of a fighter air-
craft control system. This, as well as many engineering
problems, are naturally multi-objective as engineers
desire that multiple objectives are simultaneously op-
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Figure 4. Evolution of the hypervolume indicator results (single
runs and mean values m) for five-objective WFG9 test case.
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Figure 5. Evolution of the hypervolume indicator results (single
runs and mean values m) for seven-objective WFG9 test case.

timised. Figure 7 presents an illustration of an air-
craft with the three main axes of motion labelled: the
Roll (longitudinal) axis, the Pitch (lateral) axis, and
the Yaw (vertical) axis. A combination of changes are
made to both the angles and the rates of the angular
velocities during the motion of the aircraft [80].

The system and input data for the fighter aircraft
in this problem have been listed in the following:
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Figure 6. Evolution of the hypervolume indicator results (single
runs and mean values m) for ten-objective WFG9 test case.

Figure 7. The three main axes of an Aircraft body.

A =


−0.2842 −0.9879 0.1547 0.0204
10.8574 −0.5504 −0.2896 0.0000
−199.8942 −0.4840 −1.6025 0.0000

0.0000 0.1566 1.0000 0.0000



B =


0.0000 0.0524
0.4198 −12.7393

50.5756 21.6753
0.0000 0.0000


These matrices represent the system state of the

vehicle and are used in the control vector. More specif-
ically, matrix A is the kinetic energy matrix while B is
the Coriolis matrix, see [80] for details. Then,

u = Cup +Kx (14)

where up is the pilot’s control input vector: [16,0].
The seven problem variables k1 to k7 form part

of the state space gain matrices, these represent gains
applied to the various signals involved in the fighter
aircraft control system:

C =

[
1 0
k5 1

]
;K =

[
k6 k1 k2 0
k7 k3 k4 0

]
. (15)

The optimisation problem studied in this example
consists of finding the values of the gain coefficients
[k1,k2,k3,k4,k5,k6,k7] such that the following seven
objectives are simultaneously minimised:

1. The spiral root.
2. The damping in roll root.
3. The dutch-roll damping ratio.
4. The dutch-roll frequency.
5. The bank angle at 1.0 seconds.
6. The bank angle at 2.8 seconds.
7. The control effort.

Objectives 1 to 4 are the eigenvalues associated to
the matrix A+BK, Objectives 5 and 6 are the bank
angle taken at two intervals (1 s and 2.8 s) according
to Military Specification [8] requirements, Objective 7
is the sum of squares of gain vector.

Further details regarding the aircraft dynamic
model and the problem variables are available in
[4, 23]. This optimisation problem will be referred to
as Lateral Controller Synthesis (LATCON) herein.

The proposed CMA-PAES-HAGA has been tested
to solve the LATCON problem and its performance
has been compared with that of MOEA/D-DRA,
NSGA-II, and a newly proposed algorithm for solving
many-objective problems namely θ -Dominance based
Evolutionary Algorithm (θ -DEA) [92]. The parame-
ter setting of CMA-PAES-HAGA and MOEA/D-DRA
is the same mentioned above. NSGA-II was executed
with µ and λ populations of 100 individuals, and a
mutation rate of 1

n where n is the number of problem
variables (seven in this case). The same population
size µ = 100 has been used also for θ -DEA. Each al-
gorithm was given a limit of 10,000 function evalua-
tions. The three competing algorithms have been cho-
sen by considering that MOEA/D-DRA and θ -DEA
are specialised algorithms for problems with many
objectives, whilst NSGA-II is used here as a classic



benchmark algorithm. For each algorithm in this study
30 independent runs have been performed.

The hypervolume indicator was measured at each
generation throughout the optimisation process. At
the end of the optimisation the following hyper-
volume indicator average values have been yielded:
CMA-PAES-HAGA (3.5616e+37), MOEA/D-DRA
(2.9182e+37), θ -DEA ( 2.3992e+37) and NSGA-II
(2.3536e+36). These results clearly show that NSGA-
II, albeit popular and efficient for two-objective and
three-objective problems, does not offer good perfor-
mance on this seven-objective problem as the corre-
sponding hypervolume indicator value is one order of
magnitude inferior than that associated to the other
two algorithms.

The comparison between CMA-PAES-HAGA,
MOEA/D-DRA, and θ -DEA show that although the
latter two are good algorithms in multi-objective opti-
misation for problems with more than three objectives,
they are both outperformed by CMA-PAES-HAGA on
this control engineering problem.

The evolution of the hypervolume indicator for
the four algorithms under consideration has been plot-
ted in Fig. 8.
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Figure 8. Evolution of the hypervolume indicator results for the
seven-objective LATCON problem.

Fig. 8 highlights that NSGA-II is unsuitable to
solve the LATCON problem. This result was expected
as several studies show that NSGA-II displays poor
performance in problems composed of more than three
objectives, see e.g. [18]. In contrast, MOEA/D-DRA

appears to be well suited to address the LATCON
problem. This result was also expected as it confirms
the findings reported in [38] where it is shown how a
MOEA/D scheme tends to perform much better than
NSGA-II in many-objective problems.

The performance of θ -DEA is also quite good for
this problem. However, θ -DEA for this problem and
for the given computational budget appears to display
a performance which is not as good as that of CMA-
PAES-HAGA and MOEA/D-DRA. Furthermore, from
an analysis of the trend in Fig. 8, unlike MOEA/D-
DRA, θ -DEA probably required a larger budget to de-
tect better values of hypervolume (the trend appears
still to grow at the end of the budget).

The comparison between CMA-PAES-HAGA
and MOEA/D-DRA indicates that the proposed algo-
rithm not only achieves better hypervolume indica-
tor values at the end of the computational budget, but
also is much faster than MOEA/D-DRA to reach a
good hypervolume indicator value. It can be observed
that, for the LATCON problem, CMA-PAES-HAGA
achieves a good hypervolume value after only 10 gen-
erations. This feature makes CMA-PAES-HAGA an
interesting option for those problems which demand a
solution in a short time or computationally expensive
problems. Furthermore, it can be observed that at the
end of the executions, while NSGA-II and MOEA/D-
DRA appear to be incapable to enhance upon their
corresponding hypervolume indicator value, CMA-
PAES-HAGA is still able to obtain marginal improve-
ments.

4. Conclusion

This article proposes a novel algorithm for multi-
objective optimisation with four or more objectives.
The proposed algorithm contains a novel selection
mechanism suitable to compare solutions consisting of
many objectives. This selection mechanism makes use
of an approximated hypervolume logic in order to se-
lect solutions for the following generation. This selec-
tion mechanism overcomes the limitation of the true
hypervolume indicator (selection by CHV) whose ap-
plication would be computationally infeasible, whilst
still resulting in an algorithm which is very efficient
for multi-objective problems with more than four ob-
jectives.



Numerical results show that the proposed CMA-
PAES-HAGA framework displays an excellent perfor-
mance in five, seven, and ten-objective optimisation
problems when compared to MOEA/D-DRA which
represents the state-of-the-art for many-objective op-
timisation problems. Furthermore, a real-world seven-
objective problem concerning the design of an aircraft
control system is also used as a benchmark. In the
latter case, it is evident that CMA-PAES-HAGA is a
high-performance option, in terms of quickly achiev-
ing a high hypervolume indicator value, when the
problem is characterised by many conflicting objec-
tives.
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proved dimension-sweep algorithm for the hypervolume in-
dicator,” in Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on. IEEE, 2006, pp. 1157–1163.

[29] A. Ghahari and J. D. Enderle, “A neuron-based time-optimal
controller of horizontal saccadic eye movements,” Int. J.
Neural Syst., vol. 24, no. 6, 2014.

[30] N. Hansen and A. Ostermeier, “Completely derandomized
self-adaptation in evolution strategies,” Evolutionary com-
putation, vol. 9, no. 2, pp. 159–195, 2001.

[31] M. Helbig and A. P. Engelbrecht, “Performance measures
for dynamic multi-objective optimisation algorithms,” In-
formation Sciences, vol. 250, pp. 61–81, 2013.

[32] S. Huband, P. Hingston, L. Barone, and L. While, “A review
of multiobjective test problems and a scalable test problem
toolkit,” Evolutionary Computation, IEEE Transactions on,
vol. 10, no. 5, pp. 477–506, 2006.

[33] E. J. Hughes, “Evolutionary many-objective optimisation:
many once or one many?” in Evolutionary Computation,
2005. The 2005 IEEE Congress on, vol. 1. IEEE, 2005, pp.
222–227.

[34] ——, “Msops-ii: A general-purpose many-objective opti-
miser,” in Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on. IEEE, 2007, pp. 3944–3951.

[35] G. Iacca, F. Caraffini, and F. Neri, “Multi-strategy coevolv-
ing aging particle optimization,” Int. J. Neural Syst., vol. 24,
no. 1, 2014.

[36] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adap-
tation for multi-objective optimization,” Evolutionary com-
putation, vol. 15, no. 1, pp. 1–28, 2007.

[37] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multi-
objective evolutionary algorithms on many-objective knap-
sack problems,” IEEE Transactions on Evolutionary Com-
putation, vol. 19, no. 2, pp. 264–283, April 2015.

[38] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima,
“Evolutionary many-objective optimization by nsga-ii and
moea/d with large populations,” in Systems, Man and Cy-
bernetics, 2009. SMC 2009. IEEE International Conference
on, 2009, pp. 1758–1763.

[39] H. Ishibuchi, N. Tsukamoto, Y. Hitotsuyanagi, and Y. No-
jima, “Effectiveness of scalability improvement attempts on
the performance of nsga-ii for many-objective problems,” in
Proceedings of the 10th annual conference on Genetic and
evolutionary computation. ACM, 2008, pp. 649–656.

[40] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolution-
ary many-objective optimization: A short review.” in IEEE
Congress on Evolutionary Computation, 2008, pp. 2419–
2426.

[41] H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima,
“Indicator-based evolutionary algorithm with hypervolume
approximation by achievement scalarizing functions,” in
Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM, 2010, pp. 527–534.

[42] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between
Genetic Search and Local Search in Memetic Algorithms
for Multiobjective permutation Flow shop Scheduling,”
IEEE Transactions on Evolutionary Computation, vol. 7,
no. 2, pp. 204–223, 2003.

[43] H. Jain and K. Deb, “An evolutionary many-objective op-
timization algorithm using reference-point based nondom-
inated sorting approach, part ii: Handling constraints and
extending to an adaptive approach,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 602–622, Aug
2014.

[44] A. Jaszkiewicz, “On the computational efficiency of mul-
tiple objective metaheuristics. the knapsack problem case
study,” European Journal of Operational Research, vol.
158, no. 2, pp. 418–433, 2004.

[45] L. Jia, Y. Wang, and L. Fan, “Multiobjective bilevel opti-
mization for production-distribution planning problems us-
ing hybrid genetic algorithm,” Integrated Computer-Aided
Engineering, vol. 21, no. 1, pp. 77–90, 2014.

[46] Y. Jin and B. Sendhoff, “Connectedness, regularity and the
success of local search in evolutionary multi-objective op-
timization,” in Evolutionary Computation, 2003. CEC ’03.
The 2003 Congress on, vol. 3, Dec 2003, pp. 1910–1917.

[47] M. Joly, T. Verstraete, and G. Paniagua, “Integrated multifi-
delity, multidisciplinary evolutionary design optimization of
counterrotating compressors,” Integrated Computer-Aided
Engineering, vol. 21, no. 3, pp. 249–261, 2014.

[48] V. Khare, X. Yao, and K. Deb, “Performance scaling of
multi-objective evolutionary algorithms,” in Evolutionary
Multi-Criterion Optimization. Springer, 2003, pp. 376–
390.

[49] H. Kim and H. Adeli, “Discrete cost optimization of com-
posite floors using a floating-point genetic algorithm,” En-
gineering Optimization, vol. 33, no. 4, pp. 485–501, 2001.

[50] J. D. Knowles, D. W. Corne, and M. Fleischer, “Bounded
archiving using the lebesgue measure,” in Evolutionary
Computation, 2003. CEC ’03. The 2003 Congress on, vol. 4,
Dec 2003, pp. 2490–2497 Vol.4.

[51] J. Knowles and D. Corne, “The pareto archived evolution
strategy: A new baseline algorithm for pareto multiobjective
optimisation,” in Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, vol. 1. IEEE, 1999.

[52] ——, “Quantifying the effects of objective space dimen-
sion in evolutionary multiobjective optimization,” in Pro-
ceedings of the 4th International Conference on Evolution-
ary Multi-criterion Optimization, ser. EMO’07. Springer-
Verlag, 2007, pp. 757–771.

[53] M. Kociecki and H. Adeli, “Two-phase genetic algo-
rithm for size optimization of free-form steel space-frame
roof structures,” Journal of Constructional Steel Research,
vol. 90, pp. 283 – 296, 2013.



[54] ——, “Two-phase genetic algorithm for topology optimiza-
tion of free-form steel space-frame roof structures with
complex curvatures,” Engineering Applications of Artificial
Intelligence, vol. 32, pp. 218 – 227, 2014.

[55] ——, “Shape optimization of free-form steel space-frame
roof structures with complex geometries using evolutionary
computing,” Eng. Appl. of AI, vol. 38, pp. 168–182, 2015.

[56] A. Lara, G. Sanchez, C. A. Coello Coello, and O. Schutze,
“Hcs: a new local search strategy for memetic multiobjec-
tive evolutionary algorithms,” Evolutionary Computation,
IEEE Transactions on, vol. 14, no. 1, pp. 112–132, 2010.

[57] H.-G. Lee, C.-Y. Yi, D.-E. Lee, and D. Arditi,
“An advanced stochastic time-cost tradeoff analysis
based on a cpm-guided genetic algorithm,” Computer-
Aided Civil and Infrastructure Engineering, vol. 30,
no. 10, pp. 824–842, 2015. [Online]. Available:
http://dx.doi.org/10.1111/mice.12148

[58] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolu-
tionary algorithms: A survey,” ACM Comput. Surv., vol. 48,
no. 1, pp. 13:1–13:35, Sep. 2015.

[59] D.-Y. Lin and Y.-H. Ku, “Using genetic algorithms to
optimize stopping patterns for passenger rail transporta-
tion,” Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 29, no. 4, pp. 264–278, 2014. [Online]. Available:
http://dx.doi.org/10.1111/mice.12020
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