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Abstract 24 

In this study, two dimensional numerical simulations of forced convection flow of HFE 7000 25 

based nanofluids in a horizontal circular tube subjected to a constant and uniform heat flux in 26 

laminar flow was performed by using single phase homogeneous model. Four different 27 

nanofluids considered in the present study are Al2O3, CuO, SiO2 and MgO nanoparticles 28 

dispersed in pure HFE 7000. The simulations were performed with particle volumetric 29 

concentrations of 0, 1, 4 and 6% and Reynolds number of 400, 800, 1200 and 1600. Most of 30 

the previous studies on the forced convective flow of nanofluids have been investigated 31 

through hydrodynamic and heat transfer analysis. Therefore, there is limited number of 32 

numerical studies which include both heat transfer and entropy generation investigations of 33 

the convective flow of nanofluids. The objective of the present work is to study the influence 34 

of each dispersed particles, their volume concentrations and Reynolds number on the 35 

hydrodynamic and thermal characteristics as well as the entropy generation of the flow. In 36 

addition, experimental data for Al2O3-water nanofluid was compared with the simulation 37 

model and high level agreement was found between the simulation and experimental results. 38 

The numerical results reveal that the average heat transfer coefficient augments with an 39 

increase in Reynolds number and the volume concentration for all the above considered 40 

nanofluids. It is found that the highest increase in the average heat transfer coefficient is 41 

obtained at the highest volume concentration ratio (6%) for each nanofluids. The increase in 42 

the average heat transfer coefficient is found to be 17.5% for MgO-HFE 7000 nanofluid, 43 

followed by Al2O3-HFE 7000 (16.9%), CuO-HFE 7000 (15.1%) and SiO2-HFE 7000 44 

(14.6%). However, the results show that the enhancement in heat transfer coefficient is 45 

accompanied by the increase in pressure drop, which is about (9.3 - 28.2%). Furthermore, the 46 

results demonstrate that total entropy generation reduces with the rising Reynolds number 47 

and particle volume concentration for each nanofluid. Therefore, the use of HFE 7000 based 48 



MgO, Al2O3, CuO and SiO2 nanofluids in the laminar flow regime is beneficial and enhances 49 

the thermal performance.   50 

Keywords: CFD; nanofluid; heat transfer coefficient; pressure loss; entropy generation 51 
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Nomenclature 
    
A area, m2 fr frictional 
Cp specific heat, J/kg K gen generation 
D diameter, m in inlet 
f friction factor m mean 
GWP global warming potential nf nanofluid  
h heat transfer coefficient, W/(m2K) out outlet 
HFE hydrofluoroether s nanoparticle 
k thermal conductivity, W/m K th thermal 
L length, m tot total 
Nu Nusselt number w wall 
ODP ozone depletion potential   
R radius of the tube, m Greek symbols 
P pressure, Pa 𝜌  density, kg/m3 
q'' heat flux, W/m2 ƞ first law efficiency  
Re Reynolds umber ε second law efficiency 
S entropy, W/K 𝜇 dynamic viscosity, kg/m s  
T temperature, K ϕ particle volume concentration (%) 
u Velocity in axial direction, m/s   
𝑊 work rate, W   
    
Subscripts   
amb ambient   
ave average   
bf base fluid   
f fluid   
    

 53 

1. Introduction 54 

The low thermal conductivity of traditional fluids for instance, water, mineral oil and 55 

ethylene glycol is one of the obstacles to higher compactness and efficiency of heat 56 

exchangers [1] and it is crucial to develop more efficient heat transfer fluids with 57 

substantially higher thermal conductivity [2]. Therefore, micro/millimetre-sized solid 58 



particles which have considerably higher thermal conductivity than those fluids have been 59 

suspended in them to cause an enhancement in the thermal conductivity [3, 4]. However, 60 

significant problems such as abrasion and clogging were observed when particles of the order 61 

of millimetres and micrometres are suspended in a liquid. 62 

Alternatively, nano-sized particles suspended in conventional fluids can provide an 63 

improvement in the performance of these fluids. Such novel liquid suspensions that consist of 64 

solid particles at nanometric scale are called nanofluids and have become popular in terms of 65 

its utilisation in various practices such as heat transfer, thermal energy storage and industrial 66 

cooling [5, 6]. Nanofluids have superior heat transfer performance than conventional fluids 67 

because of the improved effective thermal conductivity of the fluid [7]. As a consequence, 68 

several studies have been conducted on the investigation of thermo-physical properties of 69 

nanofluids, particularly the effective thermal conductivity and viscosity [8-13]. Superior 70 

thermal conductivity and viscosity of nanofluids in comparison to the base fluids were 71 

reported in the above studies. However, in addition to the thermo-physical properties, forced 72 

convection (laminar and turbulent flow) heat transfer characteristics of nanofluids need to be 73 

investigated as it is important for their practical applications [14]. One of the earliest 74 

experimental work on forced convection of nanofluids was conducted by Xuan and Li [7]. In 75 

their study, Cu-water nanofluid was used to examine the heat transfer process of the 76 

nanofluid. They obtained higher heat transfer performance for the nanofluid compared to that 77 

of the base liquid. Another experimental study was conducted by Wen et al. [15] where the 78 

effect of  the laminar flow of water-Al2O3 nanofluid was analysed. They stated that the heat 79 

transfer rate rose by addition of nanoparticles, especially at the entrance region of the tube. 80 

The relation between the heat transfer coefficient and nanoparticle size and Peclet number 81 

was studied by Heris et al. [16] for Al2O3-water and CuO-water nanofluids in a circular tube. 82 



It was found that the heat transfer coefficient soared with increasing particle size and Peclet 83 

number for both nanofluids. 84 

In addition to experimental studies, numerical analysis of forced convection of nanofluids has 85 

been of interest to many researchers. Numerical analysis in the literature consists of two 86 

different approaches for evaluating the heat transfer correlations of nanofluids which are 87 

single phase (homogenous) and two-phase (mixture) models. In the former model, nanofluid 88 

is assumed as a single fluid rather than a solid-fluid mixture and it is also assumed that there 89 

is no motion slip between particles and fluid. Moraveji et al. [17] numerically studied the 90 

convective heat transfer coefficient of Al2O3 nanofluid along a tube using single phase model. 91 

It was observed that the heat transfer coefficient rose with increasing nanoparticle volume 92 

fraction ratio and the Reynolds number. Demir et al. [18] investigated the forced convection 93 

flow of nanofluids in a horizontal tube subjected to constant wall temperature. They utilised 94 

homogeneous model with two-dimensional equations in order to study the effects of TiO2 and 95 

Al2O3 nanoparticles and Reynolds number on the convective heat transfer coefficient, Nusselt 96 

number and pressure drop. The results revealed that nanofluids with a higher volume ratio 97 

showed a higher improvement of heat transfer rate. Salman et al. [19] investigated the 98 

laminar forced convective flow of water based Al2O3 and SiO2 nanofluids numerically. The 99 

results indicated that SiO2-water and Al2O3-water nanofluids have better heat transfer 100 

properties compared to pure water. 101 

In order to take the effect of nanoparticle chaotic movements into account in single phase 102 

model, thermal dispersion approach is proposed by several researchers [20-22]. These 103 

researchers also concluded that increasing particle volume concentration enhances the heat 104 

transfer rate. Furthermore, the mixture model approach where the interactions between the 105 

particle and fluid are considered is also proposed in several numerical analyses in the 106 

literature [23-26]. 107 



As previously mentioned suspending nano-scale particles in a base fluid enhances the thermal 108 

conductivity but also increases the viscosity. An augmentation in the thermal conductivity 109 

leads a better heat transfer rate, whereas an increase in the viscosity leads an enhancement in 110 

pressure drop. Consequently, the addition of the particles changes the thermophysical 111 

properties of a fluid as well as the irreversibility of a system [27]. Entropy generation 112 

demonstrates the irreversibility of a system thus, it is important to minimise the entropy 113 

generation to obtain better working conditions [28, 29]. As a result, entropy generation 114 

analysis has been considered in nanofluid flow analysis in order to find the optimum working 115 

conditions by several researchers [27, 30-37]. For instance, Moghaddami et al. [31] studied 116 

the estimation of the entropy generation of Al2O3 particles suspended in water and ethylene 117 

glycol in a circular tube for both laminar and turbulent flows. They revealed that the entropy 118 

generation is diminished by the addition of the particles at any Reynolds number for laminar 119 

flow. However, for turbulent flow it is stated that utilising the nanoparticles in the base fluid 120 

is beneficial only at Reynolds number smaller than 40000. Biancoa et al. [28] studied the 121 

numerical entropy generation of Al2O3-water nanofluids under the turbulent forced 122 

convection flow for fixed Reynolds number, mass flow rate and velocity. Their numerical 123 

outcomes reveal that at constant velocity condition, lower concentration of nanoparticles can 124 

minimise the total entropy generation. In another study, Saha et al. [33] evaluated the entropy 125 

generation of water based TiO2 and Al2O3 nanofluids for turbulent flow in a heated pipe. It 126 

was found that there is an optimum Reynolds number where the entropy generation is 127 

minimised. They also showed that the use of TiO2 nanofluid is more beneficial than Al2O3 128 

nanofluid. 129 

Hydrofluoroethers (HFEs) which are the new generation refrigerants have zero Ozone 130 

Depletion Potential (ODP) and relatively low Global Warming Potential (GWP). Therefore, 131 

they have been used in various applications as a replacement to conventional refrigerants 132 



such as Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) [38]. In 133 

addition to that HFE 7100 based nanofluids have been of interest to various researchers in 134 

terms of convective heat transfer analysis [39-41]. Previously, HFE 7000 (RE 347mcc) 135 

refrigerant has been studied both experimentally and numerically in terms of its utilisation in 136 

various solar thermal applications [42, 43]. In this study, laminar forced convection flow 137 

characteristics of HFE 7000 (RE 347mcc) based Al2O3, SiO2, CuO and MgO nanofluids in a 138 

horizontal tube under constant heat flux is analysed numerically. Single phase homogeneous 139 

approach is applied in order to investigate the effects of Reynolds number and particle 140 

volume concentration ratio on both the heat transfer coefficient and the pressure drop of each 141 

nanofluid. Furthermore, the entropy generation analysis is provided for each nanofluid flow 142 

to specify the most beneficial nanofluid with optimum working conditions that minimises the 143 

total entropy generation of the flow. 144 

2. Problem definition 145 

In this study, two dimensional, steady state, laminar flow in a circular tube, subjected to 146 

constant heat flux is investigated. The geometry of the considered problem is represented in 147 

Figure 1. As it can be seen from the figure, the computational domain consists of a tube with 148 

a length of 1.2 m and a diameter of 0.00475 m. In the analysis, only the top half of the tube is 149 

considered as the flow is presumed to be symmetrical. In the simulations, 1000 W/m2 150 

constant heat is supplied on the upper wall of the tube. Also, the base and nanofluids enters 151 

the tube at temperature of 283K and the pressure of 1 bar. This inlet temperature is chosen 152 

due to the HFE 7000 saturation pressure-temperature conditions. 153 

 154 

Figure 1 Schematic of the flow domain under consideration 155 



 156 

 157 

3. Numerical analysis 158 

The defined problem is solved using single phase approach where the base fluid HFE 7000 159 

(RE 347mcc) and the particles are assumed to be in equilibrium and there is no relative 160 

velocity between the two of them. 161 

3.1. Mathematical modelling 162 

The following equations (continuity, momentum and energy) for laminar, incompressible 163 

flow can be expressed as follows: 164 

Continuity equation: 165 

𝛻. 𝜌!"𝑉 = 0            (1) 166 

Momentum equation: 167 

𝛻. 𝜌!"𝑉𝑉 = −𝛻𝑃 + 𝛻. (𝜇!"𝛻𝑉)          (2) 168 

Energy equation: 169 

𝛻 𝜌!"𝑉𝐶!𝑇 = 𝛻(𝑘!"𝛻𝑇)           (3) 170 

3.2. Thermo-physical properties of nanofluids 171 

The thermal and physical properties of nanofluids are investigated using the formulas below: 172 

The density of nanofluid can be calculated by the equation developed by Pak and Chao [44]: 173 

𝜌!" = 𝜙𝜌! + 1− 𝜙 𝜌!"                     (4) 174 

where 𝜙 is the nanoparticle volume concentration, 𝜌! and 𝜌!" are the nanoparticle and base 175 

fluid densities respectively.  176 

Mass-averaged calculation of specific heat which is based on heat capacity concept of 177 

nanofluid is shown below [29]: 178 



𝐶!,!" =
!(!!!)!!(!!!)(!!!)!"

!!!!(!!!)!!"
                      (5) 179 

where 𝐶!,! and 𝐶!,!" are particles and base fluid heat capacity respectively. 180 

Effective thermal conductivity of nanofluid is obtained in the following form [45]: 181 

𝑘!" = 𝑘!"
!!! !!! !!"!(!!!)!(!!!!!")

!!! !!! !!"!!(!!!!!")
                              (6) 182 

where 𝑘!" and 𝑘! are the thermal conductivities of the base fluid and solid particles and n = 3 183 

for spherical solid particles.  184 

Dynamic viscosity of nanofluid is estimated by using Einstein's equation which is based on 185 

kinetic theory [46]: 186 

𝜇!" = 𝜇!" 1+ 2.5𝜙                       (7) 187 

In Equation (7), 𝜇!" and 𝜇!" are the dynamic viscosity of the nanofluid and base fluid 188 

respectively. 189 

The thermo-physical properties of two base fluids (water and HFE 7000) and the materials 190 

used in this study are given in Table 1. 191 

Table 1 Thermo-physical properties of the base fluids (water and HFE 7000) and the nanoparticles 192 

Fluid/Particle Density  
(kg/m3) 

Specific heat  
(J/kg.K) 

Thermal 
conductivity 
(W/mK) 

Viscosity  
(kg/m.s) Reference 

Pure water 998.2 4182 0.6 0.001003 [47] 
HFE 7000* 1446.1 1204.6 0.079 0.00058 [48] 
Al2O3 3970 765 40 - [49] 
SiO2 2200 703 1.2 - [19] 
MgO 3560 955 45 - [47] 
CuO 6500 535.6 20 - [50] 
* The data is taken at 1 bar and 283 K 193 

3.3. Boundary conditions 194 

In order to solve the governing equations given above, the appropriate boundary conditions 195 

are applied and expressed as follows; 196 

Uniform velocity boundary condition depending on the value of the flow Reynolds number 197 

and inlet temperature are defined at the inlet of the tube. 198 



u (0, r) = U, v (0, r) = 0 199 

T (0, r) = Tin 200 

No-slip boundary conditions at the wall (r = D/2) is imposed. Therefore, the velocity at the 201 

upper wall becomes;  202 

u (x, R) = v (x, R) = 0 203 

The upper surface of the tube is subjected to a constant heat flux and it is expressed as; 204 

−𝑘!"
!"
!" !!!

= 𝑞!!  205 

Finally, at the exit section of the tube pressure outlet condition is applied.  206 

4. Numerical procedure 207 

In this study, the governing equations (continuity, momentum and energy) with appropriate 208 

boundary conditions are solved by employing the finite volume solver Fluent 6.3.26 [51]. 209 

Second order upwind scheme is applied for solving the convective and diffusive terms. The 210 

SIMPLE algorithm is used to model pressure-velocity coupling. The residue of 10-6 is defined 211 

as convergence criteria for all the dependent variables as mass, velocity and energy.  212 

4.1. Data reduction 213 

The local heat transfer coefficient is expressed as: 214 

ℎ 𝑥 =  !!!

!(!)!!!(!)!,!
                                                   (8) 215 

where T(x)w represents the wall temperature at a given location (x) along the tube and it is 216 

calculated as: 217 

T (x, R) = T(x)w            (9) 218 

where x represents any given axial position along the tube and R is the radius of the tube.  219 

T(x)f,m is the fluid mean temperature at any (x), which can be found via integration:   220 

𝑇(𝑥)!,! =
!"#$"!

!

!"#"!
!

                     (10) 221 

where u is the velocity in axial (x) direction. 222 



The average convective heat transfer coefficient is calculated as: 223 

 𝒉𝒂𝒗𝒆 =  𝟏
𝑳

𝒉 𝒙 𝒅𝒙𝑳
𝟎                      (11) 224 

In addition to heat transfer coefficient, the total entropy generation rate of the fluid flow is 225 

evaluated in order to determine the benefits of using nanofluid in terms of thermodynamic 226 

analysis. The total entropy generation rate of a flow in a circular tube which consists of two 227 

parts: (i) thermal entropy generation (ii) frictional entropy generation is calculated as follows 228 

[33]: 229 

𝑆!"! =
(!!!)!!!!!
!"#!!"#!

+ !"!!!"
!!!!!!"#!!

                    (12) 230 

In Eq. (12), the first term of the left hand side represents the thermal entropy generation and 231 

the second term represents the frictional entropy generation. 232 

In the first term, D indicates the diameter of the tube, Nu is the Nusselt number, k and Tavg are 233 

the thermal conductivity and the average temperature of fluid. 234 

Average Nusselt number and fluid temperature are given by: 235 

𝑁𝑢!"# =  !!"#!
!

                     (13) 236 

𝑇!"# =  !!"!!!"#
!"

!!"
!!"#

                      (14) 237 

In the second term 𝑚 is the flow mass flow rate, f and 𝜌 represent friction factor and the 238 

density of fluid respectively.  239 

Friction factor (f) can be calculated using the following equation: 240 

𝑓 = !∙∆!∙!
!∙!!∙!

                      (15) 241 

4.2. Grid independency test 242 

A grid independency test is conducted to guarantee the accuracy of the numerical results. 243 

Five different sets of uniform grids have been used to check for grid independency. The tests 244 

were carried out for both pure water and HFE 7000 at Re = 800 and Re = 1600 for each of the 245 



grids. Table 2 shows the comparison of the results for each fluid. It can be seen that the value 246 

of the heat transfer coefficient converges as the number of grid cells increases. Grid 4 shows 247 

little difference (0.25% for water and 0.41% for HFE 7000) from the results obtained for Grid 248 

4. Therefore, in the present study, Grid 4 is utilised for the numerical analysis. 249 

Table 2 Grid independency test results 250 

Grid number Number of cells  

in x direction 

Number of cells 

in y direction 
h (pure water) h (pure HFE 7000) 

Re = 800 

1 250 5 755.384 125.05 

2 500 10 728.2 116.41 

3 1000 20 720.32 114.63 

4 2000 40 718.47 114.16 

5 3000 40 719.26 114.21 

Re = 1600 

1 250 5 1120.64 158.05 

2 500 10 1032.7 146.14 

3 1000 20 1011.44 142.68 

4 2000 40 1006.25 141.86 

5 3000 40 1007.34 142 

 251 

It is also important to ensure the appropriate grid cell size in order to obtain accurate 252 

simulation results. Therefore, y+ value for Grid 4 is calculated and given in Table 3 at each 253 

Reynolds number. As it can be seen from Table 3 that y+ in the laminar flow region at any 254 

Reynolds number remains less than 11.63 for Grid 4 [52, 53]. 255 

Table 3 y+ values versus Reynolds number 256 

Reynolds number Grid 4 (2000×40) 
400 1.32 
800 2.43 
1200 3.47 
1600 4.46 
   257 

4.3. Validation of the computational model 258 



Due to the absence of experimental and numerical studies for HFE 7000 based nanofluids, 259 

the experimental data of the local heat transfer coefficients of pure water and Al2O3/water 260 

nanofluid in laminar developing region represented by [54] was compared to the 261 

corresponding numerical results in order to validate the accuracy of the model. In the 262 

experimental work [54], a test rig was set-up in order to investigate the heat transfer 263 

characteristics of Al2O3/water nanofluid with particle sizes of 45 nm and 150 nm in a straight 264 

tube under constant heat flux conditions. The experimental test loop comprises a pump, a 265 

heated test section, a cooling section and a collecting tank. In the test section a straight tube 266 

with 4.75 mm inner diameter and 1200 mm long was utilised and constant heat flux was 267 

provided by wounding a Nickel-chrome wire that can give maximum power of 200W along 268 

the tube.   269 

Figure 2 shows the comparison of the experimental heat transfer coefficient for both pure 270 

water and Al2O3/water nanofluid (with the particle diameter of 45nm and the volume 271 

concentration ratio of 4%) at Re = 1580 and Re = 1588 versus simulation results. It should be 272 

noted that the effect of various particle size was not considered in this study and the 273 

simulation results are only compared with the experimental results of Al2O3/water nanofluid 274 

with particle diameter of 45 nm as it is widely accepted that solid particles which have a 275 

diameter less than 100 nm can be easily fluidised and be treated as a single fluid.   276 

As it is shown in Figure 2, the axial variation of the heat transfer coefficient using numerical 277 

results is in good agreement with the experimental data. The maximum discrepancy between 278 

the experimental data and numerical model is found to be 12%. As the heat transfer 279 

enhancement is highly related to the accuracy of the effective properties of nanofluid, namely 280 

thermal conductivity in homogenous model, several factors such as particle size, temperature 281 

dependent properties, random movement of particles and thermal dispersion, which might 282 

have an impact on the accurate determination of the effective thermal conductivity could be 283 



attributed to the reason of the deviation between the simulation and the experimental results 284 

[7, 55].    285 

  286 

Figure 2 Comparison between the simulated and experimental results 287 

5. Results and discussion 288 

In this section, the simulations of Al2O3-HFE 7000, CuO-HFE 7000, SiO2-HFE 7000 and 289 

MgO-HFE 7000 nanofluids at various Reynolds numbers (Re = 400-1600) and particle 290 

volume fraction (ϕ = 1-6%) under constant heat flux conditions were conducted and the effect 291 

of Reynolds number and particle volume concentration ratio of the nanofluids on the flow 292 

and heat transfer characteristics as well as the entropy generation is represented and 293 

discussed. 294 

5.1. Temperature profiles 295 

Figure 3 shows the axial bulk and wall temperature distributions of Al2O3-HFE 7000 296 

nanofluids at Re = 800 and at ϕ = 0, 1, 4, 6%. It can be observed that increasing nanoparticle 297 

concentration decreases the temperature differences between the wall and bulk temperature of 298 

nanofluids. A similar trend is obtained in Ref. [40] for Al2O3-HFE 7100 with ϕ = 0 and 5%. 299 



This behaviour of the wall and bulk temperatures shows the beneficial effects of the 300 

nanofluids in terms of having superior thermal properties in comparison to that of the base 301 

fluid which leads higher heat transfer coefficients consequently.   302 

 303 

Figure 3 Axial distribution of wall and fluid temperature of Al2O3 nanofluid at various volume concentrations 304 

The effect of particle volume concentration on the temperature distribution of Al2O3 - HFE 305 

7000 nanofluids at Re = 800 is also represented in Figure 4. 306 

 307 



Figure 4 Temperature distribution of Al2O3-HFE 7000 nanofluids along the tube at a) 1% volume concentration 308 
b) 4% volume concentration c) 6% volume concentration 309 

5.2. Convective heat transfer coefficient 310 

Figure 5 illustrates the heat transfer coefficient of the investigated nanofluids and the base 311 

fluid at various Reynolds numbers and volumetric concentration ratio. It can be observed 312 

from Figure 5 that in general, the average heat transfer coefficient of each nanofluid is greater 313 

than the base fluid at any volumetric ratio and Reynolds number. The heat transfer 314 

coefficients of four nanofluids rise as the volume concentration ratio increases in the laminar 315 

flow regime. This is reasonable because the higher volume concentration ratios of 316 

nanoparticles lead a higher thermal conductivity in nanofluid than the conventional fluid 317 

which results in higher thermal-energy transfer. Similar findings were reported by previous 318 

researchers [17, 25, 36]. Among all the investigated nanofluids, MgO-HFE 7000 shows the 319 

highest heat transfer enhancement, at any given Reynolds number and particle volume 320 

fraction. For example, at Re = 400 and ϕ = 6% for the MgO-HFE 7000 nanofluid the 321 

enhancement in the heat transfer coefficient is approximately 17.5%, whereas for Al2O3-HFE 322 

7000, CuO-HFE 7000 and SiO2-HFE 7000, it is found to be 16.9%, 15.1% and 14.6% 323 

respectively. 324 



 325 

Figure 5 Variation of the heat transfer coefficients at different Reynolds number for (a) Al2O3-HFE 7000,       326 
(b) CuO-HFE 7000, (c) SiO2-HFE 7000, (d) MgO-HFE 7000 327 

This could be explained by the superior physical properties such as thermal conductivity of 328 

MgO compared to the other particles (Table 1). As it is reported previously, in the single 329 

phase laminar flow model, the enhancement in the heat transfer coefficient of nanofluid is 330 

proportional to the increase in thermal conductivity of corresponding nanofluid [55]. This 331 

dependency of the heat transfer mechanism on the nanofluid effective properties might cause 332 

single-phase model to under-predict the heat transfer enhancement [24]. Alternatively, two 333 

phase models can be utilised in order to evaluate the heat transfer characteristics of 334 

nanofluids. However, they are more complicated and need higher computational cost [37]. In 335 

order to compare both the experimental results with the current model and two-phase models, 336 



it is necessary to conduct further theoretical study including two-phase models and 337 

experimental work.          338 

5.3. Pressure drop analysis 339 

It is also important to study the flow characteristics of nanofluids such as pressure drop in 340 

order to investigate their potential for practical applications [56]. Pressure drop within the 341 

tube at different Reynolds number and the volume concentration is demonstrated in Figure 6. 342 

 343 

Figure 6 Variation of pressure drop at different Reynolds number for (a) Al2O3-HFE 7000, (b) CuO-HFE 7000, 344 
(c) SiO2-HFE 7000, (d) MgO-HFE 7000 345 

It is shown that pressure drop increases as the Reynolds number grows from 400 to 1600 and 346 

volume concentration from 1% to 6% for each nanofluid. The obtained results reveal that at 347 

Re = 1600 and ϕ = 6%, SiO2-HFE 7000 nanofluid caused the highest enhancement in 348 

pressure drop (28.2%) among the four nanofluids. It is followed by MgO-HFE 7000 (21.5%), 349 



Al2O3-HFE 7000 (19.7%) and CuO-HFE 7000 (9.3%). This is due to the fact that nanofluids 350 

become more viscous at higher volume concentration ratios which in turn results in higher 351 

pressure drop [18].  352 

5.4. Entropy generation analysis 353 

Entropy generation of the considered nanofluids in terms of irreversibility that was caused by 354 

thermal and frictional gradients with Reynolds number from 400 to 1600 and at four different 355 

volume fractions (0%, 1%, 4% and 6%) is demonstrated in Figure 7 and Figure 8. 356 

 357 

Figure 7 Variation of frictional entropy generation at different Reynolds number for (a) Al2O3-HFE 7000, (b) 358 
CuO-HFE 7000, (c) SiO2-HFE 7000, (d) MgO-HFE 7000 359 

It is visible from Figure 7 and Figure 8 that the growth in Reynolds number for both the base 360 

fluid and the nanofluids diminishes the thermal irreversibility whereas enhances the frictional 361 

entropy generation. 362 



 363 

Figure 8 Variation of thermal entropy generation at different Reynolds number for (a) Al2O3-HFE 7000, (b) 364 
CuO-HFE 7000, (c) SiO2-HFE 7000, (d) MgO-HFE 7000 365 

The reason for that is the higher Reynolds number leads to a growth in the heat transfer 366 

coefficient. However, the higher velocity profile of the fluids at higher Reynolds number 367 

improves entropy generation due to the friction [33]. Similarly, the opposite trend between 368 

the thermal and frictional irreversibility for volume fraction can be found in Figure 7 and 369 

Figure 8. Namely, the thermal entropy generation diminishes with increasing volume 370 

concentration ratio. This can be explained by the fact that higher particle volume fraction 371 

leads higher nanofluid effective thermal conductivity and better heat transfer mechanism 372 

between the wall and the fluid which corresponds a decline in thermal dissipation and an 373 

improvement in the heat transfer mechanism. On the contrary, frictional entropy generation is 374 

increased with the volume concentration ratio. This is due to the growth of the viscosity of 375 



nanofluids as the nanoparticle volume fraction increases [28]. As it can be seen from Figure 7 376 

and Figure 8 the magnitude of the thermal irreversibility is relatively higher than the 377 

irreversibility due to the friction.   378 

In order to define the thermodynamic performance of the flow in terms of the second law 379 

efficiency the ratio of the total entropy generation of nanofluid to that of base fluid (Sgen,ratio) 380 

is defined as follows [35]. 381 

𝑆!"#,!"#$% =
!!"#,!"!,!"
!!"#,!"!,!"

                                (16)  382 

where Sgen,tot,nf  and Sgen,tot,bf  represent the total entropy generation of the nanofluid and the 383 

base fluid respectively. As it is stated in Equation (16), Sgen,ratio equals to 1 for pure HFE 7000 384 

(ϕ = 0%) which shows that there is no contribution to entropy generation. Therefore, the 385 

lower the value of Sgen,ratio the better the thermodynamic performance of the flow. 386 

 387 

Figure 9 Entropy generation ratio of the nanofluids at Re = 800 388 

Figure 9 indicates the entropy generation ratio of the investigated nanofluids for the volume 389 

concentration ratios. It can be highlighted from the figure that each nanofluid at any volume 390 

fraction has a lower value of the entropy generation rate in comparison to that of the base 391 

fluid (Sgen,ratio = 1) which indicates the advantage of adding nanoparticles in terms of a 392 

reduction in total entropy generation. Additionally, the entropy generation rate decreases with 393 



increasing volume concentration and the decrease is more pronounced at 6% volume 394 

concentration ratio. For instance, the entropy generation rate drops from 0.97 to 0.85 and 395 

from 0.97 to 0.87 for MgO-HFE 7000 and SiO2-HFE 7000 respectively as the volume 396 

concentration rises from 1% to 6%. This trend can be explained by the fact that higher 397 

volume concentration determines a reduction in thermal entropy generation. Although there is 398 

an opposite trend between the frictional and thermal entropy generation (Figure 7 and Figure 399 

8) the effect of the former is relatively small compared to the latter. Thus, the overall 400 

behaviour of the total entropy generation is dominated by the thermal effects. Similar results 401 

were reported by [27, 31, 34] for Al2O3-water nanofluid. As a result, it can be concluded that 402 

the utilisation of Al2O3-HFE 7000, CuO-HFE 7000, SiO2-HFE 7000 and MgO-HFE 7000 403 

nanofluids is beneficial where the total entropy generation is dominated by the contribution 404 

of thermal irreversibility.  405 

5.5. Correlations 406 

Non-linear regression analysis is applied to the simulation results to derive the following 407 

correlations which can predict the average Nusselt number and friction factor for each 408 

investigated nanofluid. The evaluated equations are valid for 400 ≤ Re ≤ 1600 and 0% ≤ ϕ ≤ 409 

6%. The average Nusselt number is modelled as a function of Reynolds number, Prandtl 410 

number and volumetric concentration ratio whereas friction factor as a function of Reynolds 411 

number and volumetric concentration ratio.  412 

Nusselt number 413 

Al2O3-HFE 7000:    Nuave = 0.576(Re Pr)0.28(1+𝜙)3.016               (17) 414 

CuO-HFE 7000:      Nuave = 0.591(Re Pr)0.278(1+𝜙)2.658               (18) 415 

SiO2-HFE 7000:      Nuave = 0.567(Re Pr)0.282(1+𝜙)2.737                 (19) 416 

MgO-HFE 7000:     Nuave = 0.571(Re Pr)0.281(1+𝜙)3.143               (20) 417 

 418 



Friction factor 419 

Al2O3-HFE 7000:    f = 48.492Re-0.984(1+ 𝜙)0.033                (21) 420 

CuO-HFE 7000:      f = 48.197Re-0.984(1+ 𝜙)0.899                (22) 421 

SiO2-HFE 7000:      f = 48.696Re-0.984(1+ 𝜙)0.401                (23) 422 

MgO-HFE 7000:     f = 48.056Re-0.983(1+ 𝜙)0.398                (24) 423 

The maximum deviation between the simulated and the predicted results are found to be 424 

1.74% and 3% for Nusselt number and friction factor of CuO-HFE 7000 nanofluid 425 

respectively.  426 

6. Conclusions 427 

This paper investigates the convective heat transfer, pressure drop and entropy generation 428 

characteristics of HFE-7000 based Al2O3, CuO, SiO2 and MgO nanofluids, using the single 429 

phase approach in a circular tube with constant heat flux boundary conditions in laminar flow 430 

region. It was found that the inclusion of nanoparticles (Al2O3, CuO, SiO2 and MgO) 431 

increased the heat transfer coefficient (2.1% – 17.5%). This augmentation is attributed to the 432 

enhancement in the thermal conductivity of nanofluids. However, heat transfer enhancement 433 

is accompanied by increasing viscosity as well as an increase in pressure drop (1.5% – 434 

28.2%). The enhancement in heat transfer and pressure drop found to be more pronounced 435 

with the increase in particle concentration and Reynolds number. Entropy generation results 436 

also demonstrated that when operating with constant Reynolds number, the thermal entropy 437 

generation tends to decrease whereas the frictional entropy generation tends to increase for 438 

each investigated nanofluid. However, using nanofluids caused a lower total entropy 439 

generation due to the superior contribution of thermal entropy generation compared to the 440 

frictional entropy generation. It can be concluded that in the laminar flow regime, for any 441 

Reynolds number adding nanoparticles of Al2O3, CuO, SiO2 and MgO into the HFE 7000 is 442 

beneficial where the contribution of fluid friction is adequately less than the contribution of 443 



heat transfer to the total entropy generation of the flow. Finally, the current research provides 444 

a guideline to heat transfer applications on nano additives for enhanced thermal efficiency of 445 

solar thermal systems. Overall, this contribution will bring significant impacts to renewable 446 

energy technology research and development where novel and environmentally friendly 447 

thermo-fluids have been deployed.  448 
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