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ABSTRACT 

Structural health monitoring and damage detection techniques are tools of great importance namely in 

the offshore, civil, mechanical and aeronautical engineering communities, either due to safety reasons 

or to the economical benefits it may bring. The need for detecting damage in complex structures has 

led to the development of a vast amount of techniques, in particular those based upon structural 

vibration analysis. In the present article, some of the latest advances in Structural Health Monitoring 

and Damage Detection have been covered, with an emphasis on composite structures, given the fact 

that this kind of materials have currently a wide range of engineering applications. 

FOREWORD 

It should be noted that this review is not intended to be a general, all-encompassing review about 

structural health monitoring (SHM); it was planned as the starting point for a study focusing on 

damage detection, localization and assessment on certain kind of structures. Thus, the line of thought 

behind the search and the structure of this review is a result of objectives beyond the scope of the 

paper itself. Nevertheless, it was considered that, once the above was understood, an updated synopsis 

such as this could also be useful for other researchers in the same field. 

1. INTRODUCTION 

mailto:dmontalvao@est.ips.pt


- 2 - 

Vibration-based SHM and damage detection is a field of study of great interest. Important advances in 

this field are described in Doebling et al. (1996**), Doebling et al. (1998**) and Sohn et al. (2003) 

which present very comprehensive surveys covering the period until early 2002. Many of the works 

cited in these surveys are still state-of-the-art, motivating their inclusion in this work. Therefore, all 

the citations common to Doebling et al. (1996**) and Sohn et al. (2003) are herein identified with, 

respectively, * and ** accompanying the year of publication. 

Other reviews may bring insight in more specific branches of damage detection and SHM. For 

example, a state-of-the-art overview on rotating machinery monitoring is given by Randall (2002). 

More recently, Carden and Fanning (2004) presented a review covering structural engineering related 

aspects. Uhl and Mendrok (2004) discuss the applicability of modal model-based methods in structural 

diagnosis. Farrar et al. (2004) present a brief, yet comprehensive overview of nonlinear system 

identification techniques used for damage-sensitive feature extraction from measured data. 

In the present paper, special attention will be given to methods in which composite materials and 

structures are used as case studies. Nevertheless, mostly because of the huge amount of methods found 

in the literature, and considering what was said in the Foreword, many damage detection and SHM 

techniques will not be explored, though punctually addressed in some cases, such as rotating 

machinery, online SHM and monitoring systems, updating, sensitivity-based methods (which are 

widespread in model updating), non-linear systems, wireless sensing, civil infrastructures, joints and 

couplings, conditioning, chaotic time series excitation, etc. Therefore, one has decided to include 

methods based on natural frequencies, frequency response functions (FRFs), mode shapes, mode 

shape and FRF curvatures, auto-regressive moving average (ARMA) family models, dynamic 

flexibility, modal strain energy, transmissibility, damping, impedance, Lamb waves, time-frequency 

analysis, Hilbert transforms, principal component analysis (PCA) and singular value decomposition 

(SVD), neural networks, instrumentation and others. 

A general definition of damage is given by Sohn et al. (2003) as “…changes introduced into a system 

that adversely affect its current or future performance. Implicit in this definition is the concept that 

damage is not meaningful without a comparison between two different states of the system, one of 

which is assumed to represent the initial, and often undamaged, state.” As examples, one may have a 

structural crack (stiffness change), bridge pillar silting (boundary condition change), counterweight 

balancing loss (mass change) or looseness in a bolted joint (connectivity change) (Maia (2001)). 

The need for detecting damage in complex structures has motivated the development of techniques 

based upon variations in the structural dynamic behavior. For instance, the method to monitor the 

condition of train wheels is used today as it was 100 years ago: one ‘modal specialist’ walks along the 

train cars hitting the wheels with a hammer and listening to their response (Maia (2001)). In 

conditioning maintenance, vibration is without any doubt the most straightforward indicator of a 

machine state when compared to other indicators, such as temperature, pressure, flow or tribology 

features (Wowk (1991)). In another field of application, Vescovo and Fregolent (2005) use an 

acoustic, non-invasive experimental technique to assess the partial detachment of plaster portions in 

artistic frescoes. It is even argued by Bonfiglioli et al. (2005) that the impact of monitoring and 

assessing the health state of infrastructures seems to be one of the largest industries in the world. 

The main idea behind damage detection techniques based on structural dynamic changes is the fact 

that the modal parameters (natural frequencies, mode shapes and modal damping) are functions of the 

physical parameters (mass, stiffness and damping) and thus it is reasonable to assume that the 

existence of damage leads to changes in the modal properties of the structure. 

According to Doebling et al. (1996**), ideally, a robust damage detection scheme should be able to 

identify damage at a very early stage, locate the damage within the sensor resolution being used, 

provide some estimate for the damage extension or severity and to predict the remaining useful life of 

the structural component where damage has been identified. The method should also be well suited to 

automation, and should be independent from human judgment and ability. 

Betti (2005) points out that no single approach is appropriate for all situations, making the following 

basic distinctions between each approach: linear vs non-linear, output only vs input/output, on-line vs 
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off-line, time domain vs frequency domain, parametric vs non-parametric and time varying vs time-

invariant. 

Operational and environmental conditions, such as temperature, humidity, loads and boundary 

conditions should also be addressed, since in many cases they can ‘hide’ changes strictly caused by 

damage. For example, Farrar et al. (1994*
,
**), having done several measurements on the I-40 bridge 

over the Rio Grande in Albuquerque in the state of New Mexico in the USA, observed that 

temperature plays a major role in the dynamic properties of the bridge. They introduced four different 

levels of damage by gradually cutting one of the bridge girders, corresponding to a loss of stiffness. 

However, instead of what would be expectable, they noticed an increase in the fundamental frequency  

for the first two damage cases, concluding that such results were mainly due to temperature changes 

and temperature gradients in the bridge. Many other researchers, such as Woon and Mitchell (1996a) 

(1996b), Andersen et al. (1997), Alampalli (2000), Peeters and De Roeck (2000), Kullaa (2002), De 

Roeck and Degrauwe (2005a), Steenackers and Guillaume (2005) or Yan et al. (2005a) (2005b) 

address the effects of the environmental or operational conditions in Structural Health Monitoring. 

Woon and Mitchell (1996a) study the sensitivity of the natural frequencies to the relative humidity, but 

they conclude that it has little significance when compared to the temperature influence. Cawley 

(1997**) uses an analytical model of a cantilevered beam to compare the effect of crack formation to 

the effect of beam length in the natural frequencies, observing that thermal expansion (simulated by 

changes in the beam length) has more significant effects on the natural frequencies than cracks. Kullaa 

(2002) tries to eliminate the environmental influences in modal parameters, using an approach based 

on factor analysis, in which it is assumed that there exist a set of common factors with effects on the 

modal features that can be subtracted from the observations. 

1.1. Damage Detection Philosophy 

Rytter (1993*
,
**) introduced a damage state classification system which has been very well accepted 

by the community dealing with damage detection and SHM. Following these lines, the damage state is 

described by answering the following questions (Sohn et al. (2003)): 

1. Is there damage in the system? (existence) 

2. Where is the damage in the structure? (location) 

3. What kind of damage is present? (type) 

4. How severe is the damage? (extension) 

5. How much useful life remains? (prognosis) 

Generally, damage type and extension identification require the prior knowledge of the structural 

behavior when each of the possible expected failure modes are present for future correlation with 

experimental data, which normally is achieved by resorting to analytical models. For example, in 

operational monitoring, the modal parameters of the damaged structure must be compared to the 

parameters of the structure in its undamaged state, to what is called global diagnostics. Once damage 

existence is detected, the use of a model of the structure in a damaged state may be used to detect the 

damage location, to what is called local diagnosis (Uhl and Mendrok (2004)). 

Some difficulties may be encountered in the practical application of modal models, such as the 

knowledge of excitations and loads during machine operation, with several sources and with unknown 

distribution along the system. However, several output-only based modal identification techniques can 

be found in the literature, for example, in Guillaume et al. (1999), Parloo et al. (2002a), Brincker and 

Andersen (2003a), Brincker et al. (2003b), Mevel and Goursat (2004), Rodrigues et al. (2004) or 

Galvin and Dominguez (2005). 

Prognosis, which is traditionally related to fracture mechanics and fatigue, is starting to be brought up 

by the modal analysis community as a field of interest, as seen in Farrar et al. (2003**). 
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1.2. The Monitoring Process 

The monitoring process involves the observation of a system during long periods of time, using 

samples of experimental data acquired periodically with adequate sensors. It also involves sensitivity 

feature extraction and statistical correlations to determine the actual ‘health’ of the system. Farrar et 

al. (2001) and Sohn et al. (2003) acknowledge the problem of damage detection in a context of a 

statistical pattern recognition paradigm. Along these lines, one may describe this paradigm as a four-

step process: 

1. Operational evaluation. 

2. Data acquisition, fusion, and cleansing. 

3. Feature extraction and information condensation. 

4. Statistical model development for feature discrimination. 

Sections 1.2.1 to 1.2.4 are mainly based on the very comprehensive survey of Sohn et al. (2003). 

1.2.1. OPERATIONAL EVALUATION 

Operational evaluation answers questions related to the damage detection system implementation, 

dealing with economical issues, possible failure modes, operational and environmental conditions and 

dada acquisition related limitations. As an example, Aktan et al. (2000**) present and discuss the pre-

requisite issues to creating a successful monitoring program.  

Ruotolo and Surace (1997**) develop one of the first works that explicitly address the possibility of 

having multiple baseline configurations, proposing a technique to distinguish between changes caused 

by working conditions and damage, based on the singular value decomposition (SVD). 

More recently, e.g. Vanlanduit et al. (2005) also use a SVD based version to detect damage in 

structures subjected to different operational conditions, in respect to different working excitation 

levels, geometrical uncertainties and surface treatments. 

1.2.2. DATA ACQUISITION, FUSION AND CLEANSING 

Data acquisition is concerned with the data type quantities to be measured, the type and quantity of 

sensors to be used, the locations where these sensors are to be placed, sensor resolution, bandwidth, 

and hardware. This part of the process is application specific and heavily dependent on economical 

aspects. Another consideration is the periodicity for data acquisition. For instance, if a fatigue crack 

growth is to be monitored, than it is required that the data be measured in an almost continuous way. 

On the other hand, if measurements are to be made under varying operational and environmental 

conditions, data normalization helps distinguishing between signal changes caused by operational and 

environmental conditions from those caused by damage. Sohn et al. (2001a**) observed that the 

natural frequency of a bridge over the Alamosa canyon in the state of New Mexico in the USA 

suffered 5% deviations over a 24 hour period due to temperature variations. 

Sohn et al. (2003) acknowledged that, according to Klein (1999**), data fusion appeared as a result of 

defense organizations attempting to formalize procedures for integrating information from diverse 

sources, with the purpose of determining battlefield situations and preventing threats. Data fusion, as a 

discipline of SHM, is the ability to integrate data acquired from the various sensors in the 

measurement chain. 

Data cleansing is the process of selecting data amongst the multitude of information, i.e., to accept for 

or to reject from the feature selection process. 
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1.2.3. FEATURE EXTRACTION AND INFORMATION CONDENSATION 

The field of damage detection, inside the lines of the paradigm defined by Farrar et al. (2001) and 

Sohn et al. (2003), which has received the highest attention is feature extraction. Feature extraction is 

the process of identifying damage sensitive properties, which allows one to distinguish between the 

damaged and undamaged structural states.  

Information condensation becomes advantageous and necessary, particularly if comparisons are to be 

made between data obtained during the life cycle of a system. Condensation may be seen as a form of 

data fusion. 

The evolution that the philosophy of damage detection and SHM has suffered in the last ten years can 

be well understood when one compares both the surveys of Doebling et al. (1996**) and Sohn et al. 

(2003). In the first one, the statistical pattern recognition paradigm, around which the second one was 

written, was not even mentioned. By that time the concepts of operational evaluation, data acquisition, 

fusion and cleansing and statistical model development for features discrimination were matters whose 

relevance seemed not to be noteworthy of an exclusive and directed research, and when addressed, 

were done as taking part of the feature extraction process. 

1.2.4. STATISTICAL MODEL DEVELOPMENT FOR FEATURE DISCRIMINATION 

This is the part of the SHM process that has received the least attention until the end of the last 

century. When data are available from both the undamaged and damaged structure, the statistical 

pattern-recognition algorithms fall into the general classification referred to as supervised learning. 

Unsupervised learning refers to the class of algorithms that are applied to data not containing 

examples from the damaged structure (obtained, for instance, from models) (Sohn et al. (2003)). 

An important issue in the development of statistical models is to establish the model features 

sensitivity to damage and to predict false damage identification. In this context, one may have either 

false-positives, in which damage is identified though it did not happen, or false-negatives, in which 

damage is not identified though it is present. Despite the fact that both these situations are undesirable, 

the second one can obviously lead to more severe consequences. 

1.3. Damage in Composite Materials 

The use of fibre reinforced plastics (FRP) as an alternative to conventional materials, such as metallic 

alloys, is suffering an increasing growth, namely in the aeronautical, naval and automotive industries, 

because of their excellent mechanical properties in conjunction with their low weight and easy 

shaping. Nevertheless, composite materials are very different from metals with respect to their 

micromechanical interactions and their particular failure modes, which may be in the form of matrix 

cracking, fibre breakage, interlaminar delamination or voids (Sanders et al. (1992*), Jacob et al. 

(1997**), Matthews (1999)). 

Composite materials possess resistance and tenacity to density relationships many times greater to 

those of the most common metallic materials, such as steel, aluminum or titanium. However, the 

extreme sensitivity of composite materials to impact loads constitutes a hindrance to its utilization. In 

fact, in aeronautical structures, the components have to undergo (i) low energy impacts caused by 

dropped tools or mishandling during assembly and maintenance, (ii) medium energy impacts caused 

in-service by foreign objects such as stones or birds and (iii) high energy impacts caused by weaponry 

projectiles (Matthews (1999), Silva, A. J. P. F. (2001) and Carvalho (2003)). 

Typical failure modes in laminated composite materials caused by impacts may be found, for instance, 

in Carvalho (2003). In a high energy impact, penetration is total and the damaged area is generally 

small. In a medium energy impact, it is usually possible to visually detect the damage location, which 
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is characterized by a local indentation. In a low energy impact (but high enough to produce damage), 

only a very slight indentation will be seen on the impact surface. This level of damage is often referred 

to as barely visible impact damage (BVID). Generally, carbon fibre-reinforced plastics (CFRP) are 

very sensitive to medium and low energy impacts. Matrix cracks will appear and interact, leading to 

the delamination process. Furthermore, on the opposite side of the impact (subjected to traction loads), 

it is possible that fibre breakage will occur. This matter has received some attention for damage 

prediction; for example, Morais et al. (2005) present a study on the influence of laminate thickness on 

the resistance to repeated low energy impacts of glass, carbon and aramid fabrics reinforced 

composites, for two levels of impact energy. 

Interlaminar delamination highly reduces the component stiffness and buckling load capacity, which 

in turn influences the structural stability. The influence on the resonant frequencies of the contact 

forces between delaminated layers, delamination extension and delamination location are studied by 

Zak et al. (1999**). 

Matthews (1999) presents an overview which addresses the nature, consequences and detection of 

defects in FRP. He distinguishes two groups in the nature of damage: the manufacturing defects and 

the handling, assembly and in-service damages. The consequences of damage and defects are also 

addressed, with respect to the composite performance when subjected to compression, tensile, flexural 

and shear loadings. Finally, some damage detection techniques applied to composite materials are 

summarized, embracing all the manufacturing and quality control processes. 

Although composite materials are receiving a special attention by vibration-based damage detection 

techniques, other non-destructive techniques are being developed, such as the ESPI (electronic speckle 

pattern interferometry) or the SQUID (superconducting quantum interference device) (Hiroshi et al. 

(2005)). 

1.4. Composite Materials: Damage Effects and Modeling 

Maheri and Adams (2003) use basic laminate plate theory in conjunction with a numerical Rayleigh-

Ritz method for estimation of the modal damping of anisotropic laminates in free vibration, 

concluding that a good correlation between the theoretical and experimental results was achieved. 

Though not explicitly related to damage detection techniques, studies such as these can help 

researchers in the field of damage detection, since damping may represent an useful feature for 

damage evaluation in composite materials. 

Kisa (2004) investigates the effects of multiple cracks on the dynamic properties of a cantilever CFRP 

beam. The theoretical model integrates fracture mechanics and substructure coupling, where cracks are 

modeled as rotational springs. The effects of the location and depth of the cracks, and the volume 

fraction and orientation of the fibre on the natural frequencies and mode shapes of the beam with 

transverse cracks, are explored. Kisa (2004) affirms that the followed approach can be used for the 

analysis of non-linear effects such as interface contact that occurs when the crack closes. 

Shu and Della (2004) study the free vibration of beams with multiple enveloping delaminations using 

an analytical model based on Bernoulli-Euler beam theory. The influence of the delamination 

dimension and its location on the first two natural frequencies and mode shapes is also discussed. 

Ostachowicz and Zak (2004) present some results on damped vibration of a laminated cantilever beam 

with a single closing delamination. The vibration of the beam is studied in the time domain using a 

dynamic contact algorithm developed by those authors, based on the Newmark method and 

incorporating a procedure based on the Newton-Raphson method for solving the equation of motion. 

They analyze the vibration in the frequency domain. The vibration responses of the beam due to 

various harmonic and impulse excitations are also considered, with different delamination locations 

and for different delamination lengths, as well as changes in the damping dissipation energy due to 

delamination. 



- 7 - 

Le Page et al. (2004) develop bi-dimensional (plane strain) finite element (FE) models to analyze 

matrix cracking development in woven fabric laminates, as a function of the number of reinforcing 

layers. It is shown that stiffness is relatively insensitive to these geometric variations, though the strain 

energy release rate related to the crack formation is significantly influenced by its location. 

Particularly, where the crack formation is associated with local bending, the energy release rate 

increases with deformation.  The inclusion of geometric non-linearities has been shown to affect the 

results for models which exhibit higher bending deformation. Also, FE models of cross-ply laminates 

were made to serve both as a comparison and to evaluate whether the behavior of woven fabric 

laminates can or cannot be described in terms of cross-ply laminates. 

Tippetts and Hemez (2005) develop FE models to predict impact damage in composite plates. The 

failure modes addressed are ply splits (a special combination of matrix cracking and debonding with 

fibre breakage) and delamination. The plate structural model uses a finite element formulation with a 

cohesive zone model (CZM) to simulate the possible fracture surfaces characteristic of impact damage. 

This model was validated with experimental tests. 

Based on the linear fracture mechanics, the Castigliano theorem and classical lamination theory, Wang 

et al. (2005) investigate the coupled bending and torsional vibration of a fiber-reinforced composite 

cantilever beam with an edge surface crack. Some important conclusions were drawn. The natural 

frequency shifts, along with observations on the mode shape changes, may be used to detect both the 

crack location and its depth for on-line SHM. Also, the presented model and the results may be useful 

for predicting flutter speed reduction in aircraft with composite wings due to fatigue cracking. 

2. SOME DAMAGE DETECTION TECHNIQUES 

2.1. Natural Frequencies and FRFs 

The development of modal analysis techniques for damage detection and SHM arose from the 

observation that changes in the structural properties have consequences on the natural frequencies. 

Nevertheless, the relatively low sensitivity of natural frequency to damage requires high levels of 

damage and that measurements are made with high accuracy for reliability. Moreover, the capacity for 

locating damage is somewhat limited, once natural frequencies are global parameters and modes can 

only be associated to local responses at high frequencies. 

Methods based on natural frequency shifts often fall into one of two categories: the forward and the 

inverse problem. The forward problem consists in determining which will be the natural frequency 

changes due to a known damage case (which may include its location, extension and type). Typically, 

damage is modelled numerically and the natural frequencies are measured experimentally and 

compared to those related to each of the damage cases initially predicted. The inverse problem consists 

of determining damage parameters, e.g., crack length or its location, from changes in the natural 

frequencies. 

According to Doebling et al. (1996**), Lifshitz and Rotem (1969*) present what may be the first 

journal article to propose the use of vibration measurements for damage detection. They search for 

changes in the dynamic moduli, which can be related to shifts in the natural frequencies, to detect 

damage in elastomers. 

Cawley and Adams (1979*) give a formulation for damage detection, localization and quantification, 

based on the ratio between frequency shifts for modes i and j, i j   . Location is determined by 

minimizing the error between the measured frequency shifts of a couple of modes and those predicted 

by a local stiffness reduction model. In this formulation, neither multiple damage is taken into account 

nor damping changes are considered, though the authors agreed that damping might suffer an increase 

with damage. The results are based on FE models of aluminum and CFRP plates.  
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Tracy and Pardoen (1989*) present experimental results of a study on the effects of the length of a 

midplane delamination in the frequency shifts of the first four modes of orthotropic graphite-epoxy 

laminate beams. The beam is divided into four sections in the analytical model: above, below, and on 

either side of the delamination. For midplane centered delamination, it was observed that its presence 

degraded the even numbered vibration modes more rapidly than the odd numbered vibration modes. 

Unless the delamination was in a region of the mode shape where the shear forces were high, the 

natural frequency would not be significantly modified. Thus, in the presence of delamination in areas 

where the mode shape exhibits high curvatures (second derivative of deflection), little frequency shifts 

take place. On the contrary, natural frequency variations will have maximum evidence close to an area 

of higher shear force (related to the third derivative of deflection).  

Stubbs and Osegueda (1990a*) (1990b*) develop damage detection methods based on modal changes 

of specific structural components such as beams, plates and shells. The method relates frequency shifts 

with changes in member stiffness using a sensitivity relationship. Stiffness reductions can be located 

solving an inverse problem, since damage is defined as a stiffness reduction of one of the elements 

forming the structure. It is concluded that it is possible to locate multiple damage, at least in a beam. 

However, false-positives occurred, though generally within an order of magnitude much lower than 

the one observed in places where damage was actually present. Moreover, this sensitivity method has 

difficulties when the number of modes is fewer than the number of the damage parameters. 

Sanders et al. (1992*) use the frequency sensitivity method developed by Stubbs and Osegueda 

(1990a*), combined with an internal-state-variable theory, to detect, locate and quantify damage in 

CFRP beams. This method includes parameters which indicate two types of damage: matrix 

micro-cracking by changes in the extensional stiffness, and transverse cracks in the 90-degree plies by 

changes in the bending stiffness.  Despite the sensitivity equations be only valid for viscous damping, 

they argued that the damping had little influence in the application of the methodology. Finally, due to 

the fact that damage was distributed uniformly along the beam length, it was not possible to show the 

ability of the method to locate damage. 

Silva, J. M. M. and Gomes (1990*) perform an extensive experimental dynamic analysis of free-free 

beams, with slots ranging in depths from 1/8 to 1/2 of the beam thickness, introduced in both 

dimensions (x and y) of the cross section and in different locations. Later, Silva, J. M. M. and Gomes 

(1991) compare both the experimental and theoretical methods, based on the premise that the 

development of a crack, at a certain location, corresponds to a sudden reduction of the bending 

stiffness of the beam, at that same location. The crack was modeled as a torsional spring representing 

the bending stiffness at the crack location. 

Using the same grounds, Silva, J. M. M. and Gomes (1994*) suggest a technique for damage detection 

in beams, based on the estimation of frequency shifts as a function of the crack length and position. An 

optimization algorithm, developed by Gomes and Silva (1992) and designated as CRACAR, was used 

to search over combinations of crack lengths and locations. To overcome the differences between the 

experimental and analytical models, they suggested a simple correction quotient, based on the natural 

frequencies, which they have shown to be a reliable tool. 

Hearn and Testa (1991*) develop a damage detection method which evaluates the ratio of frequency 

shifts for various vibration modes. Assuming that the mass does not change as a result of damage, and 

neglecting second-order terms in the formulation, they showed that the change i  in the i
th
 natural 

frequency that results from damage can be related to the matrix of change in element N stiffness 

 Nk  and to the element deformation vector   N   evaluated from the mode shape vectors: 

 
       

    
2

T

N i N N i

i T

i i

k

M

 


  
 

 
 (1) 

where  M  is the mass matrix and  i  is the i
th
 mass-normalized mode shape vector. Those authors 

noted that expression (1), which resembles Rayleigh’s quotient, seems to support the idea that if an 

element must develop a high level of potential energy because of the deformations imposed by a 



- 9 - 

vibration mode, then damage in that member will have a strong influence on the natural frequency of 

the mode shape. The converse is also true, and because the natural mode shapes are distinct, the 

contribution to potential energy made by any one member will be different for each mode. In the case 

where damage is limited to a stiffness component of the element and if one takes the ratio between the 

frequency shifts for modes i and j, it is possible to show that the effects of the damage will be reduced 

simply to a function of damage location, 2 2
i j   , illustrating the characteristic influence of each 

member on the natural frequencies of the structure. The characteristic influence can be determined 

from pre-damaged modal properties. Damage is located by selecting the member which characteristic 

influence is closer to the ratio 2 2
i j   . 

Penny et al. (1993*) apply a statistical method to identify the most likely damage location, using a 

generalized least-squares theory. The method uses the ratio of natural frequencies from both the 

measured and analytical data. The damage case is indicated by the minimal error in this fit. 

Messina et al. (1992) propose the damage location assurance criterion (DLAC) in location j, which is a 

correlation similar to the modal assurance criterion (MAC) (Allemang and Brown (1982)), given by: 

  
     

             

2
T

X A

T T T

X X A A

DLAC j

 

   

 



   

 (2) 

where   X
  is the experimental frequency shift vector and   A

  is the analytical frequency 

shift vector obtained from an analytical model for a given damage location. A zero value indicates no 

correlation and a unity value indicates perfect correlation between the vectors involved in the DLAC 

relationship. Damage location and dimension is identified by maximizing this objective function.  

Messina et al. (1996) show that it is possible to better locate damage if the frequency shifts are 

normalized relative to the undamaged structural frequencies, so that one may weigh the contribution of 

each vibration mode, since higher frequencies tend to suffer more pronounced shifts. 

The multiple damage location assurance criterion (MDLAC), proposed by Messina et al. (1998**), is 

an extension of the DLAC to multiple damage detection. Using the same principles, the damage state is 

indicated by search of a damage vector  D  which maximizes the MDLAC. This formulation allows 

for relative quantification of the damage in each location, but not for an absolute quantification. 

However, since the experimental frequency shift vector   X
  can be known, it is possible to 

estimate a scalar severity coefficient C, in such a way that  C D   gives the actual damage 

percentage present. This scaling constant C can be estimated by either a first or second order approach, 

but these authors note that, although the second order approximation provides better results, for 

routine monitoring purposes where precise knowledge of the defect size is less important than its 

location, the first order approximation is likely to be an adequate choice due to its relative simplicity. 

Boltezar et al. (1998) locate transverse cracks in flexural vibrations of free-free beams, by following 

an inverse problem. The method is based on the assumption that the crack stiffness does not depend on 

the frequency of vibration, i.e., the values of the crack stiffness, which is modelled as a linear torsional 

spring, must be the same at the crack position for all of the measured natural frequencies. As a result, 

by plotting the relative stiffness along the length of the beam for distinct natural frequencies (at least 

two), the crack location can be identified by the intersection of these curves. These authors mentioned 

that this idea had already been proposed by Adams et al. (1978*) for axial vibrations, being extended 

in their article for flexural vibrations in one-dimensional beams, allowing to obtain better results. 

Since this model is based on the Bernoulli-Euler beam theory, the authors pay special attention to the 

problem of accurately knowing the values of the material properties, in particular the Young modulus, 

which can be overcome by calculating its ‘effective’ value as suggested in Adams et al. (1978*). 
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Sampaio et al. (2003) and Sampaio and Maia (2004) propose the detection and relative damage 

quantification indicator (DRQ), based on the use of the frequency domain assurance criterion (FDAC), 

as an effective damage indicator, also assessing the distinction of a positive occurrence from a false 

alarm. The column vector j of the receptance matrix   j   is the operational deflection shape 

(ODS) which describes the shape (in space) exhibited by the structure at each excitation frequency,  , 

given by the responses normalized by the applied forces. When a structure is damaged its stiffness and 

damping change and, in consequence, so does the receptance matrix      . Thus, it is reasonable to 

assume that the smaller the degree of correlation between the column vectors (ODSs) of       

and  d  
 

, where the superscript d stands for damaged, the larger is the damage. To measure the 

degree of correlation between the ODSs, Pascual et al. (1997) proposed the FDAC: 
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where n is the total number of co-ordinates or measurement points. A simplified form of the FDAC is 

referred to as the response vector assurance criterion (RVAC) (Heylen et al. (1998)), with only one 

applied force (so that the receptance matrix turns to be a single vector) and pairs of ODSs at the same 

frequency  : 
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From this definition, Sampaio et al. (2003) and Sampaio and Maia (2004) formulate the DRQ, which 

is nothing more than an arithmetic average of the RVACs along the frequency. They also propose a 

normalization algorithm for the DRQ, based on various damage cases, which is referred to as 

normalization of the maximum occurrences, DRQi. At last, and because some of the best known 

damage localization methods use the second spatial derivative of the ODSs to locate damage, like the 

damage index and mode shape curvature (MSC) (Sampaio et al. (1999) e Maia et al. (2003)), one can 

alternatively calculate the DRQ  based on these derivatives and using, for the ODSs, a central 

difference approximation. It was found that the DRQ indicator is able to detect damage, recognizing a 

true damage state from a false one and it is also able to distinguish adequately different severity 

damage cases. Nevertheless, it was also found that the versions of the DRQ indicator using the second 

spatial derivatives of the ODSs did not perform much better that the versions using only the ODSs. 

Zang et al. (2003a) present two criteria to correlate measured frequency responses from multiple 

sensors and proposed to use them as indicators for structural damage detection. The first criterion is 

the global shape correlation (GSC) function that is sensitive to mode shape differences but not to 

relative scales, being defined as: 
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where   1xH   is a column of FRF baseline data measured initially at frequency   and   2xH   

is a column of the current measured FRF data. This function exists for all frequencies and the sum is 
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over all locations. The second criterion, based on actual response amplitudes, is the global amplitude 

correlation (GAC): 
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Both correlation criteria given by (5) and (6) are a function of frequency and uniquely map a set of 

complex responses to a real scalar between zero and unity. These authors argue that a simultaneous 

use of both correlation criteria should be able to quantify the closeness of two sets of vibration data. 

The averaged integrations of the GSC and GAC functions along the frequency points over the 

measurement range are also proposed, referred to as averaged integration GSC (AIGSC) and averaged 

integration GAC (AIGAC), as damage indicators for SHM. An experimental test on a bookshelf 

structure was conducted, but it was concluded that further studies would be needed to develop 

approaches that could accurately assess structural states and damage. An intelligent decision making 

method based on the radial basis function (RBF) neural network is suggested by Zang et al. (2003b). 

2.2. Mode Shape Changes 

According to Doebling et al. (1996**), West (1984*) presents what is possibly the first systematic use 

of mode shape information for the location of structural damage without the use of a prior FE model. 

West (1984*) uses the MAC to determine the level of correlation between modes from the test of an 

undamaged Space Shuttle Orbiter body flap and the modes from the test of the flap after it has been 

exposed to acoustic loading. 

Kim, J. H. et al. (1992*) investigate the use of the MAC and some of its forms for locating structural 

damage. The MAC, which is probably the most common way to establish a correlation between 

experimental and analytical models, is defined as (Allemang and Brown (1982)): 

     
   

         

2
*

* *

,

T

X Ai j

X Ai j T T

X X A Ai ji j

MAC

 

  

   

 (7) 

where the X and A subscripts refer to, respectively, experimental and analytical vibration modes. This 

correlation results in a single scalar number with a value ranging from zero to unity. A unity value 

means that the mode shapes are identical, whereas a zero value indicates orthogonality between the 

vectors, i.e., the mode shapes are ‘totally different’. Although the MAC can provide a good indication 

of the disparity between two sets of data, it does not show explicitly where in the structure is the 

source of discrepancy. The co-ordinate MAC (COMAC) has been developed from the original MAC. It 

is the reverse of the MAC in that it measures the correlation at each degree-of-freedom (DOF) 

averaged over the set of correlated mode pairs. The COMAC identifies the co-ordinates at which two 

sets of mode shapes do not agree, and is defined as (Lieven and Ewins (1988)): 
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where nCMP is the number of correlated mode shapes. Although the COMAC can be useful as a tool to 

locate a discrepancy, it does not have a physical basis. It is advisable to use this method in cases where 

the structure is tested and modelled in a free-free configuration, because grounding of the structure 

will amplify the effect of anti-nodes away from the region of constraint and dominate the error 
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prediction (Maia and Silva (1997a)). On the other hand, although the COMAC is a useful algorithm to 

detect errors in spatial models, it does not provide a unique solution to localize the source of error in 

the structure. Another form of the MAC is the partial MAC (PMAC), which correlates parts of modal 

vectors and easily allows comparing only these selected parts. Kim, J. H. et al. (1992*) propose the 

combined use of the COMAC and the PMAC concepts, referred to as the Total MAC, so that one can 

isolate the structural area where damage has occurred. 

Parloo et al. (2002b) (2004) compare input-output and output-only damage identification setups for an 

aluminum beam structure suffering from fatigue induced crack formation. As shown in literature, there 

are some methods available for the calculation of sensitivity (derivatives) of eigenvalues and 

eigenvectors. Expressions for the sensitivity of mode shapes to local changes on mass and stiffness can 

be found, for instance, in Vanhonacker (1980), Maia and Silva (1997a) or Parloo et al. (2003). For 

example, the sensitivity of DOF j of mode shape i to a local change in stiffness between DOFs p and q 

can be given by: 
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with r  being the system poles and ra  the modal scaling factors. An equivalent formulation can be 

given for a local change in mass. These expressions are exact if all mode shapes of the test structure 

are taken into account, though a good approximation can be obtained in practice, where only a limited 

number of modes are available. In practice, the stochastic errors due to the presence of measurement 

noise, reveal that calculating mass sensitivities can be numerically more stable than the calculation of 

the sensitivity to stiffness (e.g., because (9) can make the problem ill-conditioned due to subtractive 

cancellation). If the reference condition of a structure is altered by either a local change in mass or in 

stiffness, one can write first-order approximations with respect to the damage parameter. However, it 

is noted that these approximations are only valid for relatively small damage, which poses no problem, 

since one wants to detect early damage. In the case where frequency sensitivities to a change in a 

structural parameter are considered, Parloo et al. (2004) use an iterative weighted pseudo-inverse 

algorithm technique which allows to better locate damage (Guillaume et al. (2002)). 

In order to reduce the calculated sensitivity errors, the estimated modal parameters from output-only 

data should be as accurate as possible. For this purpose, Guillaume et al. (1998) and Guillaume et al. 

(1999) propose the use of a maximum likelihood estimator (MLE), which is an unbiased estimator 

since it takes the noise information in the data into account. Instead of using FRFs, the MLE uses 

spectral density functions. 

Vecchio et al. (2002) present an experimental validation of a modal model based approach to 

structural damage detection, where output-only vibration data is used. However, operational working 

conditions are not necessarily stationary, and if small deviations are observed in the modal parameters, 

it is very difficult to decide whether damage is present or not. The approach consists in monitoring the 

system along the time. The damage detection algorithms reduce time data to covariance data and 

perform a statistical 2 -test that allows assessing if the recent data fit the reference model. In a 

previous work, Vecchio and Van der Auweraer (2001) identified the modal parameters based on the 

stochastic subspace method, but, in order to improve a faster and easier pole extraction and with the 

aim at achieving more automation in the damage detection process, Vecchio et al. (2002) introduced a 

new approach based on the MLE. This approach is applied to a reticular structure that was built for 

several dynamic tests in the context of the EC Brite-Euram SAM project. 

Park, N. G. and Park, Y. S. (2003) introduce a damage detection and localization technique based on 

incomplete experimental models, since, it is not possible in practice either to measure the responses in 

all DOFs or to have a reference FE model that can represent the real structure in a precise manner, 

unless one is studying simple structures. However, this method has the disadvantage of requiring 

heavy experimentation, because one needs to measure all the FRFs of the reference structure for each 

considered DOF. Furthermore, this technique is not effective through the whole frequency range, and 

solutions are presented for the frequency range choices by error analysis. 
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Lazarov and Trendafilova (2004) investigate the influence of damage on the dynamic characteristics 

of linear elastic plates. This study is based on the plate theory of Kirchoff, and tests were carried out 

on a square plate. Damage is introduced as thickness changes and as saw cuts perpendicular to the 

boundary contour of the plate, its influence on the mode shapes and the modal frequencies of the 

structure being derived and analyzed. It is first concluded that, from both the numerical and 

experimental models, the natural frequencies of thin plates are not influenced noticeably by damage. 

The second conclusion is that the mode shapes undergo considerable changes as a result of the 

presence of damage. Despite the fact that these conclusions seem not to bring remarkable news, they 

confirm some hypothesis that have been discussed during this work. These authors also propose a 

mode shape based damage index for damage localization. 

Kim, B. S. et al. (2005) use some damage detection criteria, such as the COMAC, the ECOMAC 

(Enhanced COMAC, which is based on the average difference between the analytical and experimental 

modal vector components, and first introduced by Hunt (1992)), the ADSM (Absolute Difference of 

Strain Mode shapes, which is based on the absolute difference of strain mode shapes, proposed by Qin 

and Zhang (1998)) and a new method based on the absolute difference of the absolute value strain 

mode shapes. Kim, B. S. et al. (2005) focus on finding differences of these damage detection criteria 

caused by different geometry and boundary conditions of gusset plates with cracks. Considering crack 

localization, these authors concluded that the new method generally performed better than the other 

methods for the studied example, though it loses on physical meaning. 

2.3. Mode Shape and FRFs Curvatures 

As an alternative to damage identification from mode shape changes, mode shape and FRFs 

curvatures are being consistently used. 

Salawu and Williams (1994*) evaluate the performance of some procedures for locating damage using 

mode shape curvature (MSC) and mode shape changes. The first method estimates the mode shape 

curvatures using a central difference approximation as proposed by Pandey et al. (1991*): 
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Here, h is the distance between the measurement co-ordinates and jr  are the modal displacements for 

mode shape r at the measurement co-ordinate j. Since a local reduction in stiffness results in a local 

increase in the curvature v , it is reasonable to admit that these can be used to detect, locate and 

quantify damage. The second method studied by Salawu and Williams (1994*) is based on the mode 

shape relative differences proposed by Fox (1992), in which a graphical comparison of displacement 

mode shapes is used to indicate damage position. Those authors also use the MAC and COMAC to 

correlate mode shapes, but although these criteria showed to be sensitive to damage, they did not 

provide a clear localization of the damage position in a cantilevered beam. The performance of both 

the MSC and mode shape relative differences methods was not the desired one, since it is necessary to 

decide which are the most adequate mode shapes to use. Regarding multiple damage, only the MSC 

method was able to give an indication of simulated multiple damage locations. 

In a paper where the applicability of the MSC changes is investigated for damage detection in a 

prestressed concrete bridge, Wahab and De Roeck (1999) introduce the curvature damage factor 

(CDF), where the difference in the MSC for all modes can be summarized in one number for each 

measurement point. This technique was further applied to a real structure: the Z24 bridge which lies 

between the villages of Koppigen and Utzenstorf and crosses the highway A1 between Bern and 

Zurich in Switzerland. The CDF is based on the MSC central difference approximation introduced by 

Pandey et al. (1991*), (expression (10)), and is given by: 
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where N stands for the total number of modes to be considered, i   is the curvature of the i
th
 mode 

shape of the intact structure and d
i   is the curvature of the i

th
 mode shape of the damaged structure. 

These authors note that a relatively dense measurement grid is required in order to get a good 

estimation for higher modes curvatures. When more than one fault exists, it is not possible to detect 

the various damage locations from a single vibration mode, i.e., all modes should be carefully 

examined in order to locate all the existing flaws. 

Ho and Ewins (2000**) try to evaluate if the presumption that damage is located at the point where the 

mode shape change is the greatest is valid with both simulated and experimental data, since the 

differentiation process enhances the experimental variations inherent to mode shapes. On the whole, 

they address five methods based on mode shapes and their derivatives: flexibility index (FI), mode 

shape curvature (MSC), mode shape curvature square (MSCS), mode shape slope (MSS) and mode 

shape amplitude comparison (MSAC). If more than one mode is defined, it follows that: 
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The last two methods, corresponding to expressions (15) and (16), are presented by Ho and Ewins 

(2000**). The first (15) corresponds to an attempt to introduce the mode shape deflection as a 

sensitive feature to damage while relatively insensitive to experimental variation. The second equation 

(16) has the advantage of not requiring the mode shape differentiation. In calculating the derivatives of 

mode shapes, instead of using finite difference approximation, polynomial functions are used: a local 

polynomial is fit through every four consecutive measurement points and the resulting polynomial is 

differentiated. These authors conclude that the experimental results show that higher derivatives are 

more promising for damage identification, but that false damage indications may be observed at mode 

shape nodal points or where the measurements quality is relatively poor. It was also observed that this 

may also occur at the boundaries. 

Battipede et al. (2001) extend the gapped-smoothing technique to bi-dimensional models or plate-like 

structures, being shown that the method is able to locate single and multiple damage of medium and 

great extent. This technique, which had already been applied to one-dimensional models by Ratcliffe 

and Bagaria (1998) and Ratcliffe (2000), takes advantage on the presence of an irregularity in the 

curvature shape in order to detect damage. The displacement shape is converted into curvatures by 

applying a second order finite differentiation procedure: 
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in which  ,i jY x y  is the measured displacement (perpendicular to the plate plane) and xh  is the 

uniform spatial separation of the measurement sensor grid along the x direction. The curvature along 
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the y direction, yyC , is evaluated similarly. In the absence of damage and other irregularities, the 

curvature has a smooth shape and can thus be represented as a polynomial function. As a consequence, 

it may happen that the smooth function and the measured curvature are different when evaluated at the 

same location,  ,i jx y , which can be an indicator of damage at that location. Besides, the fact that one 

is dealing with a bi-dimensional model allows taking into account the cross curvature, xyC , so that a 

damage index can be formulated as: 
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where the ija  coefficients can be set to 0 or 1, to either consider or neglect the corresponding 

curvature. However, Battipede et al. (2001) considered 0xya   since it is difficult to estimate xyC  

from experimental data. For an undamaged structure, the difference between measured and fitted data 

is mainly due to measurement noise, so that in an experimental case the damage index ij  is irregular 

without any sharp peak. Conversely, if the structure is faulty, some peaks will clearly appear in 

correspondence to the sensors located around the damaged region of the model under consideration. 

The major advantages of this technique, when applied to a plane rectangular homogeneous plate, are 

(i) the possibility of locating multiple damage without knowledge of a reference model of the structure 

and (ii) only a single test is needed to perform on the structure in its current state without knowledge 

of its history. However, in practice, measured data tend to be polluted by noise, detrimentally affecting 

the effectiveness of the technique. 

Yoon et al. (2005) propose the generalization of the one-dimensional gapped smoothing technique to 

bi-dimensional models. As before, it is shown that it is possible to locate damage using only data from 

the damaged structure, i.e., without resorting to a reference model. Provided that it is known that the 

structure, in its undamaged state, is homogeneous with respect to stiffness, the procedure will detect 

the non-homogeneous areas that are caused by damage. Variability indices are generated for each test 

point on the structure, which statistical treatment and outlier detection enables discrimination of areas 

with significant stiffness variability. The structural irregularity index is calculated as: 

 2
, , ,i j i j i jC     (19) 

where 2
,i j  is the curvature of either a mode shape or an ODS and ,i jC  is the smoothed curvature 

shape. It has been shown that this method allows for the detection of size and location of relatively 

small localized stiffness reductions in homogeneous plate-like structures. Analytical models or 

reference experimental models of the structure in the undamaged state are not needed. Also, the results 

using the broadband ODS data showed superior performances over those using the mode shapes. 

However, in the case of large areas or uniform damage (when compared to the spacing and number of 

measurement points), the algorithm identified the edges of the damage, which can make the 

interpretation of results more difficult. It was concluded that further research is required in order to 

establish a quantitative relationship between the local stiffness reductions and the irregularity indices. 

Maia et al. (2003) present a series of numerical simulations as well as an experimental example on a 

simple beam in order to compare various damage detection methods based on mode shape changes. It 

is also proposed a generalization of these methods to the whole frequency ranges of measurement, i.e., 

methods based on mode shapes become based on ODSs. This way, one may avoid modal identification 

which can be a time consuming process and can filter relevant information. The studied methods are 

within two major groups: mode shape damage detection methods and FRF-based damage detection 

methods. In the first group, they include all the methods overviewed by Ho and Ewins (2000**), 

except the flexibility index (FI) method. They also include the damage index method, developed by 
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Stubbs et al. (1995*), which is based on the modal strain energy decrease between two structural 

DOFs for linear-elastic Bernoulli-Euler beams, and given by: 
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where a and b are the limits of a segment i of the beam where damage is being evaluated and L is the 

total length of the beam. For the purpose of the article presented by Maia et al. (2003), the discrete 

formulation of expression (20) is used. For more than one mode, the damage index can be defined as: 

 i ij
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Cornwell et al. (1997) generalize the damage index method to plate-like structures that are 

characterized by a two-dimensional curvature. One of the advantages of this strain-energy based 

method is that it does not require a well correlated FE model and/or mass normalized mode shapes. 

The mode shape detection methods group is based on the presumption that damage is located between 

DOFs where the change of a mode shape function is the greatest. The second group distinguished by 

Maia et al. (2003), the FRF-based damage detection methods, includes the FRF-based mode shape, 

the FRF-based mode shape slope, the FRF-based mode shape curvature (also presented by Sampaio et 

al. (1999)), the FRF-based mode shape curvature square and the FRF-based damage index. All these 

methods are equivalent to the mode shape detection methods, with the difference that they use FRFs 

instead of mode shapes. In Maia et al. (1997b) it is noted that when calculating the damage indices for 

the FRF-based methods, as we go along the frequency range, adding more and more information, the 

results begin to degenerate instead of improving. To overcome this, for each frequency, the location 

where the difference of damage and undamaged case is a maximum is looked up and, at that location, 

an occurrence is counted. The occurrences are summed up along the frequency range for each 

location, and damage is detected in the location where the greatest number of occurrences has been 

counted. Maia et al. (2003) found that the methods based on the curvatures performed better. 

However, the false damage indications are a problem that needs close attention. Those authors suggest 

that some improvements could be made in the interpolation process, in defining a noise level under 

which the results are not considered, in the method to calculate the maximum occurrences, in applying 

statistics to the results, and finally, in the set-up and skill of the experimentalist. 

Sampaio et al. (1999) compare the FRF curvature method, which encompasses the first three levels of 

the damage identification process (existence, location and extent), with two of the most referenced 

methods in literature: the mode shape curvature (MSC) method and the damage index method. The 

FRF curvature method is based only on the measured data without need for any modal identification, 

and it is an extension of the Pandey et al. (1991*) method to all frequencies in the measurement range 

and not just the modal frequencies, i.e., it uses FRF data rather than just mode shape data. In fact, the 

method uses something like an ‘operational mode shape’ defined, for each frequency, by the frequency 

response at different locations along the structure. The absolute difference between the FRF curvatures 

of the damaged and undamaged structure at location i, along the chosen frequency range  , is 

calculated, for an applied force at point j, by: 

    d
ij ij ij



          (22) 

Finally, one can sum up for several force location cases. This technique was tested using experimental 

data gathered from the I-40 bridge over the Rio Grande in Albuquerque, New Mexico, USA, following 

previous work done by Jauregui and Farrar (1986a*) (1986b*) of the Los Alamos National Laboratory 

(LANL) in the USA. As main conclusions on the FRF curvature method, Sampaio et al. (1999) point 

out the following: (i) the method worked better for a range before the first anti-resonance or resonance 

(whichever comes first), since for wider frequency ranges, including several modes, the difference of 

curvatures of the damaged and undamaged model becomes less significant when compared with the 
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amplitude difference arising from the resonances’ frequency shift, because of the loss of stiffness; (ii) 

the influence of the position of the exciting force seemed not to be important, according to the 

numerical model; (iii) the method is quite insensitive to noise; (iv) it was possible to detect, locate and 

quantify damage, though this last aspect deserves further developments; (v) the method has the great 

advantage of being simple and not being necessary to perform modal identification. With respect to 

the comparison established between the three methods,  Sampaio et al. (1999) argue that the FRF 

curvature method had the best performance, although, e.g., the MSC method produces better results for 

higher order modes. 

Pirner and Urushadze (2004) compare the CAMOSUC (change of mode surface curvature) with earlier 

methods to detect the magnitude and location of damage based on, namely, the MAC, COMAC, and 

the error-matrix. The CAMOSUC is defined as the difference of the mode shape curvatures between 

the undamaged and damaged states. Thus, each term in the curvature damage factor (CDF) sum (11) is 

the CAMOSUC itself. These authors present detailed applications of some of these methods to real 

cases, such as a Plexiglas square plate, a Plexiglas model of a railroad bridge section, a three-span 

prestressed concrete bridge, floor slabs of a department store and an hyperbolic cooling tower. 

Hamey et al. (2004) approach experimental aspects of methods which make use of mode shape 

curvatures. They consider four methods to establish a comparison between them: the absolute 

difference of curvature mode shape method, the CDF method, the damage index method and the FRF 

curvature method. However, instead of obtaining approximations to the second derivatives of the 

displacements, as usual, it is proposed to use the direct measurements of the curvatures of the mode 

shapes obtained from piezoelectric materials. They used piezoceramic patches for sweep-sine 

continuous excitation and a hammer for impulse excitation. Sixteen polymeric PVDF sensors were 

distributed along the beam length, on one face of the beam. Also, they tested several cases of damage: 

a transverse crack, three scenarios of controlled non-symmetric delamination and impact damage. 

They point out that, in general, the impulse excitation produced slightly better results than the 

continuous excitation. With respect to the identification methods, they observed that the damage index 

method performed better than the others both on damage detection and localization. According to 

these authors, the FRF curvature method turned out to be the one which has produced the worst 

results. Also, they observed that when the sensors are placed on the opposite side of the delamination, 

for the cases where delamination had greater dimensions, it was possible to obtain better results, 

though sensor position seemed not to bring out better results for the other damage cases. 

Kim, B. H. et al. (2005) try to extend the MSC and damage index methods by resolving some 

deficiencies of these methods. They solve a set of linear algebraic equations referred to as flexural 

damage index equations (FDIE), which allow avoiding the singularity problem near the inflexion 

points and the mode selection problem of the MSC and damage index methods. The FDIE shows that 

the damage and the curvature of flexibility have a strong relationship. Also, this method is able to 

detect, locate and size structural damage in a plate-like structure using the measured modal 

parameters. However, a fine sensor interval is required if one wants to get an accurate estimate of the 

severity of damage. 

Zhu and Xu (2005) present a sensitivity-based method for localization and assessment of damage in 

mono-coupled periodic structures, in which slopes and curvatures of mode shapes are used to localize 

damage, and natural frequencies are then used to quantify its extent. The expressions of sensitivity 

coefficients of mode shapes, slopes and curvatures of a mono-coupled periodic system are first derived 

in terms of receptances of a periodic element. The numerical and experimental examples show that 

curvatures of modal shapes are the most sensitive to damage, but slopes of mode shapes seem to 

provide a better indication of the damage location. Also, the larger changes in the natural frequencies 

imply higher sensitivity of these modes to damage, which is useful for choosing a few of the lower 

frequency modes to localize damage. The method allows for multiple damage detection and 

localization, with different simultaneous extents, using a few of the slopes and curvatures of the lower 

order mode shapes, though the accuracy for quantifying the damage size highly depends on the 

number of used frequencies.  
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2.4. ARMA Family Models 

Brincker et al. (1995a*) use a statistical analysis based on the natural frequency shifts to detect 

damage in two concrete beams with different reinforcement ratios. The modal parameters (natural 

frequencies and modal dampings) are estimated from the response time series (accelerations) using the 

so called auto-regressive moving average (ARMA), identical to the one used by Brincker et al. 

(1995b*) in an offshore platform. Referring to Davies and Hammond (1984), Pandit and Metha (1985) 

and Safak (1991), Brincker et al. (1995a*) mention that the ARMA models have been developed 

mainly for application in economics and electrical engineering, but since they are considered to be a 

more effective way of estimating modal parameter than Fast Fourier Transform (FFT) based 

techniques, their use on structural systems has been increasing during recent years. A more complete 

version is the ARMA with exogenous input (ARMAX). The  ,n m  order ARMAX model that describes 

the time response  y t  as a linear combination of the last n responses as well as the last m unknown 

inputs and p known inputs is given by: 

                
1 1 1

pn m

i i i

y t c i y t i b i x t i d i e t i e t
  

          (23) 

where  c i  is the auto-regressive parameter describing the response  y t  as a linear regression of the 

last n values and  d i  and  b i  are the moving average parameters which describe the response  y t  

as a linear regression of the last values of, respectively, an unknown input time series,  e t , which 

may be assumed as white noise, and a known time series,  x t . The  c i  (AR),  d i  (MA) and  b i  

(X) parameters are determined by minimizing the variance of the noise time series  e t , i.e., based on 

the measured response and on the predicted response given by (23). When the AR parameters are 

estimated, the roots of the characteristic polynomial equation that contains these parameters can be 

related to the natural frequencies and to the modal dampings. Hence, the ARMAX can be utilized to 

examine these parameters variations along the time. Also, Brincker et al. (1995a*) define a statistical 

significance indicator which accounts for the changes in the natural frequencies, so that they can give 

a quantifiable estimate of the structural modifications. It was shown that the significance indicators are 

sensitive to structural damage, but they are not able to provide an accurate estimate of damage 

location. Finally, it was observed that, for the studied beams, the differences between the ARMA and 

ARMAX were quite small. Thus, it was concluded that knowing the input signal is not essential for the 

detection of damage in the studied beams. 

Wei et al. (2005) use nonlinear ARMA with exogenous input (NARMAX) models to assess internal 

delamination in multi-layer composite plates. These authors state that the relationship between input 

and output is nonlinear for multi-layer composite panels. According to them, the NARMAX model was 

proposed by Leontaritis and Billings (1985a) (1985b) as a general parametric form for modeling 

nonlinear systems. NARMAX models describe the nonlinear systems in terms of difference equations 

relating the current output to combinations of inputs and past outputs. The structure of the proposed 

model is used to estimate model parameters for damaged vibration systems, and internal delamination 

is detected by comparing the model parameters between intact and damaged systems. The results show 

that, for the studied case, NARMAX models allow investigating the behavior of composite models as 

well as assessing damage in composites, especially if it is in the form of a delamination. 

Lu and Gao (2005) propose an approach which is formulated in the form of a predictive 

auto-regressive model with exogenous input (ARX), based on the linear dynamic system theory. After 

some simplifications, the model is expressed in such a way that only response signals are involved, 

with a response at one location chosen as the ‘input’ of the model. The residual error of the established 

model when applied on actually measured signals reflects the structural change, and the standard 

deviation of the residual error is found to be a damage sensitive feature. It was observed that the 

proposed ARX model can have undesired behaviors when the location of the chosen ‘input’ response is 
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near the location of the damage. For this reason, they recommend that in a diagnosis situation two 

separate runs of the procedure are carried out using two different ‘input’ locations. It was also noted 

that the standard deviation of the residual error of the ARX model, although sensitive to the presence of 

damage, does not give a precise indication of the degree of damage, so further research is required. 

In an earlier work, Sohn and Farrar (2001b) had presented a two iteration AR-ARX model in order to 

predict the time series and subsequently use the standard deviation ratio of the residual errors as the 

damage sensitivity feature. The residual error is the difference between the actual measurements and 

the predicted responses from the combination of both the AR and ARX models. 

2.5. Dynamic Flexibility 

Another class of damage detection methods is based on the use of the dynamic flexibility matrix to 

estimate changes in the static behavior of the structure. The dynamic flexibility matrix is a transfer 

function, defined as the inverse of the static stiffness matrix. Thus, each column of the flexibility 

matrix represents the displacement pattern of the structure associated with a unit force applied at the 

associated DOF. Damage is then identified by comparison of both the flexibility matrices of the 

structure in the undamaged (or obtained from a FE model) and damaged states. Due to the inverse 

relation to the square of the modal frequencies, the dynamic flexibility matrix is very sensitive to 

changes in the lower order modes, whereas the stiffness matrix is more sensitive to higher order 

modes. Based on this, Doebling et al. (1996**) distinguished five different approaches: comparison of 

flexibility changes, unity check method, stiffness error matrix method, effects of residual flexibility 

and changes in measured stiffness matrix. 

Park, Y. S. et al. (1988*) suggest the use of the weighted error-matrix method, comparing it to the 

error-matrix method (Sidhu and Ewins (1984) and He and Ewins (1985*)). The stiffness error matrix 

can provide valuable information on the position of the damaged area, being defined as: 

       2 1E K K   (24) 

where  2K  and  1K  are the stiffness matrices of the evaluated members in the damaged and 

undamaged states, respectively. Although  1K  can be estimated from a FE model, it is possible to 

determine  E based on experimental data only. When the stiffness error matrix  E  is plotted, the 

highest peak will indicate the most probable damage location. Due to measurement noise, this method 

is only reliable when the measured natural frequency shifts and the modal vector changes exceed the 

magnitude of the measurement errors. Therefore, Park, Y. S. et al. (1988*) propose the weighted 

error-matrix method, which magnifies the amount of stiffness error only in certain nodal points related 

to the damaged element. Although it has been shown that the weighted error-matrix method is more 

sensitive to damage, since it was possible to accurately detect the structural damaged member even for 

reduced levels of damage, its complexity does not make it an attractive method. In order to reduce the 

amount of computations and experiments, it is suggested an iterative ‘step-by-step’ method, in which 

the number of elements chosen is being refined in each step. 

2.6. Modal Strain Energy 

Choi and Stubbs (2004) developed a method to locate and size damage in a structure measuring time-

domain responses in a set of measurement points. The mean strain energy for a specified time interval 

is obtained for each element of the structure, being in turn used to build a damage index that represents 

the ratio of the stiffness parameter of the pre-damaged to the post-damaged structure: 
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In this expression, j  is the damage index for the element j, NT is the number of sampling points, 

 iV  is the displacement configuration vector at time ti, and jC 
   is the geometric portion of the 

contribution of the j
th
 element to the system stiffness matrix  K . Possible locations of damage in a 

structure can be identified by utilizing a classification algorithm with the damage index given by (25) 

taken as the feature vector. A statistical decision technique of hypothesis testing is used in the 

classification algorithm, in which the damage indices given by (25) are normalized, assuming that the 

damage index is a random variable and the collection of the damage indices are distributed normally. 

Once the possible locations of damage are isolated, corresponding damage severities can be obtained 

(i.e., the fractional loss in stiffness). These authors present as major conclusions, that the time-domain 

response may be used directly to localize and size damage in a structure and that it is possible to 

reduce false-negatives using a lowered significance level for damage localization, with the expense of 

increasing the number of false-positives. Thereby, the balance among them can represent a measure of 

the sensitivity of the method as well as of the quality of the results and the effectiveness of the 

algorithm for damage localization. 

Patil and Maiti (2005) provide an experimental verification of an energetic method for prediction of 

location and size of multiple cracks based on the measurement of natural frequencies for slender 

cantilevered beams with two and three normal edge cracks. In the theoretical model the beam was 

divided into a number of segments and each segment was considered to be associated to a damage 

index. The cracks are represented as torsional springs. The damage index behaves as an indicator of 

extent of the strain energy stored in the crack, or torsional spring. The method is based on the concept 

that the strain energy U of a beam containing a crack reduces because the beam can deform easily to 

the same extent as the uncracked beam. This reduction is equal to the extent of energy stored in the 

fictious torsional spring (or crack), which, for the case where m cracks are present is: 
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where nU  is the stored energy in the corresponding uncracked beam for vibration mode n and iM  and 

iK  are the bending moment at the crack location ix l  and stiffness associated to the crack, 

respectively. Based on these principles and after several considerations, simplifications and some 

mathematical manipulation, an expression for the location of a crack in a segment of the beam is 

suggested. It is concluded that, on the whole, the accuracy of the method is good for the prediction of 

the crack location, though it is lower for the prediction of the crack size. Accuracy reduces as the 

number of cracks increases. One of the major drawbacks of this method is revealed when it is 

observed that a number of measured frequencies equal to twice the number of cracks is the adequate 

quantity for the prediction of location and size of all cracks, which in a practical sense may not be 

possible to determine in advance.  

2.7. Transmissibility 

Sampaio et al. (2000) show that a minor stiffness change can result in a noticeable change of 

transmissibility relating responses at points around damage. Considering a general structure with i 

measuring co-ordinates and j excitation co-ordinates, it is possible to compute the transmissibility 
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matrix for either the reference (or undamaged) and damaged states. The transmissibility matrices are 

square, with m m  elements and a zero diagonal. With this arrangement, it is possible to write: 

     x T x  (27) 

This is a special case of the transmissibility matrix, which relates the set of m responses with itself. 

The sum of all the transmissibility matrices in the frequency range of interest allows obtaining a 

unique matrix for each case, d ST 
 

 for the damaged and  ST  for the undamaged case. Their 

difference    dST ST ST    
 will show the location of damage, since its values should present a 

significant increase near the damaged region. To enhance the location, the different values at each line 

i of the  ST  matrix are summed and the second derivative iST   is calculated by a central 

difference approximation. Matrices d ST 
 

 e  ST  can be represented in a contour plot, where the 

rows are the x-axis and the columns are the y-axis. Any noticeable change of these plots may mean 

damage existence. To locate it, one can observe the bar plot of iST  . Basically, damage will be 

located between the co-ordinates that show major amplitudes. Sampaio et al. (2000) show another way 

of applying the transmissibility concept to damage detection, referred as the pseudo-transmissibility 

matrix method, which uses FRFs instead of responses only. Despite the fact that this version had a 

better performance, these authors note that the former (the one using the transmissibility matrix) is 

more consistent (or real) because the pattern change is correlated among the various plots. These 

authors have also developed the frequency of maximum differences algorithm, to improve the 

accuracy of the transmissibility method and others, such as the FRF curvature method, that uses raw 

data directly from the FRFs. The transmissibility matrix, pseudo-transmissibility matrix and FRF 

curvature methods were applied on a 10-DOF numerical model. It was concluded that the frequency of 

maximum differences greatly improves the methods which use FRFs in damage detection and 

location. However, the version which uses the transmissibility matrix for several simultaneous forces 

did not work in the used examples. 

Mares et al. (1999**) apply genetic algorithms for assessing damage where the objective function is 

based on the measured transmissibilities. The method is tested in a numerical model of a four story 

steel frame structure. The model was developed by having in mind a great in-plane rigidity of the 

floors with respect to the out-of-plane rigidity of the columns. Four damage scenarios were 

considered, by combinations of Young modulus reductions and removal of columns and braces. These 

authors observe that not all the transmissibilities are sensitive to damage in the same way. Therefore, 

they performed a two-step procedure to select the ‘best’ transmissibility functions before running the 

genetic search, in order to enhance the optimization process and hence the damage assessment 

procedure. The used procedure enabled transmissibility functions to be ranked in terms of the most 

sensitive to damage. The transmissibilities found to be the most sensitive to damage were used in the 

formulation of the cost function. The optimization process follows two iterations to obtain the global 

minimum of the cost function. First, a genetic search is applied on the cost function, and then a 

classical gradient-based algorithm is run to refine the solution, so that global minima are correctly 

distinguished from local minima. Mares et al. (1999**) observe that, according to the performed 

numerical simulations, the use of transmissibility functions provide estimates of the state-of-damage 

that are sufficiently accurate. However, for the used steel frame structure model, damage in braces was 

easier to identify than damage in columns. 

Johnson, T. J. et al. (2004) present a work on smart sensor arrays with the goal of implementing local 

vibration-based diagnostic algorithms inside a smart ‘black box’ to demonstrate the feasibility of 

distributed health monitoring for damage detection, location and quantification. It was shown that the 

transmissibility is a good indicator feature of structural damage in spite of environmental fluctuations 

and boundary conditions non-linearities. For this late reason, the transmissibility-based damage 

identification technique is referred to as the structural diagnostics using non-linear analysis (sDNA) 

approach. This approach is presented, and it is shown that it reduces the number of false diagnoses due 
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to non-linearities. Experiments were carried out on two large distributed structures, a building and a 

rotorcraft fuselage. 

2.8. Damping 

Based on the observation that modal damping is a parameter with higher sensitivity to internal 

delamination on CFRPs than the natural frequencies, Keye et al. (2001) develop a method which is 

capable of relating modal damping deviations caused by structural damage to the damage location on 

the structure. They call the attention to two important aspects on the experimentation. First, when only 

a single or a small number of sensors is available, the experimental data provides no spatial 

information on the dynamic response, i.e., on the mode shapes, and the process of localizing structural 

damage has to cope with eigenfrequencies and modal damping values, which can be extracted from 

the measured FRFs. In such a case, a FE model should be used to locate the damage. Second, since in 

practice the damage location is unknown, a whole set of damage locations have to be simulated in the 

numerical model and the modal data must be computed for each damage case. After testing the 

method on a CFRP plate-like structure, they propose some improvements on the method: (i) to 

enhance the correlation between numerical and experimental data, updating techniques should be 

used; (ii) implementation of a systematic mode selection strategy and the weighting of individual 

modes based on their sensitivities for damage localization; (iii) optimization of the actuator/sensor 

placement and evaluation of their influence on the damage identification capability; (iv) evaluation of 

other aspects, such as temperature effects and influence of the excitation method. 

Kyriazoglou et al. (2004) explore the use of the specific damping capacity (SDC) for damage detection 

and localization in composite laminates. One important observation is that the resonant frequency 

allowed detecting cracks in glass fibre-reinforced laminates while for carbon fibre-reinforced 

laminates no detectable changes in the resonant frequencies could be found. However, high changes 

were found in the SDC. The method consists of measurements and analysis of the SDC of composite 

beams vibrated in free-free flexure in their first mode. The SDC is defined as: 
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where U  is the dissipated energy in one cycle and U is the total energy stored in that cycle. The 

energy stored by the beam in bending, U, is calculated from the mode shape maximum deflection at 

the center of the beam. The dissipated energy in one cycle is equated to the energy input. Tests have 

been carried out both in air and in vacuum, being found that air damping significantly affect the 

measurements, particularly when the beam has off-axis reinforcement. 

Yam et al. (2004) proposed to develop a practical method for the location and prediction of damage in 

CFRPs plates by means of a combination of the measured modal damping and the computed strain 

energy distribution. First, a FE model is established to estimate the modal parameters, such as natural 

frequencies, mode shapes and modal strain energy. Based on the numerical model and on the fact that 

delamination at different regions produce characteristic increases on the modal damping, they are able 

to experimentally locate damage. These authors note that the numerical simulations provide a good 

explanation for damping increase due to delamination, i.e., the energy dissipation is mostly induced by 

the interfacial slip across the delamination and the tendency of penetration between the upper and 

lower surfaces in the delamination region. 

Various authors have tried to study the damping mechanisms in composite materials. For example, 

Nayfeh (2004) develops a model for vibration parallel to the plane of lamination of a symmetric five-

layer elasto-viscoelastic sandwich beam, since it is known that a sandwich beam consisting of 

alternating elastic and viscoelastic layers can be designed to exhibit large damping on flexural 

vibration in the direction normal to the plane of lamination. Also, Berthelot and Sefrani (2004) 

experimentally analyzed damping of unidirectional glass and Kevlar composites, comparing them to 

the models of Adams-Bacon, Ni-Adams and complex stiffness. The purpose was to develop an 
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analysis of the effect of the fibre-reinforcement orientation in the case of unidirectional layers, since it 

is known that, at the constituent level, the energy dissipation in fibre-reinforced composites is induced 

by different mechanisms such as the viscoelastic nature of the matrix and fibre materials, the damping 

at the fibre-matrix interface, the damping due to damage, etc. 

2.9. Impedance-Based Methods 

Park, G. et al. (2003) present an overview of piezoelectric impedance-based health monitoring where 

the hardware and software issues are summarized, including a discussion on future research areas and 

path forward. 

Park, G. et al. (1999**) introduce an impedance-based method which uses a piezoelectric transducer 

(PZT) both as actuator and sensor. It can be shown that the electrical impedance of the PZT is directly 

related to the structure mechanical impedance (Liang et al. (1994)). Thus, a relationship can be found 

to determine the structural properties, namely, the mass, stiffness and damping. Any change in the 

mechanical impedance, which could be caused by the presence of damage, will show up in the 

electrical impedance of the PZT. The damage state is identified when a defined metric, given by the 

sum of the squared differences of the impedance between the current and the reference state, becomes 

larger than a predefined threshold. As advantages, these authors point out that this technique does not 

require numerical models and that the high-frequency excitation nature makes this technique very 

sensitive to local structural modifications. 

Grisso et al. (2004) use an impedance-based SHM system to detect the onset of transverse matrix 

cracking in cross-ply graphite/epoxy composite. Ceramic PZT patches are attached to the composite 

samples (in this case, beams) to simultaneously excite the structure with high-frequency excitations 

(two frequency ranges, from 10 to 20 kHz and from 40 to 60 kHz) and monitor any changes in 

structural mechanical impedance. In order to detect damage severity, these authors use the root mean 

square deviation (RMSD), where the squared differences of the impedance between the undamaged 

and actual states are related. These authors conclude that acoustic emissions testing showed a good 

correlation only for thicker specimens, while the impedance-based method has given better correlation 

for thinner specimens. 

Moura Jr. and Steffen Jr. (2004) try to identify the best frequency bands for impedance-based 

structural damage identification on flexible structures. Damage is simulated in a cantilevered 

aluminum beam by adding a mass to the free end of the beam. By observing the results, these authors 

agreed that, at least for the following setups, the best low frequency value is 15 kHz, while the best 

bandwidth value corresponds to the intermediate one (4 kHz). 

Peairs et al. (2005) developed a new modeling technique for impedance-based SHM, combining the 

spectral element method (SEM) with the electric circuit analysis. These authors argue that SEM has 

several advantages over other conventional FE techniques, for instance, because SEM models more 

accurately higher frequency vibrations since the mass is modeled ‘exactly’ and incorporates higher 

order models more easily. Sensor multiplexing for transfer impedance and high frequency modeling 

were also investigated. However, modeling at higher frequencies is more complex because of the 

presence of the PZT resonances. 

Simmers Jr. et al. (2005) apply an impedance-based method to detect and quantify the onset and 

growth of pre-crack surface corrosion. Three metrics were used: one similar to the one used by Park, 

G. et al. (1999**), the RMSD and a cross-correlation. The experimental results on an aluminum beam 

indicate that the impedance-based is an effective corrosion detection and tracking method, and that 

there is a relationship between the metrics and corrosion location, surface coverage and pit depth. 

Park, G. et al. (2005) propose to use statistical pattern recognition methods to address damage 

classification and data mining issues associated to large numbers of impedance signals for health 

monitoring applications. In order to diagnose damage with statistical confidence, the impedance-based 

monitoring is cast in the context of an outlier detection framework. The developed statistical process 
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control consists of a two-stage prediction model that is a combination of AR and ARX models, the AR-

ARX. The damage-sensitive feature is then computed by differentiating the measured impedance and 

the output of the ARX model. Because of the non-Gaussian nature of the extracted features, extreme 

value statistics (EVS) is employed to develop a robust damage classifier. The proposed technique is 

tested in a numerical example on a 5-DOF system and an experimental investigation on a multi-story  

building model, being found that the algorithm could assess the condition of a structure in a more 

quantifiable manner over the traditional impedance approaches. Some issues that need close attention 

were identified: (i) the robustness of the proposed algorithm against environmental condition changes 

should be improved; (ii) different damage sensitive features could be used, such as relative and/or 

absolute changes in exogenous or auto-regressive ARX coefficients; (iii) a prior curve fitting on the 

impedance data should be performed before constructing the ARX model in order to minimize the 

effect of leakage in the frequency response measurements; (iv) the differentiating process involved in 

feature extraction often led to amplifications of existing noise in data; (v) the selection of proper EVS 

distribution for each data set and the evaluation of associated distribution parameters are still strongly 

based on an initial guess and on a trial-and-error method.  

2.10. Lamb waves 

An approach that has received much attention in the last few years uses the so called Lamb waves. 

Lamb waves are a type of elastic perturbation that can propagate on large areas in a free-free solid 

plate with low dispersion of energy, even in materials with a high attenuation ratio. This type of wave 

was first described in theory by Lamb (1917), though he has never tried to produce them. Alleyne and 

Cawley (1992) were among the first to discuss interaction of Lamb waves with defects for non-

destructive testing. Saravanos et al. (1994*) presented a procedure for delamination detection in 

composite materials using Lamb Waves and embedded piezoelectric sensors. 

Kessler et al. (2002) sustain that the techniques using Lamb waves have proven to provide more 

information about damage type, severity and location than previously tested methods, namely those 

using FRFs, since Lamb waves are more sensitive to local structural defects. Piezoceramic patches 

were used to excite the first anti-symmetric Lamb wave (A0 mode). The PZT actuators were chosen 

due to their high force output at relatively low voltages and also due to their good response qualities at 

low frequencies. Kessler et al. (2002) explored the optimization of Lamb wave methods for damage 

detection in composite materials, covering the problems of choosing the appropriate actuating 

frequency, pulse shape and sensor geometry for Lamb wave application. Results were compared by 

performing a wavelet decomposition using the Morlet wavelet, and plotting the magnitude of the 

coefficients at the driving frequency. Besides the great capabilities of Lamb waves in damage 

detection and localization, these authors point out, as the major disadvantage of this method, that it has 

to be active, i.e., requires a voltage supply and function generating signal to be supplied. Another 

difficult requirement is the high data acquisition rate needed to gain useful signal resolution. Finally, 

the Lamb wave method should most likely be placed into a SHM system in conjunction with another 

passive detection method, such as an FRF method, in order to conserve power and data storage space 

and because the resulting data can be more difficult to interpret. 

Su et al. (2002) state that noteworthy efforts have been made since the 1980’s in the field of wave 

propagation based identification methods. Nevertheless, it is known that the propagation 

characteristics of Lamb waves are relatively complicated because of the dispersion phenomenon. 

These authors studied the interaction between the fundamental Lamb wave modes and delamination in 

carbon fibre-reinforced laminates. As such, FE models and experimental models of a plate with a 

delamination were tested, using PZT wafers as sensors/actuators. Finally, the calculated and measured 

dynamic responses were processed with the wavelet transform-based analysis in the time-frequency 

domain for the damage evaluation purpose, which has proven to be very effective to diminish the 

influence of broadband noises and structural vibration patterns and that the response in the time-

frequency space is considerably sensitive to the delamination location. 
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Lee and Staszewski (2002) deal with acousto-ultrasonic wave propagation modeling techniques, 

focusing on two-dimensional wave interactions with defects in metallic structures. 

Ricci et al. (2004) present a methodology for automatic damage identification and localization in 

composite structural components. The damage is inflicted in the form of impact damage, which 

identification is based on the calculation of a set of damage correlation indices obtained from the 

frequency analysis of the signals, obtained from PZT sensors, in the reference and damaged state of 

the structure. The main idea behind this approach is that elastic waves propagating from the site where 

they are generated to the location where the signals are sensed, carry information about the portion of 

the structure through which they have travelled. Elastic waves can be very sensitive to small local 

defects. An indicator of any change in the propagation characteristics of the wave can be given by: 
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where iD  is the damage index evaluated at the sensor location i and  iH  is the frequency response 

vector at location i. These authors argued that this damage index approach can be used for detection 

and, under certain conditions, characterization of degradation in aircraft, aerospace and civil structures 

and that the analysis of the waveform signals would provide information on the location and nature of 

small defects. 

Sohn et al. (2004a) proceeded with the work developed by Sohn et al. (2004b) and proposed a multi-

scale structural health monitoring approach for detecting defects in composite structures by combining 

Lamb wave propagation, impedance-based methods and time reversal acoustics using a common 

active sensing system for local nondestructive evaluation. These authors mention that the ultrasonic 

research community has studied Lamb waves for the nondestructive evaluation of plates since the 

1960s. They also define Lamb waves as mechanical waves corresponding to vibration modes of plates 

with a thickness on the same order of magnitude as the wavelength. In the presented study, the wave 

attenuation feature, identified using a wavelet based damage index, is used to locate the region of 

damage (Sohn et al. (2004b)). Damage was introduced by firing a small projectile with varying 

velocities at different locations on a graphite fibre square plate with epoxy matrix. It was found that 

the three methods studied can be complementary because they can use the same sensors/actuators, 

which in this case were commercially available thin films with embedded PZT sensors. For instance, 

while it was observed that the Lamb wave propagation method is effective for thin plates, the 

impedance method is more suitable for detecting damage near structural joints or connections.  

On another point of view, Toyama and Okabe (2004) study the effects of tensile strain and transverse 

cracks in the Lamb waves propagation velocity in cross-ply FRP laminates, since the waves’ 

propagation velocity is quite sensitive to changes in the in-plane stiffness of the laminates. It is noted 

that some composite materials, such as CFRP, exhibit non-linear stress-strain responses, which makes 

Lamb wave velocity based damage detection methods more complex when under external loading. 

The Lamb wave propagation velocity was measured on GFRP (glass fibre-reinforced plastics) and 

CFRP laminates during tensile tests and the elastic behavior was studied. These authors make two 

interesting observations: The first one is that it seems that measuring the first symmetric Lamb wave 

(S0 mode) velocity is a more accurate means of evaluating the elasticity of laminates than the tensile 

test. Secondly, it is observed that wave velocity depends both on damage and on the laminate 

elasticity. Finally, they state that one needs to know the laminate stiffness as a function of strain when 

under external loadings, for damage detection purposes. 

Sundararaman et al. (2005) use sparse phased sensor/actuator arrays for online damage detection and 

localization on heterogeneous and homogeneous plates and discuss the theory of narrowband and 

broadband beamforming of propagating plate waves in damaged elastic media. According to these 

authors, a beamformer is a spatial-temporal filter that can be used to ‘look’ in the direction of 

transmitted signal while eliminating interference that cannot be removed through temporal filtering or 

carrier demodulation alone. Beaformers consist of sensor arrays that are used to extract directional 
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damage signatures. The principle in which this method is based is equivalent to an acoustic impedance 

discontinuity in the solid medium, so that damage, either in the form of debonding, delamination, fiber 

breakage, matrix cracking or voids, can be detected, localized and quantified. Experimental evaluation 

of this procedure was carried out on glass/epoxy woven composite, steel and aluminium plates. 

Other works which make use of Lamb waves for damage detection and SHM have been published 

recently, such as Beadle et al. (2005), Fritzen and Mengelkamp (2005), Giurgiutiu et al. (2005), Hera 

et al. (2005), Konstantinidis et al. (2005), Lucero and Taha (2005), Nieuwenhuis et al. (2005) or 

Raghavan and Cesnik (2005). 

2.11. Neural Networks 

The use of neural networks on damage detection procedures and SHM has been motivated by the 

possibility of existence of different types and locations of damage within the same structure, thus 

making the damage detection a complicated process. 

Hanagud and Luo (1997**) use three layer feed-forward neural networks to identify two different 

types of damage in GFRPs: delamination and stiffness reduction due to transverse cracks or impact 

damage. It is assumed that only one of these defects exists, and analytical models are built to predict 

the dynamic behavior of the structure considering various scenarios of damage. A main neural-

network identifies the type of damage present using a non-linear dynamic response criterion, which 

directs the problem to one of two sub-networks. Both these sub-networks use FRFs as inputs. Using 

the same beam as ‘case-study’ Luo and Hanagud (1997**) propose the dynamic learning rate steepest 

descent (DSD) for training neural-networks, with the aim of increasing the learning convergence speed 

relative to the simple steepest descent method. 

Krawczuk et al. (2000**) present the results on the application of a genetic algorithm and a neural 

network to detect and locate delamination on a numerical model of a multi-layered GFRP beam. Two 

different procedures were followed to identify the damage location and size: the first is based on FE 

model updating and on error localization; the second considers a set of possible damage scenarios 

(including damage type, location and size). These researchers use an objective function, based on 

changes on the first four natural frequencies and on the damage location assurance criterion (DLAC) 

proposed by Messina et al. (1992). The genetic algorithm converges after a reasonable number of 

generations, although these authors have considered that this procedure deserved future developments 

by including more processes that are observed in nature, e.g., elitism. Concerning the neural network, 

its performance was considerably poor for detecting the delaminated layer location across thickness, 

since they considered a relatively small population of delaminated number of cases for training. 

Hatem et al. (2004) also apply genetic algorithms and neural networks for damage detection in CFRPs 

composite materials. Four types of damage were considered in the model of a cantilevered beam: (i) 

circular holes with different diameters and locations, (ii) delamination with different areas and 

locations and (iii) linear surface cracks and (iv) linear through cracks with different lengths, 

orientations and locations. Damage type is identified with the generalized regression network. A 

sub-network is especially conceived for each damage type, in an ensemble of five: the generalized 

regression network, the linear network, the back-propagation network with and without regularization 

and the radial basis network. These authors state that the generalized regression networks successfully 

classified damage type, with a success rate ranging from 85% to 98%. After damage is classified, an 

appropriate neural network or genetic algorithm is run to detect the remaining damage parameters, 

namely location, size and, in the case of a crack, orientation. Damage size was predicted with good 

accuracy, but the results on damage position and orientation were not that accurate. 

Zheng et al. (2004) combine computational mechanics and neural networks, in this case the 

backpropagation method, for prediction of delamination in CFRPs’ beams. The neural network was 

trained with FE models, which were designed assuming various delamination sizes and locations. As 
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inputs, it used the first five natural frequencies. According to these researchers, the neural network 

correctly predicted delamination size and location, within a small error margin. 

2.12. Time-Frequency Analysis 

Zabel (2004) (2005a) (2005b) applies a wavelet-based damage indicator for damage detection on 

reinforced concrete structures, where one of the case-studies was the Z24-bridge in Switzerland 

already mentioned in this work. The indicator is based on the analysis of signal energy components in 

discrete time-scale domain. Normally, the wavelet coefficients of the impulse response function (IRF) 

have different contributions to the considered system response. Thus, if the excitation force is known, 

then it is easy to normalize the response relatively to the excitation force. Another normalization 

possibility is to relate each response to the response in a reference location, thus leading to the 

transmissibility function. According to this author, it is possible and adequate to consider the 

transmissibility functions and their wavelet decompositions in a context of SHM when the ambient 

excitation is unknown. However, it is noticed that the analysis so far is based on the assumption of 

similar excitations for all the observations, which means that further research should be done to 

evaluate how this restriction can be surpassed without the need of a known excitation. 

Savov and Wenzel (2005) use a wavelet approach in order to locate damage in civil infrastructures, 

based on the system’s acceleration time history responses. A FE model of a three story shear-resisting 

frame excited by white noise ground acceleration and a prestressed reinforced concrete test beam 

under impact loading conditions were used as test structures. The first level fast wavelet 

decomposition of both the undamaged and actual measurements was applied using the Haar mother 

wavelet, and the approximation and detail coefficients were obtained. Reconstruction of the actual 

system response was accomplished by a cross combination of the approximation coefficients of the 

undamaged structure with the detail coefficients of the actual measurement. The sensitive feature is 

defined as the standard deviation of the error between this reconstructed signal and the actual 

measured signal. This method is based on the premise that the detail coefficients carry information 

about the local structural integrity in the time history response at the damaged sites. An advantaged of 

this method is that one does not need to know the excitation mechanism, since it is entirely based on 

the measured responses. However, damage location is compromised by the sensor mesh refinement. 

Extension of this approach to quantification of damage, to prediction of remaining structural life and 

to evaluation of more complex structures, varying operational and environmental conditions and non-

linear damage phenomena are issues to which these authors will give further attention. 

Li, B. et al. (2005) present a methodology to detect crack location and size in a beam, which takes 

advantage of wavelet finite element methods (WFEM). The idea of the WFEM is close to the 

traditional FE method to discretize a body into wavelet finite elements which are interconnected at 

nodal points on the element boundaries. Some of the advantages of WFEM over FE method for modal 

analysis of crack problems are pointed out. The natural frequencies of the beam with various crack 

locations and sizes are obtained, through the use of a WFEM, and used as features in the damage 

detection process. The accuracy of the method was tested on the experimental data of a beam studied 

by Silva, J. M. M. and Gomes (1990*). Finally, they believe that this procedure can be easily extended 

to complex structures with multiple cracks. 

2.13. Hilbert Transform 

Testa (2005) argues that the Hilbert-Huang transform (HHT) is very useful for non-stationary, non-

zero mean and non-linear real signals. The HHT makes an Empirical Mode Decomposition (EMD) of 

the time signal into narrow band components with zero mean, in which each component is called an 

Intrinsic Mode Function (IMF). Contrary to the FFT, these components do not have a specific 
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analytical representation, but each component can be associated to a physical meaning, i.e., the 

components are related to the mode shapes and damage existence. 

Lin, S. et al. (2005) use the technique of HHT on the phase I IASC
1
-ASCE

2
 benchmark problem for 

SHM. This benchmark has been developed to make easy the side-by-side comparison of various 

analysis techniques for the damage identification of structures on a common basis. The scale-model 

structure is a 3.6m high four-story steel frame with 2.52.5m
2
 section area. Johnson, E. A. et al. 

(2004) present two analytical models of the structure: one is a 12-DOF shear-building model, the other 

a 120-DOF model, both finite element based. Based on the noisy acceleration data due to ambient 

excitation, Lin, S. et al. (2005) affirm that the HHT is capable of identifying natural frequencies, 

damping ratios, mode-shapes, stiffness matrix and damping matrix of a structure with a reasonable 

accuracy. Damage has been identified by comparing each floor stiffness before and after introducing 

damage. Simulation results show that the HHT technique can detect, locate and quantify damage with 

good accuracy. Finally, these authors acknowledge the fact that, despite in the current benchmark 

model normal modes are assumed to exist, the technique can be used as well on linear structures with 

complex eigenproperties, such as in Yang et al. (2003). 

Zhang et al. (2005) present the implementation of a method for nonlinear, nonstationary data 

processing, namely the HHT in traditional vibration-based approaches to characterize structural 

damage. Also, the HHT is compared to the Fourier transfer function technique in detecting local 

damage with a computer model and experiments in two pile foundations of the Trinity River Relief 

(TRR) bridge in Texas, USA. The HHT analysis showed a more significant frequency downshift than 

Fourier-based approaches for measurements made near the damage location. These authors observed 

one aspect that although only applicable to very specific structures, like bridges, has its interest: by 

selecting two or more similar structural members (e.g., two of four columns in a bridge with the same 

size, cross section, and materials), data from a reference state may be avoided if only one of these 

members have experienced damage. 

Shi and Law (2005a) (2005b) present a HHT-based technique for parameter identification (stiffness 

and damping) in damage detection for, respectively, linear time-varying discrete dynamic systems and 

nonlinear systems. Both procedures are tested with the use of analytical models in free vibration. Shi 

and Law (2005a) identify the non-linear system using a so-called skeleton linear model (SLM), which 

has similar dynamic behavior to the corresponding nonlinear system. 

2.14. Principal Component Analysis and Singular Value Decomposition 

Santos et al. (1999) (2000) present a technique for the identification of damage on laminated 

composite structures using, as case study, a numerical simulation of a rectangular plate. The algorithm 

is formulated by considering the sensitivities of the orthogonality conditions of the mode shapes, 

which allow for the calculation of a damage parameter in each finite element. This damage parameter 

is directly related to the stiffness reduction on the damaged finite element. They argue that the 

proposed method allows for multiple damage detection and location. These authors formulate a set of 

 1 2M m m   linear independent equations with N unknowns, where m is the number of vibration 

modes and N is the number of elements, based on the orthogonality condition sensitivities of the 

damaged structure. In the cases where M N , the solution can efficiently be found by a Gauss-

Jordan elimination method, whereas if the system is under-determined, i.e., M N , it is possible to 

find the N M  family of solutions using the Singular Value Decomposition technique (SVD) (Golub 

and Van Loan (1983)). These authors argue that the proposed technique allows for an efficient 

                                                      

1
 International Association of Structural Control. 

2
 American Society of Civil Engineers. 



- 29 - 

quantification of damage on either small or larger areas and that this methodology is a promising tool 

for the research community working on experimental damage identification. 

More recently, Santos et al. (2004) (2005) presented a damage identification technique based on FRFs 

sensitivities. Considering that a single-input unit force is applied to the l
th
 DOF of both the undamaged 

and damaged structure, they show that: 

             d d
l l lH Z H H H              (30) 

where      dZ Z Z            
 is the difference between the dynamic stiffness matrices of the 

damaged and undamaged structure and   lH   is the l
th
 column of the mobility matrix  H    . 

After some mathematical manipulations, which involve a first-order Taylor expansion, the above 

equation can be rewritten in a compact form, where the solution is found in a least-squares sense. In 

that formulation, it is implicit that one knows all DOFs of the damaged structure, which is not feasible 

in practice since rotational DOFs are very difficult to obtain experimentally, as can be seen, for 

example, in Montalvão et al. (2004a) (2004b). Consequently, the unknown DOFs of the damaged 

structure should be determined using an expansion of the measured DOFs. For example, Santos et al. 

(2003a) (2003b) propose the use of either the static or dynamic expansions for this purpose. Santos et 

al. (2004) (2005) realize that the mobility matrices should be computed with at least three times the 

number of natural frequencies and mode shapes contained in the frequency range of interest. On the 

other hand, they observed that the best identification results are obtained at lower frequency ranges. 

Also, for small damage, the errors are the main influence in the identification quality, whereas for 

large damage the incompleteness becomes the most important factor. These authors have also used a 

procedure for the weighting and elimination of equations, based on Ren and Beards (1995), once the 

solution depends not only on the quality of the FRF measurements but also on the frequencies and co-

ordinates in which the vibration amplitude is larger. Finally, it is argued that this technique presents 

better results than those obtained when using a technique based on modal data sensitivities. 

Bernal (2002b) use the Damage Locating Vector (DLV) approach to locate damage, using as case-

study the 4-story steel frame building of the phase II IASC-ASCE benchmark problem. The proposed 

damage characterization strategy is grounded in a cascade methodology that contains the following 

modules: (i) compression of the measured data and identification (stochastic state-space realization); 

(ii) extraction of flexibility proportional matrices; (iii) localization of damage using the DLV approach 

and (iv) quantification of damage. Concerning the DLV, this is a theoreticaly based technique for 

mapping changes in flexibility to the spatial distribution of damage. According to Bernal (2000**) 

(2002a), the DLVs are a set of vectors that have the property of inducing stress fields whose 

magnitude is zero in the damaged elements. Consider (i) a system that can be treated as linear in the 

undamaged and damaged states, and that has flexibility matrices UF  and DF  respectively at m sensor 

locations, and (ii) assume there are a number of load vectors, defined in the sensor coordinates, which 

produce identical deformations at the sensor locations both in the undamaged and damaged states. If 

the linearly independent vectors that satisfy this requirement are collected in a matrix L, and according 

to the compatibility of displacements, one may write: 

     0U DF F L DF L    (31) 

where DF is computed from an SVD of the flexibility matrix change of the system. Equation (31) can 

be satisfied either if 0DF   or if DF is rank deficient and L is a basis for the null space of DF. Bernal 

(2002a) shows that the first possibiliy implies that either there is no damage (though in practice no one 

ever computes DF as identical to zero) or that damage is confined to a region of the structure where 

the stresses are zero for any loading sensor coordinates. On other words, the null space of the change 

in flexibility contains vectors that lead to identical displacements at the sensors locations both on the 

undamaged and damaged states. More developments on this issue for practice purposes are shown in 

Bernal (2000**) (2002a), such as selecting thresholds for the definition of the null space and the ‘zero 

stress region’, since in fact the stress level in any element will never be exactly zero. As a result, one 

may point out two drawbacks of this method: (i) it is not sensitive when damage does not introduce 
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changes in the flexibility at the measurement points and (ii) the identification may be poor if the 

damage region is too large when compared to the number of sensors. However, it is worth mentioning 

that the authors claim that (i) it has the hability of detecting single and multiple damage scenarios, (ii) 

it can operate with an arbitrary number of sensors without resource to a DOF expansion or reduction 

strategies and (iii) the DLV vectors are computed strictly from the measured data without reference to 

a mathematical model of the system. Also, this method is equally aplicable from static measurements. 

Finally, since in Bernal (2002b) the inputs could not be measured, he used flexibility proportional 

matrices obtained following the procedure introduced by Bernal and Gunes (2002). This later is an 

extension of the DLV damage localization technique to the output-only case. 

Yan et al. (2005a) propose a damage detection method for SHM under varying operational and 

environmental conditions, based on the Principal Component Analysis (PCA), also known as 

Karhunen-Loève transform or proper orthogonal decomposition. An advantage from the use of the 

PCA is that it is not necessary to measure the environmental parameters because they are taken into 

account as embedded variables. This method relies on the principle that the measured feature changes 

due to environmental causes are different from those arising from structural damage. Novelty analysis 

on the residual errors provides a statistical indication of damage. The environmental conditions are 

assumed to have a linear effect on the vibration features. The application of this method to numerical 

and experimental data of a wooden bridge shows that different levels of damage can be correctly 

assessed independently from the environmental effects. This method is extended to the non-linear case 

by Yan et al. (2005b), in which a two step procedure is conceived, consisting on clustering the data 

space into several regions and then applying the PCA in each local region. The local PCA-based 

damage detection method is applied, using vibration data measured in-situ over a one-year period, in 

the SHM of the Z24-bridge previously mentioned in this work. During the monitoring period 

measurements of the environmental parameters (temperature, wind, humidity, etc.) have been 

recorded. It was observed that the asphalt layer on the bridge surface plays a different role during 

warm and cold periods, thus causing non-linearity. For example, in an earlier work, Peeters and De 

Roeck (2000) established ARX models, for the first four modes in order to obtain a good correlation 

between temperatures at selected locations and the natural frequencies of each mode, with the aim of 

analyzing different damage scenarios. A comparison has been made by Yan et al. (2004) between the 

work of Peeters and De Roeck (2000) and the one developed by Yan et al. (2005b), leading to the 

argument that by using the PCA-based damage detection method the problem becomes simpler, 

because only vibration features are needed to determine if the structure is damaged. 

Vanlanduit et al. (2005) introduce the robust singular value decomposition (RSVD) for damage 

detection from measurements taken under different operational conditions, i.e., different excitation 

levels, geometrical uncertainties and surface treatments. This method is based on the SVD of a matrix 

   1, , NH H H , where 1, , NH H  are observation features taken from N experimental conditions. 

These features can be FRFs, response spectra or estimated modal parameters. The RSVD computes the 

SVD of the intact structure from a set of observations of both intact and damaged structural states, 

possibly obtained under different conditions. The RSVD performance is then compared to the classical 

least-squares SVD and to the iterative SVD (ISVD). The experimental results show that the classical 

least-squares SVD is not able to correctly classify damage because it gives an incorrect decomposition, 

when both damage and intact measurements are used to compute the subspace. This occurred because 

it is assumed that it is not known which observations are the healthy ones. If a set of observations 

belonging to the undamaged case is previously known, the authors agree that the SVD performance 

will be comparable to that of the RSVD. It was also shown that the ISVD slightly improved the 

classification results, though it was not capable of identifying the smallest damage case considered. 

Finally, these researchers claim that the RSVD has proven to provide the most reliable results. 

2.15. Instrumentation 
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Lin, M. (1999**) developed a printed circuit film layer of piezoceramic materials which can be 

embedded into composite structures during the production process. This film can support temperatures 

above the curing temperature for most composites. Lin, M. (1999**) argues that this interlamelar layer 

has little or no effects on the mechanical properties of composite structures.  

Sundaresan et al. (2001) discuss the use of a scanning Laser Doppler vibrometer (SLDV) and 

piezoceramic materials for distributed sensing, with the purpose of evaluating the application of highly 

distributed sensors for wide area health monitoring of composite materials. The SLDV is used for field 

tests as a non-contact quick check method to detect larger hidden damages, and the highly distributed 

embedded smart sensors are investigated for in situ real-time monitoring of composite structures. For 

the Laser vibrometer, two methods of damage detection were presented. The first, called boundary 

effect detection (BED), performs post processing of the operational deflection shapes (ODS), and, 

according to the authors, is somewhat akin to the wavelet method, thus allowing for small damage 

detection in the low frequency range. The second method, called operational deflection pattern 

recognition (ODPR), is able to identify faults by evaluating irregularities in the vibration response 

patterns, avoiding the use of a reference pre-damage data. 

Fritzen et al. (2002) designed an intelligent self-diagnosis system to detect the existence of 

delaminations in CFRP plate-like structures. The plate is instrumented with an array of four 

piezoceramic sensors and is excited with a random signal by means of a piezoceramic actuator. 

Different delamination severities were introduced by impacts at different velocities. As a damage 

indicator, they used the subspace-based fault detection algorithm, based on the work presented by 

Basseville et al. (2000). To determine the eigenfrequencies, damping and mode shape changes, the 

stochastic subspace identification method was used, following the approach proposed by Peeters and 

De Roeck (1999). They also performed a statistical 2 -test that allows assessing if the recent data fit 

the baseline data. 

Deraemaeker and Preumont (2004a) (2004b) present an approach for vibration based damage 

detection, based on the use of a large number of sensors to which a programmable linear combiner is 

attached, using a simply supported beam. The linear combiner is programmed to work as a modal 

filter, i.e., the converted time-domain to frequency output content of the modal filter is used as the 

damage detection feature. First, these authors show that if local damage exists, then peaks will appear 

in the FRF of the modal filter. Instead, if temperature changes are registered, the modal filter is shifted 

but its shape remains unchanged.  Thus, the proposed approach allows distinguishing between local 

damage and global changes due to, e.g., the surrounding environment. For the case were the excitation 

forces are unknown, it is suggested to use the square root of the power spectral densities (PSD) instead 

of the FRFs, because the square root of the PSD has, in principle, the magnitude of the transfer 

function if the excitation force is white noise. It was demonstrated that this method allows for the 

detection of low levels of damage, as well as differentiating damage from temperature effects. 

Lynch et al. (2004) develop an active wireless sensing unit to command a surface mounted PZT sensor 

in an aluminum plate. Low energy Lamb waves are introduced in the plate and the unit collects the 

signals measured by a second PZT sensor placed elsewhere on the plate surface. The potential of this 

unit to locally perform system identification analysis is illustrated by calculating ARX models. 

Sundaresan et al. (2004) study a structural health monitoring system that employs an embedded AE 

sensor termed continuous sensor, first developed by Sundaresan et al. (2001). One of the advantages 

of this continuous sensor is that it avoids separate cabling and individual support electronics. They 

monitored fatigue crack growth in a fiberglass laminate specimen with two circular notches. They 

stated that the performance of the continuous sensor was superior to the traditional single node 

sensors. Also, they used wavelet maps to classify the AE signals. 

Nichols et al. (2005) report recent advances in both fields of sensing and signal processing with the 

aim of damage detection. A nine fibre-Bragg grating strain sensor network is used to measure the 

vibrational responses on a thin steel plate, subjected to successive growing saw-cut damage levels. The 

relationship between a reference (or undamaged) state to the actual (or damaged) state can be 

mathematically established when the structure is interrogated with a deterministic chaotic signal. This 
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method relies on the principle that this function loses differentiability when damage exists. Thus, the 

use of the local Holder exponent is proposed as a means to quantify the differentiability of this 

function relating the undamaged to the damaged state responses. An algorithm to determine these 

quantities from time series data is also described. 

Park, J. M. et al. (2005) evaluate the performance of different sensors for damage detection in glass 

fibre/epoxy composites through acoustic emission measurements. The analyzed sensors were: the PZT 

(piezoelectric lead-zirconate-titanate), the PVDF (polyvinylidene fluoride) and the P(VDF-TrFE) 

(poly(vinylidene fluoride-trifluoroethylene)). The PVDF sensor was surface mounted and embedded 

on the composite structure, whereas the PZT was only surface mounted. It was observed that the 

embedded sensors are more sensitive to damage. 

Motivated by the recent research advances, technological use and commercial activities in sensors and 

acquisition systems for monitoring, Bonfiglioli et al. (2005) study the electric strain gauges (ESG) 

measurement errors on FRP. They extended a theoretical deterministic approach developed in 

previous works to a probabilistic approach, with the aim of performing a sensitivity analysis of the 

variables that may result in errors on strain measurements. The experimental tests on several 

specimens made of different composite materials allowed to draw some conclusions with respect to 

the thickness of the resin, the ESG length, deviation angle and the sensors bonding glue. It was 

observed that the ESG length is the most important affecting factor and that short strain gauges are to 

avoid when the FRP surface of the material is very rough. A very interesting conclusion stated by 

these authors is that the proposed model allows evaluating the Young modulus of the adhesive, which 

is very difficult to determine experimentally. 

Qing et al. (2005) develop a hybrid piezoelectric/fibre optic (HyPFO) diagnostic system for quick 

non-destructive evaluation and long term health monitoring of aerospace vehicles and structures. 

Piezoelectrics are used as actuators and fibre gratings as sensors. One of the major advantages 

mentioned is the excellent actuator/sensor decoupling, since the transducers use different mechanisms 

for signal transmission (one is electrical and the other optical). Another advantage is that these 

transducers can be used for a multitude of measurements, i.e., the fibre-optic sensors can be used for 

temperature sensing, whereas the piezoelectric can be used for hydrogen sensing, and both can be used 

for acoustic emission measurements. 

Wu et al. (2005) study the correlation between the mechanical and electrical properties of concrete 

beams strengthened with hybrid carbon fibre-reinforced polymer (HCFRP). HCFRP sheets have 

simultaneously the aim of reinforcement and a built-in self-structural health monitoring function due 

to the electrical conduction and piezoresistivity of carbon fibres. The HCFRPs have self-diagnosis 

capabilities due to the relationships between strain/load and change in the electrical resistance. These 

authors observed that different damage stages, failure processes and ultimate failure modes of the 

HCFRP-strengthened concrete structures can be identified through the electrical resistance changes. 

Castellini et al. (2005) produced a software for data acquisition, control of a scanning Laser Doppler 

vibrometer (SLDV) and automatic measurement with the purpose of detecting delamination in 

composite plates, using as case study a delaminated composite panel made of 10 layers with aluminum 

sheets and glass fibre-reinforced epoxy prepreg (GLARE) for Airbus Deutschland aeronautical 

applications. These authors point out that the SLDV has several advantages: it does not interfere with 

the structure, it has a high spatial resolution and sensitivity, it is adequate for high frequency analysis 

and it is suitable for in-operational conditions. The software uses a multivariate projection method, the 

Principal Component Analysis (PCA), to extract and display the systematic variation in a data matrix. 

Also, statistical processing aids to pre-process the measured data by reducing the amount of 

information. Consequently, multivariate analysis methods, like the PCA, offer the possibility of 

eliminating systematic effects such as noise. These researchers affirm that efforts are being 

endeavored in the search of optimal settings for the measurements, so that the number of measurement 

points is reduced. Also, some research is being made in the field of composite materials excitation, 

because it is important that the excitation energy is constant and high for the entire frequency band. 

In a survey about the current smart sensor technologies for monitoring, Spencer Jr. et al. (2004) show 

that many efforts have been made on the use of remotely operated wireless-based systems, especially 
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for damage detection in civil infrastructures. Since traditionally the impedance-base methods require 

the use of bulky and expensive analyzers, Grisso et al. (2005) present the initial steps on the 

development of an automatic wireless system for impedance-based damage detection, which they 

claim is cheaper, more eco-efficient and has smaller dimensions. The final purpose is to develop a 

sensor that can be permanently attached to the structure and provide meaningful data concerning 

structural integrity. Other features include utilizing energy from the ambient environment, exciting the 

host structure with a high-frequency excitation, analyzing the results and wirelessly providing the 

status of the structure to an end user. The hardware development of a prototype version of this sensor 

is described in detail. This sensor has been built and developed in the scope of the MEMS (micro 

electro-mechanical systems) augmented structural sensor (MASSpatch) joint-venture. 

2.16. Other Methods 

Afolabi (1987*) observed that anti-resonances shifts could be used to detect and locate damage. The 

dependence of anti-resonance frequencies on the measurement points is shown. Consequently, he 

observed that as the point of measurement gets closer to the location of the defect, fewer anti-

resonances are shifted from their original values, until one gets to the location of the defect, at which 

all the anti-resonances are as they were in the undamaged state. Although this is a quite interesting 

observation for the used beam model and for the shown simulation, one should not forget that stiffness 

relates at least two co-ordinates, which means that the interpretation of the results obtained in real 

structures may be more complicated. Also, he only formulated relationships for direct FRF 

measurements, since for transfer functions this method may not work. The transfer FRF relationships, 

which are very simple to derive following the same lines as Afolabi (1987*), can be found, for 

instance, in Montalvão (2003). More recently Wahl et al. (1999) presented a work in which they 

discuss the significance of antiresonances in experimental structural analysis for lightly damped linear 

systems. d'Ambrogio and Fregolent (2000) observed that the distribution of antiresonances may be 

significantly altered by small changes in the structural model. They use an updating technique that 

includes antiresonances in the definition of the output residual, showing that the use of antiresonances 

extracted from point FRFs allows for robust model updating procedures, mainly because 

antiresonances can be identified from experimental FRFs with much less error than mode shapes. 

Bamnios et al. (2002) monitored the change of the first antiresonance as a function of the measuring 

location along the beam and proposed a prediction procedure for transverse open crack localization in 

beams under bending vibrations. Dilena and Morassi (2004) use antiresonances to avoid the non-

uniqueness of the damage location problem, which may occur in symmetrical beams with a single 

open crack when only frequency data is employed. 

Zimmerman et al. (1995a*) discuss the implementation of the minimum rank perturbation theory 

(MRPT) based techniques to identify both the damage location and extent, using data from the NASA 

8-bay dynamic scale model truss (DSMT) test-bed. In this study, the evaluation of damage location is 

included, as well as the selection of the number of vibration modes to measure, eigenvector and 

damage vector filtering to minimize the effects of measurement noise, filtering of dynamic residual 

decomposition among various property matrices (mass, damping and/or stiffness) when multiple 

property matrices are being updated and rank-estimation algorithms. Zimmerman et al. (1995b*) 

extend the MRPT theory to determine matrix perturbations directly from FRF data, discussing the 

benefits of this formulation. It is concluded that the MRPT algorithm implementation using FRFs 

simplifies the analysis by avoiding the need to perform modal parameter identification. Another 

interesting conclusion is that, contrary to what would be intuitively expected, the regions away from 

resonances and anti-resonances are those containing the richest data. More recently, Zimmerman 

(2005) investigated the effect of measurement noise on damage detection performance and sensitivity 

of the MRPT and resulting stiffness perturbation matrices. It was concluded that the use of linear 

sensitivity theory for estimation of the variance and standard deviation of each element in the damage 

vector and stiffness perturbation matrix is accurate by performing a Monte-Carlo simulation. These 
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standard deviations were used to establish a threshold for damage existence and, after that, for damage 

location and extent assessment. 

Worden et al. (2000**) present a study of a statistical method for damage detection using outlier 

analysis. These authors claim that the method not only allows for novelty detection (deviation from 

normal condition), but also suggests the optimal reduction of the dimension of the data set without 

compromising the diagnosis. A discordant outlier in a data set is an observation that appears 

inconsistent with the rest of the data. The discordance test is based on the Mahalanobis squared 

distance for multivariate data sets, where the threshold value to classify whether an observation is an 

outlier or not is determined using a Monte Carlo method. The method is tested in four different 

situations: transmissibility data in a simulated 3 DOF system, gearbox experimental data, Lamb wave 

experimental data on composite plates and ball-bearing experimental data. As conclusions, they point 

out that for the 3-DOF numerical model the method was unable to detect any of the 1% stiffness 

reduction cases as outliers, though for higher reduction cases the method correctly identified the 

outliers. However, it should be noted that some simplifications have been considered. First, it was 

considered that only a single outlier is present, which considerably simplifies the problem. On the 

other hand, when choosing the Mahalanobis squared distance, it is implicit that the normal condition 

set has Gaussian statistics. In the case of e.g. multi-modal distribution, these authors suggest other 

techniques such as the Kernel density estimation. 

Gutschmidt and Cornwell (2001) present a false positive damage indication method (FPDIM) and 

apply it to experimental data for a plate that was progressively damaged. The purpose was to establish 

statistical bounds in order to distinguish damage from the natural variability associated with any 

measurement. The statistical bounds are defined using several sets of data from the baseline structure. 

The FPDIM was applied to two damage identification techniques that do not require a prior numerical 

model: the flexibility and the strain-energy methods. Using both of these methods, standard deviations 

DI  of the damage indices iDI  in each element i for the undamaged structure were determined. A 

prediction interval is then calculated, where it is expected that the next data point will fall. Any point 

below that interval, will have a certain probability of failure. Eight damage cases were considered, and 

tests were carried out under the same experimental and environmental conditions. It was observed that 

application of the FPDIM to results from the strain-energy method eliminated false-positives. 

Nevertheless, when this method was applied to the flexibility method, false-positives occurred, i.e., the 

flexibility method successfully determined damage, but was unsuccessful in locating it. 

Within the statistical pattern recognition paradigm established by Sohn et al. (2003), damage is in 

most cases identified by comparison between signals corresponding to two different structural states, 

one of them often corresponding to the undamaged state. Still, the operational and environmental 

variability, if not considered, may cause the unpredictable occurrence of either false-negatives or 

false-positives. In order to address this issue in the context of continuous online monitoring, Sohn et 

al. (2005) propose a technique, which does not rely on any past baseline signals, to assess damage in 

composite panels. The test setup consists of a square CFRP plate with surface mounted PZT patches, 

where delamination is introduced by impact damage with varying velocities. A time reversal concept 

of modern acoustics is adapted to Lamb wave guided propagation. According to the time reversal 

concept, an input signal can be reconstructed at an excitation point A if an output signal recorded at 

point B is reemitted to the original source point A after being reversed in a time domain. This process 

is referred to as the time reversibility of waves, and can be better understood by inspection of Fig. 1. 
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Fig. 1 Schematic concept of time reversal based damage identification (in Sohn et al. (2005)). 

Damage detection is based on the fact that if a non-linear defect exists in the wave propagation path, 

time reversibility will no longer hold. A damage index based on the comparison between the original 

input waveform and the reconstructed signal is used to classify damage. A zero value means that time 

reversibility of Lamb waves is preserved and thus non-linear defects are present. Once the damage 

index value exceeds a threshold value, the state of the system is defined as damaged in a conventional 

sense. These authors employ the use of a consecutive outlier analysis (Barnett and Lewis (1994)) to 

establish the threshold value without resort to past reference data and to address the issue of multiple 

outliers. By using this approach, these authors successfully located and quantified damage in the test 

plate without relying on prior baseline signals. 

According to Ibrahim et al. (1997) and to Li, H. C. H. et al. (2004) the introduction of the random 

decrement (RD) technique is attributed to Cole (1968) (1973). Ibrahim et al. (1997) propose the vector 

random decrement (VRD) technique. Later, Asmussen et al. (1999) showed that the VRD can be 

considered as a generalization of the RD. Rodrigues et al. (2004) explored the idea of estimating the 

spectral densities as the Fourier transform of the RD functions for the application of frequency domain 

output-only modal identification methods. Li, H. C. H. et al. (2004) investigate the potential of the RD 

technique for damage detection in composite beams by introducing different levels of delamination at 

the midplane of the beam at various locations. The initial formulation consists of obtaining the free-

response signature of the beam by processing its random response based upon the idea of a global 

average. This can be achieved by summing up many records of random responses in previously 

defined periods of time with appropriate criteria. This summation will result in a random decrement 

signature which minimizes the random component of the response. Each record can be seen as 

representing a linear system response composed of the overlapping of a step response, an impulse 

response, a random response and random noise. The step and impulse responses occur due to the 

initial displacement and initial velocity, respectively. When various records are summed up, the 

random components, including noise, and impulse responses, average to zero, thus only remaining the 

step response of the system. It is shown that the RD signature is both affected by the delamination 

dimension and the sensor location. This may mean that damage detection can only be carried out 

successfully if a large database of RD signatures is created from predicted defects and by the use of 

pattern recognition algorithms, such as neural networks. Li, H. C. H. et al. (2004) also note that the 

generation of such a database requires accurate modeling with appropriate treatment of structural 

damping which they say plays an important role in the vibration of composite materials. 

Coppotelli et al. (2004) compare two different experimental techniques for damage identification 

purposes on composite plates. One approach is based on the dynamic displacement measurements of 

the plate surface, which are evaluated through the speckle fringe patterns as results of the electronic 

speckle pattern interferometry (ESPI), a high resolution holographic technique explored by Caponero 

et al. (2000) exploiting both interference and diffraction in optics. The other approach is based on 

experimental modal analysis techniques for eigenproperties extraction considering the complex 

exponent-based method (Ewins (1984), Maia and Silva (1997a)). The damage identification procedure 

used for the first procedure is based on the image correlation function (ICF), which is the square root 

of the FDAC in the special case where the vectors involved are real and positive, whereas for the 

second case, they use the MAC. One of the two test-structures used to evaluate both techniques was a 
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sandwich plate structure formed by two carbon fibre skins and by a honeycomb core in aluminum. 

This plate belongs to the Gamma-ray Large Area Space Telescope (GLAST), an international space 

mission aimed to collect gamma-ray data from the universe. Its launch is predicted for 2007. 

In order to predict the remaining lifetime of a structure, Peil et al. (2004) acknowledge that the 

accumulated existing inherent damage must be first assessed. To accomplish this task on civil 

engineering structures, like bridges, they use either a theoretical model of the actions of the past or an 

experimental method using acoustic emissions to assess damage. In this last case, they take into 

account the entire transient signal, based on the assumption that different material damage processes 

lead to different transient signal forms, and the signals are assigned into a certain damage state class. 

Lenzen (2005) presents a procedure for damage detection and localization, which was tested in a steel 

frame and two bridges, using the deterministic and stochastic subspace method for black box 

identification. If it is not practicable to set up physical equations of a system, black box modeling can 

be used to describe the input-output relation of the system, in accordance to the theory of systems and 

to the principle of cause-effect, in which systems are generally formulated as transfer functions. The 

black box model of both the intact and damaged systems, which have to be identified first, are 

compared and used to detect and localize system variations. This comparison is made by determining 

the so-called dynamic influence coefficients, which are used for the evaluation of the COMAC instead 

of normal modes. The theoretical backgrounds of black box modeling and subspace identification are 

described, as well as some of their limitations. Also, it is stated that the advantage of subspace 

identification is the physical weighting of the vibration modes with respect to the excitations. 

Taylor and Zimmerman (2005) present a non model-based method to detect and locate structural 

damage (by evaluating linear stiffness changes) using load dependent Ritz vectors (Wilson et al. 

(1982)). They state that Ritz vectors are more sensitive to localized structural damage rather than 

mode shape vectors, which is an advantage when one cannot deal with a FEM of the structure (which 

can often occur in large civil structures applications) and because of the incompleteness problem. 

Also, tracking changes in mode shapes or shifts in the natural frequencies are often poor damage 

locators without the application of some model updating technique. Experiments were carried out on a 

steel bay welded frame structure being shown that Ritz vectors performed better over mode shape 

vectors in detecting small severities of localized damage without the use of a FEM. 

Thien et al. (2005) present some guidelines for the development of a low-cost active-sensing based 

diagnostic system for pipeline structures. Integration of impedance-based and Lamb wave propagation 

methods in a common SHM sense is investigated. The impedance-based methods are used to detect 

and locate damage at the pipeline connection joints, while Lamb wave propagation methods are used 

to identify cracks and corrosion along the surface and through the thickness of the piping. Both 

techniques make use of the electromechanical coupling effects of piezoelectric-based active sensors, 

which in this case are small and non-intrusive macro-fibre composite patches. The procedure requires 

measurements in a reference state prior to damage. Minor defects can be detected due to operation at 

high-frequencies. 

3. PROGNOSIS 

Prognosis – or the prediction of a system’s lifetime, that corresponds to the last level of the 

classification of damage detection methods introduced by Rytter (1993*
,
**) – is a matter that is 

traditionally approached by fracture mechanics and fatigue. However, considering the advantages that 

such a technology may carry to the security, economics and resource management fields, the scientific 

community that deals with vibration analysis is now beginning to take some interest in this area. Farrar 

et al. (2003**) published a report whose purposes were to define the technology referred as prognosis. 

This work approaches, among others, the following topics: (i) a summary of the technologies and tools 

necessary to solve the prediction of a system’s lifetime problem; (ii) a summary of the state of the art 

in damage prognosis; (iii) a generic approach to the problem, considering, however, that until that time 



- 37 - 

all the prognosis solutions are directed to specific cases; (iv) the limitations inherent to such 

technologies; (v) a brief description of several applications in damage prognosis. 

4. FINAL REMARKS 

A survey of some of the representative advances in damage detection and Structural Health 

Monitoring in the last years, with special emphasis on composite materials - given the growing interest 

in the use of this kind of materials in several engineering applications - was hereby made. 

Unfortunately, the more than two hundred works referred to in this article only represent a very small 

fraction of the universe of published works. Other works are not mentioned for several different 

reasons, namely because they use approaches that were not covered in this article. As an example, one 

may briefly mention some recent articles in which the excitation is made using the mathematical 

models of chaotic time series (Chang et al. (2004), Fasel and Todd (2005) or Olson et al. (2005)), 

techniques dealing with model updating (Yu et al. (2005) and De Roeck et al. (2005b)) or other 

diverse methods and applications (Cioara and Alampalli (2004), Liu and Chelidze (2005), Moura Jr. 

(2005), Nejad et al. (2005) or Law and Lu (2005)). 

Currently, an immense number of techniques exist for the identification and location of damage. 

Because all the techniques have their own advantages and disadvantages, there is not a general 

algorithm that allows the resolution of all kinds of problems in all kinds of structures. Every technique 

tends to have damage related sensitivities, i.e., a very sensitive technique may lead to the arising of 

false-positives, while a less sensitive technique may lead to false-negatives, being this last case more 

problematic. Generally, only damage with a reasonable dimension can be detected. The quantification 

of damage and the remaining lifetime prediction are beyond any doubt the most difficult issues, the 

latter deserving a particular attention. 

During the last years a considerable investment in the instrumentation techniques has been observed, 

namely in the ones that recur to SMART technologies for monitoring as well as in the use of high 

frequency waves, such as Lamb waves, for the detection of localized damage, i.e., with ‘small 

dimension’. 

Most of the traditional methods are based on the fact that damage leads to appreciable reduction in the 

rigidity of a structural element. However, one must not forget that a reduction in stiffness does not  

necessarily mean that there is a decrease in strength of the structural materials. This also represents 

one of the difficulties that Prognosis has to deal with in the future. Also, some authors argue that in 

some specific applications, combining static and dynamic experimental procedures is generally a good 

idea, since static and dynamic stiffness are different measurands. In structures made of composite 

materials there seems to be a tendency for the use of damping as the damage feature, once damping 

variations – associated to the dissipated energy – seems to be more sensitive to damage than the 

rigidity variations, mainly in what delamination is concerned. However, considering the more simple 

case of a crack, damping will only increase when the crack is opening, since that is the moment when 

there is more interaction between the faces of the crack. When the crack is fully opened (or fully 

closed) there is no friction, and thus damping remains with a low value. Also the evaluation of non-

linearity seems to be a promising technique in damage detection in composite materials, since the 

delamination may cause non-linear effects, due to friction. 

The use of statistic parameters has also deserved a considerable attention, given the experimental 

errors, incompleteness, as well as the environmental and operational conditions, which may disguise 

the consequent damage alterations. The emergence of statistical pattern recognition techniques that 

allow the reduction of the number of used sensors is not totally implemented so far. 
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