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Dynamic pricing has been used extensively in specific markets for many years but recent years has seen 

an interest in the utilization of this approach for the deployment of novel and attractive tariff structures 

for mobile communication services. This paper describes the development and operation of an Agent Based 

Model (ABM) for subscriber behavior in a dynamically priced mobile telephony network. The design of the 

ABM was based on an analysis of real Call Detail Records (CDRs) recorded in a Uganda mobile telephony 

network in which dynamic pricing was deployed. The ABM includes components which simulate subscriber 

calling behavior, mobility within the network and social linkages. Using this model, this paper reports on 

an investigation of a number of alternative strategies for the dynamic pricing algorithm which indicate 

that the network operator will likely experience revenue losses ranging from a 5%, when the pricing 

algorithm is based on offering high value subscriber cohort enhanced random discounts compared to a 

lower value subscriber cohort, to 30%, when the priding algorithm results in the discount on offer in a cell 

being inversely proportional to the contemporary cell load. Additionally, the model appears to suggest that 

the use of optimization algorithms to control the level of discount offered in cells would likely result in 

discount simply converging to a “no-discount” scenario. Finally, commentary is offered on additional 

factors which need to be considered when interpreting the results of this work such as the impact of 

subscriber churn on the size of the subscriber base and the technical and marketing challenges of 

deploying the various dynamic pricing algorithms which have been investigated. 

General Terms: Economics, Design, Algorithms, Performance 

Additional Key Words and Phrases: Agent-based model, revenue optimization, dynamic pricing, mobile 

network services 

 INTRODUCTION 

Mobile phone penetration levels have experienced exponential growth over the last 

decade, growing from 34% in 2005 to over 96% in February 2013 according to ITU-T 

statistics [ITU. 2014]. This growth has been particularly noteworthy in regions which 

are categorized as “developing” by the ITU-T, displaying a growth from 1.2 billion 

subscriptions (23% penetration level) to over 5.2 billion subscriptions (89% 

penetration) in the same time period. As a result, there has been an increased 

commercial focus for mobile phone networking companies on such developing 

markets given its potential for revenue generation into the future. Africa in 

particular is a region which clearly illustrates these characteristics with the ITU-T 

estimating that mobile phone subscriptions having grown from approximately 90 

million (12% penetration rate) in 2005 to nearly 550 million (63% penetration rate) in 

2013 and with an estimate that the subscriber base in Africa will reach over 1 billion 

subscribers by 2016 [Donovan and Martin. 2014]. One key characteristic which 

particularly distinguishes mobile network subscribers in the African market (and 

indeed in developing markets in general) is a very high degree of price sensitivity 

amongst subscribers. For example, it is not uncommon in such countries that the 

vast majority of the subscriber base sign up for pre-paid services. As an example, in 
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Uganda, it is estimated that over 99% of mobile phone subscriptions are for pre-paid 

services [UCC. 2012]. Given this extremely competitive environment, mobile network 

service providers operating in many developing countries have been forced to 

developed and deploy a wide variety of strategies and services in order to retain 

subscribers and attempt to encourage increases in use of network services [SAS. 

2010]. 

 

One such strategy which has seen significant growth in terms of deployments in 

African markets in particular in recent years is the use of real time dynamic pricing 

for voice, and to a much smaller degree, non-voices services. A Dynamic Pricing 

Service (DPS) [Fitkov-Norris and Khanifar. 2000; Fitkov-Norris and Khanifar. 2001; 

Olivré. 2004] is a tariffing tool which results in the cost associated with a voice call 

being varied by the network in real-time based on a combination of subscriber 

location and time of day. In a network implementing a DPS, the most common 

deployment model is one where subscribers in the network are provided with a real 

time indication of a discounted tariff (most typically in the form of a discount on some 

nominal tariff level) being offered for certain categories of voice calls (e.g. “on-net”, 

“off-net” or perhaps “national” calls). This discount not only varies throughout the 

day but will also typically vary depending on the particular mobile network cell 

which is currently serving the subscriber. The manner in which the dynamic 

discounting factor is controlled is key to ensuring that the deployment of a DPS is 

successful from a network operator’s perspective. However, it is first important to 

understand that there may be multiple (sometimes competing) drivers motivating a 

network operator to deploy a DPS in their network. 

 

The most obvious motivator for a network operator to deploy a DPS is to motivate 

subscribers to increase their usage of the network and hence ideally to achieve a 

maximization of revenue generated from the resultant voice calls across the base of 

subscribers who opt-in to utilize the service. However, this is a quite a complex 

challenge to achieve given the huge diversities in subscriber behavior which will be 

observed in any reasonably sized network. A poorly operating algorithm which is 

used to control the discounting factors within a DPS may result in significant 

increases in call attempts but may also result in a reduction in the overall revenue 

generated for the network operator. Despite claims made in marketing material of 

companies offering DPS capabilities to network operators, very little research has 

been reported in the literature on the ability of DPS systems to increase and, ideally 

maximize, overall network operator revenue. A second motivator for the use of a DPS 

in a mobile network is to address the issue of subscriber churn. With careful 

marketing, the launch of a DPS in a mobile network can be a powerful tool in (i) 

anchoring a significant percentage of its subscriber base through opting in to the new 

service and (ii) attracting large number of new subscribers into using the DPS from 

competing networks. It should however be noted at this point that this justification 

for the deployment of a DPS is not necessarily complimentary to aim of maximizing 

revenue generation. It is quite conceivable that the typical levels of discount which 

may have to be offered from a purely marketing perspective (in order to make usage 

of the DPS attractive to subscribers) may not necessarily result in revenue 

optimization. A final motivation for the deployment of a DPS in a network is as a tool 

to manage traffic load in cells. In such a case, the discount on offer would be 

inversely related to the utilization or traffic load in a cell (i.e. Thus when cell load is 

low the offered discount would be higher thus incentivizing subscribers to make voice 

calls. When cell load is high the opposite would be the case). Once again however 

considerations of other effects need to be taken into account when using a DPS in 
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this way. For example, there may be certain times of the day (e.g. middle of the night) 

or certain cell locations (e.g. remote cell locations) where such a strategy will simply 

not have any effect, other than to reduce revenue generation for the operator. 

Another impact which would have to be considered is how such a strategy might 

impact on the available voice bandwidth in a cell site to other subscribers of the 

network who have not opted into the DPS (e.g. post-paid subscribers). In particular, 

post-paid subscribers in generally deliver much higher Average-Revenue-Per-User 

(ARPU) compared to pre-paid subscriber. Hence an operator would not wish for such 

subscribers to be blocked from making calls due to all available cell bandwidth being 

used to service lower revenue generating pre-paid subscribers who have opted into 

the DPS. 

 

The focus of this paper is the development of a realistic model of subscriber behavior 

in a dynamic pricing environment for voice calls. This Agent Based Model (ABM) has 

its foundation in a Call Detail Record (CDR) dataset gathered from a real deployment 

of a DPS in the African country of Uganda in 2010. Traditional statistical models 

which might be applied to this problem have limitations in terms of the identification 

individual subscribers’ calling patterns and the evolution of subscribers’ social and 

mobility patterns [Gonzalez et al. 2008; Hidalgo and Rodriguez-Sickert. 2008; 

Isaacman et al. 2012]. Whilst some previous work, such as [Fitkov-Norris and 

Khanifar. 2000; Fitkov-Norris and Khanifar. 2001; Olivré. 2004], did examine the 

issue of the impact of dynamic pricing in voice networks, to our knowledge this is the 

first paper to examine the issue of modeling subscriber behavior by utilizing a data 

driven approach (i.e. CDRs) from a real network implementing a DPS rather than 

from a theoretical simulation approach. In addition to the development of the agent 

based model, the paper also describes investigations which we have carried out using 

a variety of algorithms to control the discounting element of the service. The purpose 

of these investigations is to determine how the revenue generation capabilities of the 

various algorithms compare when applied to a simulated population of subscribers. 

The results of these investigations provide insights into the ability of dynamic pricing 

services to actually deliver on their aims to network operators who deploy them. 

 

The remainder of this paper is organized as follows. Section 2 discusses the related 

work in the research literature covering dynamic pricing, CDR data set mining and 

analysis and agent based modelling. Section 3 describes the CDR data set which was 

the basis of this work and it provides an overview of the initial analysis which was 

completed on this data. It also introduces the structure and operation of our agent 

based model and in particular the use of the CDR data set in its design. Section 4 is 

focused on the revenue generation performance of the various discounting algorithms 

which were investigated using the developed model. In the final section of the paper, 

we present the conclusions of our study and outline our work which is being carried 

out in this area using the developed model. 

 RELATED WORK 

This section of the paper provides a review of related work in a number of key areas 

relating to this paper. We first provide an overview on research which has been 

completed on the area of dynamic pricing in different industries and, in particular, a 

limited number of papers which have investigate its use for tariffing in mobile 

network services. Secondly, we present a review of some key papers relating to the 



1:4                                                                                                                            H. Wang et al. 
 

analysis of large data sets formed from CDRs from mobile networks. Recent years 

have seen significant interest in this field for many reasons and in particular we 

review previous worked reported relating to the development of models based 

behavior observed in such data sets. A final topic which is of significant importance 

to this paper is the area of ABMs and the final part of this literature review section 

provides an overview of this general area and how ABMs have been applied in a 

variety of application spaces. 

 
 Dynamic Pricing 

Dynamic Pricing is used to adjust the price of a service or product in order to change 

the demand response from users and, as a result, to increase the profit gained from 

the service/product [Christ. 2011; Dolgui and Proth. 2010]. This form of revenue 

management strategy has been used in many different industries. There exists a 

significant body of research, commonly theoretical in nature, on the topic of dynamic 

pricing particularly in the field of operations research [Levin et al. 2007; Nasiry and 

Popescu. 2011; Popescu and Wu. 2007]. 

 

There have also been numerous studies of a more applied nature on the application of 

dynamic pricing in a variety of scenarios. Probably the most commonly encountered 

example of the use of dynamic pricing is in the airline industry where passengers can 

usually get cheaper flight tickets in the off-season, or if booked well in advance of the 

flight date, as examined in [McAfee and Velde. 2006]. Similarly, the hotel industry 

also dynamically changes room prices based on occupancy rates of a hotel, a topic 

which was investigated in [Bayoumi et al. 2013]. In the food retail industry, the 

pricing of perishable foods is also suitable for the application of dynamic pricing, 

since the consumer’s purchasing demand may change based on the “quality” of the 

product (i.e. which often will be directly related to its remaining shelf-life). Chung 

and Li investigated the impact of frequency of discount during a product’s selling 

period on retailer performance [Chung and Li. 2013]. In the area of electricity 

tariffing, the introduction of smart meters [Faruqui. 2010; Gerwen et al. 2006; 

Molina-Markham et al. 2012] which are capable of accurately measuring when and 

how much energy is used by a consumer in real time [Faruqui and George. 2005] has 

created opportunities for introduction of dynamic pricing. [E3. 2006; Jessoe et al. 

2012] examine the potential for electricity suppliers to offer customers dynamic 

tariffs depending on the time of day at which electricity is consumed (an approach 

which is commonly termed Time of Use pricing (TOU)). Whilst TOU tariffing is 

typically applied to scenarios where the price is set for longer periods of time (i.e. 24 

hours or more), another similar dynamic pricing strategy used in the electricity 

supply industry is Real Time Pricing (RTP) which results in the tariff being varied 

over much shorter time periods in order for it to reflect the wholesale price of 

electricity directly, as examined in [Allcott. 2009; Allcott. 2011; Faria and Vale. 2011; 

Samadi et al. 2010]. Another form of dynamic pricing in the electricity supply 

industry as examined in [Qin et al. 2009] is Critical Peak Pricing (CPP). This is a 

hybrid pricing strategy based on TOU and RTP with a pre-set high price during 

periods of sustained high demand for the product. 

 

Of more specific interest to our work, there is an existing body of work on the 

application of dynamic pricing for communication network services. A significant 

proportion of this work has focused on the application of dynamic pricing for internet 

and data services, such as in [Dimicco et al. 2003; Kannan and Kopalle. 2001; Leloup 

and Deveaux. 2001; Yaipairoj and Harmantzis. 2004]. Some previous work also has 

examined the potential application of dynamic pricing specifically for voice services. 
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Fitkov-Norris and Khanifar [Fitkov-Norris and Khanifar. 2001] proposed one of the 

first dynamic pricing algorithms for use in mobile voice networks. Although their 

proposed algorithm was relatively simple, its foundation is well based and centered 

on a number of widely accepted assumptions. They proposed that a higher price 

would cause users to shorten their call duration or reduce the number of phone calls 

attempted. Alternatively, a lower price would encourage the users to make more 

phone calls or extend their call durations. Fishburn and Odlyzko [Fishburn and 

Odlyzko. 1998] examine the problem from the perspective of maximizing the revenue 

generated for network operators. They proposed an approach where the subscriber 

would be charged a fixed price when the current incoming call rate was greater than 

an optimal incoming call rate. Mirsarraf and Mansoori [Mirsarraf and Mansoori. 

2008] examined the approach from the slightly different perspective of considering 

the tariffing offered by competitor networks. They proposed a model where this effect 

was integrated by updating the offered tariff using an algorithm termed “Learning 

From Competitor’s” (LFC) price. 

 Analysis of CDR Datasets 

Recent years, particularly with the general growing interest in the research 

community on the topic of big data, has seen significant research interest on the 

analysis of the huge CDR based data sets which are being continuously generated by 

entities within mobile and fixed line communication networks. The research 

problems being investigated through the analysis of these data sets is quite diverse. 

  

Many papers have focused on the development of statistical models for a variety of 

underlying subscriber characteristics such as call frequency and duration [Dasgupta et 

al. 2008; Willkomm et al. 2008], inter-event time [Candia et al. 2007], call arrival rate 

[Willkomm, Machiraju, Bolot and Wolisz. 2008] and user mobility [Chaogui et al. 2010; Yuan 

et al. 2011; Zang and Bolot. 2007] (e.g. cell visit frequency). The application of graph 

theory based analysis techniques from the complex system domain have also been 

used in the analysis of such large CDR data sets [Hossmann et al. 2011; Nanavati et 

al. 2008; Song et al. 2010; Wang et al. 2009; Ye et al. 2009]. When analyzing CDR 

data sets, the network nodes can be either a subscriber or a cell site and the node 

may also have a defined position in a Euclidian space. In such situations, geographic 

space is important as the network topology alone does not contain all the system 

information. [Barrat et al. 2005; Hayashi. 2006; Kitchin and Dodge. 2000; Liben-Nowell et al. 

2005] utilized such an approach and highlighted the important consequence of spatial 

networks in there being a cost associated with the length of edge. This spatial 

property is very useful for regional analysis because the distance between two 

subscribers or two cell sites reflects the connectivity level between these two entities. 

For example, the gravity model has been widely used to model flows such as the road 

and airline networks between cities [Barrat et al. 2004; Jung et al. 2008]. 

 

Studies have focused on the identification of, or comparisons between, communities 

or cliques from mobile phone network data sets [Fortunato. 2010; Onnela et al. 2007; 

Tomar et al. 2010]. A common theme in these studies is that they utilized location 

information such as the location of cell towers with a significant focus on spatial 

network analysis. Expert et al. highlighted the issue that most of the studies utilized 

standard metrics extracted from networks of subscribers which had lost any spatial 

properties. As a result, the authors focus on the problem of community detection and 
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proposed a modularity function adapted to spatial networks. They illustrated that 

the inclusion of spatial information could reveal hidden structural similarities 

between nodes [Expert et al. 2011]. Eagle et al. provided a comparison of the behavior of 

different communities i.e. between rural and urban societies. They demonstrated 

that individuals change their patterns of communication to increase similarity with 

their new social environment [Eagle et al. 2009]. In order to detect communities in 

large networks, Blondel et al. propose a heuristic method to extract community 

structure based on modularity optimization [Blondel et al. 2008]. They applied this 

algorithm to identify language based communities in a CDR data set from a Belgian 

mobile phone network [Walsh and Pozdnoukhov. 2011]. This community detection 

method is simple and fast compared with Newman's method [Newman. 2006]. Walsh 

and Pozdnoukhov also applied Blondel’s method to explore the temporal evolution 

and the spatial organization of urban communities [Walsh and Pozdnoukhov. 2011]. 

 

In addition to community detection, the detection of important locations is another 

popular focus for work involving the analysis of CDR data sets (particularly for urban 

planning and emergent event detection). Isaacman et al. used clustering and 

regression techniques on a mobile phone data set in order to identify important 

locations such as subscribers’ home and work locations [Isaacman et al. 2011]. Vieira et 

al. adopted a more general point of view to characterize dense urban areas in order to 

study social dynamics [Vieira et al. 2010]. Becker et al. presented several ways in 

which CDRs can be used to provide important information about city dynamics to 

urban planners, such as the ability to automatically identify residential areas [Becker 

et al. 2011]. Calabrese et al. analyzed 1 million cell-phone traces and associated their 

destinations with social events [Calabrese et al. 2010]. They found that the behavior of 

people attending an event were strongly correlated to the type of event and that 

people who live close to an event are preferentially attracted by it. This information 

is very useful for city management functions such as events management and 

congestion mitigation. From another perspective, Soto and Frías-Martínez used the 

Fuzzy c-means clustering algorithm to identify land use in urban areas [Soto and Frías-

Martínez. 2011]. 

 

Apart from spatial network analysis, there are other areas of research based on 

CDRs such as finding usage groups [Becker et al. 2011], understanding traffic 

dynamics in cellular data networks [Paul et al. 2011], analyzing urban human mobility 

[Noulas et al. 2012] and identifying information diffusion in mobile networks [Cebrián et 

al. 2010]. 

 Agent-based Modelling 

As noted previously, one of the primary aims of this work is the development of an 

Agent based Model for subscriber behavior in a dynamically priced mobile voice 

network. Hence it is informative to briefly examine the general topic of Agent based 

Models (ABM) and their application in the existing literature. An ABM is an 

individual-level modeling system which describes and simulates a system which is 

designed to model the behavior and interaction of large groups of real-world entities. 

In recent years, the increase in computing power and storage capacity has facilitated 

a growth in interest in the research community on the use of ABMs [Axelrod. 1997; 

Bankes. 2002; Castle and Crooks. 2006; Gilbert. 2008; Nikolai and Madey. 2009]. 

Compared to model traditionally modelling approaches, an agent-based approach 

offers more flexibility and can be used to model and simulate discontinuous and non-

linear situations [Parker et al. 2002]. Traditionally, ABM was commonly used in 

Geographic Information Systems (GIS) to build complex geospatial models [Crooks et 
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al. 2008]. It has also been used to develop workflow management system (WfMS) 

which have been used to simulate emergent evacuation flows, traffic flows and 

customer flows [Bonabeau. 2002; Ehrler et al. 2005; Guo et al. 2008; Tepfenhart et al. 

2009].  ABMs have also been used for urban planning [Martínez and Morales. 2012] 

such as modeling the land-use and land-cover change [Matthews et al. 2007; Parker 

et al. 2001]. 

 

Another application area where ABMs have been applied is in the area of modelling 

consumer choice and decision making. In [Zhang and Zhang. 2007], Zhang and Zhang 

proposed the use of an agent to simulate the consumer’s purchase decision-making. 

Lamjed Ben Said et al. used an agent-based approach to create a virtual consumer 

behavioral model in order to simulate the effects of marketing strategies in a 

competing market context [Said et al. 2002]. Chappin and Afman et al. developed an 

agent-based model to simulate lamp purchasing behavior amongst Dutch consumers 

[Chappin and Afman. 2013]. In [North et al. 2010], North et al. applied agent-based 

modeling to develop a multi-scale consumer market model. 

 

Agent based modelling has also been used to study various business and financial 

market phenomena. A comprehensive review of agent-based model applied in finical 

markets was carried out by Samanidou et al. in [Samanidou et al. 2007]. Rand and 

Rust [Rand and Rust. 2011] emphasized the advantage of using agent-based 

approach to simulate complex marketing phenomena from simple decision rules. 

They also proposed some guidelines and highlighted some examples of how to use 

agent-based approaches. A more specific example was examine in [Bonabeau. 2002] 

on how an agent-based approach could be adopted for modelling a dynamic stock 

market. Agent-based models have also been used in social network analysis [Bergenti 

et al. 2011; Hamill and Gilbert. 2010; Hamill and Gilbert. 2010; Madey et al. 2003]. 

Singer et al. proposed to use of ABMs to examine friendship structures in social 

networks [Singer et al. 2009]. In social epidemiology research, agent-based 

approaches have also been used to understand causal inference and simulate the 

exploration of etiologic pathways [El-Sayed et al. 2012]. In social diffusion network 

analysis, Schwarz and Ernst proposed an agent-based model for the diffusion of 

water-saving innovations where the agents are households with certain lifestyles 

[Schwarz and Ernst. 2009]. 

 

However, of direct interest to this paper, only a small number of papers have focused 

on the application of ABMs to the problem of modelling subscriber behavior in mobile 

networks. Mohammed proposed the use of an ABM approach to investigate customer 

retention in the UK mobile market [Hassouna. 2012]. Frías-Martínez et al. used a 

CDR data set to develop an ABM model to simulate epidemic spread [Frías-Martínez 

et al. 2011]. Twomey and Cadman introduced the concept of agent-based modeling 

and presented a business application in a telecoms and media market [Twomey and 

Cadman. 2002]. 

 AGENT BASED MODEL DESIGN 

In this section, we provide an overview of the process through which the Agent Based 

Model (ABM) developed in this research was designed. Prior to the initiation of the 

design phase of the model, the CDR data captured from a DPS deployment in a 

mobile network in Uganda was analyzed in order to gain some insights into general 
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subscriber behavior and in order to develop models for this behavior. We initially 

provide an overview of the data in this CDR dataset and some important results from 

this investigation in section 3.1. Section 3.2 then provides a detailed description of 

the various components sub-models within the ABM and how these were designed 

based on observations from the CDR dataset analysis. 

 CDR Dataset and Initial Analysis 

The raw data (CDRs) analyzed in this research was captured from a DPS platform in 

a mobile network in the African country of Uganda for 19 weeks. The records for all 

prepaid subscriber (who had opted into the DPS) call attempts on each Wednesday 

were recorded starting from April 28th, 2010 and ending on September 22nd, 2010. 

Typically the daily CDRs generated by the system represented approximately 6.5 

million call attempts involving 2 million unique participants. Fig.  1 provides an 

overview of subscriber usage of this service from its launch date in late February 

2014. These plots illustrate the growth period in subscriber usage of the service after 

its launch, including the period during which the CDRs which were analyzed in this 

research were captured (i.e. shaded region of graphs in Fig.  1). 

  

 
Fig.  1. (a) Number of call attempts through the DPS, (b) Number of subscribers opted into the DPS and (c) 

Average number of calls per subscriber all displayed for a 9 month time period post service launch. 

 

It was decided to limit the initial analysis of the CDR dataset to the subset of call 

attempts between prepaid subscribers of the same mobile network (i.e. on-net calls) 

in order to reduce the number of CDRs to be processed, without any loss of generality. 

This data set typically consisted of CDRs representing an average of 3.5 million call 

attempts between approximately 800,000 unique participants each day. An example 

of the format of the anonymized CDRs from the data set is shown in Table I. The 

original CDR dataset did not contain information relating to the geographic location 

of cell sites, however a semi-automated algorithm was used [Wang and Kilmartin. 

2014] to provide estimates of the longitude and latitude of each cell site. 
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Table I. Example of Individual CDRs 

Time 

Stamp 

Calling 

Party ID 

Called 

Party ID 

Cell 

Tower ID 

DPS 

Discount 

(%) 

Cell 

Utilization 

Factor 

734628 1 2 265 70 0.2365 

 

[Wang and Kilmartin. 2014] outlines some of the analysis and associated 

observations gained in an initial analysis of the CDR data set. One distinct 

characteristic which was highlighted in this analysis was a high degree of regional 

heterogeneity in subscriber behavior, mobility and social linkages. In this work, four 

different geographical regions were defined within Uganda, namely covering the 

Northern administrative region, the Western and Central administrative regions, the 

Eastern administrative region and a small region around the capital, Kampala (see 

Fig.  2 (a) and (b)). 

 

 
Fig.  2. (a) Geography of Uganda and (b) Administrative regions of Uganda  

Sources: (a) CIA World Factbook, (b) www.wikipedia.org 

 

This work utilized a graph theory based approach, Mobile Travel Graphs (MTG) to 

examine subscriber mobility patterns. These clearly illustrated a pattern where the 

majority of subscribers tended to only travel over very short distances and to remain 

within their own regions. The work also identified significant similarities in 

subscribers’ calling behavior particularly between regions with similar levels of 

economic development (i.e. rural versus urban development). Fig.  4 utilizes Mobile 

Call Graphs [Qi et al. 2008] (MCG) for each of these four regions which support the 

observations made in [Wang and Kilmartin. 2014] concerning the level and forms of 

social linkages within and between regions. These regional characteristics are 

integrated into the ABM developed in the current work and the performance of an 

alternative regionally priced DPS is also presented in section 4. Other analysis 

during this initial phase indicated that subscriber calling patterns could be well 

modelled using standard probability distribution functions (PDF). For example, Fig.  

3 shows a lognormal fit to the subscriber call probability in Uganda when the average 

discount in the range of 50%-60%, similar to that suggested in [Seshadri et al. 2008]. 

The structure of social linkages amongst the subscriber base was also examined with 

Fig.  5 showing the subscriber degree distribution on a log-log scale. The result 

suggests that the degree distribution follows a power-law like distribution which 
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would indicate that the underlying network is a scale-free network [Albert and 

Barabási. 2002]. 

 
Fig.  3. Lognormal fit to the distribution of call attempts 

 

 
Fig.  4. Undirected weighted Mobile Call Graph (MCG) 
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Fig.  5. Degree distribution on a log-log scale 

 Structure of the Agent Based Model 

In ABM, agents are autonomous decision-making entities with diverse 

characteristics. Therefore, in our simulation of a mobile telephony network, the 

agents represent the individual subscribers and the agent’s characteristics should 

simulate the real subscribers’ calling, mobility and social behavior. In order to 

develop a realistic ABM, the behavior of the agents must replicate that of the real 

subscribers in terms of initiating voice calls at different time and locations to their 

social connections, in a manner which may be dependent on the DPS discount on 

offer at a given time.  Therefore, the agent behavior contains three major sub-models: 

 
(1) Call attempt model (when they call). 

(2) Subscriber mobility model (where they call from). 

(3) Subscriber social linkage\network model (who they call). 

 

In order to produce a simulated behaviour which is similar to that of the real 

subscribers, each of these sub-models was designed based on analysing the real 

subscriber behaviour hidden in the CDR dataset. The following sections provide 

details of the design and operation of each of these agent sub-models of the overall 

model. 

3.2.1. Call Attempt Model. The call attempt model is used to generate a probability of 

the agent “making a call” at each moment in time during a simulated day. In 

addition, this sub-model is also responsible for generating the duration of calls which 

the agent makes. 

The call attempt probability will have two underlying drivers which mimic the 

fact that some calls in a DPS will be driven by the fact that a discount is on offer, 

whilst other calls are not discount driven and will be initiated regardless of the 

discount on offer from the DPS. Such a “non-discount” call might for example be 

related to the subscribers’ employment or some urgent call which a subscriber would 

make no matter how much or little discount is offered. Alternatively, we also assume 

that there are some subscribers who are particularly sensitive to the discount offered 

to them and therefore their calling behavior may change based on the tariff that they 

are offered in real time. We will refer to calls such as this which are driven by the 

discount on offer from the DPS as a “discount” call. Hence, since most subscribers 

should exhibit a mixture of these two types of behavior, our model for the subscriber 
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calling probability, containing both of these behaviors, factors the call probability as 

the probability that a user will make a call independent of the discount, 𝑝𝑛𝑑, (which 

reflects the probability changing diurnally) and the probability that they will make a 

call influenced by the discount, 𝑝𝑛𝑑 and the time of day, i.e. 𝑝𝑛𝑑, 𝑝𝑑 as equation (1): 

 𝑝𝑐𝑖
= 𝛼𝑖𝑃𝑛𝑑,𝑖 + (1 − 𝛼𝑖)𝑃𝑛𝑑,𝑖𝑃𝑑,𝑖 (1) 

where α is a constant factor to adjust the influence of discount on the calling 

behavior of subscribers, 𝑃𝑛𝑑  is a probability distribution function for the “non-

discount” calls and 𝑃𝑑 is a probability distribution function for the discount driver 

calls. 

The probability distribution function which we used for modelling 𝑃𝑛𝑜𝑛_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 was 

determined by considering the calling behavior of subscribers in the CDR dataset 

when very little discount was offered by the DPS. For each subscriber, we used a 

kernel density estimation function [Bowman and Azzalini. 1997] as a fit to the 

subscriber’s calling histogram during the day. Fig.  6 illustrate examples of this PDF 

for three subscribers as computed from the CDR data. When executing a simulation 

of a day’s calling activity by the ABM, the 𝑃𝑛𝑜𝑛_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 associated with an agent was 

simply sampled from the fitted PDFs for the real subscribers from the CDR data set. 

 
Fig.  6. Subscriber calling behavior 

The second component in (1) relates to calls which are driven by the discount on 

offer from the DPS at a given time. In order to model the subscribers calling demand 

based on the dynamically varying tariff, we use a discount-demand function (2) which 

was proposed by Fitkov-Norris [Fitkov-Norris and Khanifar. 2000] to quantify the 

subscribers’ response to the tariff offered. 

 𝑝𝑑 = 𝐴𝑒𝜆𝑖𝑦 (2) 

In (2), 𝑦 is the real time calling tariff (which is dependent on the offered discount) 

and 𝐴 is a demand constant shift with defaults to 1, 𝜆i is the user demand parameter 

for user\agent 𝑖, as the discount demand function is an exponential, we use the 

conjugate prior to model the distribution individual users for 𝜆i. The conjugate prior 

for an exponential is a Gamma distribution with parameters 𝑎, 𝑏. Thus, for a given 

agent  𝜆i~Γ(𝑎, 𝑏). Fig.  7 illustrates an example of the resultant distribution for a 

subscriber’s calling demand based on price. 
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Fig.  7. Distribution of subscriber effect price on demand, 𝝀𝐢 = 𝟕 

The final element of the call attempt model relates to the duration of simulated 

calls. Unfortunately, no data was available in the CDR dataset relating to call 

durations and its dependency on discount offered for real calls made on the Ugandan 

network. As a result, and given the absence of any significant work in the literature 

that has examined this issue, we reverted initially to a model for call duration (in a 

static tariffing environment) proposed by Pattavina and Parini [Pattavina and Parini. 

2005] whereby the random call duration was sampled from a lognormal distribution 

with 𝜇 = 3.758 and 𝜎 = 1.129 (equivalent to a mean call duration of approximately 81 

seconds), as illustrated in Fig.  8. However, this model was then modified on the 

assumption that subscribers will tend to elongate the call duration of discounted calls 

when the discounting factor offered by the DPS is large. The resultant model (3) is 

used to alter the average call holding time (and hence the value 𝜇 in the lognormal 

distribution) in an exponential fashion which increases with square of discount. 

 𝜏(𝑦) = 𝜏0. 𝑒𝑘(𝑝)2
 (3) 

where 𝜏0 is the average call duration generated from the lognormal distribution. The 

value 𝑘 is a constant factor which can be used to adjust the impact of the discount 

multiplier effect. In this work, we utilized a value of 𝑘 = 0.75 as this resulted in a 

potential doubling in the average call holding time in scenarios when a very large 

discounts were offered, as illustrated in Fig.  9. 
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Fig.  8. Distribution of call duration 

 

 
Fig.  9. Mean call holding time 

 

3.2.2. Subscriber Mobility Model. The ABM contains a subscriber mobility model in 

order to simulate the actual behavior of subscribers in terms of their physical 

location in the network throughout the day and movement patterns between cells. 

The inclusion of this module within the model is important as the discount on offer to 

subscribers (and hence the revenue generated for the network operator) is dependent 

on the serving cell when the call attempt is made. In order to develop this model, we 

randomly selected 1000 subscribers from the CDR data set who made fewer than 50 

calls and visited fewer than 20 cells per day. The location (i.e. cell site) and time of 

calls made by these subscribers were used to generate a two dimensional histogram 

(with bins based on time of day and cell site). We then applied a multivariate kernel 

density estimation [Ihler. 2007] algorithm to this histogram in order to estimate the 

probability of subscribers’ calling locations at each moment during 2 hour intervals 

throughout the day. An example of one of the fitted PDFs is shown in Fig.  10, 

representing the PDF for subscribers calling locations at 10:00 am. 
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Fig.  10. Estimation of subscriber calling location at 10:00 am  

(Longitude and Latitude divided into 200 bins) 

3.2.3. Subscriber Social Linkage\Network Model. The inclusion of a model of social 

connections between subscribers was important in order to accurately simulate the 

likely calling parties (and their geographic locations) in each simulated call between 

agents. In addition, in section 4 we discuss a number of alternative dynamic pricing 

strategies, a number of which are based around how often and who a subscriber is 

calling. For these reasons, the development of a suitable model for the social 

networks within the real subscriber base was important in the ABM. In order to 

develop a suitable model, we once again first look at the behavior present in the CDR 

data set. In this data set, we equate social interaction\linkages between subscribers 

as being reflected in the number of calls made between each other. Using a simple 

threshold on the number of inter-subscriber calls in the CDR data set as an indicator 

of a social linkage, we first examined the degree distribution of resultant social 

network. This degree distribution, as shown in Fig.  5, appears to follow a power-law 

distribution and, hence, there is evidence that the underlying social network is scale-

free network [Barabási. 2009] properties. As a result, a Barabàsi Albert (BA) model 

was selected as the means of simulating an equivalent un-weighted scale-free social 

network [Albert and Barabási. 2002] for use within the ABM1. When simulating 

subscriber behavior, the ABM selects a potential called subscriber for each call based 

on the calling subscriber’s contact list. However, the call probability to each contact is 

not uniform; individuals exhibit a large variability in the frequency of calls to their 

contacts. Therefore, we add a weight to the network for each subscriber connection. 

The weight is determined from the distribution of the number of calls to each of the 

subscriber’s contacts. Based on the aggregated actual data, a Geometric distribution 

𝑤𝑖,𝑘 = 𝑝𝑔,𝑖(1−𝑝𝑔,𝑖)𝑘−1  was found to give an excellent fit to the ratio of calls made to 

contacts. We use the value 𝑤𝑖,𝑘 as a weight for the connections, where  𝑖 is the 𝑖𝑡ℎ 

agent and k is the 𝑘𝑡ℎ  contact ordered by popularity. To account for individual 

differences, we used the conjugate prior for a Geometric distribution, namely the 

Beta distribution with parameters 𝛼, 𝛽 ; thus 𝑝𝑔,𝑖~𝐵𝑒𝑡𝑎(𝛼, 𝛽) . The geometric 

distribution parameter (p) is obtained from a Beta distribution given a prior 

𝐵𝑒𝑡𝑎(𝛼, 𝛽). These two parameters were estimated based on the distribution of the 𝑝𝑔 

value for all users over the 19 days of data in the CDRs, as illustrated in Fig.  11 

 
1 We acknowledge that move complex models maybe of interest here but we leave this aspect to future 

research. 
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(where values of 𝛼 =  2.3854  and 𝛽 =  4.6924  were used). Fig.  12 also shows an 

example of this geometric fit for one particular subscriber in the CDR data. 

 
Fig.  11. Histogram of aggregated 𝒑𝒈, ∀𝒊 

 

 
Fig.  12. Geometric distribution fitting for call frequency 𝒑𝒈,𝒊 = 𝟎. 𝟐 in this case 

 DYNAMIC PRICING ALGORITHMS 

One of the primary motivators for the deployment of dynamic pricing in a mobile 

network is to allow the network operator to maximize the revenue generated through 

subscriber usage of their service. Having described in the process by which we 

designed the ABM in section III, this section of the paper will describe a number of 

alternative dynamic pricing algorithms whose revenue generating capabilities have 

been estimated using the developed ABM. 

 Load Based Dynamic Pricing 

The initial pricing algorithm which was investigated using the ABM was one which 

modelled the algorithm used in the real mobile network from which the CDR data set 

was gathered. This pricing algorithm operated by offering a discount to a caller which 

was a function of the cell utilization factor at the time at which the call was made. An 

analysis of the call records in the data set, as shown in Fig.  13, resulted in a 

mapping between a cell utilization factor and the discount offered to the caller which 

was used when modelling this pricing algorithm. One challenge however which was 

encountered in terms of the implementation of this algorithm within the ABM was 

the issue of linking the cell utilization factor to the (channel) capacity of individual 

cells within the model. Whilst in the real network, there would likely be significant 

differences in the cell capacity in different cells in the network, it was decided that 
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within the ABM framework, a cell’s capacity would be modelled using a per call cell 

utilization change factor. In short, this would be the amount by which the cell 

utilization factor for a cell would increase when a new call was made in that cell (up 

to a maximum utilization factor of 1). Fig.  14 illustrates how this factor was 

calculated for each cell (using an analysis of the call records from the data set). The 

figure shows, for a particular cell in the real mobile network, how a linear 

approximation (whose slope of 0.043 is the per call cell utilization change factor) was 

fitted to data points plotted from the call records2. 

 

 
Fig.  13. The relationship between offered discount and cell utilization 

 

 
Fig.  14. The estimation of delta cell utilization 

 

One issue which was quickly identified during initial simulations of this form of 

discounting algorithm related to the impact which this algorithm in particular had 

on revenue related to call attempts made very low load periods (i.e. in the middle of 

the night). During these hours, the cell utilization factor on most (if not all cells) was 

very low simply because there was little or no demand from subscribers to make calls 

at these times (e.g. between 2AM and 6AM). However, because the cell utilization 

factor would be very low at these times, the associated discount on offer would be 

very large. As a result, the revenue for what few calls were being made during this 

time period was being hugely diluted due to the un-necessarily large discount being 

offered. As a result, an initial variation on the cell load based discount algorithm was 

 
2 Note that for some imitated calls the measured utilization does not change as some ongoing calls end 

during the sampling period. 
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to examine the use of a random discount in all cells throughout this “middle of the 

night” time period. 

 

From a practical perspective, the deployment of this form of discounting algorithm 

would require significant infrastructure (e.g. CDR data warehousing and analysis 

systems) to be deployed to allow access to traffic load information (whether real time 

or averaged over a number of recent days) for all cells in the network. Clearly the 

scalability of such an approach in very large networks with potentially tens of 

thousands of cells would be practically and commercially quite challenging. 

 Random Dynamic Pricing 

Whilst the use of a real time load based pricing algorithm has some attractive 

features (e.g. encouraging and discouraging service use during low and high load 

periods, respectively), there are significant practical and cost challenges in its 

deployment given the need to measure and process potentially large volumes of data 

concerning the loads in individual cells. An alternative dynamic tariffing strategy 

which addresses these challenges to some degree would be to utilize a random pricing 

algorithm. In practice this would result in the subscriber being offered a discount 

whose value would be drawn from some form of probability distribution function (e.g. 

discrete uniform distribution over the range of discount values. However, there still 

exists a spectrum of variants on this form of discounting which need to be considered. 

At one extreme is the scenario where a single PDF is used for all cells in the network 

throughout the complete day. While this approach would be quite attractive from an 

Operations and Maintenance (O&M) perspective for the network operator, it is highly 

unlikely to result in a maximization of revenue generated from service usage. At the 

opposite extreme of the spectrum would be a deployment where each cell in the 

network uses its own PDF and that this PDF is changed regularly (e.g. every 15 

minutes) throughout the day. Intuitively this form of a deployment is far more likely 

to result in higher revenue for the operator but its deployment would be extremely 

challenging. Such an approach would require significant and ongoing processing of 

“per-cell” revenue generation to determine the optimal PDF for each cell in the 

network (which could be of the order of tens of thousands in larger networks) and in 

each “time slot” during the day. 

 

Hence, in this study, we selected an intermediate solution to these two extremes in 

order to investigate the potential of this form of discounting algorithm. The proposed 

algorithm was based on the utilization of only two time periods during the day (i.e. 

“off-peak” and “on-peak”) and cells were grouped into four groups (with each region 

applying its own PDF applied to all cells in that region). The four cell groupings were 

based on the regional classification of cells (i.e. Northern region, Eastern region, 

Western\Central region and Kampala region) since our previous work [Wang and 

Kilmartin. 2014] identifying significant homogeneity in subscriber behavior within 

these regions. This approach would also be a very reasonable approach for the 

practical management of such a deployment given that a network O&M center would 

only have to monitor, configure and control the performance of the system (and its 

revenue generation characteristics) using the manageable combination of four 

regions and two time periods. 

 Subscriber Centric Dynamic Pricing 

The final form of dynamic pricing algorithm which was investigated in this work was 

one which was subscriber centric, in the sense of offer high value subscribers of the 

network enhanced discounts. The algorithm would operate by offering all subscribers 



Investigating the Revenue Generation Impact of Dynamic Pricing Algorithms for Mobile Voice Services                                    
1:19  
                                                                                                                                         

 

 

to the service a baseline discount (in the form of a random discount implementing a 

relatively low mean discount value similar to that outlined in section 4.2. However, 

the approach requires a certain percentage of subscribers who exhibited some key 

characteristics to be offered a significantly enhanced discount (again implemented in 

the form of a random discount but with a far more substantial mean discount value). 

Two different methodologies for identifying these high value subscribers were 

investigated in this work namely, (i) the subscribers with the largest average number 

of call attempts per day and (ii) the subscribers with the largest number of contacts 

in their social network structure (i.e. largest degree value). This form of discounting 

algorithm would likely be quite attractive to a network operator in terms of the 

practicalities for deployment. Since the vast majority of subscribers simply receive 

the same (low) random discount, there is little need for significant high volume data 

processing in terms of discount calculation (for example as is required in the load 

based discounting algorithm). The process of selecting the key subscribers would 

require significant analysis of subscribers’ calling patterns but this could be done in 

an off-line manner (using short term historical analysis of CDRs) at some regular 

time interval. The nature of the algorithm could also introduce from a service 

marketing perspective the opportunity for gamification in an attempt to encourage 

subscribers who are not in receipt of the larger discounts to increase their service 

usage pattern. 

 

We further investigate this last phenomenon within our model by inclusion of an 

additional component to the call attempt model introduced in section 3.2.1. When 

investigating this form of subscriber centric discounting, we include a component 

whereby subscribers who receive calls from a subscriber in receipt of the large (high 

value subscriber) discount levels may increase their call generation rate. The role of 

this enhancement is to model the likely effect by which the calling party might 

inform that the called party that they were in receipt of enhanced discounts because 

of their high value status. This, in turn, in some instances could influence the calling 

party to make more calls in an attempt to also achieve this status in the network of 

subscribers. The modelling approach which we utilize to simulate this effect is based 

on an adaptation of the epidemic spreading model proposed by Barrett et al. [Barrett 

et al. 2008], and outlined in (4). 

 ∆𝑝𝑑,𝑖 = 1 − 𝑒(∑ 𝑙𝑛 (1−𝑘𝑠𝑖)𝑟∈𝑅 ) (4) 

where ∆𝑃𝑖 is an increase in the discount sensitive calling probability of subscriber 𝑖, 𝑠𝑖 

is reflects the susceptibility of normal subscriber 𝑖 to “advertising" encouraging them 

to increase their use of the service (i.e. in the form of the high value subscribers 

calling them and telling them that they can get more discount by making more calls), 

𝑘 is a constant which reflects the strength of high value subscribers as "advertisers" 

of the service, 𝑅 is the set of “advertisers” (i.e. “advertising” subscribers) and 𝑟 is the 

individual “advertiser”. 

 

In our simulation, this equation was calculated at the end of each simulated day in 

order to determine the increase of ∆𝑝𝑑,𝑖 for next simulated day of network operation. 

Similar to epidemic spreading in the social networks as described in [Barrett, Bisset, 

Eubank, Feng and Marathe. 2008], we also assume that these normal subscribers 

will continue to increase their calling probability if they keep getting the calls from 
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high value subscribers each day. On the contrary, they will reduce their calling 

probability by a factor of 2/3 if they do not receive any calls during the preceding day 

from high value subscribers. Hence, the increase in the subscriber calling for each 

agent was computed using (5): 

 𝛾𝑖
𝑡 = {

∆𝑝𝑑,𝑖
𝑡−1 + ∆𝑝𝑑,𝑖

𝑡 (1 + ∆𝑝𝑑,𝑖
𝑡−1), 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑐𝑎𝑙𝑙(𝑠) 𝑓𝑟𝑜𝑚 ℎ𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠

2

3
∆𝑝𝑑,𝑖

𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

Where we now index 𝑝𝑑,𝑖  by time where ∆pd,i
t−1 the previous day is. Therefore, the 

resultant discount sensitive probability (𝑝𝑑,𝑖) determined in (2) is modified using (6) 

to provide 𝑝𝑑
∗  which is used in the simulation. 

 𝑝𝑑,𝑖
∗,𝑡 = 𝑝𝑑,𝑖(1 + 𝛾𝑖

𝑡) (6) 

 RESULTS 

This section of the paper firstly presents the results obtain during the process of 

tuning certain model parameters in order to achieve comparable results with the 

subscriber behavior observed in the underlying CDR data set used in this work. 

Subsequently, the results of a comparative study carried out using the ABM on the 

revenue generation performance of the various dynamic pricing algorithms which 

were introduced in Section 4 is presented. Fig.  15 provides an illustration of the 

ABM simulation process used in generating these results. In general, there are four 

major steps in this simulation: 

 

(1) Agents initialization. 

(2) Voice call simulation. 

(3) Discount offering and. 

(4) Cell utilization updating. 

 

Unless otherwise stated, all results were generated after multiple simulation runs of 

the ABM using a given configuration. Each of these simulation runs were based on a 

simulation scenario consisting of 1000 simulated agents operating in the simulated 

DPS environment for a period of 19 days (as per the underlying CDRs). 
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Fig.  15. ABM Simulation 

 

 Model Parameter Tuning 

One of the key parameters in the model which could not directly be estimated from 

analysis of the CDRs is the 𝛼 value in the call attempt model as shown in (1). This 

parameter effectively controls the relative number of call attempts which are 

discount driven (as distinct to calls which would occur regardless of the discount level 

on offer). In order to determine a reasonable value for this parameter, simulations 

were carried out using a series of values for 𝛼 ranging from 0 (i.e. all subscriber calls 

are motivated by the offered discount) to 1 (i.e. no subscriber calls are motivated by 

the offered discount). Fig.  16 shows a comparison between the total number of calls 

(in bins of 15 minute duration) per simulated day generated by the ABM and the 
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equivalent data calculated from an analysis of the CDR data set, for settings of  𝛼 =
0.1 , 𝛼 = 0.5  and 𝛼 = 0.8  respectively. These clearly show that the behavior of the 

model with a setting of 𝛼 = 0.8 is qualitatively comparable to the behavior observed 

for the real subscribers. Furthermore, Fig.  17 contains a plot of a normalized  root 

mean squared error (RMSE) between the simulated and real call rate (derived from 

the CDRs) for the range of investigated α values. As a result, a value of 𝛼 = 0.8, 

which resulted in a normalized RMSE value of ≈ 0.1, was selected as offering a good 

match with the behavior present in the CDRs (whilst not having a reasonable 

dependence on offered discount within the call attempt model). 
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(c) 

Fig.  16. The simulation results of the total number of calls over a day based on different influential of 

discount factor 𝜶. (a) 𝜶 = 𝟎. 𝟏. (b) 𝜶 = 𝟎. 𝟓. (c) 𝜶 = 𝟎. 𝟖 

 

 
Fig.  17. Normalized root mean square error 

 

The user demand factor (𝜆 in equation (2)) is sampled from a Gamma distribution 

with parameters 𝑎, 𝑏 as noted in section 3.2.1. The parameters of this distribution 

were set to 𝑎 = 8 and 𝑏 = 0.7 such that a larger proportion of agents in the simulation 

would more likely exhibit a behavior where discount motivated calls would only be 

made when larger rather than smaller discounts were offered. Fig.  18 provides an 

illustration of a set of resultant user demand versus discount curves generated from 

this distribution. In terms of the social network\linkage model, a BA network 

generator with its parameters were set to 𝑝 = 0.2, 𝑞 = 0.3 and 𝑚 = 2  was used to 

simulate the inter-subscriber network structure as discussed in section 3.2.3. 
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Fig.  18. Samples of the user demand function 𝛌 𝒊~𝚪(𝟖, 𝟎. 𝟕) 

 

Utilizing these various parameter settings, Fig.  19 provides a more comprehensive 

comparison of the behavior of the ABM with the subscriber behavior exhibited in the 

CDRs. Fig.  19 (a) shows the average discount the subscribers obtained over a day 

(using the load based discounting algorithm in the ABM as was used in the real DPS 

deployment). Fig.  19 (b) illustrates the average cell utilization over a day and Fig.  

19 (c) highlights the distribution of the number of calls per subscriber. The results 

show that the results obtain from the ABM simulation are quite close to the behavior 

observed from the real CDR data set across all three of these metrics. 
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(b) 

 
(c) 

Fig.  19. Comparison between ABM simulation results and CDR data set. (a) discount distribution 

comparison. (b) cell utilization distribution comparison. (c) histogram of the number of calls distribution 

comparison. 
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discounts during this low load off peak time period) had any impact on encouraging 

significant call traffic during this time period. Hence we propose that a random 

discount be offered during this “off-peak” time period (regardless of what strategy 

would be utilized during the rest of the day when traffic is far more significant). In 

order to evaluate the impact on revenue of possible discount levels offered during this 

period, we used the ABM to simulate the scenario where a random discount drawn 

from a uniform distribution between 𝑋 − 2% and 𝑋 + 2% (where X ranged from 2% to 

98%) was offered to “off-peak” calls. Fig.  20 illustrates the results of this simulation 

(after N=10 simulation runs of the ABM) with the normalized (relative to no discount 

being offered) revenue generated for the operator being plotted against various 

values of X (with a polynomial spline fitting). It is clear from these results that 

significant amounts of “nighttime” revenue losses would be incurred if (mean) 

discounts greater than 5% are offered during this time period. However, as noted in 

Fig.  20, the revenue generated during this “night-time” period is quite small (i.e. 

approximately 1.75% of overall daily revenue) and hence larger discounts might in 

practice be considered as a marketing “gambit”.  However, we have utilized a random 

discount with a mean value of 3% during the 2:00 am to 6:00 am time period in all 

subsequent investigations of dynamic pricing algorithms, in order to maximize 

revenue. 

 

 
Fig.  20. The impact of revenue based on discounts (in the hours 2am-6am). 
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to investigate the impact on overall revenue. Fig.  21 (a) shows the revenue generated 

when the (mean) discount offered to the high value subscriber cohort had a mean 

values between 20% and 50%. This graphs shows that the revenue reduces in a 

manner which is reasonably well modelled by a linear fitting for both the case where 

the high value cohort is selected based on call volume and for case where these 

subscribers are selected based on their connection degree. It also highlights that this 

decrease in revenue appears to be slightly less for the latter means of selecting the 

high value subscriber group compared to the former selection criterion.  

In order to visualize the impact which the discount offered to the “normal” subscriber 

cohort has on revenue, a similar analysis was completed except this time with the 

discount offered to the high value subscriber group being fixed (at 25%). Fig.  21 (b) 

illustrates the results of this simulation and highlights the need to keep the (mean) 

discount offered to this “normal” subscriber small in order to avoid significant 

revenue losses. Clearly the actually (mean) discounts offered to these two subscriber 

groups in practice would have to be set at “reasonable” value for marketing and, 

likely, regulatory reasons and hence in subsequent comparisons, we have utilized 

mean discounts of 20% and 5% for the high value and “normal” subscriber groups, 

respectively. 

  
(a) (b) 

Fig.  21. (a) Impact of mean discount offered to “normal” subscribers on revenue (b) Impact of mean 

discount offered to high value subscribers on revenue. 

 
5.3.1. Inclusion of Epidemic Spreading Model. Section 4.3 further outlined the inclusion of 

an epidemic spreading model between agents which could potentially result in an 

increase in the likelihood of discount sensitive calls being generated by individual 

agents. The impact of the inclusion of this behavior into the agent model was further 

investigated through simulation runs of the ABM. In an initial simulation, each 

agent was initialized with a Si value (from (4) ) which was drawn from a lognormal 

distribution with μ = 0.6  and σ = 0.05 . Fig.  22 present the average increase in 

discount motivated call generation probability (γ) over a 50 day simulation run, for 

scenarios where high value subscribers are selected based on call volume and based 

on social connections (i.e. node degree). 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig.  22. Evolution of average 𝜸 over the total of 50 days for (a) all subscribers (b) “mildly” influenced 

subscribers and (c) “significantly” influenced subscribers 
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basis of calls received from the high value subscriber group during the simulation 

period of 50 days. By splitting in the influenced subscriber group into two based on 

the level of influence (using a threshold of 0.05 for the average 𝛾 value, Fig.  22 (b) 

highlights that 37% of influenced subscribers were only “mildly” influence over the 

simulation period while Fig.  22 (c) illustrates the temporal evolution of the 𝛾 value 
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for the remainder of the group who experienced more significant influence (i.e. these 

subscribers’ discount sensitive probability of generating a discount sensitive call 

would have increased (on average) by 22% by the end of the 50 day simulation period). 

These results would suggest that this could result in significant changes taking place 

in the group of subscribers forming the high value group when this would be 

reviewed by the network operator at some regular interval. The impact of the 

inclusion of the epidemic model on the estimated revenue generated for the network 

operator was far less pronounced.  In fact the revenue estimates from the ABM, 

indicates that inclusion of the epidemic model has a negligible effect on revenue (i.e. 

0.53% more revenue compared to the non-epidemic model). 

 Comparison of Dynamic Pricing Strategies 

In this section, we compare the overall revenue generation capabilities of the three 

types of dynamic pricing strategy that were introduced in section 4. The analysis of 

the impact on revenue for different strategy was examined based on a regional 

approach (using the four geographic regions of Uganda, as discussed in section 2). 

For each region, we firstly investigated the operation of a random discount algorithm 

operating during “daytime” hours at a regional level. In this simulation, the revenue 

generated when subscribers were offered (mean) discounts at different levels between 

0% and 100% was modelled. Subsequent simulations using the ABM focused on 

estimating revenue generated when (a) a load based discounting strategy (as outlined 

in section 4.1) was used and (b) when the subscriber centric discounting algorithm 

outlined in section 4.3 and 5.3, were active. Fig.  23 provides a graphical comparison 

of the impact on revenue of the discounting algorithms when simulated 

independently within the four geographical regions of the country. 
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(c) (d) 

Fig.  23. Comparison of regional revenue generation 

 

Table II provides a summary comparison of normalized (relative to the non-

discounted case) revenue when load based discounting and subscriber centric based 

discounting (using either call volume or subscriber social links as the means of 

selecting the high value subscriber cohort). In addition, the table also indicates the 

equivalent (mean) random discount which would have to be offered to achieve a 

similar level of revenue. 

 
Table II. Comparison of normalized revenue and equivalent mean random discount 

 Revenue normalised to non- 

discounted case 

Equivalent mean random discount 

 

Geographic 

Region 

Load 

Based 

Discount 

Subscriber 

Centric 

(Call 

Volume) 

Subscriber 

Centric 

(Degree) 

Load 

Based 

Discount 

Subscriber 

Centric 

(Call 

Volume) 

Subscriber 

Centric 

(Degree) 

North 0.6122 0.9889 0.9934 78 3 2 

Kampala 0.7325 0.9253 0.9357 39 9 7 

West 0.7128 0.9447 0.9355 48 7 8 

East 0.7307 0.9125 0.9106 45 11 11 

Country 0.6971 0.9429 0.9438 53 8 7 

 

The relationship between the level of random discount offered and revenue generated, 

as shown in Fig.  23 appears to be very similar in three of the four geographical 

regions. However, the characteristics of this relationship for simulated North region 

of the country is somewhat different in that, initially, as the level of discount being 

offered is increased the fall in revenue is less pronounced. For example, in the North 

region, a random discount of approximately 65% would result in a normalized 

revenue value of 0.7, whereas in the other three regions this would occur when 

discounts of only 45-50% were offered. Whilst in absolute terms, these all represent 

revenue loss for the operator (compared to the case of offering no discount), it does 

highlight the fact subscriber (agents) in the North region are more attracted to this 

form of tariff in that it encourages them to increase their level of usage of the service 

when large discounts are offered compared to the agents in the other regions.  This 

would provide some evidence that random discounting may be more attractive in 

regions where subscribers are particularly price sensitive (as would likely be the case 

in the mostly rural and economically under-developed Northern region of Uganda). 

Clearly, as noted above, based on the simulation results such a pricing algorithm 

would still result in an absolute loss in revenue for the operator which would have to 

be addressed by other mechanisms. 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discount

R
e
v
e
n
u
e

West

 

 

Random discount

Fitted spline

Nr.Calls based

Degree based

Load based

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discount

R
e
v
e
n
u
e

East

 

 

Random discount

Fitted spline

Nr.Calls based

Degree based

Load based



Investigating the Revenue Generation Impact of Dynamic Pricing Algorithms for Mobile Voice Services                                    
1:31  
                                                                                                                                         

 

 

Table II clearly illustrates that load based discounting results in very poor revenue 

generation for the operator. At a national level, the results such that an 

approximately 30% drop in network operator revenue would result were a discount of 

this nature to be deployed. When we examine the revenue at a regional level, it is 

clear that a pricing paradigm of this nature would perform particularly poorly in the 

North region of our simulation with a nearly 40% drop in revenue being observed. 

The root cause of this very poor regional performance is the small subscriber based 

present in this geographic region resulting in there being consistent over-capacity in 

the cell sites of this region. Hence, some significant adaptation of the load based 

algorithm would have to be undertaken due to the fact that, for the majority of the 

time, most cell sites are very lightly load (and, hence, unnecessarily offer large 

discounts). 

 

In terms of maximizing revenue for the network operator, the results suggest that 

there are really only two sensible options. Firstly, operators could use random 

discount algorithms but with mean values which are very small. However, in practice 

this approach would not be feasible from a marketing perspective and unlikely to 

maintain customer satisfaction, given a likely expectation amongst subscribers of 

getting more than low single digit discounts. The second alternative is the 

deployment subscriber centric discounting. The simulation results indicate that such 

algorithms would result in less than 6% revenue loss to the operator. From a 

marketing and subscriber retention perspective, this form of algorithm is also far 

more palatable given that all subscribers would receive discounts and the high value 

subscriber group in particular would receive significant discounts. In addition, the 

“competitive” nature of the algorithm (in terms of which subscribers are selected for 

inclusion in the high value group) would likely be particularly attractive from a 

marketing perspective. A potential downside of this form of algorithm, particularly 

compared to random discounting, is the additional infrastructure (and associated 

operations and maintenance overhead) associated with the process of how very large 

volumes of CDRs are collated and processed in order to regularly update membership 

of the high value subscriber cohort. 

 

It is clear from the simulation results in Fig.  23 that in absolute terms revenue is 

maximized when no discount is offered to subscribers. Also it is interesting to note 

that using the model which has been outlined there does not appear to be a 

secondary maximum in the revenue-versus-discount plots. This is noteworthy as it 

would suggest that there is no role to be played by optimization algorithms (e.g. 

genetic algorithms, particle swarm optimization, and variants on gradient descent) in 

attempting to optimizing revenue using on-line adaptation of random discounting.  
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(a) (b) 

Fig.  24. (a) Normalized revenue versus discount curves for various call duration model parameter (k) 

values and (b) associated mean call duration versus discount curves 

 

Fig.  24 (a) examines under what conditions our model would result in a scenario 

where optimization might be a desirable approach by considering the dependence on 

network wide revenue on the (k) parameter in the call duration model (3). Whilst a 

secondary maximum appears in the revenue curve for values of k greater than 

approximately 𝑘 = 1.5, these do not actually result in revenue gain for the operator 

until we consider 𝑘 values greater than approximately 𝑘 = 1.8. Using Fig.  24 (b)  we 

can see that values of 𝑘 greater than 1.8, result in a call duration model where the 

mean call duration is likely to have very large value (i.e. greater than 5 to 6 times the 

mean call duration of the “no discount”) when very large discount are offered to 

subscribers. It is hard to argue that this level of revenue elasticity is very likely to be 

realistic. The conclusion to be drawn based on the results of our model is that for a 

fixed population (of subscribers\agents) model there does not appear to be a scope for 

the practical use of optimization algorithms. 

 CONCLUSION 

 

In this paper, we present an agent-based model for the simulation of the subscribers’ 

calling behavior in a dynamically priced mobile network offer voice telephony 

services. The behavior of the agents in the model was developed through the analysis 

of CDRs generated from a real mobile network in Uganda in which dynamic pricing 

was deployed. We subsequently utilized the developed model to investigate a number 

of alternative dynamic pricing strategies using calling behavior models, a subscriber 

mobility model in Uganda and a social linkage\network model. 

 

The most significant conclusion drawn from the results is that, short of offering no or 

very little discount to subscribers, the model suggests that all the forms of 

discounting considered will result in revenue loss to the network operator. This loss 

ranges from approximately 6% in the case of a subscriber centric discounting model 

where “high value” subscribers are offered enhanced random discounts to 

approximately 30% in the case of a basic load based discounting algorithm. In 

addition, the ABM provides a revenue-versus-mean discount approximation for the 

case where random discounting is deployed which allows estimation of likely revenue 

loss were such an algorithm deployed (operating at a specific mean discount value). 

We have also examined the potential for deploying optimization algorithms within 

the constraints of the model and the results indicate that these only potentially 

deliver a revenue growth scenario when the call duration model operates with 
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parameters which are likely to be unrealistic. The results obtained clearly suggest 

that operators can only minimize revenue loss, within the constraints of the model, 

by offering little or no discount. Clearly, in practice, this would make such a tariff 

virtually impossible to market and\or likely to result in significant subscriber 

dissatisfaction (and resultant outward subscriber churn with associated loss of 

revenue).  

 

However, in practice, there are other effects or actions which we have not considered 

in out model which could offset these apparent revenue losses from the modelled 

fixed subscriber base. Firstly, it is likely that innovative and well marketed dynamic 

pricing tariff offerings will result in an increase in the subscriber base which commits 

to the dynamic pricing service through the process of inward subscriber “churn” [Ahn 

et al. 2006] (i.e. where subscribers from other networks change to the network 

offering dynamic pricing). Another option to address the potential revenue loss is to 

make the base (or “no discount” tariff within the dynamic priced service contract 

higher than the tariff for subscribers who remain outside the dynamic priced service. 

Through careful marketing, particular in countries where price sensitivity is a key 

driver and, perhaps, where there is a cultural attraction towards risk taking, 

subscribers will still be attracted into such a service in the hope that they will “gain” 

rather than “lose out” through the discounts which they encounter when making calls. 

From the network operator’s perspective, the premium which might be added to the 

“no discount” tariff might simply be selected to offset the predicted revenue loss 

associated with the discounting algorithm, with revenue growth being achieved by 

the additional inward subscriber churn due to the dynamically priced service.  

 

As noted in section 5.4, the development of optimization algorithms does not appear 

likely to deliver a commercially attractive offering within the constraints of a fixed 

subscriber based population. The deployment of such algorithms in practice is 

extremely challenging given the infrastructural and systems requirements to have 

access to and ability to process large volumes of near real time generated revenue 

information (either a cell, cluster, regional or national level). Additionally, such semi- 

or fully automated algorithms would introduce significant risks from an operator’s 

perspective in terms of the potential for large revenue loss (or large subscriber 

dissatisfaction) should the algorithm malfunction in some manner. Lastly, from a 

purely algorithmic perspective, these revenue optimization algorithms would be 

attempting to carry out their revenue maximization in an extremely noisy feature 

space which might result in long convergence times (during which revenue 

generation will be sub-optimal) or the algorithm converging to a local revenue 

generation maximum rather than a global one. 

 

In addition to further enhancing and testing our model with CDR data gathered from 

other dynamic pricing deployments, future work with this model will focus on a 

number of areas. Integration of a means of modelling subscriber “churn” (both 

inwards and outwards) into the ABM using realistic data on subscriber base changes 

during real DPS deployments would significantly enhance the realism of the ABM. In 

this work, we have utilized a data set gathered in a country where the subscriber 

base across all networks is almost completed prepaid and, in the case of the specific 

network whose CDRs were the basis for this work, virtually all prepaid subscribers 

opted into the dynamic pricing service. In other networks, particularly in industrially 
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more developed regions, a far more significant portion of both the subscriber base but 

also more importantly the revenue generation base will be made up of postpaid 

subscribers (who tend to be far less price sensitive). In some cases significant 

proportions of such postpaid subscriber may not opt into a dynamic pricing service (if 

it is even offered to postpaid subscriber) but they will have an expectation that their 

grade of service will not be negatively impacted by the load increase associated with 

a DPS. Methodologies for modelling such subscribers and in particular constraints 

enforced on dynamic pricing algorithms as a result of a network operator’s desire to 

maintain their grade of service also need to be investigated and integrated into the 

model. Finally, future work also needs to focus on using the developed ABM to 

predict the performance of semi- or fully automated revenue optimization algorithms 

in realistic scenarios where they can deliver revenue growth to operators while still 

offering subscribers attractive discount levels.  
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