

XSACd - Cross-domain Resource Sharing &

Access Control for Smart Environments
Konstantinos Fysarakis1*, Othonas Sultatos1, Charalampos Manifavas2, Ioannis Papaefstathiou1

and Ioannis Askoxylakis3

1Electronic & Computer Engineering Dept., Technical University of Crete, Chania, Greece
2Electrical Engineering and Computing Sciences Dept., Rochester Institute of Technology, Dubai, U.A.E.
3Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), Heraklion,

Greece

Abstract

Computing devices already permeate working and living environments; a trend which affects all aspects of

modern everyday lives, and one which is expected to intensify in the coming years. In the residential setting,

the enhanced features and services provided by said computing devices constitute what is typically referred

to as a “smart home”. However, the long-promised improvement in the quality of residential life cannot be

realized without overcoming some significant obstacles introduced by these technological advancements.

The direct interaction smart devices often have with the physical world, along with the processing, storage

and communication of data pertaining to users’ lives, i.e. private sensitive in nature, bring security concerns

into the limelight. The resource-constraints of the platforms being integrated into a smart home environment,

and their heterogeneity in hardware, network and overlaying technologies, only exacerbate the above issues.

This paper presents Cross-domain Service Access Control for devices (XSACd), a framework that combines

the well-studied fine-grained access control provided by the eXtensible Access Control Markup Language

(XACML) with the benefits of Service Oriented Architectures through the use of the Devices Profile for Web

Services (DPWS). Based on standardized technologies, it enables seamless interaction and fine-grained pol-

icy-based management of the heterogeneous embedded devices that may be found in a smart residential set-

ting, including support for interactions between users and devices residing on different locations and net-

works. The proposed framework is implemented in full and its performance is evaluated on a test bed featur-

ing relatively resource-constrained smart platforms and embedded devices.

Keywords: Access Control, Web Services, Ubiquitous Computing

1. INTRODUCTION

In recent years, massive advancements in computing and communication technologies have led to what

can only be described as a revolution in terms of how people perform the various tasks comprising their

everyday lives; a revolution enabled by the ubiquitous presence of computing devices in all aspects of modern

life. These major changes could not leave the residential environment unaffected, with smart homes gradually

becoming a reality, i.e. homes featuring sophisticated lighting (e.g. smart light bulbs), ambient environment

controls (e.g. heating, ventilation and air conditioning via smart thermostats), appliances (smart -fridge, -

oven, -washing machine, -coffee makers etc.), communication systems (including smart phones), entertain-

ment (e.g. smart TVs), and home security (smart cameras, door and window controls etc.) devices. Moreover,

the residential environment borders with other ubiquitous computing applications, like smart metering and

e-health, as these will have to be integrated into the smart home ecosystem. Nevertheless, as said devices

typically handle personal sensitive data and often feature direct interaction with the physical world, a key

factor in the wider adoption and success of these new technologies will be the effectiveness with which the

various security and privacy concerns [1][2] are tackled. A necessary instrument in successfully addressing

these issues is the presence of robust access control mechanisms.

This paper presents Cross-domain Service Access Control for devices (XSACd), a scheme which aims to

address the above requirements by defining a policy-based Access Control (AC) mechanism based on the

eXtensible Access Control Markup Language (XACML [3], an OASIS standard), thus providing the means

to control access to the resources of smart home nodes, even across different networks, based on policy

constraints centrally managed by the system owner. Typical XACML deployments require the setup of com-

plex infrastructures to enable entities' interaction and policy retrieval (e.g. via the Lightweight Directory

Access Protocol, LDAP [4]); such an approach may be acceptable for corporate environments but is not

suitable in the context of consumer applications and the average home user. To this end, the proposed frame-

work leverages the benefits of Service Oriented Architectures (SOAs) by implementing key entities using

the Devices Profile for Web Services (DPWS [5]), also an OASIS standard, which allows the deployment of

devices aligned with the Web Services technologies, thus facilitating interoperability among services pro-

vided by resource-constrained devices. The adoption of DPWS facilitates seamless Machine-to-Machine

(M2M) discovery and interactions, allowing the deployment of the framework's entities to any platform,

anywhere on the home network, with minimal involvement on behalf of the user.

By combining the above technologies, new devices can easily join existing networks and offer services

protected by a predefined or dynamic policy set. Based on the policy rules set by the system owner, the

proposed architecture provides fine-grained AC over the plethora of devices and services that may be found

in smart home environments. Thus, XSACd assists in the use of the various smart devices aiming to enhance

consumers’ lives, while addressing their security concerns.

A key limitation to the use of DPWS across different domains, is that its device discovery is limited to

local networks (as it is based on UDP multicast messages). To address this, we also introduce proxies that,

based on an external, Internet-based, broker, can enable the discovery and interaction with DPWS devices

residing in other networks, in an automated manner (i.e. in a seamless way from the user’s perspective).

This work is organized as follows: Section 2 provides the rationale behind this work, and Section 3 includes

relevant research efforts identified in the literature. Section 4 presents the proposed framework and its key

entities, along with the authors’ approach to implementing the framework. Section 5 includes the perfor-

mance evaluation of the developed solution on typical devices that may be found in a smart home environ-

ment. Finally, Section 6 concludes the article, containing pointers to areas that future work could explore to

further enhance the presented scheme.

2. RATIONALE

In a typical ubiquitous-computing-enhanced residential setting, various smart devices are expected to be

present on appliances (e.g. smart fridge) and automation-enabled structures (e.g. smart doors), also including

environmental sensors and actuators. Moreover, these are typically complemented by purpose-built devices

intended to organize, manage and enhance the functionality of the rest of the smart infrastructure, like energy

monitors and control nodes (e.g. a computing system with touch-based input to allow seamless monitoring

and interaction with the devices).

 This heterogeneous assortment of devices will feature a variety of services, each with its own intrinsic

characteristics (some being critical in terms of the residents’ safety, others dealing with private sensitive data

etc.), thus requiring a different protection profile. For example, all residents should be able to control the

smart doors and windows of a house, but, perhaps, children should not be able to tamper with a subset of

those (e.g. front door) at certain timeframes (e.g. during the night). In another scenario, visitors may have the

rights to monitor the environmental sensors of the residence, but not to set the climate control at their will.

Moreover, the residence owners may decide they feel alright with visitors checking the contents of their smart

fridge, but they, expectedly, should not be able to add goods to the shopping lists. Assuming the presence of

e-health devices in the smart home ecosystem, it is anticipated that the patient, her spouse and medical staff

should be able to monitor the various readings and control the actuators that deliver the prescribed medicine,

but only the latter group should have access to the service that controls the drug dosage. Moreover, it would

be desirable to allow medical staff to operate on the devices remotely, to avoid unnecessary visits to the

hospital. In cases where the residence is equipped with smart-metering devices, authorized power company

staff should be the only ones able to adjust and/or reset the meters remotely (for billing purposes), but, nev-

ertheless, the owners should be able to access the consumption readings as well.

Furthermore, a survey [6] on smart home users revealed that inflexibility (often forcing users to adopt

solutions offered by a single manufacturer) and difficulties in achieving security constitute significant barri-

ers to the broader adoption of pertinent technologies and devices.

From the above, and considering that, typically, the only pervasive protection mechanism present in home

environments is the access to the wireless network, it is evident that strong and interoperable access control

mechanisms are required to safeguard a variety of aspects pertaining to the operation of a smart home envi-

ronment. Additionally, this should be achieved in a flexible, platform-agnostic manner, acting as an enabler

instead of introducing new (or further exacerbate existing) obstacles to the adoption of “smart” devices and

services.

To this end, the presented framework is based on standardized mechanisms, which also allows leveraging

work already carried out both in terms of Web Services as well as XACML policy definitions. DPWS can

enable user-to-machine and M2M interactions in a unified manner, moving on from the current state of the

field, where consumer electronics manufacturers offer a variety of proprietary protocols which are not in-

teroperable and essentially lock-in consumers, forcing them to use a specific vendor/ecosystem. With regard

to XACML, the scheme can trivially be expanded to cater for additional specific concerns, such as privacy

issues and/or the handling of sensitive data (e.g. healthcare, as covered by the relevant OASIS Cross-Enter-

prise Security and Privacy Authorization profile for XACML v2.0 [7]).

3. BACKGROUND & RELATED WORK

3.1 Service-Oriented Architectures (SOAs)

SOAs evolved from the need to have interoperable, cross-platform, cross-domain and network-agnostic

access to devices and their services. This approach has already been successful in business environments, as

web services allow stakeholders to focus on the services themselves, rather than the underlying hardware and

network technologies.

The Devices Profile for Web Services (DPWS) specification defines a minimal set of implementation

constraints to enable secure Web Service messaging, including discovery, description, interactions and event-

driven changes on resource-constrained devices. DPWS was introduced in 2004 and is now an OASIS open

standard (at version 1.1 since July 2009). It employs similar messaging mechanisms as the Web Services

Architecture (WSA), with restrictions on complexity and message size, allowing the provision of totally

platform- and language-neutral services, similar to those offered by traditional web services, allowing system

owners to leverage the SOA benefits across heterogeneous systems that may be found in the various smart

environments (residential, enterprise etc.).

It should be noted that DPWS was originally conceived and introduced as a successor to Universal Plug

and Play (UPnP [8]), but the lack of backward compatibility meant that such a transition has not taken place

yet. While UPnP is the basis of many solutions proposed in the literature for the integration and management

of smart home devices, DPWS features significant improvements, justifying the migration to this newer spec-

ification. In more detail, as DPWS is built around the OASIS Web Services (WS-) stack, it offers significant

benefits in terms of operational and development aspects, as well as in device-to-device and user-to-device

communication. Deploying Web Services on devices allows the use of a single stack for local network and

Internet interactions with devices and other Web Services. Moreover, it helps take advantage of pre-existing

tools and development know-how and, most importantly, it allows leveraging the extensive work already

carried out in defining the various WS-* family of protocols (e.g. for security, an important aspect for which

UPnP is lacking provisions). Thus, DPWS-enabled devices feature superior scaling and seamless integration

capabilities, both in the context of smart home (e.g. smart appliances, energy monitoring or smart metering)

and enterprise (e.g. plant floors or enterprise-wide information systems) environments and the Internet (e.g.

regular W3C-specified Web Services). Scalability is a key area where UPnP is found wanting, as it is only

suitable for small local networks. Comparatively, the main disadvantage of DPWS is the existence of numer-

ous specifications (protocols, bindings etc.), which have not been consolidated yet.

The SOA-based approach of DPWS acts as an enabler, with added potential stemming from the enhanced

real-time monitoring and control features usable over the whole smart infrastructure. By facilitating the mi-

gration of low level data (e.g. sensing data) into higher level contexts (e.g. user privacy or energy usage

preferences, also including knowledge extraction from aggregated data), new types of services are made

possible. These new types of enhanced features and services are expected to be vital for future end-users as

well as smart home deployments.

In this context, the work of Leong et al [9] presents a rule-based framework for heterogeneous smart-home

systems management. Their work focuses on the use of SOAP for interoperability and uses an Event-Condi-

tion-Action (ECA) mechanism for machine-2-machine interactions and orchestration of the devices. The

SOAP-based interoperability framework has been further extended by Perumal et al [10] with the addition of

a service stub to facilitate the addition of new devices and a database module to handle the queries of the

SOAP messages (including home service functions, operation logic and access to other local or remote data-

bases).

SOA-DOS [11] is a SOA-based distributed operating system proposed in the relevant literature, aiming to

manage all embedded devices in a home network and facilitating interoperability between the various sys-

tems. The work manages to provide a SOA-based solution that is also applicable to very resource-constrained

platforms (like sensor nodes), but deviates from standardized mechanisms, e.g. resorting to the use of the

JSON [12] format instead of XML for data exchange.

The use of SOA concepts to tackle the dynamic and heterogeneous nature of home-control applications

has also been proposed by Bourcier et al [13]. The authors introduce an implementation of their approach

based on open source, standardized platforms, providing bridges to seamlessly integrate disparate devices

(including DPWS devices) and their services into their home control infrastructure.

The DPWS stack also forms the basis of iVision [14], a purpose-built hardware platform used to add con-

text-awareness to a service architecture for controlling home appliances, and its accompanying architecture.

In the above work, the context information extracted by the iVision camera and all the necessary smart home

appliance communications are exposed as web services using DPWS.

The use and benefits of DPWS have also been studied extensively in the context of various other applica-

tions areas, including automotive and railway systems (Venkatesh et al [15]), industrial automation

(Cucinotta et al [16]), eHealth (Pöhlsen et al [17]), and wireless sensor networks (Dohndorf et al [18]). All

of the above are positive indicators for the future of the technology chosen as the underlying implementation

and communication mechanism for the presented framework, and its potential for ubiquitous adoption.

3.2 Policy-based Access Control

Among the studied access control schemes proposed for systems with different requirements and proper-

ties, a cross-platform solution that meets the requirements of all types of embedded systems and provides

interoperability (which is crucial for next-generation pervasive computing devices), is based on eXtensible

Access control Markup Language (XACML) policies. XACML is an XML-based general-purpose access

control policy language used for representing authorization and entitlement policies for managing access to

resources. However, it is also an access control decision request/response language. As such, it can be used

to convey policy requirements in an interoperable and secure manner, if appropriately deployed. XACML is

used to convey policy requirements in a unified and unambiguous manner, which fits well into the model of

a network of heterogeneous embedded systems where access to resources is provided by nodes as a service.

Thus, XACML defines the structure and content of access requests and responses exchanged among access

control entities. In this work, the typical policy based access control architecture, combined with XACML,

is mapped to a SOA network of nodes to provide protected access to their distributed resources.

A survey of the literature reveals a wealth of related work, including various diverse approaches and at-

testing to the applicability of XACML in the context of smart homes.

Kim et al [19] have proposed the use of an OSGi (Open Services Gateway initiative) -based framework to

integrate heterogeneous smart-home devices and services. The proposed framework also includes an access

control model, combining the XACML mechanisms with OSGi services to appropriately create the queries

that will be forwarded to the entity responsible for access control decisions (i.e. the Policy Decision Point,

PDP). While the proposed approach theoretically supports a variety of protocols (including DPWS devices),

the presented analysis and proof of concept implementation are mainly based on UPnP, a protocol lacking in

many respects, already noted above (e.g. security & scalability). Furthermore, the performance of the pro-

posed mechanisms – an important aspect considering the resource-constraints of many smart devices – is not

evaluated.

Another approach found in the literature is the use of a "Reference Monitor" entity [20], i.e. a home gate-

way, whose goal is to provide and enforce a collection of access control policies, aiming to help satisfy a

user’s access, convenience, and privacy requirements. The access control policies are defined using XML,

but deviate from the standard XACML syntax and architecture.

Busnel et al [21] present a case study for remote healthcare assistance in smart homes. Most of the smart

home security & dependability requirements are discussed extensively, identifying the use of SOAs along

with XACML as the most applicable technologies to fulfill these requirements. An XACML-based authori-

zation solution is applied using the security pattern approach to satisfy security requirements typically exist-

ing in such environments. This work presents the outline of such a framework, but not an actual implemen-

tation of the SOA and XACML mechanisms, nor a performance evaluation. The resource-constrained nature

of the target devices and the use of appropriate security mechanisms do not appear to have been considered

during the design phase.

Researchers have also studied the use of access control mechanisms to safeguard the users’ privacy, a key

concern in the context of smart environments. Faravelon et al [22] outline such an architecture in the context

of SOA-enabled pervasive environments, using a medical scenario as a test case. The interoperability with

DPWS is considered, among other SOA technologies, but a non-standardized approach is adopted for the

access control functionality.

Privacy issues have also been considered by Jung et al [23], who have presented a generic concept of

access control for home automation gateways, aiming to safeguard the privacy and security of users and their

data. The scheme is based on a customized SOAP message structure that integrates XACML attributes within

SAML-based access token. However, the initial, theoretical evaluation of the proposed scheme indicates that

this approach is quite costly (especially in terms of packet size), which questions its applicability in the con-

text of embedded smart home devices. The authors acknowledge this drawback and indicate it will be inves-

tigated, as future work, on actual platforms.

Müller et al [24] have also proposed the combined use of DPWS with XACML, but focusing on end-user

content (e.g. the distribution of multimedia files). They also use proxies to establish trust relationships across

smart home domains but the authors did not exploit DPWS in the implementation and deployment of the

XACML architecture.

4. PROPOSED MODEL & IMPLEMENTATION APPROACH

This section aims to detail the basic components of the proposed solution, as well as the toolkits chosen to

develop the proof of concept implementation.

4.1 Main entities

In the proposed framework, the following key entities are present and can be deployed on different smart

home nodes, depending on their role and resources:

 Policy Enforcement Point (PEP): Makes decision requests and enforces authorization decisions.

This is expected to be present in every smart device (appliances, sensors, e-health devices, energy

monitoring or smart metering devices etc.) which provides its resources to the end users, and which

need to be protected by the active policy set.

 Policy Decision Point (PDP): Evaluates requests against applicable policies and renders an author-

ization decision. It is expected to be deployed on more feature-rich nodes, typically a personal com-

puter or an embedded system that acts as a controlling node for the whole smart home infrastructure

 Policy Administration Point (PAP) & Policy Information Point (PIP): The former creates and man-

ages policies or policy sets, while the latter acts as a source of attribute values. These two entities

will typically be deployed on the same feature-rich node, facilitating direct interaction with end-

users (e.g. home owners). A desktop computer or a laptop are good candidates for this role.

 Cross-domain Proxy: This entity is responsible for catching all discovery messages of the network,

processing their contents and transmitting them to other networks, also transmitting to the local

network all messages received from other domains.

 Broker: This is the main entity through which all cross-domain traffic is routed. The broker is re-

sponsible for distributing messages to all interested clients (i.e. the proxies) based on a message’s

topic. To this end, all proxies have to subscribe to the Broker.

As is evident from the above, and considering that nodes embedded in a smart home may not have the

computing resources to accommodate expensive mechanisms, the core decision process is undertaken by

more powerful nodes expected to operate within the node’s trusted environment. Such an approach allows

requests to be directly addressed to the node in question, while maintaining the capability to centrally manage

and control access to these nodes. An overview of the architecture can be seen in Figure 1.

Figure 1. Smart Home Access Control architecture & cross-domain communication. Main entities.

There are various open-source and commercial implementations of XACML that could be used as a basis

for the AC entities needed to implement the proposed framework. The authors chose to use Sun’s Java-based

XACML implementation, as it remains popular among developers and is actually the basis of various current

open-source and commercial offerings.

4.2 DPWS implementation of the XACML entities

All of the framework’s entities are exposed to the network using DPWS, thus leveraging the benefits pro-

vided by SOAs. There are a variety of APIs available for DPWS development, including the tools provided

by the Web Services for Devices (WS4D) initiative and the SOAs for Devices (SOA4D) toolkits, based on

various programming languages (C, C++, Java etc.) and each featuring its own intrinsic characteristics. Nev-

ertheless, when focusing on key features such as code portability, deployment on heterogeneous platforms,

support for IPv6 (necessary for ubiquitous computing applications) and, most importantly, active develop-

ment and support of the tools, WS4D-JMEDS currently stands out as the most attractive choice. It is the most

advanced and active work of the WS4D initiative, supporting most of the existing DPWS features and provid-

ing portability to a wide range of platforms; it is also the authors’ toolkit of choice to develop the DPWS

entities presented in this work.

Using the above API and exploiting the features of DPWS, the XACML functionality can be exposed to

the home network (and the Internet, if needed), allowing the seamless discovery and communication of the

framework’s entities, regardless of the device where they may be deployed. In more detail, the XACML

features are exposed as follows:

4.2.1 PEP to PDP implementation

The Policy Enforcement Point must reside on every device with resources that must be protected from

unauthorized access. Other than the functional elements of the devices which the framework intends to pro-

tect (e.g. access to its sensors), two extra operations must be present on each DPWS device. These operations,

in essence, constitute the PEP functionality and its communication with the PDP. The latter acts as a DPWS

client which accesses these PBAC-specific operations.

More specifically, the first operation is the "SAREvent" (Service Access Request Event), referring to an

operation following the WS-Eventing specification to which devices can subscribe. When fired, the operation

outputs “SAROut”, a message which includes all the information the PDP needs to have in order to evaluate

a request (i.e. Subject, Action and Resource). The second operation is "PDPResponse" (Policy Decision Point

Response), which is invoked by the PDP to relay an answer to a pending access request.

4.2.2 PDP to PIP/PAP implementation

In terms of the discovery and information exchange that must take place between infrastructure entities

(PDP, PIP, PAP), an extra operation must reside with the entity that stores the active policy set (namely the

PIP/PAP). This extra operation is named "PIPOperation" (Policy Information Point Operation). It features an

input for the request issued by the PDP (requesting all applicable policy rules), and an output containing all

the pertinent information (i.e. policies and rules) that the PIP has identified.

4.3 Event sequence

The above DPWS operations and the sequence of events that take place when an access request is received

for a protected resource are depicted in Figure 2.

Figure 2. DPWS implementation of the XACML mechanisms.

In more detail, the PDP is implemented as a DPWS client, constantly monitoring the network for “Hello”

messages transmitted by DPWS devices as they initialize. Whenever it discovers a PEP-equipped device, it

automatically subscribes to its “SAREvent” operation.

Each time a user tries to access a resource on one of these AC-protected devices, the “SAREvent” is fired,

notifying the PDP that a request has to be evaluated, and transmitting all the information required for

XACML to make such a decision. This information includes the Request ID (a counter of policy decision

requests issued by the specific device), the Client’s identifier, e.g. IP and/or username (Subject), the Invoked

PIP/PAP

PDP

SAREvent

PDPResponse

1. Subscribes

2. Eventing

5. Invokes

3. Invokes

4. Response

PIPOperation

Operation (Action) and the Device’s UUID, i.e. its Universally Unique Identifier (Resource).

The above data is used by the PDP to generate an XACML request, i.e. a request in a form that can be

evaluated by the XACML decision engine. This process also involves the PDP invoking the “PIPOperation”

of the PIP/PAP, in order to retrieve the applicable policies.

Based on the information included in the PEP request and the pertinent policies retrieved from the PIP/PAP,

the PDP can then decide if the user’s pending request is authorized or not. This decision is conveyed to the

PEP by invoking its “PDPResponse” operation.

Finally, based on the decision received, the PEP either grants or denies access to the device’s resource that

the user initially tried to access.

4.4 DPWS Proxy

On its own, DPWS does not support cross-domain communications, since device discovery is based on a

UDP multicast protocol, WS-Discovery. So, without the use of a purpose-built proxy, all the above entities

must be on the same network in order to operate since DPWS device discovery is based on a UDP multicast

WS-Discovery [25]. Our proxy implementation is not based on a central server that catches all “hello” and

“bye” messages as is typical for such proxies; this presumes that at every discovery proxy has a list of known

devices and that proxies communicate each other to “share” devices, which is not really usable.

XSACd’s proxy uses MQTT [26], a publish-subscribe OASIS standard protocol, as the backbone of com-

munication between networks. An MQTT Broker, deployed somewhere on the Internet, is responsible for

handling and organizing all communications between the various domains and their corresponding proxies.

In every local network a MQTT client is deployed which has two roles:

 catch all discovery messages of the network, handle the info and transmit them at the other DPWS

networks and

 transmit to the current network all messages that are published from other networks.

Catching all messages from the network is done by adding a membership to a predefined address, namely

239.255.255.250:3702, which is the UDP broadcast and default port of DPWS discovery default settings.

Then every SOAP xml message is parsed; if it is a “hello” message the IP of the message is changed from

the 192.168.*.* ,which is normally used in a local network, to the external IP, also using NAT-PMP (if the

network’s router supports it) the local port is forwarded, so that external communication is achieved. Then

the changed “hello” message is transmitted to all the other DPWS proxy subscribers. When a client from a

local network searches (sends a probe) for a device, the proxy saves the ID of the message and also the

information of the sender. That way, if a device is found that meets the search criteria (i.e. a probe match is

received), it will only transmit the response to the local network that made the search. Moreover, the sender

information is kept because, when a client sends a probe message, it waits for the probe response at the same

port. Moreover, as every message ID is saved, duplicate transmissions are eliminated.

It must also be mentioned that for multi-home communication to be fully supported, after the device dis-

covery (facilitated by the DPWS proxy), the client asks the target device of its metadata, provided in the form

of a WSDL [27] file. In order to have a successful communication, the WSDL file must contain the external

IP of the device. This was not supported in any available DPWS implementation, so we modified our custom

DPWS implementation in the Node.js programming environment [28], allowing us to track the GetMetadata

message: if it originates from the local network, it uses the local IP (192.168.*.*) at the WSDL, otherwise it

uses the router’s external IP. Any standard MQTT Broker could be used to interact with the XSACd proxies.

For the proof-of-concept implementation, we opted for the Mosquitto open source message broker [29].

Figure 3 depicts a simplified view of the above, along with the steps that take place during normal opera-

tion; in this example, when a device from the local network issues a probe match and gets a reply from a

device deployed in another domain. All external traffic is routed through the local router in a typical home

deployment; to this end, the proof-of-concept implementation automates port forwarding.

Compared to the proxy presented by Müller et al [24], the XSACd approach has various benefits. Scaling

is an issue with the previous work, as in the case of N networks, each proxy must communicate with N-1

other proxies. So, for example, a proxy must send its probe match request to N-1 other networks, initiating

an equal number of connections. In our approach, each proxy only needs to communicate with the MQTT

Broker, which is responsible for disseminating all DPWS messages to the other registered proxies. Moreover,

there is added complexity in that the proxy has to tamper with the metadata files, whereas in XSACd all

devices properly formulate their metadata files by themselves. Finally, the authors propose different types of

proxies (client proxy & server proxy), depending on the network's role, whereas an XSACd proxy can ac-

complish both roles simultaneously.

Figure 3. XSACd cross-domain proxy implementation and main steps. Simplified view.

4.5 Security considerations

The effectiveness of any access control mechanism can easily be compromised unless appropriate security

mechanisms are deployed to protect policy messaging. A malicious entity would otherwise be able to eaves-

drop, replay or tamper with the access control messaging, overriding the offered protection to provide access

to unauthorized entities or denying access to authorized ones. When feasible, deployments over trusted and/or

secure networks (e.g. over a Virtual Private Network, VPN) can address most of these concerns, but an al-

ternative mechanism has to be considered for deployments where these provisions are not realistic.

The Web Services Security Specification (WS-Security or WSS, [30]) is part of the WS-* family of speci-

fications published by OASIS. The protocol specifies integrating security features in the header of SOAP

messages. Working in the application layer, it ensures the end-to-end integrity and confidentiality of SOAP

messages. Therefore, an alternative of the proof-of-concept implementation was developed as well, adopting

the security mechanisms specified in WSS. These mechanisms authenticate entities and safeguard the integ-

rity and confidentiality of the policy messaging exchanged by the framework’s entities.

In terms of protecting the communication of the proxies with the MQTT broker, there are various options

that could be explored. As of version 3.1, MQTT supports the use of a username and password to secure the

communication with the broker. There is also the option of using web sockets and secure web sockets .More-

over, since MQTT is based on TCP, one could always opt for the use of more typical socket security mech-

anisms, such as SSL/TLS, but this would add a notable amount of processing overhead. In this proof-of-

concept we used a symmetric mechanism based on AES/CCM [31] to encrypt every payload sent from the

publisher to the subscribers. Thus, a username and password is used to secure access to the MQTT broker

and, moreover, the messages exchanged are encrypted, to protect them from eavesdropping and tampering

(using the authenticated encryption mechanisms of AES/CCM).

5. PERFORMANCE EVALUATION

The use of platform-agnostic technologies (i.e. DPWS and Java) enables the proposed framework to be

deployed, by design, on a variety of platforms and operating systems. However, in order to realistically assess

the performance of the proposed framework and its impact on the target devices, the developed entities have

to be deployed on devices expected to be present in smart home environments.

Therefore, the infrastructure entities, namely the PDP and PIP/PAP, were deployed on a laptop (quad core

CPU at 2.6GHz, 4GB RAM), as a personal computer is typically available in home environments and is

expected to act as a management hub through which the residents monitor and control their smart residence.

A total of 50 policies were stored in the policy repository, which the authors considered a realistic approxi-

mation of the number of policies needed, considering the relatively limited number of devices expected to

reside in a smart home. Tests were also carried out with 500 policies, to assess the impact more policies

would have on the framework’s performance.

Regarding the target platforms – i.e. the platforms featuring the services that need to be protected – the

authors chose to use relatively resource-constrained smart embedded devices (600MHz low power single

core CPU, 512MB RAM) running the Android open source operating system for mobile devices. Such oper-

ating systems are already found in many smart commercial appliances (e.g. smart fridges) offered by the

various consumer vendors. Moreover, their adoption is expected to spread as more sophisticated home de-

vices become available to end users; thus, the above platform can be considered a realistic choice for evalu-

ating the performance of the proposed mechanisms.

The DPWS device deployed on the smart platform not only featured the access control related operations

(as depicted in Figure 2) but also featured three simple operations, emulating part of the functionality of a

smart appliance (e.g. smart fridge). Via the above operations, the user can get the current temperature, sub-

scribe to a service that periodically informs of said temperature and also set the desired temperature when

needed. A basic touch GUI was developed for this device, which can be seen in Figure 4.

A client application was also developed for testing purposes; the “Smart Home Browser”. This application

is deployable on various end devices (personal computers, smart phones or tablets) and allows users to dis-

cover and control the various DPWS-enabled smart appliances (to get the current contents of the smart fridge,

to subscribe to the power consumption readings provided by the smart metering device etc.).

A screenshot of the Smart Home Browser prototype implementation appears in Figure 5.

Figure 4. Screen capture of the (PEP-protected) DPWS test device deployed on the touch-enabled

smart platform.

Figure 5. The "Smart Home Browser"; an application developed to facilitate the discovery of DPWS

devices and provide access to their hosted services.

A command line-only variation of this client, programmed to automatically invoke operations and record

response times, was developed for benchmarking purposes. This benchmark client was used to evaluate the

performance of three setups: a simple DPWS device with no PEP implemented (i.e. with direct access to its

services), a DPWS device protected by the presented access control entities communicating in plaintext, and

a third setup with the entities’ communications being protected via WS-Security. This allowed the authors to

separately assess the impact of the access control functionality and the impact of the security mechanisms

that may be needed to protect the policy messaging in some deployments.

In addition to the client-side measurements, the CPU and memory utilization was also monitored on both

the personal computer that hosted the PDP and PIP/PAP as well as on the PEP-equipped smart device. Fur-

thermore, two different usage scenarios were investigated: In the first scenario, the client issued 100 concur-

rent requests to invoke the services, allowing the investigation of the performance under heavy load condi-

tions. The results appear in Figure 6.

Figure 6. Client-side response time for 100 concurrent requests (in ms).

Investigating a second use case scenario, we set the benchmark client to issue 20 requests, one every 3

minutes, emulating more realistic usage conditions in the context of a smart home environment. The results

of the above assessments in terms of the average response time (i.e. the time the user has to wait before she

receives the data she intended to access) are depicted in Figure 7. In both usage scenarios, the overhead of

the access control mechanism are considered acceptable. The impact of the WSS protection is significant in

cases of infrequent requests (as in the second scenario, where the connections close between the request

timeouts and, thus, have to be reinitiated).

Figure 7. Average client-side response time (in ms) for the investigated deployments and usage sce-

nario.

In terms of the resources consumed on the target, PEP-protected device, and focusing on the most demand-

ing scenario (i.e. concurrent requests), profiling indicated a mild footprint during tests, even in the case of

0

100

200

300

400

500

600

No Access Control XSACd Plaintext XSACd WSS

38,27

511,2

140,86

768

166,98

992,4

0

100

200

300

400

500

600

700

800

900

1000

C
o

n
cu

rr
e

n
t

3
m

in
/r

eq

C
o

n
cu

rr
e

n
t

3
m

in
/r

eq

C
o

n
cu

rr
e

n
t

3
m

in
/r

eq

No access control XSACd, plaintext XSACd, WSS

the relatively resource-constrained smart platform used in this setup. Average memory consumption is pre-

sented in Figure 8, where the overhead of the access control mechanisms appears trivial compared to the

simpler DPWS device.

Figure 8. Memory footprint (in kB, logarithmic scale) on the PEP-protected device, including the

overhead compared to the simple DPWS device with no access control protection.

The average CPU load was inversely proportional to the client response times (depicted in Figure 7); when

the device has to wait for a reply from the framework (i.e. the PDP) before serving the client, its CPU load

is expectedly lower. The recorded values were 11.6%, 9.3% and 8.4% for no access control, XSACd and

XSACd with WSS respectively. The same ranking was also documented when monitoring average transmis-

sion (TX) and reception (RX) rates on the target device – see Figure 9. The most taxing scenario network-

wise was that of the device with no access control, but in all cases the data rates were relatively low, with the

lowest recorded value being 16.13kB (average TX of XSACd, WSS device) and the highest being 26.5kB/sec

(average RX of DPWS device without access control).

Figure 9. Network throughput on target device during tests.

4460,34 4464,95

50,07 54,68

1,00

10,00

100,00

1000,00

10000,00

XSACd, plaintext XSACd, WSS

Memory footprint Overhead

27049

23306

20777

25805

18121
16514

0

5000

10000

15000

20000

25000

30000

No access control XSACd, plaintext XSACd, WSS

Average RX (bytes/sec) Average TX (bytes/sec)

The number of stored policies may significantly affect the performance of the access control system, to

the point where the response time overhead becomes prohibitive [24]. This was taken under consideration

during development and, thus, XSACd's PIP stores policies in the form of a hash table residing in memory.

The effectiveness of this approach was validated during benchmarks: increasing the number of stored policies

from 50 to 500 increased the response time by 7,37% in the first scenario (i.e. consecutive requests) and by

just 1,7% in the more realistic second scenario (i.e. a request every 3 minutes).

Finally, to assess the load that the DPWS proxy might impose on the device it will be deployed on, the

proof-of-concept implementations of the proxies were deployed on two Beagleboard-xM embedded devices

(1GHz ARM Cortex-A8 processor, throttled at 600MHz during testing, 512MB DDR2 RAM, a minimal

Linux-based operating system), each residing on a different geographical area and communicating via the

Internet. A screenshot of a command line remote connection to the proxy appears in Figure 10.

Figure 10. XSACd cross-domain proxy. Command line remote connection to the Beagleboard-xM

embedded platform.

Even though these test-bed platforms were relatively resource-constrained, their CPU load during testing

was minimal (below 10% when handling messages, otherwise idle). The memory footprint of the application

is relatively stable at around 16MB, of which around 6,6MB are occupied by the various libraries used in its

implementation.

The MQTT Broker used was just a standard implementation of Mosquitto [29], thus assessing its perfor-

mance is beyond the scope of this work.

6. CONCLUSIONS & FUTURE WORK

This paper presented XSACd, a framework that leverages the benefits of SOAs, and DPWS specifically,

to enable the integration of well-studied fine-grained and adaptable access control provided by XACML into

smart homes and other smart environments, often residing across different networks. The intrinsic require-

ments of the smart home environment, its users and the often resource-constrained nature of its devices fun-

damentally affected the choice and implementation of the standardized mechanism that form the basis of this

work. Thus, XSACd’s entities are platform-agnostic, lightweight and interact seamlessly, minimizing the

home users’ involvement in deploying, setting up and maintaining the system. The proxies responsible for

the communication across different domains, require no interaction on behalf of the users, offering automated

discovery and interactions with the target devices across the Internet.

Nevertheless, home owners will be responsible for defining some parameters of the active policy set, de-

pending on their requirements and preferences. Thus, an important aspect to be investigated is the provision

of user-friendly interfaces for specifying access control policies, e.g. using a GUI with easy to use drop-down

menus and tick boxes or having the user answer simple questions, automatically translating the user input to

policies.

Lastly, while this paper focused on authorization aspects of ubiquitous smart devices, another important

building block is the user authentication. To this end, the integration of XSACd with the work we presented

in [32], will be investigated in the future.

ACKNOWLEDGMENTS

Part of this work was funded by the General Secretarial Research and Technology (G.S.R.T.), Hellas under

the Artemis JU research program nSHIELD (new embedded Systems arcHItecturE for multi-Layer Depend-

able solutions) project. Call: ARTEMIS-2010-1, Grand Agreement No: 269317.

REFERENCES

[1] D. Sauveron, K. Markantonakis, C. Verikoukis, Security and resilience for smart devices and applications, EURASIP J. Wirel.

Commun. Netw. 2014 (2014) 123. doi:10.1186/1687-1499-2014-123.

[2] C. Manifavas, K. Fysarakis, A. Papanikolaou, I. Papaefstathiou, Embedded Systems Security: A Survey of EU Research Efforts,

Secur. Commun. Networks. 8 (2015) 2016–2036. doi:10.1002/sec.1151.
[3] B. Parducci, H. Lockhart, E. Rissanen, eXtensible Access Control Markup Language (XACML) Version 3.0, OASIS Stand. (2013)

1–154. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf (accessed September 1, 2015).

[4] J. Sermersheim, Lightweight Directory Access Protocol (LDAP): The Protocol, Internet Eng. Task Force. (2006) 1–69.
http://www.ietf.org/rfc/rfc4511.txt.

[5] D. Driscoll, A. Mensch, T. Nixon, A. Regnier, Devices profile for web services version 1.1, OASIS Stand. July. 1 (2009)

[6] A. Brush, B. Lee, R. Mahajan, Home automation in the wild: challenges and opportunities, in: Proc. SIGCHI Conf. Hum. Factors
Comput. Syst., 2011: pp. 2115–2124. doi:10.1145/1978942.1979249.

[7] D. DeCouteau, M. Davis, D. Staggs, OASIS Cross-Enterprise Security and Privacy Authorization (XSPA) Profile of XACML

v2.0 for Healthcare Version 1.0, OASIS Stand. Specif. (2009) 1–21. http://docs.oasis-open.org/xacml/xspa/v1.0/xacml-xspa-
1.0.pdf (accessed September 1, 2015).

[8] A. Donoho et al., UPnP Device Architecture 2.0, Architecture. (2015) 1–196. http://upnp.org/specs/arch/UPnP-arch-DeviceArchi-

tecture-v2.0.pdf (accessed September 1, 2015).
[9] C.Y. Leong, A.R. Ramli, T. Perumal, A rule-based framework for heterogeneous subsystems management in smart home envi-

ronment, IEEE Trans. Consum. Electron. 55 (2009) 1208–1213. doi:10.1109/TCE.2009.5277977.

[10] T. Perumal, A. Ramli, C. Leong, Interoperability framework for smart home systems, IEEE Trans. Consum. Electron. 57 (2011)
1607–1611. doi:10.1109/TCE.2011.6131132.

[11] A. Sleman, R. Moeller, SOA distributed operating system for managing embedded devices in home and building automation, IEEE
Trans. Consum. Electron. 57 (2011) 945–952. doi:10.1109/TCE.2011.5955244.

[12] T. Bray, RFC7159: The JavaScript Object Notation (JSON) Data Interchange Format, Internet Eng. Task Force Req. Comments.

(2014). http://tools.ietf.org/html/rfc7159 (accessed September 1, 2015).
[13] J. Bourcier, C. Escoffier, P. Lalanda, Implementing Home-Control Applications on Service Platform, in: 2007 4th IEEE Consum.

Commun. Netw. Conf., IEEE, 2007: pp. 925–929. doi:10.1109/CCNC.2007.187.

[14] R.R. Igorevich, P. Park, J. Choi, D. Min, iVision based Context-Aware Smart Home system, in: 1st IEEE Glob. Conf. Consum.
Electron. 2012, IEEE, 2012: pp. 542–546. doi:10.1109/GCCE.2012.6379904.

[15] V. Venkatesh, V. Vaithayana, P. Raj, K. Gopalan, R. Amirtharaj, A Smart Train Using the DPWS-based Sensor Integration, Res.

J. Inf. Technol. 5 (2013) 352–362. doi:10.3923/rjit.2013.352.362.
[16] T. Cucinotta, A. Mancina, G.F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, et al., A Real-Time Service-Oriented Architec-

ture for Industrial Automation, IEEE Trans. Ind. Informatics. 5 (2009) 267–277. doi:10.1109/TII.2009.2027013.

[17] S. Pöhlsen, S. Schlichting, M. Strähle, F. Franz, C. Werner, A DPWS-Based Architecture for Medical Device Interoperability, in:
O. Dössel, W. Schlegel (Eds.), World Congr. Med. Phys. Biomed. Eng. Sept. 7 - 12, 2009, Munich, Ger. SE - 22, Springer Berlin

Heidelberg, 2009: pp. 82–85. doi:10.1007/978-3-642-03904-1_22.

[18] O. Dohndorf, J. Kruger, H. Krumm, C. Fiehe, A. Litvina, I. Luck, et al., Towards the Web of Things: Using DPWS to bridge
isolated OSGi platforms, in: 2010 8th IEEE Int. Conf. Pervasive Comput. Commun. Work. (PERCOM Work., IEEE, 2010: pp.

720–725. doi:10.1109/PERCOMW.2010.5470527.

[19] J.E. Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, D. Mosse, Seamless Integration of Heterogeneous Devices and Access
Control in Smart Homes, in: 2012 Eighth Int. Conf. Intell. Environ., IEEE, 2012: pp. 206–213. doi:10.1109/IE.2012.57.

[20] E.-A. Cho, C.-J. Moon, D.-K. Baik, Home gateway operating model using reference monitor for enhanced user comfort and pri-

vacy, IEEE Trans. Consum. Electron. 54 (2008) 494–500. doi:10.1109/TCE.2008.4560120.
[21] P. Busnel, P. El-Khoury, S. Giroux, K. Li, An XACML-based Security Pattern to achieve Socio-Technical Confidentiality in Smart

Homes, J. Smart Home. 3 (2009) 17–26.

[22] A. Faravelon, S. Chollet, C. Verdier, A. Front, Enforcing privacy as access control in a pervasive context, in: 2012 IEEE Consum.
Commun. Netw. Conf., IEEE, 2012: pp. 380–384. doi:10.1109/CCNC.2012.6181011.

[23] M. Jung, G. Kienesberger, W. Granzer, M. Unger, W. Kastner, Privacy enabled web service access control using SAML and

XACML for home automation gateways, 2011 Int. Conf. Internet Technol. Secur. Trans. (2011) 584–591. http://ieeex-
plore.ieee.org/xpls/abs_all.jsp?arnumber=6148403 (accessed September 1, 2015).

[24] A. Müller, H. Kinkelin, S.K. Ghai, G. Carle, A secure service infrastructure for interconnecting future home networks based on

DPWS and XACML, in: Proc. 2010 ACM SIGCOMM Work. Home Networks - HomeNets ’10, ACM Press, New York, New
York, USA, 2010: p. 31. doi:10.1145/1851307.1851315.

[25] T. Nixon, A. Regnier, V. Modi, D. Kemp, Web Services Dynamic Discovery (WS- Discovery), version 1.1, OASIS. (2009) 1–50.

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf (accessed September 1, 2015).

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/xspa/v1.0/xacml-xspa-1.0.pdf
http://docs.oasis-open.org/xacml/xspa/v1.0/xacml-xspa-1.0.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://tools.ietf.org/html/rfc7159
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6148403
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6148403
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf

[26] A. Banks, R. Gupta, OASIS Message Queuing Telemetry Transport (MQTT), version 3.1.1, OASIS. (2014) 1-81. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf (accessed September 1, 2015).
[27] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services Description Language (WSDL) 1.1, Int. Bus. (2001) 1–

40. http://www.w3.org/TR/wsdl (accessed September 1, 2015).

[28] K. Fysarakis, D. Mylonakis, C. Manifavas, I. Papaefstathiou, Node.DPWS: Efficient Web Services for the IoT, IEEE Softw.
(2015). To appear.

[29] Mosquitto Open Source MQTT v3.1/v3.1.1 Broker. http://mosquitto.org (accessed September 1, 2015).

[30] K. Lawrence, C. Kaler, A. Nadalin, R. Monzilo, P. Hallam-Baker, Web Services Security: SOAP Message Security 1.1, OASIS
Stand. Specif. (2006) 1–76. https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecu-

rity.pdf (accessed September 1, 2015).

[31] D. Whiting, R. Housley, N. Ferguson, Counter with CBC-MAC (CCM), (2003). http://tools.ietf.org/rfc/rfc3610.txt (accessed Sep-
tember 1, 2015).

[32] K. Rantos, K. Fysarakis, C. Manifavas, I.G. Askoxylakis, Policy-Controlled Authenticated Access to LLN-Connected Healthcare

Resources, IEEE Syst. J. (2015) 1–11. doi:10.1109/JSYST.2015.2450313.

BIOGRAPHIES

Konstantinos Fysarakis is a PhD candidate at the Department of Electronic & Computer Engineering of the

Technical University of Crete. He received an MSc in Information Security from Royal Holloway, University

of London and a BSc in Applied Mathematics from the University of Crete. His interests revolve around the

security & dependability of embedded systems and the challenges of ubiquitous computing, publishing re-

search papers and being involved in pertinent EU-funded projects. He is a member of the IEEE and also

enjoys working on industry-related tasks, dealing with Information Security Management issues in particular

(being an IRCA certified ISO 27001:2005 auditor).

Othonas Soultatos is a researcher at the Department of Electronic & Computer Engineering of the Technical

University of Crete. He received a BSc in Computer Science from the University of Crete. His interests are

in the area of lightweight communication protocols and their implementation using different programing

environments, and also security in communication protocols and web-based applications.

Dr. Charalampos Manifavas has fifteen years of experience in the network and information security field,

holding positions in the public and private sectors as a security engineer and consultant. He is an Assistant

Professor at the Electrical Engineering and Computing Sciences Dept. of Rochester Institute of Technology

Dubai, UAE. He holds a PhD in Computer Science from the University of Cambridge, an MSc in Commu-

nications Systems Engineering from the University of Kent and a BSc in Computer Science from the Uni-

versity of Crete. He has participated in several EU funded research projects and has published more than 40

research papers.

Dr. Ioannis Papaefstathiou is a professor at the Department of Electronic & Computer Engineering of the

Technical University of Crete. He holds a PhD in Computer Science from the University of Cambridge, an

MSc in Computer Science from Harvard University and a BSc in Computer Science from the University of

Crete. He has been Principal Investigator in numerous competitively funded research projects in Europe and

has published more than 80 papers in IEEE/ACM sponsored journals and premier international conferences.

He is interested in the architecture and design of novel computer systems, concentrating on devices with

highly constrained resources.

Dr. Ioannis G. Askoxylakis is a member of the Telecommunications and Networks Laboratory of FORTH-

ICS. He holds a Diploma in Physics from the University of Crete, an MSc in Communication Engineering

from the Technical University of Munich and a PhD in Engineering from the University of Bristol. His re-

search interests lie in the fields of system and communication security, operational cybersecurity, computer

security incident response and emergency response communications. He is the author of more than 40 pub-

lications in international conferences and journals, as well as book chapters, and has both organized and

chaired several prestigious international conferences and workshops.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://www.w3.org/TR/wsdl
http://mosquitto.org/
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://tools.ietf.org/rfc/rfc3610.txt

