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Abstract

A wide variety of natural or artificial systems can be modeled as time-varying or temporal networks.

To understand the structural and functional properties of these time-varying networked systems,

it is desirable to detect and analyze the evolving community structure. In temporal networks, the

identified communities should reflect the current snapshot network, and at the same time be sim-

ilar to the communities identified in history or say the previous snapshot networks. Most of the

existing approaches assume that the number of communities is known or can be obtained by some

heuristic methods. This is unsuitable and complicated for most real world networks, especially tem-

poral networks. In this paper, we propose a Bayesian probabilistic model, named Dynamic Bayesian

Nonnegative Matrix Factorization (DBNMF), for automatic detection of overlapping communities

in temporal networks. Our model can not only give the overlapping community structure based on

the probabilistic memberships of nodes in each snapshot network but also automatically determines

the number of communities in each snapshot network based on automatic relevance determina-

tion. Thereafter, a gradient descent algorithm is proposed to optimize the objective function of our

DBNMF model. The experimental results using both synthetic datasets and real-world temporal

networks demonstrate that the DBNMF model has superior performance compared with two widely

used methods, especially when the number of communities is unknown and when the network is

highly sparse.

Key words: community detection, temporal networks, Bayesian nonnegative matrix factorization,

gradient descent, model selection.

1. Introduction

Complex networks, such as social networks, biological networks and information networks, are

very common in real life. The analysis of complex networks has been becoming more and more

∗Corresponding author.
Email address: hedongxiao@tju.edu.cn (Dongxiao He )

Preprint submitted to Knowledge-Based Systems July 27, 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

important and has drawn great attention in the last few years. As a heated topic in network

science, community detection [1] is aimed at identifying meaningful groups or clusters in complex5

networks, which have a larger density in intra-groups compared to that in inter-groups. Intuitively,

there is a closer relationship among individuals in intra-communities while a weaker relationship for

inter-communities. Taking the protein-protein interaction networks [2] as an example, each protein

community may correspond to an analogous functional module. Similarly, individuals in the same

group may have common interests in social networks [3] such as Facebook, Twitter, LiveJournal and10

so on.

One problem is that each individual may have multiple roles, which leads to an overlapping

community structure [4] [5]. For example, one person with different interests may often join multiple

groups in real life. Various methods for (overlapping) community detection have been proposed, such

as hierarchical clustering, spectral clustering, modularity-based methods [6], random walks [7], clique15

percolation [8] , and stochastic block model [9]. However, most of these methods are designed for

static networks, while many networks are temporal or dynamic [10] in real world. For instance,

communication networks or email networks are highly dynamic, and the inter-time distribution of

individual’s interaction follows power-law property. Cooperation networks may change with the

physical moving of people from one institution to another or the changing of the academic interests20

of the authors. Protein functions always evolve with aging. Thus, overlapping community detection

in temporal networks is increasingly important and challenging in practical applications.

So, what are temporal networks and how to model their dynamics? What is the relationship

between community detection in temporal networks and community evolution? How to detect

dynamic communities in temporal networks, and what are the difficulties of community detection25

in temporal networks? In the following we will discuss and attempt to provide answers to these

questions.

A temporal network can be modeled as a series of static networks [11]. Here as the most published

research did, we assume that there are three types of changes in temporal networks including: 1)

new nodes adding or old nodes removing; 2) edges appearing or disappearing; and 3) the change of30

the number of communities. Generally, network evolution or community evolution has been studied

for several years [12], and there are several types of dynamics, such as expansion and shrinking.

However, we argue that there have been some essential differences between community evolution

and community detection in temporal networks. The former mainly focuses on the temporal char-

acteristics of communities and their future trends with the network evolution [13]; while the later35

is aimed at identifying dynamic communities with considering their evolution. In other words, a

part of community evolution can be considered as some constraints or essential conditions when

identifying communities in temporal networks.

Recently, several methods have been proposed for community detection in temporal networks,
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which can be classified into three main types. The first type of approaches is the well-known two-40

steps strategy, which identifies community structure in each snapshot network by using methods for

static networks, and then analyzes the community evolution according to some principles, such as

the Jaccard index [13]. The second type of approaches is the generative model [14] which is based

on the combination of stochastic block model (SBM) and the state space model or liner dynamic

system, i.e., the whole temporal network is represented as a sample of a dynamic generative model.45

Then the detection of communities and the analysis of community evolution are transformed into

an unified problem of parameters estimation based on likelihood maximization. The last type of

approaches is the so called evolutionary clustering [15] which considers the clustering results of the

previous snapshot networks when analyzing the current snapshot network.

In general, there are at least three factors leading to the difficulties of community detection in50

temporal networks. The first is that one may encounter different types of dynamics in temporal

networks. With the evolution of networks, the original links or nodes in the networks may disappear

and new ones may occur, thus the communities in temporal networks will be created or disappear,

and can also merge or split [16]. In this sense, community detection in temporal networks is no

longer a static model or function to be computed or optimized, but needs to be analyzed as a55

network stream or a temporal process. The second is the detection of overlapping communities

which has been extensively discussed in the case of static networks [4], but is much less well covered

and more challenging in the case of dynamic overlapping community detection. The last factor

is the model selection problem, i.e., the determination of the number of communities in temporal

networks. In fact, this is a common problem to be solved in all community detection approaches,60

especially for large-scale temporal networks [17]. Therefore, one needs an effective model or method

that can not only detect overlapping communities but also determine the number of communities in

temporal networks.

As discussed above, there are mainly two significant and difficult problems for most current

community detection methods in temporal networks. One is the detection of overlapping community65

structure, and the other is the automatic determination of the number of communities in each

snapshot of a temporal network.

In this paper, we propose a dynamic Bayesian probability model, namely Dynamic Bayesian Non-

negative Matrix Factorization (DBNMF), which belongs to the evolutionary clustering approaches

with a probability interpretation. The merit of this new model are twofold: it can identify the70

dynamic overlapping communities and also automatically determine the number of communities

in temporal networks, both of which are often ignored by most other methods for dynamic com-

munity detection. To be specific, our obtained overlapping community structure has a theoretical

interpretation based on nonnegative matrix factorization. The number of communities in the tem-

poral network is automatically detected based on automatic relevance determination [18], which75
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is closely-related with sparse Bayesian learning framework and can be effectively learned in most

situations.

In the DBNMF model, the community structure at snapshot t is influenced by the community

structure of the snapshot t−1 and independent of the previous snapshot networks. For each snapshot

network, we propose to tie the columns of the membership matrix through scale parameters that80

are drawn from Half-Normal distribution, the smaller the parameter the less weight of the column.

After finishing all the calculations of the temporal network, we remove the columns whose weights

are close to zero in the membership matrix [19]. Then, the overlapping community results and the

number of communities are derived simultaneously. Besides, the proposed model can be applied to

large and sparse networks because of its stability and effectiveness, which is partly validated in the85

experiments.

The contributions of this work are twofold:

• We give a well theoretically interpretable model namely DBNMF (Dynamic Bayesian Nonnega-

tive Matrix Factorization) to detect overlapping community structure from temporal networks,

which is optimized by a gradient descent algorithm.90

• Using the automatic relevance determination, in which we assume all the scale parameters of all

columns for every snapshot network are independent and identically distributed, the proposed

model can automatically detect the number of communities in temporal networks. This is

especially important to deal with large and unexplored real networks in temporal situations.

The remainder of this paper is organized as follows. A literature review about community95

detection in temporal networks is presented in Section 2. The notation and model is described in

Section 3. Section 4 gives the gradient descent algorithm and its computational complexity analysis.

Section 5 offers the comprehensive experiments and detailed analysis on both synthetic and some

real-world networks. We conclude this work and discuss some existing problems in Section 6.

2. Related Work100

In this section, we provide a general overview of the community detection methods in temporal

networks.

Most methods for community detection in temporal networks can be divided into three categories.

In the first type of approaches, the community structure and its evolution are analyzed in two

separated stages. For example, GRAPHSCOPE [17] is the most often used method for community105

detection in bipartite networks. It encodes every snapshot network based on Minimum Description

Length (MDL), and the snapshot networks with similar descriptions will be grouped together into a

time segment network. If a new snapshot network cannot fit well into the old segment network, the

GRAPHSCOPE gives a change point. This model is optimized by a greedy optimization algorithm.
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Modularity optimization in [16] represents a series methods. They often first cluster the snapshot110

network at t = 1 based on static community detection methods. And then, at each snapshot

network at t > 1, the methods deal with a series of events based on the change of the succession

of two snapshot networks, that allots which community nodes should join in by computing the

maximum probability or generates a new community based on modularity gain. These approaches

usually ignore the history information and are sensitive to the noise.115

In the second type of approaches, the temporal networks can be regarded as a sample of a dynamic

generative model or a liner dynamic network model, and the detection of communities can be taken

as a parameters estimation problem based on the maximization of a posteriori probability. The basic

idea of this type of models is that the temporal network can be generated conditional on a dynamic

mechanism [20]. In general, the results of the community structure and its evolution can be obtained120

by parameters estimation or the maximization of posterior probability. For example, the dynamic

stochastic block model (DSBM) in [14] generates the temporal network based on classic stochastic

block model. The DSBM presents the dynamics by adding a block probability transition matrix

to model nodes transition in different communities. They also proposed a probabilistic simulated

annealing algorithm combined with the Gibbs sampling to estimate all parameters of the model125

though this model assumes that the number of communities in each snapshot network are the same

and known.

The last and the most popular type of approaches is based on evolutionary clustering, the idea

of which is to cluster the current snapshot data by adding a history regularization. To be specific,

Chakrabarti, et al. [15] first provided the evolutionary clustering framework and used the classic k-130

means and hierarchical clustering methods to cluster dynamic data by adding a temporal smoothness

constraint. Chi, et al. [21] further modified the spectral clustering based on evolutionary clustering

to analyze the dynamic data. They proposed two frameworks: one is the preserving cluster quality

(PCQ) framework which is based on the similarity between the current similarity matrix and the

history similarity matrix, and the other is the preserving cluster membership (PCM) framework135

which is based on the difference between the current partition and the historic partition. To sum

up, the goal of evolutionary clustering is to find a good trade-off between clustering accuracy of the

current clustering and the deviation from the history. Although these methods are originally used

for data clustering with known number of clusters, they can also be used for community detection

in temporal networks based on some quality definition or feature extraction of snapshot networks.140

Besides, there are also some works on community detection in the temporal networks based on

evolutionary clustering. Kim and Han [22] proposed a particle and density method for community

detection in temporal networks by defining the nano community. Tang, et al. [23] proposed a

modified spectrum method for community detection on weighted temporal networks. Xu, et al.

[24] presented a generative model based on Hidden Markov Model (HMM) with a prior Dirichlet145
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process under the framework of evolutionary clustering, and the model assumed a fixed number

of communities for the temporal networks. Lin, et al. [25] proposed the FacetNet method that

is based on low-rank matrix recovery techniques with a temporal smoothness. This method is an

improvement of SNMF (Symmetric Nonnegative Matrix Factorization) by defining the snapshot

cost and the temporal cost with Kullback-Leibler divergence. Francesco and Clara [19] regarded the150

snapshot cost and the temporal cost as a multi-objective function and proposed a genetic algorithm

for optimization. However, most of this type of approaches assume a fixed number of communities

in all the snapshot networks and cannot detect the overlapping community structure.

The determination of the number of communities K, which is the so called model selection

problem, is often solved by running the algorithm with different k and picking the best one corre-155

sponding to the optimal modularity [25]. Besides, Bayesian model selection is a general method for

the determination of the number of the clusters in data clustering problem. Specifically, Bayesian

Nonnegative Matrix Factorization (BNMF) [26] has also been used to detect community structure

with the automatic determination of the number of communities in static networks. To the best of

our knowledge, there are a few model selection methods proposed for dynamic community detection.160

Similarly to community detection, the analysis and mining over temporal, dynamic, uncertain

and stochastic networks have also drew many attentions. Some assumptions and evidences for our

proposed model are also derived from the ideas of these works. For instance, Ahmed and Chen [27]

proposed an efficient algorithm for link prediction in temporal uncertain social networks, in which

each edge is associated with a probability value indicating its existence in the network. Yuan, et165

al. [28] employ a filtering-and-verification framework for retrieve all qualified matches of a query

pattern in the uncertain graph, in which a probabilistic matching tree (PM-tree) is built from match

cuts obtained by a cut selection process and based on the PM-tree, and a collective pruning strategy

is devised to prune a large number of unqualified matches. Rezvanian and Meybodi [29] first define

minimum vertex covering in stochastic graphs and give four learning automata-based algorithms for170

solving minimum vertex covering problem in stochastic graphs, in which the probability distribution

functions of the weights associated with the vertices of the graph are unknown and can be parame-

terized a proper choice of the parameter. Du, et al [30] investigates the problem of node similarity

computation on large uncertain graphs.

As we have discussed, the detection of overlapping community structure and the determination175

of the number of communities are two key problems for community detection in temporal networks.

However, both problems have not been analyzed simultaneously in the existing work. In this pa-

per, we proposed a Dynamic Bayesian Nonnegative Matrix Factorization (DBNMF) model for the

detection of overlapping community structure and the automatic determination of the number of

communities in temporal networks. A gradient descent algorithm to learn the parameters of the180

model is also proposed.
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3. Notations and Model

3.1. Notations

In this subsection we give the notations of the proposed DBNMF model and its corresponding

optimization algorithm. A temporal network is defined as G = {V1, V2, · · · , VT }, where T is the185

number of snapshot networks , Vt denotes each snapshot network of the temporal network. If a

symbol has one subscript, this subscript represents time snapshot, such as Kt represents the number

of communities in the t− th snapshot network. If the symbol has more than one subscript, we will

separate them by commas, such as Vij,t denotes the element of the i− th row and the j− th column

at the t− th snapshot network.190

Without loss of generality, we assume that the networks are undirected and unweighed, so each

element of Vt, t = 1, 2, · · · , T , represents the interaction between nodes i and j. N1, N2, · · · , NT
denote the number of nodes in each snapshot network, respectively. Thus we have Vij,t ∈ {0, 1}Nt×Nt ,
i, j = 1, 2, · · · , Nt, t = 1, 2, · · · , T . If Vij,t = 1 there is an edge between nodes i and j in the snapshot

network t, and 0 otherwise. It is easy to extend the model to analyze the weighed temporal networks195

although in this work we mainly focus on undirected and unweighed temporal networks.

3.2. Model Formulization

As represented in Figure 1, for each snapshot t, Vij,t represents the interaction between nodes

i and j, which is generated by Hik,t and Hjk,t, k = 1, 2, · · · ,Kt, where Kt denotes the number of

communities of snapshot network t, and Hik,t denotes the fraction of node i belonging to the k− th200

community at snapshot network t. Here, each Hik,t is drawn from a half normal distribution with

parameter βt which denotes the scale parameter on the latent variable Hik,t in terms of the shrinkage

of each community and is parameterized by a Gamma distribution with two hyper-parameters at and

bt. Gamma distribution is the conjugate prior of half normal distribution, and each βt evaluates

the parameterized community and shrinks irrelevant communities, and thus we solves the model205

selection problem in the community detection in the temporal network. Some similar works can

be also seen in [26][31][32]. Thereafter we have
∑Kt
k=1Hik,t = 1. We then take

∑Kt
k=1Hik,tHjk,t

as the expected number of links between nodes i and j at snapshot t. The Vij,t is drawn from a

Poisson distribution with the mean
∑Kt
k=1Hik,tHjk,t. It means that the probability of an edge and

the expected number of edges are equal in the limitation of a large network, which has been also210

used in [33][34].

In fact, our model for each snapshot t of temporal networks can be also regarded as a hierarchical

Bayesian approach to model selection. On one hand, βk,t is drawn from a Gamma distribution, which

can be regarded as the weight of each column of Hik,t and solves the model selection problem in

the community detection in the temporal network. On the other hand, Hik,t is drawn from the half215

normal distribution, where logP (Ht|βt) corresponds to the sparse regularization of the objective
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function in our model, and βt is the coefficient. Then we can get the number of communities and

the community structure at each snapshots in the temporal networks.

The number of communities or the inter rank at each snapshot network will be decided by the

βk,t, where t = 1, · · · , T , k = 1, · · · ,Kt. Here, based on automatic relevance determination (ARD),220

we give a Gamma distribution prior with parameters at and bt for βt that are scaled to every column

of Ht. After the calculation of all Ht and βt, we remove the columns of Ht where the values in

βk < ε and we set ε = 0.01, and then we get the overlapping community structure and the number of

communities together at every snapshot network t. We set at = a and bt = b for all of the snapshot

networks for convenience, and the detailed description of βk can be found in [26] [31]. Besides, we225

introduce a parameter α to balance the clustering result Ht on the current snapshot network and

the previous clustering result Ht−1. The detailed analysis of the α will be discussed later.

Figure 1: Graph model of our DBNMF. Here Vij,t represent the element at the i − th rows j − th column on the

temporal network at snapshot t, and Hik,t denotes the expected probability that node i belongs to community k at

snapshot t.

We add the following three paragraphs here, there are also two detailed issues to be resolved in

our model. One is how to deal with the varying number of nodes in the temporal network, and the

other is how to automatically determine the number of communities in each snapshot.230

Considering the first issue, we assume that there are maximal Kinitial ( Kinitial ≥ max{Kt}, t =

1, · · · , T ) communities in each snapshot of the temporal network. In the following, we explain how

we deal with the varying number of nodes in consecutive snapshots in our algorithm. As shown in

Figure 2, there are 9 nodes in snapshot t − 1 and 10 nodes in snapshot t, with 12 unique nodes

in total. There are 2 real communities for each of the networks, and we set Kinitial to be a much235

larger value (Kinitial >> 2). In our example, nodes 3 and 8 from snapshot t − 1 disappear, and

nodes 10, 11 and 12 are newly added at time t. After Ht−1 is calculated, we first delete the rows

corresponding to the disappeared nodes 3 and 8 in Ht−1, and thus get H ′t−1. Then, we add rows

which correspond to the newly added nodes 10, 11 and 12 in snapshot t using some small random

values, and thus get H ′′t−1 (which has the same size as Ht.) And finally, we replace Ht−1 with H ′′t−1,240

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which ensure that we now can calculate Ht using the result from snapshot t− 1 in our model.

Considering the automatic determination of the number of communities in each snapshot, we

used the automatic relevance determination method as mentioned above, but still kept the number

of columns in each Ht to be Kinitial. After that when we have got all of the Ht, t = 1, 2, · · · , T ,

for each Ht we remove the columns whose summation of values closing to 0. And then, we get the245

expected number of communities for each snapshot t, which is much smaller than Kinitial in general.

Figure 2: An illustrative example to explain how we deal with varying number of nodes in consecutive snapshots in

order to ensure the consistency of our model formulation which use information from snapshots t and t− 1 together.

There are 2 real communities in each of the networks. Nodes 3 and 8 in snapshot t− 1 disappear at time t, and nodes

10, 11 and 12 are newly added.

As we have described above, we first introduce the model for the temporal network G at snapshot

t = 1, as shown in Figure 1, which is based on the Bayesian Non-negative Matrix Factorization

(BNMF) model proposed in [26]. The joint distribution over all variables at snapshot network t = 1

with fixed hyper-parameters at and bt can be written as250

P (V1, H1,β1) = P (V1|H1)P (H1|β1)P (β1), (1)

and the posterior probability of the model for the snapshot network at t = 1 is

P (H1,β1|V1) =
P (V1|H1)P (H1|β1)P (β1)

P (V1)
. (2)

It is commonly known that maximizing the posterior probability in (2) is equivalent to minimizing

the negative log posterior by ignoring the term P (V1), which is defined as:

L1 = − logP (H1,β1|V1)

= − logP (V1|H1)− logP (H1|β1)− logP (β1).
(3)

Based on V̂t ' HtH
T
t , we assume that Vij,1 ∼ Poisson(

∑
kHik,1H

T
jk,1), the generation of all

edges are independent, and
∑
kHik,1H

T
jk,1 is the Poisson rate. The first term of (3) is the log255
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likelihood of the network data over all variables at snapshot t = 1 of the temporal network. So this

term can be rewritten as

P (V1|H1) = P (V1|H1H
T
1 )

= ΠN1
i=1ΠKinitial

k=1

V̂
Vij,1
ij,1 exp−V̂ij,1

Vij,1
.

(4)

Based on β1, we place independent half normal-priors over the columns of H1 with parameters

β1 ∈ RKinitial = {β1,1 · · ·βKinitial,1}, we get the log priors over H1 as

P (H1|β1) = ΠN1
i=1ΠKinitial

k=1 HN(0, β−1k,1)

= ΠN1
i=1ΠKinitial

k=1

√
2βk,1√
π

exp(−
H2
ik,1βk,1

2 ),
(5)

where HN represents half-normal distribution.260

Here each element of β1 controls the importance of every column of the membership matrix

H1 based on the observed snapshot network t = 1. We assume all βk,1, k = 1, 2, · · · ,Kinitial are

conditional independent and drawn from a Gamma distribution with hyper-parameters a1 and b1.

Then we have

P (β1) = ΠKinitial
k=1 Ga(βk,1|a1, b1)

= ΠKinitial
k=1

ba11 β
a1−1
k,1 e−βk,1b1

Γ(a1)
,

(6)

where Ga is the standard Gamma distribution. Considering equations (4) (5) (6) and (3), the265

objective function L1 can be rewritten as

L1 = −logP (V1|H1)− logP (H1|β1)− logP (β1)

= −
N1∑

i=1

N1∑

j=1

(Vij,1 log
Vij,1∑Kinitial

k=1 Hik,1Hjk,1

+

Kinitial∑

k=1

Hik,1Hjk,1 − Vij,1)

+

N1∑

i=1

Kinitial∑

k=1

(
1

2
βk,1H

2
ik,1)− N1

2
log βk,1

+

Kinitial∑

k=1

(βk,1b1 − (a1 − 1) log βk,1) + c,

(7)

where c is a constant.

we add a paragraph here we consider the snapshots at time t > 1. Here, the number of rows

and the number of columns of Ht, respectively, denotes the number of nodes and the number of

communities in snapshot t. In general, the number of nodes in snapshot t and that in snapshot270

t − 1 are not equal. As explained in the aforementioned example, we delete the rows from Ht−1

representing the nodes which disappeared in snapshot t and add the rows newly added nodes at time

t, and thus get a new Ht−1 which has the same size as Ht and is denoted as H ′′t−1 in subsequent

10
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equations. Then we can write the joint distribution over all variables at snapshot t as

P (Vt, Ht, H
′′
t−1,βt, α) =P (Vt|Ht)P (Ht|H ′′t−1, α)·

P (Ht|βt)P (βt).
(8)

Similarly to the model in the snapshot network of t = 1, based on the previous clustering result275

H ′′t−1 and the balance parameter α, the posterior probability for the snapshot network at t can be

written as

P (Ht,βt|Vt, H ′′t−1, α) =

P (Vt|Ht)P (Ht|H ′′t−1, α) · P (Ht|βt)P (βt)

P (Vt, H ′′t−1, α)
.

(9)

At the same time, we write the negative log posterior of the posterior probability (ignoring the

constant term P (Vt, H
′′
t−1, α) ) at snapshot network t as

Lt = − logP (H ′′t−1,βt|Vt, Ht, α)

= − logP (Vt|Ht)− logP (Ht|H ′′t−1, α)

− logP (Ht|βt)− logP (βt).

(10)

Similarly to (4), (5), and (6) , we rewrite each term of (10) as280

P (Vt|Ht) = P (Vt|HtH
T
t )

= ΠNt
i=1ΠNt

j=1

V̂
Vij,t
ij,t exp−V̂ij,t

Vij,t
,

(11)

P (Ht, |βt) = ΠNt
i=1ΠKinitial

k=1 HN(0, β−1k,t )

= ΠNt
i=1ΠKinitial

k=1

√
2βk,t√
π

exp(−
H2
ik,tβk,t

2 ),
(12)

P (βt) = ΠKinitial
k=1 Ga(βk,t|at, bt)

= ΠKinitial
k=1

batt β
at−1
k,t e−βk,tbt

Γ(at)
,

(13)

for the second term of (10), we denote that nodes Vt − Vt−1 are the newly added in the snapshot

t and nodes Vt−1 − Vt are the disappearing from the snapshot t − 1, so we rewrite Ht with adding

newly nodes and deleting disappearing nodes based on indexes of nodes in the temporal network,

which ensures Ht has the same size with H ′′t−1 and we have

P (Ht|H ′′t−1, α) = {P (Ht|H ′′t−1)}α

= {ΠNt
i=1ΠKinitial

k=1

H
′′Hik,t
ik,t−1 exp−H

′′
ik,t−1

Hik,t
}α,

(14)
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thus the objective function Lt can be rewritten as285

Lt = −logP (Vt|Ht)− logP (Ht|H ′′t−1, α)

− logP (Ht|βt)− logP (βt)

= −
Nt∑

i=1

Nt∑

j=1

(Vij,t log
Vij,t∑Kinitial

k=1 Hik,tHjk,t

+

Kinitial∑

k=1

Hik,tHjk,t − Vij,t)

− α
Nt∑

i=1

Kinitial∑

k=1

(Hik,t log
Hik,t

H ′′ik,t−1
+H ′′ik,t−1 −Hik,t)

+

Nt∑

i=1

Kinitial∑

k=1

(
1

2
βk,tH

2
ik,t)−

Nt
2

log βk,t

+

Kinitial∑

k=1

(βk,tbt − (at − 1) log βk,t) + c,

(15)

where c is a constant.

Now, the evaluation of the model parameters becomes an optimization problem, i.e., minimizing

the objective function Lt at each snapshot t. To analyze the parameter α, we rewrite (15) as

Lt = −logP (Vt|Ht)− logP (Ht|H ′′t−1, α)

− logP (Ht|βk,t)− logP (βt)

= −α
Nt∑

i=1

Nt∑

j=1

(Vij,t log
Vij,t∑Kinitial

k=1 Hik,tHjk,t

+

Kinitial∑

k=1

Hik,tHjk,t − Vij,t)

− (1− α)

Nt∑

i=1

Kinitial∑

k=1

(Hik,t log
Hik,t

H ′′ik,t−1

+H ′′ik,t−1 −Hik,t)

+

Nt∑

i=1

Kinitial∑

k=1

(
1

2
βk,tH

2
ik,t)−

Nt
2

log βk,t

+

Kinitial∑

k=1

(βk,tbt − (at − 1) log βk,t) + c,

(16)

with the first term denoting the likelihood of the model in snapshot network t where α represents

the weight, and the second term is referred to as a penalty based on the clustering result at snapshot290

network t−1. Other terms could be adjusted by hyper-parameter at and bt, so the objective function

in equations (16) and (15) are equal.

4. Optimization algorithm

In this section, we propose a gradient descent algorithm to optimize the objective functions (7)

and (16). The update rule of the gradient descent algorithm with suitable step sizes can be turned295

into the multiplicative update rule [35]. In this way, we used the procedure of iteratively updating

12
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Ht and βt until convergence. In the following, we will give the gradient of the objective functions

with respect to Ht and βt, and then select the suitable step sizes for Ht and βt to perform the

optimization.

The gradient of the objective function with respect to Hik,t at t = 1 is300

∂L1

∂Hik,1
=

∑

j

(Hjk,1 −
Vij,1

V̂ij,1
·Hjk,1) + βk,1Hik,1, (17)

and that for t > 1

∂Lt
∂Hik,t

= α[
∑

j

(Hjk,t −Hik,t.
Vij,t

V̂ij,t
)] + (1− α)·

(I(Nt,Kinitial)−
H ′′ik,t−1
Hik,t

) + βk,tHik,t.

(18)

Similarly, for βk,t we have

∂Lt
∂βk,t

=
∑

i

1

2
H2
ik,t +

∑

j

1

2
H2
jk,t −

Nt
βk,t

+ bt −
at − 1

βk,t
. (19)

We then rewrite equation (17) and (18) in the matrix formulation as

∂L1

∂H1
= (

H1H
T
1 − V1

H1HT
1

) ·H1 +H1diag(β1), (20)

∂Lt
∂Ht

=α · (HtH
T
t − Vt

HtHT
t

)Ht

+ (1− α)
Ht −H ′′t−1

Ht
+Htdiag(βt),

(21)

where diag(βt) is the diagonal matrix with each βk,t as the elements.

Using gradient descent algorithm, a general update rule for the Hik,t is305

Hik,t ← Hik,t + λt
∂Lt
∂Hik,t

, (22)

where λt is referred to as the step sizes of update Hik,t. According to the analysis in [35], we set

λ1 = − Hik,1∑
j Hjk,1 +

∑
k βk,1Hik,1

,

and λt =

− Hik,t

α
∑
j Hjk,t + (1− α)I(Nt,Kinitial) +

∑
k βk,tHik,t

,

for 1 < t ≤ T . For βk,t, we set

βk,t =
2(Nt − at − 1)

(
∑
iH

2
ik,t +

∑
j H

2
jk,t) + 2bt

.

Then we give the optimization algorithm for the DBNMF model as follows.
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Algorithm 1 Overlapping community detection in temporal networks by DBNMF

Input: A temporal network G = V1, V2, · · · , VT ; initial Kinitial, the hyper-parameters a, b, and the

balance parameter α

Output: The number of communities Kt, t = 1, 2, · · · , T and the clustering result Ht for each

snapshot network

Define: Matrix operation W
M represents element by element division

For t = 1 initialize a, b and H1;

For n = 1 : niter

1. H1 ← ( H1

I(N1,N1)H1+H1diag(βK,1)
) · [( V1

H1HT1
)H]

2. βk,1 ← 2(N1−a1−1)
(
∑
iH

2
ik,1+

∑
j H

2
jk,1)+2b1

EndFor

EndFor

For t = 2, · · · , T
remove Vt−1 − Vt, and add Vt − Vt−1 of Ht−1 and get H ′′t−1

For n = 1 : niter

1. Ht ← (
(1−α)H′′t−1+α[Ht·(

Vt
HtH

T
t
Ht)]

(1−α)I(Nt,Kinitial)Ht+αHt+Htdiag(βK,t) )

2. βk,t ← 2(Nt−at−1)
(
∑
iH

2
ik,t+

∑
j H

2
jk,t)+2bt

EndFor

ForAll H1, · · · , HT

remove
∑
iHik,t ≤ ε Hik,t =

Hik,t∑
kHik,t

EndFor

Notice that, the operation Vt−1−Vt represent the nodes occurring at snapshot network t−1 and

disappearing at snapshot network t. Similarly, the operation Vt − Vt−1 represents the newly added

nodes.

In the following, we give the complexity analysis of the proposed algorithm. The most time-310

consuming part is the updating of Ht. At snapshot t = 1, the time cost is O(2p1(N2
1Kinitial +

N1Kinitial)), where p1 denotes the number of iterations. For the snapshot networks t > 1, the

time cost is O(
∑T
t=2

∑
t pt(6NtKinitial)). Then the time complexity of the whole algorithm is

O((Tp)(N2Kinitial + NKinitial)), where p and N represent the average number of the number of

iterations at snapshot networks t and the average number of nodes of all the snapshot networks,315

respectively. In fact, the real temporal networks are very sparse. When we denote the edges of the

temporal networks as et, t = 1, 2, · · · , T , so the time complexity will degrade to O((Tp)(eKinitial)),

where e denotes the average edges for all snapshots of the temporal network.
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5. Experiments

To evaluate the performance of the proposed model and method, we conduct extensive experi-320

ments both on the dynamic Girven-Newman synthetic network [25] and on some widely-used real-

world networks. In this section, we first introduce the evaluation metrics we used. Second, we give

the performance on the dynamic Girven-Newman synthetic network and some real-world temporal

networks, which shows the superior performance of our method compared with the state-of-the-art

methods. By using experiment as analysis, we demonstrate that the performance of our algorithm325

is almost not sensitive to the hyper-parameters a and b, and also α = 0.9 is a good choice. So we

empirically set a = 8, b = 5 and α = 0.9 in all of our tests. Later, we will give the detailed analysis

of the parameters in subsection 5.4.

5.1. Evaluation Metrics

In this subsection, we introduce the evaluation metrics used in the paper, including the Nor-330

malized Mutual Information (NMI) [36], the error rate (CA) [37], the modularity [38], as well as

the fuzzy modularity [39]. The NMI and error rate are used when the ground truth of the commu-

nity structure of the temporal networks are available; otherwise, the modularity is used. We also

evaluate the performance of our method for the detection of overlapping community structure of

temporal networks based on the fuzzy modularity. Notice that, these metrics are all widely-used for335

the static networks. Here we employ them for each time snapshot of the temporal networks. So the

descriptions are just based on each snapshot of the temporal networks for convenience.

The Normalized Mutual Information is defined as

NMI =

∑Kr

i=1

∑Ks

j=1 nij log(
n·ni,j
nri ·nsj

)
√

(
∑Kr

i=1 n
r
i log

nri
n )(

∑Ks

j=1 n
s
j log

nsj
n )

, (23)

where n is the number of nodes in the network; Kr and Ks the number of communities of the

ground-truth structure and that of the the structure obtained by our method, respectively; nri , n
s
j340

and nij the number of nodes in the i − th community of the ground truth, the number of nodes

in the j − th community obtained by our method, and the number of common nodes in i− th and

j − th communities, respectively. The NMI values vary from 0 to 1. If the value is closer to 1, the

obtained result is closer to the ground truth.

The error rate is defined as345

CA = ‖ZZT −RRT ‖2F , (24)

where Z ∈ RN×K is the community membership matrix of nodes corresponding to the ground truth.

We have Zik = 1 if the node i belongs to the k − th community, and Zik = 0 otherwise. R presents

the community membership matrix obtained by our method which has the same definition as Z.
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Figure 3: The NMI accuracy on the Girven-Newman Synthetic Networks: the network size is 128, the average degree

is 16. (a): z = 5, nC = 3; (b): z = 5, nC = 9; (c): z = 6, nC = 3; (d): z = 6, nC = 9. The black lines represent

the results of the FaceNet method, the blue lines represent the results of the DYNMOGA method, and the red lines

represent that of the DBNMF proposed in this paper. Error bars show the standard deviations estimated on 10

networks with the same setting of the parameters.

The value of the error rate is usually increasing with the number of nodes in the network. For a

given network, a large value of CA means a relatively poor result.350

The modularity is defined as

Q =
1

2m

∑

ij

(Aij −
didj
2m

)δ(Ci, Cj), (25)

where m is total number of edges in the network, Aij the element of adjacent matrix of the network,

di the degree of node i, and Ci the community which node i belongs to. δ(Ci, Cj) = 1 if nodes i and

j belong to a same community and δ(Ci, Cj) = 0 otherwise. In general, a larger Q value corresponds

to a better result.355

The fuzzy modularity is defined as

FQ =
1

2m

∑

c

∑

i,j∈c
(Aij −

kikj
2m

)aicajc, (26)

where aic and ajc are the probabilities of nodes i and j belonging to community c. Aij , ki and m

have the same definitions as that defined for modularity in (25). The FQ has the ability of evaluating

the goodness of the result of fuzzy (overlapping) community structure obtained by a method, which

has the similar properties with modularity Q.360

Besides, the existing metrics for dynamic community structure in temporal networks, such as

the adjusted Rand index (ARI)[40], are not suitable for our model. This is because they often have

a inherent assumption, i.e., the number of nodes and the number of communities are both constants

in temporal network. Here we give a relative reconstruction error R − error, and use it to analyze

the temporal evolution of dynamic networks and communities, which is defined as365

R− error = |1− |Vt −Rt+1 ∗RTt+1|2F
|Vt − Zt+1 ∗ ZTt+1|2F

|, (27)

where Vt is the adjacency matrix of the temporal network at t. The Zt and Rt denotes, respectively,

the community membership matrix of nodes corresponding to the ground truth and the community
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membership matrix obtained by the method at the snapshot t. The R− error reflects the temporal

evolution when we reconstruct the snapshot t of the network by the community membership matrix

at t + 1. A similar value between the |Vt − Rt+1 ∗ RTt+1|2F and |Vt − Zt+1 ∗ ZTt+1|2F means that the370

evolution pattern of the community structure obtained by the model is also similar to the ground

truth of the temporal network. So, a smaller R− error value, a better community structure of the

temporal network. Here the designed metric R−error still do not support the variety of the number

of the nodes, but it is suitable for the situation that the number of communities changes. Thus we

can use it to evaluate the performance of difference methods on the generated datasets, although375

this metric is still not suitable for the real temporal networks. But in the future we try to improve

the R− error and make it more powerful.

5.2. Dynamic Girven-Newman Synthetic Networks

The dynamic Girven-Newman synthetic benchmark is proposed by [25], which contains 128 nodes

and 4 communities with each community including 32 nodes at each snapshot network. The bench-380

mark is generated as follows. At the first snapshot network, each link is independently generated

among all the node pairs with a link probability pin if the pair of nodes are in the same community,

and pout otherwise, which is controlled by a mixing parameter or say noise level z. At the snapshot

network t > 1, there are nc nodes in every community leaving their original communities and joining

the other communities, which means that there are 4nc nodes changing their original communities.385

In fact, the value of nc represent the dynamic level in the temporal network. A detailed description

of this temporal network can be found in [37]. Note that, there are no changes for the number of

the nodes and the number of the communities in this temporal network. Here we set the number

of the snapshot networks T = 25, the number of nodes in the network is bS = 128, the average

degree of every node is aD = 16, the mixing parameter is z = 5 or z = 6, and the dynamic level is390

nc = 3 or nc = 9. Therefore, there are four situations that generated this temporal network in our

experiments. For each generated network, we compare the performance of our algorithm with the

results of two competing methods FaceNet [25] and DYNMOGA [19]. Error bars show the standard

deviations estimated on 10 networks with the same setting of the parameters.

As we can see from Figures 3, 4 and 5, in terms of the error rate (CA) which expresses the fitness395

between the model and the observed temporal network, the performance of our model DBNMF is

much better than that of FaceNet and DYNMOGA. In terms of the NMI index which measures the

accuracy of the community detection result, our DBNMF also outperforms the other two methods.

In terms of the R-error which measures the temporal evolution of the community structure, the

DBNMF has a smaller value, which means that our method still has a better result. Besides, we400

have compared these methods on the networks with different values of the mixing parameter z in a

larger range from 1 to 6. We do not give the corresponding performance of the community detection

results here, because all three methods have good performance when the mixing parameter z ≤ 4 of

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

snapshot
5 10 15 20 25

C
A

4000

5000

6000

FACENET
DBNMF
DYNMOGA

(a)

snapshot
5 10 15 20 25

C
A

4000

5000

6000

7000
FACENET
DBNMF
DYNMOGA

(b)

snapshot
5 10 15 20 25

C
A

4000

5000

6000

7000
FACENET
DBNMF
DYNMOGA

(c)

snapshot
5 10 15 20 25

C
A

4000

5000

6000

7000
FACENET
DBNMF
DYNMOGA

(d)

Figure 4: The error rate accuracy on the Girven-Newman Synthetic Networks: the network size is 128, the average

degree is 16. (a): z = 5, nC = 3; (b): z = 5, nC = 9; (c): z = 6, nC = 3; (d): z = 6, nC = 9. The black lines

represent the results of the FaceNet method, the blue lines represent the results of the DYNMOGA method , the red

lines represent that of DBNMF proposed in this paper. Error bars show the standard deviations estimated on 10

networks with the same setting of the parameters.

the temporal network. But in this situation, our method still has a better performance based both

on the NMI and error rate.405

Considering the model selection problem, there are four actual communities in each snapshot

of the dynamic Girven-Newman synthetic networks, and our method can always get the correct

number of communities in all of the experiments. Only when the community structure is highly

unclear under the mixing parameter z = 6, it gives five or six communities for several snapshot

networks. This further validates the effectiveness of our new method.410

5.3. Real World Data

In this subsection, we show the experiments on some real world temporal networks, including

four temporal networks with known ground truth of the community structure, which are evaluated

based on the NMI and the error rate. Here we have only compared the performance of our method

with that of the FaceNet on these temporal networks. This is because both methods have the ability415

to deal with adding new nodes and removing existing nodes , while the DYNMOGA method does

not have this ability. Please note that for DBLP citation network which does not have the ground

truth of community structure, the other methods are not suitable, so we have only used our method

on this network and evaluate its results based on modularity Q and fuzzy modularity FQ and also

give a case study analysis.420

5.3.1. KIT-email data

This email data provides a temporal network which is constructed by the email senders, recipients

and their interactions over time. Here, every email sender or recipient represents a node, an email

from a sender to a recipient represents an edge. We assume that this network is undirected and

unweighed, the ground truth of community structure in this temporal network is constructed by the425

same way that the students (the senders or the recipients) who are guided by the same supervisor
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Figure 5: The reconstruct error on the Girven-Newman Synthetic Networks: the number of nodes is 128, and the

average degree of the nodes is 16. left-top: z = 5, nC = 3; right-top: z = 5, nC = 9; left-down: z = 6, nC = 3;

right-down: z = 6, nC = 9. The black lines represent the results of the FaceNet method, and the blue lines represent

the results of the DYNMOGA method.

belong to the same community. More detailed description can be found in 1. Here we select the

data with the time stamp ranging from July 2007 to December 2009 with 1, 218 different students.

Thus we have 1, 218 nodes and 38 clusters in the data. The time duration of each snapshot network

is divided into three different situations for community detection. We set the number of snapshots430

in the temporal network as T = 10, T = 15, and T = 30 corresponding to the time duration of three

months, two months, and one month, respectively. Thus, at each snapshot network, the number

of nodes and the number of clusters are smaller than that in the whole dataset. Let t denote the

snapshot and N , E, NA, ND and K represent the number of nodes, the number of edges, the

number of added nodes based on last snapshot network, the number of deleted nodes based on the435

last snapshot network and the number of communities, respectively. At each snapshot network t,

NJ = Nt−1∩Nt
Nt−1∪Nt represents the evolution of the temporal network (see Table 1 for details). Note that,

the data in Table 1 is based on the temporal network with the number of snapshots T = 15.

We evaluate the performance of different methods in terms of the NMI and the error rate CA.

Here, we compare the result of our proposed method with that of the FaceNet method. The results440

1http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata
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Table 1: Statistical properties of the KIT-email-network with T = 15

t N E NA ND NJ K

1 467 2511 no no no 36

2 484 2679 66 49 0.78 35

3 545 2641 111 50 0.73 35

4 508 2740 68 105 0.72 35

5 521 2727 77 64 0.76 34

6 538 2810 84 67 0.75 35

7 522 2741 67 83 0.75 35

8 560 3083 99 61 0.74 34

9 529 2942 67 98 0.74 35

10 535 2905 78 72 0.75 34

11 578 3074 97 54 0.76 34

12 563 2948 75 90 0.75 36

13 598 3057 100 65 0.75 35

14 607 3260 97 88 0.73 35

15 573 2631 68 102 0.75 35
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Table 2: Statistical properties of the NEC blog network

t N E NA ND NJ K

1 288 688 no no no 2

2 289 725 49 48 0.71 2

3 272 564 38 55 0.72 2

4 256 539 45 61 0.67 2

5 241 499 42 57 0.67 2

6 215 415 36 62 0.65 2

7 205 348 49 59 0.59 2

8 187 280 34 52 0.64 2

9 139 187 29 77 0.51 2

10 131 162 36 44 0.54 2

11 109 119 28 50 0.51 2

12 108 126 40 41 0.46 2

13 123 174 38 23 0.58 2

14 107 143 18 34 0.63 2

15 74 64 17 50 0.46 2

are shown in Figure 6. As we can see, in terms of both NMI and error rate, our method DBNMF

has a better performance than that of FaceNet under the three cases, which represents DBNMFs

stronger ability to both find the true community structure and fit the observed data in the temporal

network. Besides, the mean NMI of the result of our method DBNMF for the temporal network

with snapshots T = 10 is minimum, and that for T = 30 is maximum; opposite to the error rate.445

This further validates that, our method could reflect the temporal characteristics of the temporal

networks.

5.3.2. NEC blog network

The NEC blog network is constituted by the blogs and their relations. A detailed introduction

can be found in [37]. There are 14, 8681 edges among 407 blogs during 15 months in this data. We450

assume that the temporal network has 15 snapshot networks and the data in each month is taken

as a snapshot network. We assume that the network is unweighted for analysis. The characteristics

of the blog network are presented in Table 2 and the relevant symbols defined here are consistent

with those in Table 1. From this table, we find that the value of NJ is low in some snapshot

networks, which means that the network may change a lot from one snapshot network to the next.455

The performances of DBNMF and FaceNet are both shown in Figure 7.
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Figure 6: The result on the KIT-email network: (a): The NMI on the network with T = 10; (b): The error rate

on the network with the number of snapshots T = 10; (c): The NMI on the network with the number of snapshots

T = 15; (d): The error rate on the network with the number of snapshots T = 15; (e): The NMI on the network with

the number of snapshots T = 30; (f): The error rate on the network with the number of snapshots T = 30. The red

lines and the black lines represent the results of our method and the FaceNet method, respectively. Error bars show

the standard deviations estimated on the network with 10 random initialization.
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Figure 7: The result on the NEC blog network: (a) The NMI accuracy; (b) The error rate. The black lines represent

the results of FaceNetod, the red lines represent the results of our DBNMF. Error bars show the standard deviations

estimated on the network with 10 random initialization.

As we can see, although the NMI and the error rate of these two methods vary fast from one

snapshot to the next, our DBNMF still outperforms FaceNet for this temporal network in terms of

both these two metrics, especially when we use the NMI index.

5.3.3. DBLP cooperation network460

Here we analyze a rapidly changing temporal network named the DBLP cooperation network, in

which the authors are denoted as the nodes and a cooperation of two authors in one paper represents

a link in the network. This network contains three main areas: data mining, databases and artificial

intelligence from 1996 to 2006. We assume that the temporal network has 11 snapshot networks

and the data in each year is taken as a snapshot network. The characteristics defined can be seen in465

Table 3, which shows that there is a very low edge density and a fast rate of new nodes adding or odd

nodes removing in this network, so it makes the community detection of this temporal network more

challenging. The experimental results are shown in Figure 8, which was evaluated based on the error

rate and the modularity Q. Because the performances of our DBNMF and FaceNet have a nearly

equal value based on the NMI, we do not give their comparison in terms of the NMI metric. Here,470

the results show that our DBNMF method has a better performance comparing with the FaceNet

based both on the error rate and the modularity Q.

5.3.4. AI cooperation network

Furthermore, we analyze a temporal cooperation network in the area of artificial intelligence

which is a subset of the DBLP cooperation network. The definition of this network is the same as475

that defined in the DBLP cooperation network. This is a highly dynamic network in which nodes and

edges change very quickly, and especially the aforementioned index NJ is much smaller now. The

time stamp of this temporal network ranges from year 2008 to 2012, We assume that the temporal

network has 5 snapshot networks and the data in each year is taken as a snapshot network. The

experimental results of these two methods in term of the NMI and the error rate are given in Figure480

9. As we can see, the performance of our method outperforms that of FaceNet based on both these
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Table 3: Statistical properties of the DBLP cooperation network

t N E NA ND NJ K

1 2635 3917 no no no 3

2 2336 3931 1595 1894 0.18 3

3 3088 5120 2227 1475 0.19 3

4 3240 5645 2166 2014 0.20 3

5 4550 8572 3291 1981 0.19 3

6 4005 6867 2565 3110 0.20 3

7 5816 10217 4148 2337 0.20 3

8 4966 9382 3012 3862 0.22 3

9 4919 9781 3034 3081 0.24 3

10 5085 10067 3201 3035 0.23 3

11 6138 11936 4012 2959 0.23 3
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Figure 8: The result on the DBLP cooperation network: (a) The modularity Q; (b) The error rate. The black

lines represent the results of FaceNet, the red lines represent results of our DBNMF. Error bars show the standard

deviations estimated on the network with 10 random initialization.
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Figure 9: The result on the AI cooperation network: (a) The NMI accuracy; (b) The error rate. The black lines

represent the results of FaceNet, the red lines represent the results of our DBNMF. Error bars show the standard

deviations estimated on the network with 10 random initialization.

metrics, especially when we use the NMI index.

5.3.5. DBLP citation network

We analyze a larger and sparser temporal network namely DBLP citation network. We analyze

the data provided by KDD Cup 2003, which is a knowledge discovery and data mining competition485

held in conjunction with the Ninth Annual ACM SIGKDD Conference.

This temporal network has already been used for the analysis of community detection and net-

work evolution. Similarly to [41], we construct this temporal network as follows. The nodes represent

the papers, and the edges represent the citation relations between the papers. We select the data

whose time stamp ranges from years 1994 to 2002, and there are 26, 399 nodes in the network. Notice490

that, as a paper published in 1994 may also be cited by other papers in 2002, we have a big reason

to analyze the network by cumulative snapshot networks. That is, the size of this temporal network

would become larger and larger, and there are no nodes and edges removal. From this viewpoint,

we construct the temporal network in this way. We set the time duration of every snapshot network

as the following four situations. They denote δ = 3 months, δ = 4 months, δ = 6 months and δ = 12495

months, which corresponds to the snapshots T = 36, T = 27, T = 18 and T = 9, respectively. For

example, in the situation with the number of snapshot networks T = 9, each snapshot network is

formed with the data that comes from year 1994, 1994−1995, · · · , 1994−2002, respectively. As the

number of nodes in this network is changing and there is no ground truth of the community structure

for each snapshot of the temporal network, we cannot give the result of the other benchmarkded500

methods because the FaceNet method needs the number of communities in each snapshot and the

DYNMOGA cannot be used to deal with the change of the number of nodes in the network. Thus,

we only show the results of our method here. But we will further explain the reasonability of our

obtained overlapping community structure using the case study analysis.

For this temporal network, the number of the nodes and the number of the edges in each snapshot505

network are shown in Figure 10. As we can see, the growth of the number of the nodes is near linear,

and the growth of the number of the links is exponential.

We give the community detection results of our DBNMF method evaluated based on the mod-
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Figure 10: The statistical properties of the DBLP citation network: the number of the nodes and the number of the

edges in the DBLP citation network with different time duration of each snapshot network. The cyan lines represent

the number of the edges in each snapshot network, and th e blue lines represent the number of the nodes in each

snapshot network.

snapshot
6 12 18 24 30 36

m
od

ul
ar

ity
-Q

0

0.2

0.4

0.6

0.8

δ =12 month
δ =6 month
δ =4 month
δ =3 month

Figure 11: The modularity Q on the DBLP citation network.

ularity Q which is shown in Figure 11. We find that, the modularity Q does not increase since

year 1997, which is independent with the size of each snapshot network. This may mean that the510

number of citation relations of these papers increase among different research fields. Using the fuzzy

modularity as the quality metric, we analyze the detected overlapping community structure of our

method DBNMF, shown as Figure 12. And we find similar tendency with that which is based on

the modularity Q.

Furthermore, we analyze some popular nodes (papers) in this temporal network. For instance,515

the paper ’the large N limit of superconformal field theories and supergravity’ has been cited 2, 369

times in our data but 12, 740 times as recorded by Google scholar. The papers which cite it refer

to almost all of the physical areas, including High Energy Physics, Mathematical Physics, Thermal

Gauge Theories, Nuclear Physics, and so on. In Figure 13, we demonstrate some most popular nodes

in the temporal network, and show the comparison between the papers that cite these popular nodes520
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in our data and these in Google scholar. As a result, there is an obvious trend that a paper with a

large citation number in our data will have a large citation number in Google scholar, and also it

will have a large probability to be cited by papers in other fields.
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Figure 12: The fuzzy-modularity value of our algorithm on the DBLP citation network.
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Figure 13: Top 11 cited papers in DBLP citation network: the blue line represents the citation number in the DBLP

citation data; the cyan lines represent the citation number count by the Google scholar recently. The title of these

paper are in turns as: ’an alternative to compactification’; ’Monopoles, Duality and Chiral Symmetry Breaking in

N=2 Supersymmetric’; ’String Theory Dynamics In Various Dimensions’; ’Dirichlet-Branes and Ramond-Ramond

Charges’; ’String Theory and Noncommutative Geometry’; ’M Theory As A Matrix Model: A Conjecture’; ’Electric-

magnetic duality, monopole condensation, and confinement in N= 2 supersymmetric Yang-Mills theory’; ’Large N

Field Theories, String Theory and Gravity’; ’Gauge Theory Correlators from Non-Critical String Theory’; ’Anti De

Sitter Space And Holography’; ’The large N limit of superconformal field theories and supergravity’.

5.4. Parameter Analysis

In this section, we analyze the sensitivity of the parameters of our method DBNMF in detail.525

We show that the performance of DBNMF is almost not sensitive with the changes of the hyper-

parameters a and b. Besides, α = 0.9 is a good choice irrespective of it being evaluated by the NMI

or by the error rate (CA). We offered a detailed analysis on the KIT-email network with the number

of snapshot networks T = 15 and the results are shown in Figures 14 and 15. The experiments on
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Figure 14: The parameter analysis based on KIT email network with the number of snapshot networks T : (a) The

NMI on the KIT email network; (b) The error rate on the KIT email network. Every node in the figure represents

the mean and standard deviation of T snapshot networks with different parameters α
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Figure 15: The hyper-parameter analysis based on KIT email network with the number of snapshot networks T = 15:

(a) The NMI on the KIT email network; (b) The error rate on the KIT email network. Every node in the figure

represents the expectation values with different hyper-parameter a and b based on the temporal network

.

the dynamic Girven-Newman synthetic networks and that on other dynamic real networks offered530

similar conclusion, although we do not show their results here.

Figure 14 represents the analysis on the KIT-email network with the number of snapshot networks

T = 10, T = 15 and T = 30. Each point shows the average values of NMI and error rate (CA)

on the full temporal network. The results show that our DBNMF method often has the best result

at α = 0.9. Figure 15 shows that the performance of the method is almost not sensitive to the535

hyper-parameter a and b > 4. In fact, b is the scale parameter in gamma distribution and this is

consistent with our intuition and the property of gamma distribution.

As we can see from the experiments on the artificial and real-world temporal networks, the

DBNMF model has a better performance than all the methods compared. The advantages of our

proposed model can be summarized in the following. First, the model is interpretable and intuitive540

for both overlapping and non-overlapping community detection based on the probabilistic community

memberships we derived. Second, with the assumption that each link in the temporal network is

drawn from a Poisson distribution, the generated model shows a good fitness to the observed network,

and meanwhile, the regularization term in our model are also interpretable which helps to ensure the

smooth evolution of the temporal network. Third and most importantly, using a Bayesian method545

the model can determine the number of communities automatically at each snapshot of the temporal
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network, which makes the model more appropriate for the real and unexplored temporal networks.

Besides, a good initialization we introduced for the algorithm and a suitable parameter selection

based on the half normal and Gamma prior can also help the proposed DBNMF model and make it

often have well and stable results in the experiments.550

6. Conclusions and Discussion

In this paper, we propose a probabilistic model named Dynamic Bayesian Dynamic Non-negative

Matrix Factorization (DBNMF), which belongs to the framework of the evolutionary clustering,

for the detection of communities in temporal networks. The DBNMF model can automatically

determine the number of communities and detect the overlapping community structure in temporal555

networks. The determination of the number of communities is based on the automatic relevance

determination. The overlapping community structure is obtained based on the probabilistic group

membership of nodes in every snapshot network which has a good theoretical interpretation based

on the nonnegative matrix factorization (NMF). Finally, we proposed a gradient descent algorithm

for the optimization of our DBNMF model based on the multiplication update rule.560

We give experimental results on both dynamic Girven-Newman synthetic networks and some real

world datasets. First, the experiments on the dynamic Girven-Newman synthetic networks show

that, compared with the state-of-the-art methods, our method is better suited to this synthetic

networks and to a higher accuracy of the community detection. Second, a detailed analysis of the

result on the KIT email networks shows that our method can get a better performance for the565

temporal network with different time duration of each snapshot when compared with that of the

FaceNet, and the result on the two cooperation networks gives a similar conclusion. Furthermore,

we analyze a larger and sparser temporal citation network, the experimental results also show that

our method has a strong ability to detect the overlapping community structure in terms of fuzzy

modularity. To sum up, all results on the synthetic networks and real world data with known ground570

truth of community structure indicate that our method can automatically determine the number of

communities. Finally, our parameters analysis demonstrates that the performance of the method is

almost not sensitive to the hyper-parameters, and the balance parameter α = 0.9 is always a good

selection for our method.

As we can see from the experiments on different temporal networks, the proposed model DBNMF575

is more suitable to be used on sparse and temporal networks, especially for the networks when the

number of communities are unknown, and the number of nodes and communities are varying with

time. There are also some problems for our method to be further studied. Ideally, the selection of

the parameter α should be modified automatically on the temporal network, and not just confirmed

by the experiments. Adaptive Evolutionary Clustering [42] may work in this situation, but it is580

not suitable for large real temporal networks. So a general and simple method with automatic
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determination of the parameter α will be our future work. Another important and formidable

problem is the evaluating metric for the dynamic community structure. Although the designed

R − error can be applied in some cases, a more general and standard metric is imperative to the

dynamic community structure. This new metric should be suitable for the changes of both the585

number of nodes and the number of communities in temporal networks, and it may be our next

work in future. In addition, although we have analyzed multiple situations with different snapshots

for the temporal networks, what is the best selection of the number of snapshots for a given temporal

network is still an issue.
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[39] T. Nepusz, A. Petróczi, L. Négyessy, F. Bazsó, Fuzzy communities and the concept of bridgeness

in complex networks, Phys. Rev. E 77 (2008) 016107. doi:10.1103/PhysRevE.77.016107.

URL http://link.aps.org/doi/10.1103/PhysRevE.77.016107

[40] C. Matias, V. Miele, Statistical clustering of temporal networks through a dynamic stochastic720

block model, arXiv.orgarXiv:1506.07464v1.

[41] J. Gehrke, P. Ginsparg, J. Kleinberg, Overview of the 2003 kdd cup, ACM SIGKDD Explo-

rations Newsletter 5 (2) (2003) 149–151. doi:10.1145/980972.980992.

URL http://doi.acm.org/10.1145/980972.980992

[42] K. Xu, M. Kliger, A. Hero III, Adaptive evolutionary clustering, Data Mining and Knowledge725

Discovery 28 (2) (2014) 304–336. doi:10.1007/s10618-012-0302-x.

URL http://dx.doi.org/10.1007/s10618-012-0302-x

34


