
ACM Reference Format
Qin, Y., Han, X., Yu, H., Yu, Y., Zhang, J. 2016. Fast and Exact Discrete Geodesic Computation Based on
Triangle-Oriented Wavefront Propagation. ACM Trans. Graph. 35, 4, Article 125 (July 2016), 13 pages.
DOI = 10.1145/2897824.2925930 http://doi.acm.org/10.1145/2897824.2925930.

Fast and Exact Discrete Geodesic Computation Based on
Triangle-Oriented Wavefront Propagation

Yipeng Qin1,∗ Xiaoguang Han2,∗ Hongchuan Yu1† Yizhou Yu2 Jianjun Zhang1
1Bournemouth University 2The University of Hong Kong

Abstract

Computing discrete geodesic distance over triangle meshes is one
of the fundamental problems in computational geometry and com-
puter graphics. In this problem, an effective window pruning strate-
gy can significantly affect the actual running time. Due to its impor-
tance, we conduct an in-depth study of window pruning operations
in this paper, and produce an exhaustive list of scenarios where one
window can make another window partially or completely redun-
dant. To identify a maximal number of redundant windows using
such pairwise cross checking, we propose a set of procedures to
synchronize local window propagation within the same triangle by
simultaneously propagating a collection of windows from one tri-
angle edge to its two opposite edges. On the basis of such synchro-
nized window propagation, we design a new geodesic computation
algorithm based on a triangle-oriented region growing scheme. Our
geodesic algorithm can remove most of the redundant windows at
the earliest possible stage, thus significantly reducing computation-
al cost and memory usage at later stages. In addition, by adopting
triangles instead of windows as the primitive in propagation man-
agement, our algorithm significantly cuts down the data manage-
ment overhead. As a result, it runs 4-15 times faster than MMP and
ICH algorithms, 2-4 times faster than FWP-MMP and FWP-CH al-
gorithms, and also incurs the least memory usage.

Keywords: Discrete Geodesics, Pairwise Window Pruning, Order
Preservation, Window List Propagation, Wavefront Propagation

Concepts: •Theory of computation → Computational geome-
try; •Computing methodologies→ Shape modeling;

1 Introduction

Computing geodesics is one of the fundamental problems in com-
putational geometry and computer graphics since it plays an im-
portant role in many applications, including remeshing [Peyré and
Cohen 2006], shape analysis [Bronstein et al. 2006] and non-rigid
shape retrieval [Ye et al. 2013; Ye and Yu 2016]. In this paper, we
focus on the “One Source All destinations” discrete geodesic prob-
lem over triangle meshes. As proposed in [Mitchell et al. 1987], this
problem can be solved by performing window propagation where a
“window” encodes the information of a cone originating from the
source vertex. The geodesic distance field over a mesh surface is
computed by propagating windows and updating the distance from

∗Joint first authors
†Corresponding author: hyu@bournemouth.ac.uk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper,, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925930

0

2

4

6

8

10

12

3920

3930

Memory (MB)

0

20

40

60

80

100

120

Time(s)

0

20

40

60

80

100

120

140

160

Windows Propagation (Million)

Time (s)

Memory (MB)

window propagations

(millions)

120

100

80

60

40

20

0

3930

3920

12

10

8

6

4

2

0

160

140

120

100

80

60

40

20

0

ICH

MMP

FWP-CH

FWP-MMP

Our Method

Figure 1: Our exact geodesic algorithm (VTP) outperforms all re-
cent discrete geodesic algorithms (ICH, MMP, FWP-ICH, FWP-
MMP) in terms of running time, peak memory usage and total num-
ber of window propagations on the Lucy model (1.6M faces, cour-
tesy of Suggestive Contour Gallery at Princeton University).

the source vertex to all other vertices progressively. Note that win-
dow propagation creates a large number of new windows, many of
which are redundant and do not contribute to the shortest path for
any vertex. Without any pruning operations, these redundant win-
dows significantly slow down the overall computation.

In fact, an effective window pruning strategy can be more impor-
tant to geodesic computation than the asymptotic time complexity.
For example, the Mitchell-Mount-Papadimitriou (MMP) algorithm
[Mitchell et al. 1987] takes O(n2 logn) time while the algorithm
proposed by Chen and Han (CH) [Chen and Han 1990] achieves a
better asymptotic time complexity, which is O(n2). Interestingly,
algorithms in the MMP family often run faster than those in the CH
family in practice. An important reason is that MMP algorithms
can prune many more redundant windows.

Nevertheless, algorithms in the CH family have important advan-
tages over MMP algorithms. First, CH algorithms avoid expensive
window trimming using hyperbolic curves and adopt more efficient
window filtering rules. Second, CH algorithms do not bookkeep
windows at every visited edge as MMP algorithms do, and thus are
much more memory efficient. Therefore, we aim to fully realize
the potential of CH algorithms by developing highly effective win-
dow pruning strategies as well as an overall geodesic computation
algorithm based on such strategies.

Due to the aforementioned importance, we conduct an in-depth s-
tudy of window pruning operations in this paper. If we focus on

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

http://dx.doi.org/10.1145/2897824.2925930

a single window during one step of propagation, this window al-
ways moves from one triangle edge to another or two other edges.
These hosting edges before and after the propagation always be-
long to the same triangle. A non-redundant window may become
partially or completely redundant after this one-step propagation.
Such a change of status is caused by another overlapping window
passing through the same triangle. Due to this observation, the first
outcome of our study is an exhaustive list of scenarios where one
window can make another window partially or completely redun-
dant after one step of propagation.

The above discussion indicates pairwise cross checking among win-
dows passing through the same triangle is necessary in order to dis-
cover redundant windows. To identify a maximal number of re-
dundant windows using cross checking, we need to propagate as
many windows as possible in the same triangle at the same time. To
make this happen, we propose to synchronize local window propa-
gation within a triangle by simultaneously propagating a collection
of windows from one triangle edge to its two opposite edges. Such
a synchronized propagation consists of three substeps: i) split a col-
lection of windows reaching the same triangle edge into two subset;
ii) propagate the two subsets to the two opposite edges respectively;
iii) if a triangle edge receives more than one propagated subsets of
windows from other edges of the same triangle, these propagated
subsets are cross-checked and merged into a single set. Efficient
algorithms are designed to perform all of these substeps.

On the basis of the above triangle-oriented window propagation, we
design a new geodesic computation algorithm based on a triangle-
oriented region growing scheme. Starting from the source vertex,
instead of considering one window at a time, our new algorithm
considers one triangle at a time. All visited triangles form a single
connected region, called the traversed area, over the mesh surface.
Our algorithm expands this traversed area in a continuous Dijkstra
style by gradually enclosing unvisited triangles abutting the tra-
versed area and propagating windows accumulated at the previous
wavefront of the traversed area through these newly added trian-
gles. Our triangle-oriented wavefront propagation scheme can re-
move most of the redundant windows at the earliest possible stage,
thus significantly reducing computational cost at later stages. In ad-
dition, by adopting triangles instead of windows as the primitive in
propagation management, our algorithm significantly cuts down the
data management overhead (e.g. priority queue maintenance cost)
since the total number of windows is much larger than the number
of triangles.

In summary, this paper has the following contributions.

• A new geodesic computation framework based on triangle-
oriented window propagation. Our new geodesic algorithm
has an O(n2) time complexity. It runs 4-15 times faster than
MMP [Surazhsky et al. 2005] and ICH [Xin and Wang 2009]
algorithms, 2-4 times faster than FWP-MMP and FWP-CH
algorithms [Xu et al. 2015], and also incurs the least memory
usage.

• A complete list of scenarios for pairwise window cross check-
ing and pruning inside a triangle.

• A set of rules and algorithms for synchronized windows prop-
agation within a triangle.

2 Background and Related Work

In this section, we give a brief introduction to the window-based so-
lution to the “One source All destinations” geodesic distance prob-
lem. Refer to [Mitchell et al. 1987] for further details. We also
discuss related work on this topic. Let the triangle mesh we pro-

(a) (b) (c)

A

B

C

p
S

0a

1a0d

1d

sp

A

B

C

A

B

C

p
S

0a
1a

0d
1d

sp

p

S

0a
1a0d

1d

sp

Figure 2: Three configurations of a window and its separating
point.

cess be M = (V,E, F), where V,E, F are respectively the sets of
vertices, edges and faces. Let S be the source vertex.

Window In geodesic algorithms, a window is defined as w =
(∆ABC, a0, a1, p, d0, d1, σ, sp), where ∆ABC stands for the tri-
angle it enters from AB (this is equivalent to the half edge used in
[Surazhsky et al. 2005]). Two scalar parameters, a0 and a1, mark
the two endpoints of w, which lies on the edge AB, and a0 denotes
the endpoint closer to A. Every window w is created by the source
vertex S or a pseudo source, which must be a saddle vertex. Here
p represents the projection of this pseudo source on the plane de-
termined by ∆ABC, and d0, d1 are the distances from a0, a1 to
p respectively. σ denotes the geodesic distance from the pseudo
source to the source vertex S. Later in this paper, we will need
a concept called the separating point (sp), which is the intersec-
tion between AB and the shortest path between w.p and C routed
through interval [a0, a1]. It can be easily verified thatw.sp = w.a1
if w only propagates to AC; w.sp = w.a0 if w only propagates to
BC. When w propagates to two edges, w.sp is the intersection be-
tween line segments AB and pC. Fig 2 shows an illustration of a
window and the three possible positions of a separating point.

Window Propagation and Management The geodesic dis-
tances from the source to all vertices are maintained using a vector
D = (d1, d2, ..., dn)(n = |V |). At the beginning, every oppo-
site edge in the 1-ring neighborhood of S is defined as a window.
Each window is iteratively propagated from edge to edge. The dis-
tance vector D is constantly updated during window propagation.
Since the number of windows could be large, a common strate-
gy pushes windows into a priority queue and processes windows
in an increasing order of their distance to S [Mitchell et al. 1987;
Surazhsky et al. 2005; Xin and Wang 2009]. This can prevent prop-
agating windows from farther edges to closer ones. Recently, Xu et
al. [2015] replaced the priority queue with bucket sorting, and their
algorithms(FWP-MMP/CH) propagate multiple windows from the
same bucket during each iteration. This strategy effectively reduces
the time spent on window management. All these methods only
propagate a single or multiple windows during each iteration while
our algorithm propagates all windows accumulated on a single or
multiple triangle edges simultaneously during each iteration. In ad-
dition, our algorithm organizes vertices instead of a much larger
number of windows. These strategies prune redundant windows
more thoroughly and further significantly reduce the cost of win-
dow management.

Window Pruning Many windows created during propagation do
not contribute to the shortest path for any vertex. Window prun-
ing reduces the cost of window propagation by stopping redundant
windows from participating in propagation. The key idea is to de-
tect redundant windows or redundant parts of windows according
to certain rules and remove them. A window w becomes redundant
if for every point q ∈ (w.a0, w.a1), there exists one path on the

125:2 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Situation 1
From the same edge to another edge

Case 1

Case 2

Case 3

p q

0a

0b
1b

1a

0a
1a

0b
1b

u

B
A

C

Situation 2
From two edges to the third edge

Case 4

Case 5

Case 6

0 0 1b a b

1 0b a

Situation 3
From the same edge to two other edges

Case 7

Case 8

Case 9

p
q

0a0b
1b

1a
0a

1a0b
1b

C

A

B

p
q

0a 0b

1b

1a

0a
1a

0b
1b

C

A

B

Situation 4
Checking with vertices

Case 10

Case 11

Case 12

check two windows in Situation 1

check two windows in Situation 2

p

q

0a
0b

1b
1a

1a
0b

1b

A

C

B

0a

check one window

p

0a

1a

0a
1a

A

B

C

0 0 1a b a

p q

0a
0b

1b
1a

0a 1a
0b 1b

B
A

C

p q

0a
0b

1()b
1a

0a
1a

0b
1bA

B

C
1b

A

p

q

0a

0b
1b

1a

u

1a
0b

1b

C

B

0a

p

q

0a
0b

1b
1a

0a
1a

0b

1b

A

C

B

1()b

A

p

q

0a
0b

1b
1a

0a
1a

0b

1b

C

B

1()b

1 1 1 1

1

If & () (),

del .

a b g paC g qbC

w

1 1 1

0 0 0

1)If () (),del .

2)If () (),del .

g paC g qbC w

g qb A g pa A w

1 1 0 0

0 0 0

If () ()or () ()

or () (),del .

g Aa g pa g Ca g pa

g Ba g pa w

0 1both and coveroneedgew w

0 1oneof and covers twoedgesw w

0 1both and cover twoedgesw w

0 0 0 0 1anda b b a b

0 0 1 0anda b b a

The following rules are shared by Case 1 and Case 4:

The following rules are shared by Case 2 and Case 5:

The following rule is shared by Case 3 and Case 6:

p q

0a

0b

1b

1a

1a

C

A

B

0a 1b
0b

p q

0a
1a

0b
1b

0a

1a

0b
1b C

B
A

1()b

0 0 0 0 1 0 0 0& & a b a b a qb pa pa

0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1

1)If () (),del . 2)If & () (),del .

3)If & () (),del . 4)If & () (),del .

g pb g qb pb a b a g pb g qb pba

b a g pb g qb w b a g pa g qa qb a

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1

1)If () (),del . 2)If () (),del .

3)If & () (),del . 4)If & () (),del .

5)If & () (),del .

g pa g qa qb a g pa g qa w

b a g pb g qb w b a g pb g qb pb a

b a g pa g qa qb a

†

1 0 1 0If () (),del . else,del . ().g pu g qu w w u qb pa

0 1

0 1 0

1

When ,

If () (), del ;

else,del .

a b

g pa C g qbC w

w

1 0 1

1 1 1

0 1 1 0

1 0 0

0 1 0

0 0 0

1)For . When . ,
If () (),del ;else,del .
If . & () (),del .

2)For . When . ,
If () (),del ;else,del .
If . & () (),del

w AC w sp b
g pC g qbC w pCa
w sp b g pC g qbC pa C
w BC w sp b

g pC g qb C w pa C
w sp b g pC g qb C pC

 1 .a

1

0

If () (), del ;

else,del .

g pC g qC pCa

pb C

Figure 3: Pairwise window cross checking and pruning within a triangle. w′0 and w′1 are the resulting windows after two original windows,
w0 and w1, are propagated from edge to edge inside a triangle. We define g(pa) = σ0 + ||pa|| and g(pab) = σ0 + ||pa|| + ||ab||,
where p = w0.p, a and b are two other points on the plane determined by ∆ABC. g(qa) and g(qab) have similar definitions. And,
g(Aa) = D(A) + ||Aa|| where D(A) is the shortest distance so far at vertex A (g(Ba) and g(Ca) have similar definitions). 〈pab〉 and
〈qab〉 represent the sub-windows defined by the three points. ‘del’ stands for the operator to delete the window or sub-window.

mesh from S to q whose length is smaller than w.σ+dist(w.p, q),
where dist() stands for the Euclidean distance between two points
on a plane.

Classical MMP algorithms [Mitchell et al. 1987; Surazhsky et al.
2005]) only consider cases where a window w partially overlaps
with another window w′ and they share the same propagation di-
rection. To determine which window gives rise to the shortest path
to each point in w ∩ w′, they solve a quadratic equation to find the
tie point (see Section 3.3 of [Surazhsky et al. 2005]). Liu [2013]
improved the algorithm in [Surazhsky et al. 2005] by further con-
sidering the cases where two windows overlap on the same edge
but have different propagation directions. Binary search is used
to find such overlapping windows on an edge, which causes the
O(n2 logn) complexity.

If a window covers a vertex, the CH algorithm [Chen and Han 1990]
trims the window using the “One Angle One Split” rule. The ICH
algorithm [Xin and Wang 2009] uses an additional “checking with
vertices” rule to filter out more redundant windows. These filtering
rules avoid solving quadratic equations and deliver a performance
comparable to that of MMP algorithms. A parallel version of the
ICH algorithm has been developed in [Ying et al. 2014]. In this

paper, we propose a complete set of pairwise pruning rules that do
not need to solve quadratic equations.

Other Methods For convex polyhedral surfaces, an O(n logn)-
time algorithm is presented in [Schreiber and Sharir 2009], which
reaches the theoretical lower bound. Balasubramanian et al. [2009]
proposed a method to compute the exact minimal geodesic distance
between every pair of vertices on a polyhedral surface.

In addition to the aforementioned exact geodesic algorithms, there
are approximation algorithms aimed at faster geodesic computa-
tion. Refer to [Bose et al. 2011] for a detailed survey. Surazh-
sky et al. [2005] presented an approximate MMP algorithm with
bounded errors and the optimal O(n logn) time complexity. Xin
et al. [2012] proposed a two-phase algorithm which first computes

†In Situation 1 Case 1, we do not perform cross checking when a0 <
b0, a′0 ≤ b′0 ≤ a′1 and qb′0 ∩pa′0 ∈ pa0 as this special case rarely happens
in our algorithm. This is because the two windows satisfying the condition
should have already crossed each other inside a triangle they passed through
earlier and it is very likely that cross checking has been performed between
them.

125:3 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

distance fields by taking sample points as sources. On the basis of
“geodesic unfolding”, the approximate geodesic distance between
any pair of points can be obtained in constant time. The Saddle
Vertex Graph (SVG), presented in [Ying et al. 2013], encodes the
geodesic information on triangle meshes in a sparse graph. Af-
ter precomputing an approximate SVG based on window propaga-
tion, this method can handle both “One source All destinations” and
“One source One destination” in an efficient manner.

There are also methods based on finite element approxima-
tion. Kimmel and Sethian [1998] extended the Fast Marching
Method (FMM) [Sethian 1996] to triangulated domains to compute
geodesic distances using a discrete version of the Eikonal equation.
Yatziv et al. [2005] accelerated their method from O(n logn) to
O(n) by using an untidy priority queue. This FMM method has
been further extended to various geometric domains, such as im-
plicit surfaces [Mémoli and Sapiro 2001] and point clouds [Mémoli
and Sapiro 2005]. Recently, Crane et al. [2013] proposed the heat
method for computing geodesic distance fields which runs in near-
linear time. However, these methods have their own drawback-
s: unbounded errors (for example, FMM might introduce signif-
icant errors over a triangle mesh by locally unfolding obtuse tri-
angles), violation of metric properties (symmetry and triangle in-
equality) [Crane et al. 2013], inconsistency of geodesic paths gen-
erated by back-tracing (that is, a generated path might have a dif-
ferent length from the calculated distance), and sensitivity to mesh
triangulation [Liu et al. 2015]. Both exact and approximation al-
gorithms based on window propagation perform better in these as-
pects. Window propagation has also been successfully applied to
the computation of geodesic Voronoi diagrams [Liu et al. 2011].

3 Pairwise Window Pruning within a Triangle

Let us first consider the propagation of a single window inside a
triangle. This window initially stays on one edge of the triangle.
After one step of propagation, it either moves to another edge of
the same triangle or partially covers both opposite edges (Fig 2(a)).
Now let us consider the propagation of two windows entering the
same triangle. Even if both windows are initially non-redundant,
after one step of propagation, one of them may become partially or
completely redundant because the relative position between the two
windows may have changed. In this section, we aim to produce an
exhaustive list of scenarios for pairwise window pruning inside a
triangle under the presumption that hyperbolic curves (see Section
4 of [Mitchell et al. 1987]) are not used to trim windows due to the
relatively high computational cost of solving quadratic equations.

Consider two windows w0 and w1, whose respective pseudo
sources are p and q. Let σ0 = w0.σ and σ1 = w1.σ. Let ∆ABC
be the triangle where one-step propagation of w0 and w1 takes
place, and w′0 and w′1 be their propagated version, respectively.
Denote a0 = w0.a0, a1 = w0.a1, b0 = w1.a0, b1 = w1.a1,
and a′0 = w′0.a0, a′1 = w′0.a1, b′0 = w′1.a0, b′1 = w′1.a1. Note
that p does not lie inside the visible cone of w1 (i.e., qb0b1) since
otherwise w1 should have been split into two windows. Similarly,
q does not lie inside the visible cone of w0.

On the basis of Proposition A.1 in Appendix A, we list 15 cases
which may produce redundant windows inside ∆ABC, and design
corresponding pruning rules in the following five situations. An il-
lustration of the first 12 cases and their corresponding pruning rules
is shown in Fig 3.

Situation 1: Propagating w0 and w1 from the same edge to
another edge. Here we only discuss the configuration where w0

and w1 are propagated from AB to AC, and other configurations
in this situation can be dealt with similarly. Without loss of gen-

p

q

0a
1b 1a

0a
1a 0b

1b

C

A

B

Case 15

0b

p

q

0a
1b 1a

0a
1a 0b

1b

C

A

B

Case 14

0b

p

0a
1a

0a 1a
A

B

C

Case 13

0b

1b

1b
0b

q

Figure 4: All the cases in Situation 5.

erality, we assume a0 < b0. We refine this situation into three
cases (Case 1, Case 2 and Case 3) according to the relative posi-
tion between w′0 and w′1. The corresponding window pruning rules
are shown in the dashed boxes in Fig 3. These rules are derived
using Observations (a) and (e) in Proposition A.1. Case 2 is the
same as step 2 (Delete Dominated Candidate Intervals) of proce-
dure Insert − Interval(I, c) in [Mitchell et al. 1987]. The other
two cases are novel.

Situation 2: Propagating w0 and w1 from two edges to the
third edge. We assume w0 is propagated from AB to AC, and
w1 is propagated from BC to AC. Then, we also have three cases
(Case 4, Case 5 and Case 6) corresponding to Cases 1-3, respec-
tively. The window pruning rules are also the same as those in the
first three cases.

Situation 3: Propagating w0 and w1 from the same edge to
two other edges. We assume both w0 and w1 lie on AB, and
they are respectively propagated to BC and AC. We refine this
situation into Case 7, Case 8 and Case 9 shown in Fig 3. In Case 7,
we only show the configuration where w′0 lies on BC and w′1 lies
on AC, and other configurations can be dealt with similarly. The
pruning rules in this case are based on Observations (d) and (h) in
Proposition A.1. Similarly, in Case 8, we only show the configura-
tion where w′0 covers two edges. The pruning rules in this case are
based on Observations (b), (c), (f) and (g) in Proposition A.1. A-
mong these rules, rule 1) is based on Observations (c) and (f) while
rule 2) is based on Observations (b) and (g). Case 7 and Case 8
are quite useful in removing redundant windows in our geodesic al-
gorithm. Case 9 is exactly the same as the “One-Angle-One-Split”
rule in [Chen and Han 1990].

Situation 4: Checking with vertices. We also extend the
“checking with vertices” rule in the ICH algorithm [Xin and Wang
2009] to our two-window scenario. As shown in Fig 3, Case 10
illustrates the configuration where both windows are propagated
from the same edge to another edge. The pruning rule is based
on Observation (d) in Proposition A.1. Case 11 illustrates the same
configuration as in Situation 2. The corresponding pruning rules
are derived from Observations (d) and (h) in Proposition A.1. Case
12 shows the same configuration as that in Theorem 3.2 of [Xin and
Wang 2009]. The corresponding pruning rule can be derived from
Observations (a) and (e) in Proposition A.1.

Situation 5: Propagating w0 and w1 from two edges to two
edges. In addition, we discuss three cases where the two win-
dows are propagated from two different edges to two edges. The
left figure in Fig 4 shows Case 13 where both w′0 and w′1 cover
one edge only. We assume w′0 lies on AC. Then, there are three
possible ways to propagate w1: from BC to AB, from AC to AB
and from AC to BC. All these configurations induce checking
between two windows propagated to the same edge from different
sides. A possible solution is the strategy in [Liu 2013]. In this

125:4 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

A

(a)

B

C

A

B

C

sw
()sw ()sw

(b)

A

B

C

(c)

A

B

C

(d)

.wl sp
sp

()sp
()sp

Figure 5: Three rules governing window list propagation inside a triangle. (a) and (b) correspond to Rule 1, (c) illustrates Rule 2, and (d)
illustrates Rule 3.

paper, we skip this case since it requires solving a quadratic equa-
tion. Note that skipping this case only results in some redundant
windows rather than missing any shortest paths. Case 14 (only one
window is propagated from one edge to two other edges) and Case
15 (both windows are propagated from one edge to two other edges)
are also shown in Fig 4, where both windows can be split into sub-
windows and these cases can be reduced to Cases 1-9 and Case 13.

4 Synchronized Window Propagation within
a Triangle

Most of the window pruning operations discussed in the previous
section perform cross checking between pairs of nearby windows.
If we accumulate more windows in a triangle and propagate them
simultaneously, more window pairs can be formed and window
pruning can be carried out more thoroughly. To make this happen,
we synchronize local window propagation within the same triangle
by simultaneously propagating a collection of windows from one
triangle edge to its two opposite edges.

In this section, we present three rules for window list propagation
and window pruning within a triangle. Rule 1 splits a window list
into two sublists before propagation and each sublist only need-
s to be propagated to another single edge. Rule 2 propagates a
window list from one edge to another edge and efficiently prunes
those propagated windows that have just become redundant. Rule
3 merges two window lists propagated from different source edges
to the same destination edge.

Although we have identified an exhaustive list of scenarios for pair-
wise window pruning within a triangle, our three rules in this sec-
tion do not perform cross checking for all window pairs. Instead,
they prune redundant windows by performing pairwise checking
between spatially adjacent windows only. As a result, they do not
remove all redundant windows. The rationale behind our strategy
is that all-pairs checking is too expensive while pairwise checking
between spatially adjacent windows can already remove most of the
redundant windows. This will be validated in Section 6.2.

4.1 Window List Splitting

Let ∆ABC be the triangle where we perform window list prop-
agation. Consider a window list wl = {w0, w1, ..., wk} on edge
AB, and this window list is going to be propagated across ∆ABC.
We first define the distance to C via wl as wl.dis = mini{wi.σ +
dist(wi.p, wi.sp) + dist(wi.sp, C)}. In fact, this distance defines
the length of the shortest path on the mesh from source vertex S to
C routed through the windows in wl. Let the window supporting
the shortest distance to C be ws. Next, we define the separating
point of wl as wl.sp = ws.sp. Note that the separating point of
a window wi ∈ wl can be calculated using the intersection be-
tween PC(P = wi.p) and AB. Let this intersection be t. It can

be derived that wi.sp = wi.a0 if t < wi.a0, wi.sp = wi.a1 if
t > wi.a1 and wi.sp = t otherwise.

Then, we have the following Proposition for splitting a window
list. It is based on Cases 7-10 in Fig 3.

Proposition 4.1. One Angle Two Sides (Rule 1)
For each window w ∈ wl and w 6= ws, the propagation of w to
BC is redundant if w.sp < wl.sp, and the propagation of w to
AC is redundant if w.sp > wl.sp.

Note that this proposition is applicable to all three possible configu-
rations of ws shown in Fig 5(a). The proof is given in Appendix B.
Intuitively, windows onAB can be split into two subsets byws. We
name this rule “One Angle Two sides” since it can be considered as
a generalized version of the “One-Angle-One-Split” rule in [Chen
and Han 1990]. In fact, the original “One-Angle-One-Split” rule is
equivalent to performing cross checking when both windows cover
vertex C, which is exactly Case 9 in Fig 3. Our generalized rule is
much more powerful. It performs more thorough window pruning
by taking into account three novel cases (Case 7, Case 8 and Case
10).

The detailed procedure of enforcing Rule 1 has the following steps:
first, compute separating points wi.sp(i = 1, ..., k) for all win-
dows and locate ws; second, split window wi(i 6= s) into two sub-
windows if wi covers vertex C, and remove a subset of the updat-
ed windows using Proposition 4.1; third, remaining windows that
should be propagated to AC form a window list wlleft and those
windows that should be propagated to BC form another window
list wlright; finally, update the vertex distance by setting D(C) to
wl.dis if wl.dis < D(C). As shown in Fig 5(b), the dashed gray
window and the gray side of the blue window are pruned since their
sp (dark point and blue point) lies on the left of wl.sp (red point).

Remark Rule 1 prunes many redundant windows using the sepa-
rating point of a window list before propagating them. Compared
with MMP and ICH algorithms which only perform window trim-
ming or filtering after propagation, our Rule 1 significantly reduces
the time for propagating redundant windows.

4.2 Window List Propagation

After enforcing Rule 1, the window list wl has been cleaned and
split into wlleft and wlright. In this subsection, we discuss how
to perform window pruning when propagating each sublist from
one edge to another edge. The workflow for propagating wlleft =
{w0, w1, ..., wm} from AB to AC is given below (propagating
wlright from AB to CB is similar).

Procedure WindowListPropagation(wl) (Rule 2)
Step 0. Perform one step of propagation for all windows in wl. Let
w′i be the propagated version of wi.
Step 1. Set i = wl.head and j = i+ 1.

125:5 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

S

(c) (d) (a) (b)

S

A B

C

D
E

F

A
B

C

D

E

S

A B

C

D
E

A
R

R

Figure 6: Triangle-oriented wavefront propagation over a mesh. (a)-(b) Face-sorted wavefront propagation, (c)-(d) Vertex-sorted wavefront
propagation.

Step 2. If j == NULL, finish; otherwise, perform pairwise win-
dow pruning between wi and wj using Case 1, Case 2 and Case 3
in Section 3.
Step 3. If wj is removed from the list in Step 2, set j = j + 1
and goto Step 2. In the event that wi is removed in Step 2, if
i == wl.head, set i = j, j = j + 1 and goto Step 4; otherwise,
set i = i− 1 and goto Step 2. If neither wi nor wj is removed, set
i = j, j = j + 1 and goto Step 4.
Step 4. If j == NULL, finish; otherwise, goto Step 2.

There is a double loop in the above procedure. Index j is associat-
ed with the outer loop and index i is associated with the inner loop.
This procedure is illustrated in Fig 5(c), where it traverses all win-
dows in the outer loop (red arrow) and checks each window against
its preceding windows in the inner loop (black arrow). Its time
complexity is O(m) which will be discussed in the next section.

Checking with vertices During the process of enforcing Rule 2,
for each propagated window on AC, we also apply Case 12 in Fig
3 by checking the window against the distance to vertices (the same
as the filtering rule in ICH [Xin and Wang 2009]).

4.3 Window List Merging

Suppose we already have a window listwll = {wl
0, w

l
1, ..., w

l
m} on

AC, which is propagated from AB. In this subsection, we present
the following procedure to propagate windows from another list
w̃l

r
= {w0, w1, ..., wn} from BC to AC, and merge the propa-

gated windows with wll. Meanwhile, we perform window pruning
using Cases 1-6 in Fig 3.

Procedure PrimeMerge(wll, w̃l
r
) (Rule 3) consists of the fol-

lowing steps. First, perform one step of propagation for all win-
dows in w̃l

r
. Let w′i be the propagated version of wi. Then, for

each window from w′0 to w′n, run the following substeps: (i) ap-
pend it to wll; (ii) set j = wll.tail and i = j − 1; (ii) perform
pairwise checking and window pruning on the updated wll using
Steps 2-4 in Rule 2 except that in Step 2, instead of considering
Cases 1-3 only, we need to check where the two windows are from
and use either Cases 1-3 (if both windows are propagated from the
same edge) or Cases 4-6 (if the two windows are propagated from
two different edges).

We name this procedure PrimeMerge() because it will be used
for merging window lists on an edge for the first time. It is comple-
mentary to SecondMerge() in Section 5.1. The time complexity
of PrimeMerge() is O(m + n), which will be discussed in the
next section. Fig 5(d) shows an illustration of the outer loop (red
arrow) and the inner loop (black arrow) of this procedure.

Order Preservation. A window list wl = {w0, w1, ..., wk} is
spatially coherent if wi.a0 ≤ wi+1.a0 for all i = 0, ..., k − 1.

Proposition 4.2. If both wlAB and wlBC are spatially coherent,
the window list wll = wlAB→AC obtained after applying Rule 1
and Rule 2 is also spatially coherent. And the merged list obtained
after applying Rule 3 is still spatially coherent.

The proof of this Proposition is given in Appendix C.

5 Triangle-Oriented Wavefront Propagation
over a Mesh

Our geodesic algorithm takes triangles as the primitive for synchro-
nizing window and distance propagation. All visited triangles form
a single connected region, called the traversed area, over the mesh
surface. The boundary of this traversed area is defined as the prop-
agation wavefront. Our algorithm expands this traversed area in a
continuous Dijkstra style by gradually enclosing unvisited triangles
abutting the traversed area. During each iteration, our algorithm
adds one or more unvisited triangles to the traversed area, and the
wavefront is also updated. Let R and R′ be the existing and ex-
panded traversed area respectively. We denote the region outside
R but inside R′ as ∆R, which consists of the newly added trian-
gles. In this section, we first present a basic face-sorted propagation
algorithm, and then extend it to vertex-sorted propagation, which
achieves improved performance.

5.1 Face-Sorted Wavefront Propagation

As shown in Fig 6(a) and (b), our face-sorted geodesic algorithm
expands the traversed area one triangle face at a time. Its outline is
given below.

Initialization. Create a single window for every opposite edge of
S in its 1-ring neighborhood (bold blue lines around S in Fig 6(a)),
and push all triangles that are outside the 1-ring neighborhood of S
and that share at least one opposite edge of S to Q. Set D(S) = 0,
D(P) = dist(S, P) if P is a 1-ring neighbor of S, and D(V) =
∞ for all other vertices.

Wavefront Propagation.
Step 1. Pop the triangle with the highest priority from Q and add it
to R. This single triangle forms ∆R.
Step 2. If this triangle has only one edge on the previous wave-
front (∆DEF in Fig 6(a)), propagate the window list on DE to
both DF and FE using Rule 1 and Rule 2. Push adjacent triangles
sharing either DF or FE with ∆DEF into Q and calculate their
priority; if any of these adjacent triangles is already in Q, simply
update its priority.
Step 3. If the popped triangle has two edges on the previous wave-

125:6 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

front (∆ABC in Fig 6(a)), run procedure GeodesicUpdate() on
each of the window lists residing on CA and AB, respectively.
GeodesicUpdate() updates geodesic distances at vertices in the
expanded traversed area R′ while propagating the given window
list inside both R and ∆R. Push the adjacent triangle sharing BC
with ∆ABC into Q and calculate its priority.
Step 4. If Q is empty, finish; otherwise, goto Step 1.

The priority of a triangle is defined as follows. For a triangle
which shares only one edge with the wavefront, such as ∆DEF
in Fig 6(a), we define its priority as the negative distance from S to
F via wlDE , which is −wlDE .dis, where wlDE .dis is defined in
Section 4.1. For a triangle which shares two edges with the wave-
front, such as ∆ABC in Fig 6(a), we define its priority as the larger
of −wlAB .dis and −wlCA.dis.

Geodesic Update Once a new triangle, such as ∆ABC in
Fig 6(a), has been added to the traversed area, we propagate win-
dows inside ∆R from previous wavefront edges (such as CA and
AB) to new wavefront edges in ∆R (such as BC). In addition,
we also need to propagate windows inside R again along previous-
ly unexplored paths, such as AB → AC → the interior of R and
AC → AB → the interior of R, because these paths might give
rise to smaller geodesic distances from S to some vertices in R.
Therefore, we propagate window lists along these paths, and up-
date geodesic distances at vertices in R along the way until all the
propagated windows have been either removed by our pruning rules
or merged into window lists residing on edges of the wavefront in
R.

Note that when there are two window lists on the same wavefront
edge, we need to merge them. We classify window list merger-
s at edges on the wavefront into two categories. Mergers taking
place at new wavefront edges in ∆R are called prime mergers while
mergers taking place at wavefront edges in R are called secondary
mergers. Prime mergers are handled by Rule 3 in Section 4.3, and
secondary mergers will be discussed later in this section.

Procedure GeodesicUpdate(wlist)
Step 1 Push wlist to a FIFO queue W .
Step 2 Pop a window list wl from W . If wl is on an internal edge e
of the expanded traversed area R′ and the propagation tries to enter
a triangle f from e, propagate wl to the two opposite edges of e
in the triangle f using Rule 1 and Rule 2. Meanwhile, update the
distances at vertices if needed, and push the non-empty propagated
window lists on the opposite edges into W .
Step 3 If wl resides on a wavefront edge (ew), save wl on ew.
If ew ∈ ∆R and ew already has another window list wlew , run
PrimeMerge(wl, wlew); if ew ∈ R and ew already has another
window list wlew , run SecondMerge(wl, wlew).
Step 4 If W is empty or all propagated windows have been pruned,
finish; otherwise, goto Step 2.

During geodesic update, we propagate window lists not only to-
wards the wavefront, but also towards the interior of the previ-
ously traversed area to make sure none of the paths is overlooked.
When multiple window lists reach the same edge on the wavefron-
t, they are merged; but when they reach the same edge inside the
traversed area, they move forward independently without any inter-
action. There are multiple reasons for this strategy. First, whether
merging window lists reaching the same edge or not only affects ef-
ficiency, but does not affect the overall correctness of our geodesic
algorithm. Second, merging window lists reaching the same edge
on the wavefront is useful because it removes redundant windows
at an early stage and only propagates a compact set of windows
towards the unvisited area of the mesh, thus reducing the computa-
tional cost in later stages. Third, such a merger at an internal edge
of the traversed area is not as important because near optimal dis-

Algorithm 1 Vertex-Oriented Triangle Propagation

1: procedure VTP(M , S) . M - Mesh, S - Source Vertex
2: Denote the wavefront as wf and the area it encloses as R;
3: Define a priority queue Q and a FIFO queue W ;
4: Perform initialization as in Subsection 5.1;
5: Push all adjacent vertices of S into Q;
6: while Q is not empty do
7: Pop a vertex v from Q;
8: Let E(v) be the subset of nonincident 1-ring edges of v
9: Push the edges on the wavefront incident to v into W ;

10: while W is not empty do
11: Pop an edge e from W ;
12: Suppose the opposite edges of e are e0 and e1
13: Propagate wle to e0 and e1 using Rules 1 and 2;
14: Update distance vector D;
15: Let the propagated lists be wle→e0 and wle→e1

16: for each edge ei do
17: if wle→ei is not empty then
18: Let wlei be the existing window list on ei
19: if ei /∈ R and ei ∈ E(v) then
20: PrimeMerge(wle→ei , wlei);
21: else if ei ∈ wf then
22: SecondMerge(wle→ei , wlei);
23: else
24: Push ei to W ;
25: end if
26: end if
27: end for
28: end while
29: Update wavefront wf and R.
30: end while
31: end procedure

tance values have been computed at most vertices in this area and
these distance values can prune windows very effectively. There-
fore, all windows entering the traversed area would be eventually
pruned after being propagated a small number of steps.

Order-Preserving Secondary Merger When a secondary merg-
er is performed at an edge on the wavefront, we can make the
merged window list spatially coherent to ensure its further prop-
agation compatible with our three rules. Let an existing win-
dow list at an edge ew on the wavefront be wlew , and an in-
coming window list propagated from another edge to ew during
geodesic update be wlg = {wg

0 , w
g
1 , ..., w

g
k}. The procedure

OPSecondMerge(wlew , wl
g) incrementally inserts each win-

dow from wlg into wlew by performing a binary search in the or-
dered list of the first endpoints of all windows in wlew .

Order-Free Secondary Merger Since the frequency of sec-
ondary mergers is relatively low in our algorithm, we also de-
sign the following simple secondary merging scheme that does not
strictly maintain spatial coherence in the merged window list.

P

D

E

Figure 7: Order-free secondary merger.

125:7 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Procedure SecondMerge(wlDE , wl
g) (Fig 7): If wlg is propa-

gated from PE, append it to the tail of wlDE ; if wlg is propagated
from DP , append the entire wlDE to the tail of wlg .

In our experiments (Section 6.2), we have found that this simple
scheme runs faster than the order-preserving version, which does
not remove many more redundant windows and sometimes even
keeps slightly more redundant windows. The reason is threefold.
First, the merged window list from an order-free secondary merger
is still piecewise ordered. Windows in the list propagated fromDP
are likely located to the left of the windows in wlDE , and windows
in the list propagated from PE are likely located to the right of the
windows inwlDE . Second, our procedure for order-preserving sec-
ondary merger only enforces spatial coherence, and leaves window
pruning to the next iteration. Third, the order-free version does not
incur the cost of binary search, and thus reaches a better tradeoff.

We name the face-oriented propagation algorithm with order-free
secondary merger FTP, and the version with order-preserving sec-
ondary merger OPFTP.

5.2 Vertex-Sorted Wavefront Propagation

Instead of expanding the wavefront one triangle at a time, we could
expand multiple triangles every time. A natural choice for the lat-
ter case adds all unvisited triangles in the 1-ring neighborhood of
a vertex on the wavefront to the traversed area during every expan-
sion. A variant of our geodesic algorithm based on this expansion
scheme is given below. The priority queue in this variant holds all
vertices on the wavefront, and the priority of a vertex in the queue
is simply defined as the negative most recently updated distance at
the vertex.

The revised geodesic algorithm also proceeds in a continuous Dijk-
stra style. As shown in Fig 6(c), a vertexA with the highest priority
is chosen from the priority queue Q in each iteration. Unvisited tri-
angles in the 1-ring neighborhood of A are added to the traversed
area. And we run procedure GeodesicUpdate() on each of wlAB

and wlAE respectively (AB and AE are the two edges on the pre-
vious wavefront incident to A). The geodesic update process is
constrained within the updated traversed area R′.

As reported in Table 1 in Section 6, this variant of our algorith-
m runs faster than FTP since it propagates windows on the wave-
front through multiple newly added triangles during each iteration
and, thus, reduces the overall data management overhead. Al-
though this variant processes multiple triangles every time, it only
runs GeodesicUpdate() twice since the triangles are connected.
We call this vextex-sorted propagation algorithm with order-free
secondary merger VTP, and the version with order-preserving sec-
ondary merger OPVTP. The pseudo code of VTP is shown in Algo-
rithm 1, which is the final version of our algorithm.

Saddle Vertices Finally let us discuss how to handle the follow-
ing scenarios where a saddle vertex (pseudo source) is visited. The
first scenario applies to FTP only. When a triangle ∆ABC sharing
two edges with the previous wavefront joins the traversed area as
shown in Fig 6(a), andA is a saddle vertex. The second scenario ap-
plies to VTP only. When a vertexAwith the highest priority is cho-
sen from the previous wavefront, and A is a saddle vertex. Third,
when the distance at v, a vertex not on the wavefront, is updated
during the GeodesicUpdate() procedure, v is a saddle vertex. We
perform the following special procedure in all these scenarios: for
each opposite edge in the 1-ring neighborhood of the saddle ver-
tex, create a new window as in the ICH algorithm [Xin and Wang
2009]. If this window lies on an edge of the new wavefront, add it
to the beginning of the existing window list on this edge; otherwise,

ICH vs. Ours MMP vs. Ours FWP-CH
vs. Ours

FWP-MMP
vs. Ours

Time 6.21/1.88 6.11/1.90 3.37/0.57 2.03/0.33
window

propagations 2.26/0.23 1.24/0.11 2.28/0.30 1.25/0.11

Memory 1.21/0.13 377.78/300.635 1.22/0.13 377.78/300.651

Table 2: The mean and standard deviation of performance ratios
between other algorithms and our VTP algorithm on running time,
the number of window propagations and peak memory usage.

call GeodesicUpdate() to propagate this single window inside R.
In addition, we update the distance at every 1-ring neighbor of the
saddle vertex as in [Xin and Wang 2009].

5.3 Complexity Analysis

Proposition 5.1. Applying Rule 2 to a window list with N win-
dows costs O(N) time, PrimeMerge(wl, wl′) costs O(M +N)
time, and OPSecondMerge(wl,wl′) costs O(N log(M + N))
time, where M and N are the number of windows in wl and wl′,
respectively.

The proof of this Proposition is given in Appendix D.

Let n be the number of vertices on the mesh. We first discuss the
complexity of FTP and OPFTP. It is easy to verify that these algo-
rithms are improved versions of the original CH algorithm [Chen
and Han 1990], in the worst case, the number of created windows
are still O(n2). It is obvious that it takes linear time to execute
our Rule 1, and SecondMerge() costs O(1) time. According
to Proposition 5.1, all window list propagation and pruning oper-
ations in FTP have linear complexity with respect to the windows
involved. Therefore, their total cost isO(n2), and the same tasks in
OPFTP cost O(n2 logn), where logn is due to the binary search
in OPSecondMerge(). For window management, since FTP or-
ganizes triangle faces instead of windows, the time complexity of
this part is O(n logn).

In summary, the time complexity of FTP is O(n2 + n logn) =
O(n2), and the time complexity of OPFTP is O(n2 logn +
n logn) = O(n2 logn). Likewise, the time complexity of VTP is
O(n2), and the time complexity of OPVTP isO(n2 logn). Similar
to all existing algorithms, the space complexity of our algorithms is
also O(n2).

6 Experimental Results

To validate the performance of our algorithms, we have tested them
on a variety of models and compared them against existing state-of-
the-art algorithms (MMP, ICH, FWP-MMP, FWP-CH). Specifical-
ly, we collected 55 models, including sculptures, animals and man-
made objects, for testing. The resolution of these models (number
of faces) ranges from 10k to 14M. To evaluate overall performance,
we measure running time, total number of window propagation-
s and peak memory usage. All the algorithms are tested using a
PC with an Intel Core i7-3770 3.40GHz CPU and 32GB memory.
Due to space limitations, the results on some of the testing models
are shown in the paper and all the remaining results are given in
the supplemental materials. In our experiments, we choose the first
vertex on all meshes as the source vertex. To make fair comparison-
s, we adopt a fixed threshold ε = 10−6 for distance comparisons
throughout our experiments as in [Xu et al. 2015].

125:8 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Model Performance Algorithms
ICH MMP FWP-CH FWP-MMP VTP-CH VTP-MMP VTP

Bunny
(F: 144 K)

Time(s) 5.034 4.612 3.056 1.737 2.672 1.304 0.78
window propagations 12,305,579 6,485,320 12,327,991 6,451,352 12,491,178 6,454,800 4,943,670

Peak memory(MB) 1.69 340.45 1.70 340.46 1.71 340.45 1.24

Rocker Arm
(F: 482 K)

Time(s) 36.577 33.286 19.536 11.867 15.449 6.954 4.13
window propagations 68,553,846 33,989,638 70,513,186 35,940,386 69,208,037 33,947,674 25,654,638

Peak memory(MB) 5.29 1797.16 5.42 1797.19 5.35 1797.16 3.70

Asian Dragon
(F: 1,400 K)

Time(s) 73.204 73.092 35.637 23.674 29.492 15.388 9.495
window propagations 107,742,094 62,161,583 108,122,218 62,025,717 109,311,094 61,995,300 48,217,896

Peak memory(MB) 5.184 3354.04 5.207 3354.05 5.23 3354.03 4.373

Neptune
(F: 4,008 K)

Time(s) 455.271 424.331 193.945 120.012 158.912 60.297 47.629
window propagations 585,784,159 270,930,198 602,587,831 284,581,696 606,937,112 278,925,270 246,364,008

Peak memory(MB) 16.96 14225.26 17.14 14219.76 17.26 14224.78 16.38

Lucy
(F: 14,464 K)

Time(s) 8894.87 Out of
memory

2415.88 Out of
memory

1853.66 Out of
memory

549.934
window propagations 6,837,670,602 6,841,729,337 6,859,484,793 2,808,823,718

Peak memory(MB) 78.29 78.28 79.32 69.42

Table 1: Performance comparison with state-of-the-art geodesic algorithms on running time, peak memory usage and total number of window
propagations. F : means the number of faces on a model.

0

2

4

6

8

10

12

T
im

e(
s)

Window propagation Window pruning

Window management

0

20

40

60

80

100

T
im

e(
s)

Window propagation Window pruning

Window management

Asian Dragon (F: 1.4M)Armadillo (F: 345K)

Figure 8: Comparison of running times of three common compo-
nents on two models.

6.1 Comparison with Existing Algorithms

In this section, we compare the performance of our final algorithm
(VTP) with existing state-of-the-art algorithms (ICH, MMP, FWP-
CH, and FWP-MMP) in four aspects. Prior to performance com-
parisons, we have confirmed the correctness of our algorithm by
comparing the results from VTP against those from the exact im-
plementation of MMP [Surazhsky et al. 2005].

Overall Performance All algorithms in our comparison have
been tested on all 55 models and the detailed results are given in the
supplemental materials. We calculate the mean and standard devi-
ation of performance ratios between other algorithms and our VTP
algorithm. The details are shown in Table 2. It can be seen from the
table that our algorithm on average runs 6 times as fast as both ICH
and MMP, more than 3 times as fast as FWP-CH, and twice as fast
as FWP-MMP. Our algorithm has 56% fewer window propagations
than ICH and FWP-CH, and 20% fewer window propagations than
MMP and FWP-MMP. Furthermore, our algorithm on average uses
17% less memory than ICH and FWP-CH, and 99.7% less memory
than MMP and FWP-MMP. Note that MMP algorithms are fast but
memory intensive while existing CH algorithms are memory effi-
cient but relatively slow. Our algorithm is impressive in the sense
that it achieves the best performance in both aspects. For exam-
ple, it uses 99.7% less memory than FWP-MMP while still being
twice as fast. Detailed results on 5 representative testing models are
shown in Table 1.

Performance Profiling As mentioned, all geodesic algorithm-
s based on window propagation have three primary components:

window propagation, window pruning and window management.
We profile the running times of these individual components in all
participating algorithms on ten models. We only show the results
on two models (Armadillo and Asian Dragon) in Fig 8 and the rest
of the results have been included in the supplemental materials. We
can see that our algorithm outperforms other existing algorithms in
the efficiency of all three components. Thanks to the triangle-based
propagation strategy, our algorithm cuts down the time spent on pri-
ority queue management at the same time performs more thorough
window pruning. Without solving any quadratic equations as MMP
algorithms, all our pruning rules only require comparisons between
two distances. This also reduces the computational cost of window
pruning itself.

Scalability We further study how the performance of our algo-
rithm varies with increasing mesh resolution. We first choose three
test models (Cow, Shark and Knot) and let each of them have six
different resolutions through subdivision. The number of faces
ranges from 0.1M to 2M in these subdivided models. For each mod-
el, we calculate ratios between the running times of both FWP-CH
and FWP-MMP and that of VTP on all six resolutions, and show
how they change with the changing resolution. As illustrated in Fig
9, the timing ratios increase with an increasing resolution. That
is, our algorithm achieves more significant performance gain when
dealing with larger models.

Robustness In this section, we further validate that our algorith-
m is robust to mesh triangulation quality. As in FWP [Xu et al.
2015], we first create a sequence of meshes (eight) with different
degrees of anisotropy but a fixed resolution on two testing models

2.7

3.2

3.7

0.00 0.50 1.00 1.50 2.00

R
at

io

#Faces (millions)

FWP-CH v.s. Our Algorithm

Cow Shark Knot

1.9

2.4

2.9

3.4

0.00 0.50 1.00 1.50 2.00

R
a
ti

o

Faces (millions)

FWP-MMP v.s. Our Algorithm

Cow Shark Knot

Figure 9: Comparison of scalability against recent geodesic al-
gorithms. The x-axis represents mesh resolution, and the y-axis
represents performance ratio.

125:9 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

1
2
3
4
5
6
7
8
9

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)

|F | to measure the degree of
anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

125:10 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Model Performance
Algorithms

VTP-Exhaustive VTP-Trimming FTP OPVTP VTP

Bunny
(F: 144K)

Time(s) 4.557 0.872 1.044 0.908 0.78
window propagations 4,801,056 4,686,252 4,755,872 4,875,712 4,943,670

Peak memory(MB) 1.22 1.146 1.20 1.22 1.24

Rocker Arm
(F: 482K)

Time(s) 36.586 4.655 4.84 5.173 4.13
window propagations 24,289,066 24,380,006 25,013,422 25,723,669 25,654,638

Peak memory(MB) 3.43 3.49 3.68 3.71 3.70

Asian Dragon
(F: 1,400K)

Time(s) 49.954 13.763 13.223 11.42 9.495
window propagations 46,926,451 46,316,630 46,525,313 47,573,341 48,217,896

Peak memory(MB) 4.036 4.017 4.10 4.20 4.373

Neptune
(F: 4,008K)

Time(s) 665.847 58.49 64.113 60.192 47.629
window propagations 239,054,124 239,375,390 243,102,435 244,586,129 246,364,008

Peak memory(MB) 15.62 15.962 15.9 16.19 16.38

Lucy
(F:14,464K)

Time(s) 16559 615.215 617.343 608.414 549.934
window propagations 2,703,707,866 2,733,324,263 2,668,122,127 2,734,517,299 2,808,823,718

Peak memory(MB) 66.096 66.848 67.81 68.01 69.42

Table 3: Performance comparison with variants of our VTP algorithm on running time, peak memory usage and total number of window
propagations. F : means the number of faces on a model.

VTP-MMP/CH vs. VTP VTP has two ingredients making it out-
perform all existing algorithms: a vertex-sorted window manage-
ment scheme and three window pruning rules. To evaluate the
contribution of individual components, we have implemented VTP-
MMP/CH, which uses our vertex-sorted priority queue to propagate
all windows around a vertex every time while performing redun-
dant window checking using the same rules as in the MMP and
ICH algorithms respectively. We have conducted comparisons be-
tween VTP and these variants. As seen in Table 1, vertex-sorted
window management is more efficient than all existing manage-
ment schemes, including priority queues used in the MMP/ICH
algorithms and buckets used in the FWP-MMP/CH algorithms.
Nonetheless, this window management scheme alone does not re-
duce the total number of window propagations.

Since our algorithm is built upon three window propagation and
pruning rules, we also perform an ablation study to verify the effec-
tiveness of individual rules.

With and Without Rule 1 We first compare the performance of
our VTP algorithm with and without using Rule 1 introduced in
Section 4.1. When Rule 1 is turned off, to split a window list to
two sides, we simply create two sub-windows for each window that
covers two opposite edges and do not perform any pruning opera-
tions on any windows or sub-windows. We have tested this revised
algorithm on ten models with different model sizes, and the results
on two models (Armadillo and Asian Dragon) are shown in Fig 12.
The rest of the results have been included in the supplemental ma-
terials. We find that Rule 1 saves approximately 25% running time
and 50% window propagations.

With and Without Rules 2 and 3 We also compare the perfor-
mance of our VTP algorithm with and without using Rules 2 and
3 introduced in Sections 4.2 and 4.3. Here, we do not deal with
these two rules separately since they are two similar rules to main-
tain the spatial coherence of window lists. When both Rules 2 and 3
are turned off, we do not perform any pairwise cross checking after
propagating a window list or merging two window lists. We have
also tested this revised algorithm on the same ten models, and show
the results on two models (Armadillo and Asian Dragon) in Fig 12.
The rest of the results are shown in the supplemental materials. We
find that Rules 2 and 3 together save approximately 15% running
time and 30% window propagations.

Distribution of Window Propagations As mentioned earlier, in
an iteration of our VTP algorithm, R and R′ stand for the exist-
ing and expanded traversed areas, respectively, and ∆R stands for
the region outside R but inside R′ (Fig 6(d)). Let us call window
propagations taking place inside ∆R prime propagations, and those
inside R secondary propagations. Then, we count these two types
of propagations on all 55 testing models and the results are given in
the supplemental materials. We find that on average 96.25% prop-
agations are prime propagations. This finding confirms that it is
important to perform window propagation and pruning efficiently
and thoroughly inside ∆R and our algorithmic designs satisfy this
demand. On the other hand, there are few secondary propagations
and the overall performance would not be much affected by the
thoroughness of window pruning during secondary propagations
and mergers. Thus, our decision to perform order-free secondary
mergers is reasonable.

7 Conclusions and Discussions

In this paper, a novel exact geodesic computational framework has
been presented. It outperforms all recent methods in terms of run-
ning time, peak memory usage and total number of window prop-
agations. To perform thorough window pruning, an exhaustive list
of scenarios have been proposed to trim or filter windows by per-
forming pairwise cross checking. Further, a triangle-oriented region
growing scheme has been developed for efficient window propaga-
tion and pruning. In addition, by organizing triangles instead of
windows using a priority queue, our algorithm also significantly
cuts down the time spent on window management. According to
our experiments, our geodesic algorithm runs 4-15 times faster than
MMP and ICH algorithms and 2-4 times faster than FWP-MMP and
FWP-CH algorithms.

Limitations Although our algorithm can remove more redundant
windows than existing methods, it is still challenging to remove all
redundant windows. Another limitation of our current algorithm is
that it is only suited for triangle domains and cannot be applied to
other domains, such as quad meshes and point clouds.

There exist a few directions for future work. Applying the FWP
strategy (i.e., using buckets instead of a priority queue to sort the
vertices) can potentially further improve the performance of our
algorithm. A parallel implementation of our algorithm would be

125:11 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

an interesting approach for developing faster exact geodesic algo-
rithms. In addition, adapting our triangle-oriented window propa-
gation to the all-pairs geodesic problem and geodesic Voronoi dia-
gram computation is also worth pursuing.

Acknowledgments

We would like to thank the anonymous reviewers for their valu-
able comments. This project was supported by EU H2020 project-
AniAge (No.691215) and Hong Kong Research Grants Council un-
der General Research Funds (HKU718712). All our testing mod-
els are from the AIM@SHAPE shape repository, Large Geomet-
ric Models Archive at Georgia Institute of Technology, Suggestive
Contour Gallery provided by Princeton University and Stanford s-
canning repository.

References

BALASUBRAMANIAN, M., POLIMENI, J., AND SCHWARTZ, E. L.
2009. Exact geodesics and shortest paths on polyhedral surfaces.
IEEE Trans. Pattern Anal. Mach. Intell. 31, 6, 1006–1016.

BOSE, P., MAHESHWARI, A., SHU, C., AND WUHRER, S. 2011.
A survey of geodesic paths on 3d surfaces. Comput. Geom. The-
ory Appl. 44, 9 (Nov.), 486–498.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R.
2006. Generalized multidimensional scaling: a framework for
isometry-invariant partial surface matching. Proceedings of the
National Academy of Sciences 103, 5, 1168–1172.

CHEN, J., AND HAN, Y. 1990. Shortest paths on a polyhedron. In
Proceedings of the Sixth Annual Symposium on Computational
Geometry, ACM, New York, NY, USA, SCG ’90, 360–369.

CRANE, K., WEISCHEDEL, C., AND WARDETZKY, M. 2013.
Geodesics in heat: A new approach to computing distance based
on heat flow. ACM Trans. Graph. 32, 5 (Oct.), 152:1–152:11.

KIMMEL, R., AND SETHIAN, J. A. 1998. Computing geodesic
paths on manifolds. In Proc. Natl. Acad. Sci. USA, 8431–8435.

LIU, Y. J., CHEN, Z., AND TANG, K. 2011. Construction of iso-
contours, bisectors, and voronoi diagrams on triangulated sur-
faces. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 33, 8, 1502–1517.

LIU, Y.-J., XU, C.-X., FAN, D., AND HE, Y. 2015. Efficient con-
struction and simplification of delaunay meshes. ACM Transac-
tions on Graphics (TOG) 34, 6, 174.

LIU, Y.-J. 2013. Exact geodesic metric in 2-manifold triangle
meshes using edge-based data structures. Computer-Aided De-
sign 45, 3, 695 – 704.

MÉMOLI, F., AND SAPIRO, G. 2001. Fast computation of weight-
ed distance functions and geodesics on implicit hyper-surfaces.
Journal of computational Physics 173, 2, 730–764.

MÉMOLI, F., AND SAPIRO, G. 2005. Distance functions and
geodesics on submanifolds of rd and point clouds. SIAM Journal
on Applied Mathematics 65, 4, 1227–1260.

MITCHELL, J. S. B., MOUNT, D. M., AND PAPADIMITRIOU,
C. H. 1987. The discrete geodesic problem. SIAM J. Comput.
16, 4 (Aug.), 647–668.

PEYRÉ, G., AND COHEN, L. D. 2006. Geodesic remeshing using
front propagation. International Journal of Computer Vision 69,
1, 145–156.

SCHREIBER, Y., AND SHARIR, M. 2009. An optimal-time algo-
rithm for shortest paths on a convex polytope in three dimension-
s. In Twentieth Anniversary Volume:. Springer, 1–80.

SETHIAN, J. A. 1996. A fast marching level set method for mono-
tonically advancing fronts. Proceedings of the National Academy
of Sciences 93, 4, 1591–1595.

SURAZHSKY, V., SURAZHSKY, T., KIRSANOV, D., GORTLER,
S. J., AND HOPPE, H. 2005. Fast exact and approximate
geodesics on meshes. ACM Trans. Graph. 24, 3 (July), 553–560.

XIN, S.-Q., AND WANG, G.-J. 2009. Improving chen and han’s
algorithm on the discrete geodesic problem. ACM Trans. Graph.
28, 4 (Sept.), 104:1–104:8.

XIN, S.-Q., YING, X., AND HE, Y. 2012. Constant-time all-pairs
geodesic distance query on triangle meshes. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, ACM, New York, NY, USA, I3D ’12, 31–38.

XU, C., WANG, T. Y., LIU, Y., LIU, L., AND HE, Y. 2015.
Fast wavefront propagation (FWP) for computing exact geodesic
distances on meshes. IEEE Trans. Vis. Comput. Graph. 21, 7,
822–834.

YATZIV, L., BARTESAGHI, A., AND SAPIRO, G. 2005. O(n)
implementation of the fast marching algorithm. Journal of Com-
putational Physics 212, 393–399.

YE, J., AND YU, Y. 2016. A fast modal space transform for robust
nonrigid shape retrieval. The Visual Computer 32, 5 (May), 553–
568.

YE, J., YAN, Z., AND YU, Y. 2013. Fast nonrigid 3d retrieval
using modal space transform. In 3rd ACM International Confer-
ence on Multimedia Retrieval (ICMR), 121–126.

YING, X., WANG, X., AND HE, Y. 2013. Saddle vertex graph
(svg): A novel solution to the discrete geodesic problem. ACM
Trans. Graph. 32, 6 (Nov.), 170:1–170:12.

YING, X., XIN, S.-Q., AND HE, Y. 2014. Parallel chen-han
(pch) algorithm for discrete geodesics. ACM Trans. Graph. 33,
1 (Feb.), 9:1–9:11.

ZHONG, Z., GUO, X., WANG, W., LVY, B., SUN, F., LIU, Y.,
AND MAO, W. 2013. Particle-based anisotropic surface mesh-
ing. ACM Transactions on Graphics (SIGGRAPH conference
proceedings).

A Principles for Window Pruning

The following 8 observations serve as our basic principles for win-
dow pruning. We assume all geometric primitives in each observa-
tion lie on the same plane.
Proposition A.1. Let w0 and w1 be two windows, p and q be their
respective pseudo sources, and σ0 and σ1 be the geodesic distances
from their pseudo sources to the true source vertex.
—(a) Suppose a line pK intersects the upper ray of w1 at point K.
Then, w1 is redundant if σ0 + ||pK|| < σ1 + ||qK||.
—(b) Suppose a polyline pGQ intersects the upper ray of w1 at
point Q. Then, w1 is redundant if σ0 + ||pG|| + ||GQ|| < σ1 +
||qQ||.
—(c) Considering the same scenario as in a), let E be a point on
the extended part of pK and D a point on the segment qK. Then,
w1 is redundant if σ0 + ||pE|| < σ1 + ||qD||+ ||DE||.
—(d) Considering the same scenario as in b), let F be a point on
the extended part of GQ and D a point on the segment qK. Then,
w1 is redundant is σ0 + ||pG||+ ||GF || < σ1 + ||qD||+ ||DF ||.

125:12 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

p q

K

0 1

(a)

K

(e)

(c) (d)

(g) (h)

(b)

(f)

Q

G

()G

()Q

R

10

K

E

D

p q

F

G

Q

T

H

D

S
K

OO

()R H

()H

0 1 10

p q

p q
p

0

q

1 0

p

1

q

0

p

1

q

1

q

0

p

K

K

R

Figure 13: Window configurations for Proposition A.1

—(e) Suppose a line qK intersects the upper ray of w0 at point K.
Then, w0 is redundant if σ1 + ||qK|| < σ0 + ||pK||.
—(f) Suppose a polyline qHR intersects the upper ray of w0 at
point R. Then, w0 is redundant if σ1 + ||qH|| + ||HR|| < σ0 +
||pR||.
—(g) Considering the same scenario as in e), let S be a point on the
extended part of qK and O a point on the segment pK. Then, w0

is redundant is σ1 + ||qS|| < σ0 + ||pO||+ ||OS||.
—(h) Considering the same scenario as in f), let T be a point on the
extended part of HR and O a point on the segment pK. Then, w0

is redundant is σ1 + ||qH||+ ||HT || < σ0 + ||pO||+ ||OT ||.

Proof. Here we only prove the first 4 observations and the remain-
ing ones can be proved in a similar way.
(a), as shown in Fig 13(a), for any point X on the segment pK,
we have σ1 + ||qX|| + ||XK|| ≥ σ1 + ||qK|| > σ0 + ||pK|| =
σ0 + ||pX|| + ||XK||. Then σ1 + ||qX|| > σ0 + ||pX||. This
means p can provide a shorter path from the source to any point on
pK that is also inside w1, and w1 becomes redundant.
(b), the case where G lies outside w1 can be reduced to observa-
tion (a) where G is set to p. When G lies inside the visible cone
of w1, we can split w1 into two sub-windows with the dashed red
line shown in Fig 13(b). For the upper sub-window, the conclusion
can be reached directly by taking G as p in observation (a); for the
lower sub-window, we have σ0 + ||pG||+ ||GQ|| < σ1 + ||qQ|| ≤
σ1 + ||qG||+ ||GQ||. Then, we reach σ0 + ||pG|| < σ1 + ||qG||,
which means w1 is redundant according to observation (a).
(c), we have σ0 + ||pK|| + ||KE|| < σ1 + ||qD|| + ||DE|| ≤
σ1 + ||qK||+ ||KE||. Then, we reach σ0 + ||pK|| < σ1 + ||qK||,
and the conclusion can be derived using observation (a).
(d), we have σ0 + ||pG|| + ||GQ|| + ||QF || < σ1 + ||qD|| +
||DF || ≤ σ1 + ||qQ|| + ||QF ||. Then, we reach σ0 + ||pG|| +
||GQ|| < σ1 + ||qQ||, which means w1 is redundant according to
observation (b).

B Proof of Proposition 4.1

Proof. Let w′s be the propagated version of ws within ∆ABC. As
shown in Fig 5(a), there are three possible positions of w′s with
respect to vertex C. For each w ∈ wl, let w′ be the propagat-
ed version of w. The proof proceeds by enumerating all window
configurations and the corresponding window pruning rules from
Section 3.
(1) Ifw′s ∈ AC andw′ ∈ BC andw.sp < ws.sp,ws.sp = ws.a1,
w′ is redundant according to Case 7 in Fig 3.
(2) Ifw′s ∈ AC andw′ ∈ AC andw.sp > ws.sp,ws.sp = ws.a1,

w′ is redundant according to Case 10 in Fig 3.
(3) If w′s ∈ AC and w′ covers C, ws.sp = ws.a1, according
to Case 8 rule 1) in Fig 3, the part of w′ on BC is redundan-
t if w.sp < ws.sp, and the part of w′ on AC is redundant if
w.sp > ws.sp.
(4) Ifw′s ∈ BC andw.sp < ws.sp andw′ ∈ BC,ws.sp = ws.a0,
w′ is redundant according to the symmetric Case of Case 10 in
Fig 3.
(5) Ifw′s ∈ BC andw.sp > ws.sp andw′ ∈ AC,ws.sp = ws.a0,
w′ is redundant according to Case 7 in Fig 3.
(6) If w′s ∈ BC and w′ covers C, ws.sp = ws.a0, the conclusion
can be reached according to Case 8 rule 2) in Fig 3.
(7) If w′s covers C and w′ covers C, the conclusion can be reached
according to Case 9 in Fig 3.
(8) If w′s covers C and w′ ∈ AC and w.sp > ws.sp, w′ is redun-
dant according to Case 8 rule 1) in Fig 3.
(9) If w′s covers C and w′ ∈ BC and w.sp < ws.sp, w′ is redun-
dant according to Case 8 rule 2) in Fig 3.

C Proof of Proposition 4.2

Proof. Our Rule 1 in Section 4 does not affect the order of the
windows in the list. In the following, we first prove by induc-
tion that Rule 2 preserves the spatial order. Consider propagating
wlAB = {w0, w1, ..., wk} (already split by Rule 1) to AC. Let the
propagated version of window wi be w′i. During the steps of Rule
2, let us assume the sublist from w′0 to w′i are already spatially co-
herent. Then, we need to prove that both Step 2 and Step 3 in Rule 2
preserve the spatial order of the sublist from w′0 to w′j(j = i+ 1).
Let a0 = wi.a0, a1 = wi.a1, b0 = wj .a0, b1 = wj .a1 and
a′0 = w′i.a0, a′1 = w′i.a1, b′0 = w′j .a0, b′1 = w′j .a1. We discuss
the following cases where w′j is not spatially coherent with w′i:
(i) b′1 < a′0. This corresponds to Case 3 in Fig 3. One of the win-
dows is redundant and should be removed.
(ii) b′0 < a′0 < b′1. This corresponds to Case 2 in Fig 3. After be-
ing checked against the rules in this case, if both windows survive,
w′j must have been partially trimmed. The trimmed w′j has become
spatially coherent with w′i and its preceding windows.

For all these cases, the removal of w′j does not affect the spatial or-
der of its preceding sublist and the removal of w′i triggers pairwise
cross checking between w′j and w′i−1. As such checking is con-
tinued until a spatially coherent window is found or all preceding
windows are removed, our conclusion can be reached.

The order preservation property of our Rule 3 can be reached ac-
cording to Cases 1-6 in Fig 3 in a similar way.

D Proof of Proposition 5.1

Proof. We first prove that our Rule 2 has linear time complexity.
Let wl = {w0, w1, w2, ..., wn} be the input window list, and ti be
the number of times pairwise cross checking is performed between
wi and its preceding windows. Since pairwise cross checking be-
tween wi and its preceding windows is terminated only when it
reaches a preceding window that cannot be removed, such cross
checking removes ti − 1 redundant windows. In the worst case,
pairwise cross checking between wi+1 and its preceding windows
needs to be performed i + 1 times, and the total number of redun-
dant windows removed before wi+1 is reached is

∑i
k=1(tk − 1).

We have ti+1 ≤ i+ 1−
∑i

k=1(tk− 1), that is
∑i+1

k=0 tk ≤ 2i+ 1.
Thus

∑n
k=0 tk ≤ 2n + 1, which indicates linear time complexity.

The complexity of PrimeMerge() can be derived in a similar way
as Rule 2. The complexity of OPSecondMerge() can be derived
easily using the fact that a binary search has logarithmic complexi-
ty.

125:13 • Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

