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Abstract Perceptual multistability is a phenomenon in
which alternate interpretations of a fixed stimulus are per-
ceived intermittently. Although correlates between activity
in specific cortical areas and perception have been found,
the complex patterns of activity and the underlying mecha-
nisms that gate multistable perception are little understood.
Here, we present a neural field competition model in which
competing states are represented in a continuous feature
space. Bifurcation analysis is used to describe the differ-
ent types of complex spatio-temporal dynamics produced
by the model in terms of several parameters and for differ-
ent inputs. The dynamics of the model was then compared
to human perception investigated psychophysically during
long presentations of an ambiguous, multistable motion pat-
tern known as the barberpole illusion. In order to do this,
the model is operated in a parameter range where known
physiological response properties are reproduced whilst also
working close to bifurcation. The model accounts for char-
acteristic behaviour from the psychophysical experiments
in terms of the type of switching observed and changes in
the rate of switching with respect to contrast. In this way,
the modelling study sheds light on the underlying mecha-
nisms that drive perceptual switching in different contrast
regimes. The general approach presented is applicable to a
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27 Bd Jean Moulin, Marseille 13385, France

broad range of perceptual competition problems in which
spatial interactions play a role.

Keywords Multistability · Competition · Perception ·
Neural fields · Bifurcation · Motion

1 Introduction

Perception can evolve dynamically for fixed sensory inputs
and so-called multistable stimuli have been the attention
of much recent experimental and computational investiga-
tion. The focus of many modelling studies has been to
reproduce the switching behaviour observed in psychophys-
ical experiment and provide insight into the underlying
mechanisms (Laing and Chow 2002; Freeman 2005; Kim
et al. 2006; Shpiro et al. 2007; Moreno-Bote et al. 2007;
Borisyuk et al. 2009; Ashwin and Lavric 2010). Bifurcation
analysis (Strogatz 1994; Kuznetsov 1998) and numerical
continuation (Krauskopf et al. 2007) are powerful tools
from the study of dynamical systems that have already
proved effective in analysing rate models where the com-
peting perceptual states are represented by discrete neural
masses (Shpiro et al. 2007; Curtu et al. 2008; Theodoni
et al. 2011b). Two commonly proposed mechanisms that
drive the switching behaviour in these models are adapta-
tion and noise and a strong argument is made in Shpiro
et al. (2009) that a balance accounts best for experimental
findings across different model architectures and different
adaptation mechanisms. Existing studies using discrete neu-
ral masses have shown that switching in rivalry experiments
can be described by a relatively simple dynamical system.
However, the problem of multistable motion integration is
different because the perceived direction of motion is rep-
resented on a continuous scale. We therefore asked the
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following questions. Can a minimal model with a contin-
uous feature space describe switching behaviour in motion
integration? Do qualitative changes in the dynamics pre-
dicted with bifurcation analysis correspond to changes in
the mechanisms driving the switches?

Here, we will take advantage of the neural fields formal-
ism (Amari 1971; Wilson and Cowan 1972, 1973) in order
to study neural competition in a model with a continuous
feature space where adaptation and noise are implemented
as mechanisms that can drive activity switches. The model
describes the mean firing rate of a population of feature
selective neurons. Deterministic versions of this feature-
only model with spike frequency adaptation have been
studied previously without input (Curtu and Ermentrout
2004) and with a unimodal input (Hansel and Sompolinsky
1998; Folias 2011). A key difference with existing rivalry
models is that the competing percepts form tuned responses
in a continuous feature space instead of being repre-
sented by discrete populations as in, for example, Shpiro
et al. (2007), and Theodoni et al. (2011b). The more gen-
eral model we use allows for perceptual transitions to occur
in a smooth way as opposed to discrete switches between
two isolated percepts. Starting from the results presented
in Curtu and Ermentrout (2004), we will first introduce
a simple (unimodal) input and investigate how the vari-
ous types of solutions from the no-input case are modified.
With the application of numerical bifurcation methods we
find that although the boundaries between parameter regions
featuring different types of responses are gradually dis-
torted with increasing input strength, much of the global
structure is preserved. This allows for all possible types of
behaviour, and parameter regions for which it can occur,
to be comprehensively described across a wide range of
model parameters controlling input gain, adaptation gain
and the shape of the firing rate function. For a simple input
we are able to match the models output to known response
properties from the literature before considering the intro-
duction of a complex (multimodal) input that gives rise to
multistable behaviour.

In this paper we are interested in moving, ambiguous
visual stimuli for which two or more distinct interpretations
are possible, but where only one of these interpretations,
or percepts, can be held at a time. Not only can the ini-
tial percept be different from one short presentation to
the next, but for extended presentations, the percept can
change, or switch, dynamically. This phenomenon of multi-
stability has been observed and investigated with a number
of different experimental paradigms, e.g. binocular rivalry
experiments (Levelt 1968; Blake 1989, 2001), apparent
motion (Ramachandran and Anstis 1983), motion plaids
that are bistable (Hupé and Rubin 2003) or tristable (Hupé
and Pressnitzer 2012) and the multistable barberpole
illusion (Castet et al. 1999; Fisher and Zanker 2001;

Meso et al. 2012b). During extended presentations of these
stimuli, the dominant percept switches randomly and the
dominance durations between switches have been shown
to fit certain distributions dependent on the experimen-
tal paradigm (Levelt 1968; Leopold and Logothetis 1996;
Logothetis et al. 1996; Lehky 1995; Zhou et al. 2004; Rubin
and Hupé 2005).

Here, we will study the temporal dynamics of perception
for the so-called multistable barberpole illusion, which has
been investigated in complementary psychophysical exper-
iments (Meso et al. 2012b). Some of these results will be
presented alongside the modelling work. We will demon-
strate how the general neural fields model can reproduce the
main dynamical characteristics of the perceptual switches
observed in the experiments. We use the mean switching
rates reported in the experiments to constrain model param-
eters and propose specific mechanisms that can account for
the behaviour in different contrast regimes. Importantly, we
will show that the two contrast regimes identified experi-
mentally, one in which the rate increases with contrast, the
other in which the rate decreases with contrast, are linked
to specific mechanisms with the model. Although a com-
bination of noise and adaptation drive the switching, the
dominant mechanism changes with contrast. Furthermore,
we are able to quantify this in an experimentally testable
way: the distribution of dominance durations fit different
statistical distributions in each contrast regime.

In Section 2 section we give a mathematical descrip-
tion of the model before presenting general results that map
the model’s possible behaviours across parameter space in
Section 3 and then applying the model to the study of
multistable perception in Sections 4 and 5.

2 Competition model with continuous feature space

2.1 The neural field framework

The neural field equations provide an established frame-
work for studying the dynamics of cortical activity, repre-
sented as an average membrane potential or mean firing
rate, over a spatially continuous domain. Since the semi-
nal work by Amari (1971), Wilson and Cowan (1972) and
Wilson and Cowan (1973) a broad range of mathemati-
cal tools have been developed for their study, see reviews
by Ermentrout (1998), Coombes (2005) and Bressloff
(2012) along with Ermentrout and Terman (2010, Chap-
ter 11) for a derivation of the equations. The equations
describe the dynamical evolution of activity of one or
more connected populations of neurons, each defined in
terms of a spatial domain that can represent either physical
space (on the cortex), an abstracted feature space (ori-
entation, direction of motion, texture preference, etc.), or
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some combination of the two. This framework has proved
especially useful in the study of neuro-biological phenom-
ena characterised by complex spatio-temporal patterns of
neuronal activity, such as, orientation tuning in the pri-
mary visual cortex V1 (Ben-Yishai et al. 1995; Somers
et al. 1995; Hansel and Sompolinsky 1998; Veltz 2011),
binocular rivalry (Kilpatrick and Bressloff 2010; Bressloff
and Webber 2011), and motion integration (Giese 1998;
Deco and Roland 2010).

2.2 Model equations

In this section we describe a general neural competition
model that switches between selected states for an ambigu-
ous input. The model describes the time-evolution of a
neuronal population defined across a continuous feature
space in which a selected state corresponds to a tun-
ing curve. A spatial connectivity is chosen that produces
mutual inhibition between competing tuned responses so
that a winner-takes-all mechanism leads to a definitive tuned
response at any given time instant. Over time, shifts between
tuned responses are driven by a combination of adaptation
and noise.

We will consider a single neuronal population p(v, t),
defined across the continuous, periodic feature space v ∈
[−π, π), whose evolution depends on time t . The vari-
able p(v, t) takes values in [0, 1] representing activity as a
proportion of a maximal firing rate normalised to 1. We also
define secondary adaptation α(v, t) and stochastic X(v, t)

variables. The time evolution of p(v, t) is described by the
following coupled system of integro-differential equations:

τp
d

dt
p(v, t) = −p(v, t)+ S

(
λ[J (v) ∗ p(v, t)− kαα(v, t)

+ kXX(v, t)+ kI I (v)− T ]), (1)

τα
d

dt
α(v, t) = −α(v, t)+ p(v, t). (2)

The principal Eq. (1) has time constant τp and has a standard
decay term −p. A smooth, nonlinear sigmoidal firing rate
function

S(x) = 1

1 + exp(−x)
(3)

is used as plotted in Fig. 1a. The slope and threshold of
the firing rate function are controlled by the parameters
λ and T , respectively. The firing rate function processes
lateral connections described by J and inputs from adap-
tation α, additive noise X and a time independent input
I ; the respective input gain parameters are kα, kX and kI .
The connectivity in the feature space v is represented by
a convolutional operator J that approximates a Mexican
hat connectivity (local excitation, lateral inhibition). As

a b

c

Fig. 1 Model features and stimulus. a The smooth (infinitely differen-
tiable) sigmoidal firing rate function S(x). b The convolutional kernel
J is a three-mode approximation of a Mexican hat connectivity. c The
simple stimulus is a Gaussian bump centred at v = 0◦

in Curtu and Ermentrout (2004), we use a 3-mode expansion
and J takes the form

J (v) = J0 + 2J1 cos(v)+ 2J2 cos(2v), (4)

see Fig. 1b. The adaptation dynamic in Eq. (2) describes
linear spike frequency adaptation that evolves on a slow
time scale τα . The additive noise X(v, t) is an Ornstein-
Uhlenbeck process that evolves on the same slow timescale
τα as the adaptation, has mean 〈X(v, t)〉 = 0, variance
Var(X) = 1 and no feature correlation; see Appendix A for
further details. The input I depends only on the feature v

and the so-called simple input studied in Section 3 is shown
in Fig. 1c.

2.3 Parameter values, initial conditions and numerical
computations

The parameter values used in the numerical computations
in each section of the paper are given in Table 1. For
the model simulations without noise (kX = 0), as pre-
sented in Sections 3 and 4, we solve the system described
by Eqs. (1–2) using the ODE23T solver in Matlab with
default settings except the relative tolerance, which was
set to 10−6. A 200-point discretisation of v was used that
satisfies error bounds for the computation of the integral
term J ∗ p with a standard trapezoid method. For the
simulations with noise (kX = 0.0025), as presented in
Section 5, the same discretisation is used with a standard
Euler-Maruyama method and a fixed timestep of 0.5ms. In
all simulations the initial conditions are set to a low level of
activity p0(v) = 0.1 (10% of the maximal firing rate) with a
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Table 1 Parameter values used in the numerical studies

Description Parameter Value Section(s)

Zero-order coefficient of J J0 -1 Fixed

First-order coefficient of J J1 1/2 Fixed

Second-order coefficient of J J2 1/6 Fixed

Sigmoid threshold T -0.01 Fixed

Firing rate stiffness λ Free in [12, 26] Sections 3 and 4

. . . as function of contrast c ∈ [0, 1] λ(c) [13, 25] Section 5

Adaptation strength kα Free in [0, 0.07] Sections 3 and 4

kα 0.01 Section 5

Input gain kI 0 or 0.001 Section 3

kI 0.01 Sections 4 and 5

Noise strength kX 0 Sections 3 and 4

kX 0.0025 Section 5

Population time constant τp 1ms Fixed

Adaptation timescale τα 100ms Sections 3 and 4.3

Adaptation and noise timescale τα 16.5s Sections 4.4 and 5

small randomised perturbation. Initial conditions are given
by

p(v, 0) = p0(v), α(v, 0) = 0, X(v, 0) = 0.

In order to carry out a bifurcation analysis of the sys-
tem (1)–(2) we use a numerical continuation package
AUTO (Doedel et al. 1997) that allows us to compute
branches of steady state and oscillatory solutions, and to
detect and track bifurcations of these solutions. These
computations are carried out in the absence of noise (kX =
0) and in this case we can take advantage of the 3-mode
approximation of J in Eq. (4) by expressing p(v, t) and
α(v, t) in terms of the same modes plus some orthogonal
components p̂⊥ and α̂⊥:

p(v, t) = p̂0(t) + p̂1(t) cos(v)+ p̂2(t) sin(v)

+ p̂3(t) cos(2v)+ p̂4(t) sin(2v)+ p̂⊥, (5)

α(v, t) = α̂0(t)+ α̂1(t) cos(v)+ α̂2(t) sin(v)

+ α̂3(t) cos(2v)+ α̂4(t) sin(2v)+ α̂⊥. (6)

In Veltz and Faugeras (2010) it was proved that as t → ∞
the orthogonal components decay to 0. Therefore, we can
study steady-state and oscillatory solutions to (1)–(2) by
solving a set of 10 ordinary differential equations in p̂i

and α̂i , i = 0 . . . 4. The integral term J ∗ p was com-
puted with the same 200-point trapezoid integration scheme
used for in the ODE solver. Periodic orbits were typically
computed with 150 mesh points (constants NTST= 50 and
NCOL= 3) in AUTO. The reduced description is used only
for the computation of the bifurcation diagrams.

3 General study of competition model

3.1 Bifurcation analysis and numerical continuation

Bifurcation analysis and its computational counterpart
numerical continuation are crucial tools in the study of the
neural field equations and dynamical systems in general.
When varying a model parameter, a bifurcation is a spe-
cial point at which there is a qualitative change to the types
of response produced by the model. Numerical continu-
ation allows one to locate, classify and track bifurcation
points and, in this way to map out the exact boundaries
between regions in parameter space with qualitatively dif-
ferent behaviour. This kind of information forms a basis
for tuning a model’s parameters; indeed, it is possible to
ensure that parameter regions in which a desired behaviour
is present are not isolated and ensure robustness with respect
to small changes in the model set up. Numerical continu-
ation has been used in general studies of the neural field
equations (Veltz and Faugeras 2010; Veltz 2011), to investi-
gate localised states (Laing and Troy 2003; Faye et al. 2013)
and in a previous study of the short-term dynamics of the
stimulus considered in this article (Rankin et al. 2013). One
key advantage of using bifurcation and continuation tech-
niques is that they allow for a model to be brought into an
operating regime, close to bifurcation, where the model is
most sensitive to changes in its input and where the com-
bination of mechanisms involved in performing complex
computations can be revealed. This general philosophy has
been used to great effect in studies of orientation tuning in
V1 (Veltz 2011, Chapter 9), simplified rate models of neu-
ral competition (Shpiro et al. 2007; Theodoni et al. 2011b)
and studies of decision making (Theodoni et al. 2011a).



J Comput Neurosci (2014) 36:193–213 197

3.2 Bifurcations relevant to this study

At a bifurcation point there is qualitative change to the
types of response produced by the model. The types
of response can differ in terms of 1) spatial properties,
such as being tuned or untuned, 2) temporal proper-
ties, such as being steady or oscillatory and 3) stability,
where stable implies responses that persist in time and
unstable implies responses that are transient. Each type
of response is associated with a solution of the under-
lying equations and the organisation of these solutions
in state/feature space governs the dynamical behaviour.
The main types of bifurcation that we encounter in this
study are the pitchfork bifurcation and the Hopf bifurca-
tion; these so-called codimension-one bifurcations occur
at a given point as one parameter is varied. In this
model the pitchfork is associated with a transition from
a homogeneous state to a tuned state. Hopf bifurcations
are associated with transitions from steady to oscilla-
tory responses that can either travel in the feature space
(travelling waves), or that remain static but oscillate in
amplitude (standing waves). In the parameter plane (as two
parameters are varied) these codimension-one bifurcations
lie on curves. At points where these curves meet or inter-
sect we encounter codimension-two bifurcations that act as
organising centres close to which several solution types can
be encountered. Due to the presence of translational and
reflectional symmetry properties in the underlying equa-
tions when there is no input, the bifurcating solutions
encountered have the same symmetry properties (Haragus
and Iooss 2010). We will give an account of how these
symmetry properties break down with the introduction of
an input.

In Curtu and Ermentrout (2004) it was shown that in
the absence of input (kI = 0) the model possesses O(2)-
symmetry and as a consequence several types of steady
solutions and oscillatory patterns exist in different parame-
ter regimes local to the codimension-two Bogdanov-Takens
(BT) point (Dangelmayr and Knobloch 1987). As we
will see, this BT point acts as an important organising centre
in parameter space. First, in Section 3.3, we will give a sum-
mary of what is already known from Curtu and Ermentrout
(2004) in terms of solution branches and bifurcation curves
that are relevant to this study (the account will not be
exhaustive, omitting several bifurcation curves involving
exclusively unstable solutions). In Section 3.4, we will
introduce an input and describe how the solutions existing
in different parameter regions change and how the bound-
aries of these regions shift in parameter space. Although the
system (1)–(2) has previously been studied with a unimodal
input in (Hansel and Sompolinsky 1998) and more recently
in (Folias 2011), the results we present allow us to build a
more complete picture of the model’s behaviour in terms of

three parameters relevant to our study, the input gain kI , the
adaptation strength kα and the sigmoidal slope λ.

3.3 No input (kI = 0)

Figure 2 shows the different types of dynamical behaviour
produced in different regions of the (λ, kα)-parameter plane
as demarcated by bifurcation curves. The model simulations
shown in panels b–e were performed at the corresponding
points B–E in panel a. In each case the simulation time was
chosen such that the model reaches its stable behaviour dur-
ing the simulation; the stable behaviour is either a steady
state or an oscillatory state. In the white region the model
produces an homogeneous (untuned) steady-state response
at a low level of activity as shown in panel d. In the dark-
grey region the model produces a steady-state response
tuned to an arbitrary direction as shown in panel e. The
boundary between the white and dark-grey regions is a
pitchfork curve P ; as λ is increased and the pitchfork

a

b

d e

c

Fig. 2 Bifurcation diagram for the no-input case; summary of results
from Curtu and Ermentrout (2004). a Bifurcation curves plotted in
the (λ, kα)-parameter plane demarcate regions with qualitatively dif-
ferent dynamics. The Hopf-type curves are HSW, HTW1 (coinciding)
and HTW2, a pitchfork curve is P and these curves meet at the
Bogdanov-Takens point BT . Panels b–e show the activity p(v, t) indi-
cated by intensity for model simulations at parameter values from the
corresponding points B–E in panel a
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bifurcation is encountered, the homogeneous steady-state
becomes unstable and a ring of tuning curves forms the sta-
ble behaviour. In the light-grey region the stable behaviour
is a travelling-wave solution with an arbitrary direction in
v; the transient behaviour observed before reaching this
stable state changes dependent on the chosen parameter
values; see panels b and c. The boundary between the
white and the light-grey regions is the coinciding Hopf-
type curves HSW an HTW1. As λ is increased and the two
coinciding bifurcation points are encountered the homoge-
neous steady states lose stability and two new branches
bifurcate simultaneously: an unstable branch of standing
wave solutions and a stable branch of travelling wave solu-
tions; this is shown explicitly in Appendix B. In panel b,
close to these curves, the unstable standing wave solution
is seen as a transient behaviour before eventual conver-
gence to the stable travelling wave solution. The boundary
between the dark-grey and light-grey region is HTW2 and as
kα is increased and the bifurcation is encountered the sta-
ble tuned response becomes spatially unstable and starts to
travel in an arbitrary direction. In panel c the unstable tuned
response is seen as a transient behaviour before starting to
travel.

3.4 Simple input with kI = 0.001

Figure 3 shows a new bifurcation diagram after the intro-
duction of the simple input I1D shown in Fig. 1c with input
gain kI = 0.001. We are interested to see how the solu-
tions identified in the previous section change and how
their organisation in parameter space has been modified.
The most notable result is that much of the structure from
the no-input case has been preserved, albeit with subtle
changes that are now discussed. In the white region (to the
left of HSW1 and P̂ ) there is now a low-activity response
that is weakly tuned to the input centred at v = 0; see
panel d. In the dark-grey region there is still a steady-
state, tuned response, but now centred on the stimulus at
v = 0. In the light-grey region the stable behaviour is still
predominantly a travelling wave solution resembling those
shown in Fig. 2b and c but with a slight modulation as
the wave passes over the stimulus; the modulated solution
will be shown later. Here we highlight a qualitatively dif-
ferent type of travelling wave solution that can be found
close to the Hopf curve HTW2, whereby the wave has been
pinned to the stimulated direction, as a so-called slosher
state (Folias 2011); see panel c. Furthermore, an elongated
region in parameter space has opened between HSW1 and
the coinciding curves Hsw2 and HTW1, in which the sta-
ble behaviour is a standing wave, with one of its peaks
aligned to the stimulus at v = 0. In the parameter regime
studied here, a change in stability of the standing wave
solution occurs with the introduction of an input, however,

a

b c

d e

Fig. 3 Bifurcation diagram for the simple input case with kI = 0.001.
a Bifurcation curves plotted in the (λ, kα)-parameter plane demar-
cate regions with qualitatively different dynamics. The Hopf curves
are HSW1, HTW2, along with the coinciding HSW2 and HTW1; a fur-
ther Hopf in the light-grey region involves only unstable solutions
and is not labelled; all the Hopf curves meet at a the double Hopf
point DH . Two bifurcation curves resulting from the symmetry break-
ing of a pitchfork bifurcation are P̂ and F ; see Fig. 12 in Appendix
B and accompanying text. Panels b–e show the activity p(v, t) indi-
cated by intensity for model simulations at parameter values from the
corresponding points B–E in panel a

we note that it has been proved in Curtu and Ermentrout
(2004) that stable standing wave solutions can also exist
without input in different parameter regions. In order to
describe in further detail the changes to bifurcation struc-
ture that occur when the stimulus is introduced we also
consider several one-parameter slices in λ (indicated by
horizontal lines) at fixed values of kα taken from the dia-
grams already shown in Figs. 2a and 3a. The one-parameter
bifurcation diagrams corresponding to these slices are in
Appendix B where we give a more detailed account of
way in which symmetries are broken when an input is
introduced.

The bifurcation analysis with the same input studied
throughout this section, as shown in Fig. 1c, continues in
the next section. We present the case kI = 0.01 but in the
context of a motion stimulus.
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4 Competition model applied to the study of multistable
motion

4.1 Model of direction selectivity in MT

We extend the general study presented in Section 3 and
demonstrate how the same model can be used to study a
specific neuro-biological phenomenon for which perceptual
shifts are observed. We now associate the model’s peri-
odic feature space v ∈ [−π, π) with motion direction. We
assume that the model’s activity in terms of time-evolving
of firing rates p(v, t) are responses of direction-selective
neurons in the middle temporal (MT) visual area. Indeed,
MT is characterised by direction-selective neurons that are
organised in a columnar fashion (Diogo et al. 2003). Here
we only consider a feature space of motion direction and,
thus, we assume the model responses to be averaged across
physical (cortical) space. The chosen connectivity function
(4) shown in Fig. 1b represents mutual inhibition between
sub-populations of neurons associated with competing
directions; this type of connectivity naturally gives rise to
winner-takes-all responses tuned to one specific direction.
Indeed, there is evidence that competing percepts have
mutually inhibitory representations in MT (Logothetis et al.
1989; Leopold and Logothetis 1996). We use the models
tuned response to dynamically simulate the mechanisms
driving perception; cortical responses of MT have been
linked specifically to the perception of motion (e.g. Britten
(2003) and Serences and Boynton (2007)). We assume
that over time any particular tuned response will slowly be
inhibited as represented by the linear spike-frequency adap-
tation mechanism in the model. Furthermore, we assume
there to be a fixed-amplitude stochastic fluctuation in the
membrane potential that is modelled by additive noise (note
that the noise is only introduced for the simulations pre-
sented in Section 5). We use as a model input pre-processed
direction signals in the form expected from V1 (Britten
2003; Born and Bradley 2005). In Section 4.3 the model’s
response properties in terms of its contrast dependence
and direction tuning properties will be matched to what is
known about the direction selective behaviour of MT neu-
rons from physiological studies (Albright 1984; Sclar et al.
1990; Diogo et al. 2003).

4.2 Definition of motion stimuli

We introduce two classical psychophysics stimuli where a
luminance grating drifting diagonally (up and to the right
in the example shown) is viewed through an aperture see
Figs. 4a and b. In the first case, with a circular aperture,
the grating is consistently perceived as moving in the diag-
onal direction D (v = 0◦). In the second case, the aperture
is rectangular and tilted relative to the grating orientation.

a
c

d

e

b

Fig. 4 Simple and complex motion stimuli. a A drifting luminance
grating viewed through a circular soft aperture; the diagonal direction
of motion D is consistently perceived. b A drifting luminance grating
viewed through a square aperture; the dominant percepts are vertical
V, horizontal H and diagonal D. c Representation of the 1D motion
signals in direction space; the simple motion stimulus a is equated with
I1D. d Representation of the 2D motion signals in direction space. e
Summation of the 1D and 2D motion signals with a weighting w1D =
0.5; the complex motion stimulus b is equated with Iext

The classical barberpole illusion (Hildreth 1983, Chapter 4)
comes about as a result of the aperture problem (Wallach
1935; Wuerger et al. 1996): a diagonally drifting grating
viewed through an elongated rectangular aperture is per-
ceived as drifting in the direction of the long edge of the
aperture. With a square aperture, the stimulus is multistable
for short presentations on the order of 2–3s, where the
dominant percepts are vertical V (v = 45◦), horizontal H
(v = −45◦) and D (v = 0◦) (Castet et al. 1999; Fisher
and Zanker 2001). We denote this stimulus the multistable
barberpole and it has been the subject of complementary
psychophysics experiments (Meso et al. 2012b) from which
some results will be presented in Section 5.2.

It was shown in Barthélemy et al. (2008) that the motion
signals from 1D cues stimulate a broad range of direc-
tions when compared with 2D cues that stimulate a more
localised range of directions; see arrows in Figs. 4a and b.
Based on these properties, it is proposed that the multista-
bility for the square-aperture stimulus is primarily generated
by competition between ambiguous 1D motion direction
signals along grating contours on the interior of the aperture
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and more directionally specific 2D signals at the termina-
tors along the aperture edges. We represent the 1D cues by a
Gaussian bump I1D(v) = exp(−v2/2σ 2

1D) with σ1D = 18◦
centred at v = 0◦ as shown in Fig. 4c (which is the same as
Fig. 1c); on its own we call this a simple input that repre-
sents a drifting grating either filling the visual field (without
aperture) or with an aperture that has no net effect on per-
ceived direction such as the circular one shown in Fig. 4a.
We represent the 2D cues by two Gaussian bumps I2D(v) =
exp(−v2/2σ 2

2D) centred at v = 45◦ and v = −45◦ with
width σ2D = 6◦ as shown in Fig. 4d. Note that the func-
tions I1D and I2D are normalised such that their maxima
are 1 (not their areas). Figure 4(e) shows the complex input
Iext represented as a summation of 1D and 2D motion sig-
nals with maximum normalised to 1 and a smaller weighting
w1D ∈ [0, 1] given to 1D cues:

Iext(v) = w1DI1D(v)+ I2D(v − 45)+ I2D(v + 45). (7)

The weighting w1D translates the fact that in motion inte-
gration experiments 2D cues play a more significant role
that 1D cues in driving perceived direction of motion
(Masson et al. 2000; Barthélemy et al. 2010). Here we rep-
resent this weighting in a simple linear relationship, but
in future studies it may be relevant to consider the con-
trast response functions for 1D and 2D cues separately
(Barthélemy et al. 2008).

4.3 Simple input case with kI = 0.01: parameter tuning
for motion study and contrast dependence

Figure 5a shows the two-parameter bifurcation diagram in
λ and kα for the same simple 1D input illustrated in Fig. 3a,
but with the input gain increased by a factor of 10 to
kI = 0.01. The diagram shows the same organisation of
bifurcation curves, but the oscillatory regions have shifted
significantly towards the top-right corner. Once again, in the
white region containing the point D1 there is a steady, low-
activity, weakly tuned response (see lower curve in panel
d). In the dark grey region containing the point D2 there
is a steady, high-activity response with tuning width δ (see
upper curve in panel d). We define δ as the width at half-
height of the tuned response. Again, the boundary between
these regions is demarcated by P̂ in Fig. 3a. In the region
containing the point B there is still a standing-wave-type
solution, but it is modified by the input such that there are
breather-type oscillations (Folias 2011) between a tuned and
an untuned state over time; see Fig. 5b. In this context there
is no physiological interpretation for this solution, and so
we will ensure that the model is operated in a parameter
region where it cannot be observed. In the region containing
the point C there is still a periodic response with small-
amplitude oscillations in v of a tuned response about v = 0;
see Fig. 5c. This is a travelling-wave-type slosher solution

a

b c

d e

Fig. 5 Bifurcation study and contrast response for simple input I1D
(see inset of a) with input gain kI = 0.01. a Two-parameter bifur-
cation diagram in terms of sigmoid slope λ and adaptation strength
kα shows qualitatively the same organisation of bifurcation curves as
Fig. 3a. b, c Time-traces of the activity p(v, t) indicated by intensity as
computed at the corresponding points B and C labelled in a. d Steady-
state responses in terms of the activity p(v) at the corresponding points
D1 and D2 labelled in a. e Contrast response in terms of normalised
peak activity R for simple input (solid curve) fitted to a Naka-Rushton
function (dashed curve) as described in Appendix C. The line between
D1 and D2 in a is the operating range of the model. The response D1
shown in panel d corresponds to c = 0 and the response D2 in panel d
corresponds to c = 1

as described in Section 3.4 that is pinned by the input at v =
0◦; note the transient that makes one full excursion before
being pinned. Closer to the bifurcation curve the solutions
are immediately pinned and further away a phase slip can
be encountered as shown in Fig. 13g–i in Appendix B. For
a simple (unambiguous) input we again operate the model
away from this oscillatory region of parameter space but
find that when the complex input is introduced it is the
slosher-type solutions that produce the desired switching
behaviour.
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In order to produce results and predictions that can be
related directly to the experiments, where contrast was one
of the main parameters investigated, contrast should also
be represented as a parameter in the model. In Curtu et al.
(2008) the input gain kI is assumed to depend on con-
trast and for some critical value of kI switching behaviour
is observed. Here, we choose another option, arguing
that motion signals arriving in MT, primarily from V1,
are normalised by shifts in the sigmoidal nonlinearity (see
Carandini and Heeger (2011) for a review) and therefore,
the input gain kI in Eq. (1) should remain fixed with respect
to contrast. Indeed, by making the slope parameter λ depend
on the contrast c ∈ [0, 1], we are also able to reproduce the
observed switching behaviour with increasing contrast.

We now fix kα = 0.01 such that we operate the model
away from the oscillatory regions shown in Fig. 5 and
describe how the model can be reparametrised in terms
of contrast c. For some steady state p̄, we define firing
rate response R = max{p̄} − M as the peak firing rate
response above some baseline value M; max{p̄} is shown
as a dashed line for solutions D1 and D2 in Fig. 5d and
we set M = max{p̄D1}. As discussed in more detail in the
Appendix C, the solution D1 at λ = 13 is consistent with
an MT response to a very low contrast input (c < 0.01),
whereas the solutions D2 at λ = 25 is consistent with
a high contrast input (c > 0.2). By making λ a specific
function of c we are able to match the model’s contrast
response to known behaviour for MT neurons. As shown
in Fig. 5e, we match the model’s response to an appropri-
ately parametrised Naka-Rushton function, which was used
to fit contrast response data across several stages of the
visual pathway including MT in (Sclar et al. 1990); again,
refer to Appendix C for further details. The operating range
for the model is indicated by a horizontal line at kα = 0.01
for λ ∈ [13, 25] in Fig. 5a. In Appendix C we also show that
the tuning widths δ of the model responses are in agreement
with the literature (Albright 1984; Diogo et al. 2003).

4.4 Complex input with kI = 0.01

This section will focus on the bifurcation results for a com-
plex input as shown in Figs. 6 and 7, but first we discuss
the choice of timescale parameters. Up until now the results
presented have been carried out with the main population
time constant and adaptation timescale fixed at τp = 1ms
and τα = 100ms, respectively. In the following sections
the cortical time scale remains fixed at τp = 1ms and the
adaptation timescale is tuned to a value of τα = 16.5s in
order to match average switching rates in the experimen-
tal data presented in Section 5. Concerning the population
time constant τp , minimal neuronal latencies in response
to flashed or moving high contrast stimuli are 40–45ms
in macaque visual area MT, see Kawano et al. (1994) and
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a

Fig. 6 Bifurcation study for complex input Iext (see inset of a) with
input gain kI = 0.01. a Two-parameter bifurcation diagram in terms
of sigmoid slope λ and adaptation strength kα shows qualitatively
the same organisation of bifurcation curves as Figs. 3a and 5a. Line
between points labelled B and D in a shows the operating region of the
model as defined in Fig. 5a. b–d 15s time-traces of the activity p(v, t)

indicated by intensity as computed at the corresponding points B, C
and D labelled in a. Panel c1 shows the maximum of the activity and
panel c2 shows detail from c for the first 40ms of the simulation. The
first direction tuned response coincides with the max of the activity
crossing through a threshold value of max{p} = M+ Rmax

2 as indicated
by a horizontal dashed line in c1

Raiguel et al. (1999). From our simulations, if we look at
the typical early dynamics as shown in Fig. 6c1 and c2,
the transition to the first direction tuned response occurs at
t∗ ≈ 20ms. The latency of this response depends both on τp
and on the lateral spread of activity through the connectiv-
ity kernel, thus, the time constant we use is an appropriate
order of magnitude. Concerning the adaptation timescale
τα , slow adaptation of firing rates in the visual cortex occur
on timescales that range from 1–10s for excitatory neu-
rons and 2–19s for inhibitory neurons (Sanchez-Vives et al.
2000; Descalzo et al. 2005). Yang and Lisberger (2009) have
shown that a 10s presentation of a moving stimulus reduces
neuronal response strength in macaque MT and that this has
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a

b

c d
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Fig. 7 Bifurcation diagram with complex input for model
parametrised in terms of contrast. a, b One-parameter bifurcation dia-
grams show the same data plotted in terms of the maximum response
and average direction, respectively; the steady-state response tuned to
D is solid black when stable and dashed black when unstable. Stable
branch of oscillations between H and V is grey. a1 The period on the
oscillatory branch. c, d Time-traces of the activity p(v, t) indicated
by intensity as computed at the corresponding points C and D labelled
in b.

an effect on pursuit eye movements. Such a time course
is consistent with human psychophysics data on the rela-
tionship between adaptation duration and strength in visual
motion processing, see (Mather et al. 1998). The chosen
adaptation timescale is of an appropriate order of magnitude
with respect to visual motion adaptation in cortical areas as
well as for visual perception.

The change in the value of τα from 100ms to 16.5s does
not qualitatively affect the bifurcation diagrams shown in
earlier sections, but in order for these results to be relevant
it is desirable that we work with a small-amplitude additive
noise as governed by kX. The single source of noise in
the model evolves with its timescale τX set equal to τα .
This choice was found to have a pronounced affect on the
switching dynamics without the need for large values of
kX. Note that the time units displayed in figures up to this
point are milliseconds, but will be seconds in the remainder
of the paper.

Figure 6 shows the bifurcation diagram for a complex
input and the different types of behaviour that are observed
in the operating range of the model as defined in the pre-
vious section. In the presence of the complex input, we see
the same four regions found for the simple input; compare
Figs. 5a and 6a. The top-right-most region of the (λ, kα)-
plane in which oscillations about v = 0◦ are observed
has grown significantly. As for the simple input, there is a
weakly tuned steady-state response in the region contain-
ing the point B and there is a tuned steady-state response in
the region containing the point C; see panels b and c. How-
ever, the region containing the point D now shows an altered
oscillatory behaviour. We see a model response that is ini-
tially centred at the direction D but after 2–3s shifts to H
and proceeds to make regular switches between H and V,
see panel d. The model’s separation of timescales is now
seen more clearly; the model spends prolonged periods at
H or V during which the adaptation builds up and eventu-
ally induces a switch to the opposite state; with τα = 16.5s
switches occur every ≈ 3s, but the transition itself takes
only ≈ 50ms. We note that the time between switches is
shorter than the timescale of adaptation, which implies that
the switches occur whilst the adaptation is dynamic, i.e. still
rising (falling) for the selected (suppressed) direction. Due
to the dynamics being deterministic in the absence of noise
(kX = 0), the switches occur at regular intervals.

As described in the previous section we fix the operating
region of the model with kα = 0.01 and for λ ∈ [13, 25] as
indicated by the horizontal line in Fig. 6a. As λ is increased
from λ = 13 at b to λ = 25 at d (equivalently contrast
increases from c = 0 to c > 0.2) there are transitions from
a weakly tuned response at point B to a tuned response at
point C to an oscillatory response at point D. For c > 0.2
the model response saturates as shown in Fig. 5e. We now
incorporate another known aspect of contrast dependence
in motion processing by varying the relative weighting
between 1D and 2D cues in the input. The psychophysics
experiments presented in Lorenceau and Shiffrar (1992) and
Lorenceau et al. (1993) show that 1D cues (contour signals)
play an important role in motion perception at low con-
trast that diminishes with increasing contrast. As contrast
increases the 2D cues (terminator signals) play a more sig-
nificant role. Based on these studies we propose that for the
complex model input (7) the relative weighting of 1D cues
should decrease linearly with contrast

w1D = W0 −W1c, (8)

where W0 = 0.5 and W1 = 1.1. These specific values
were chosen in order to match the experiments; see further
comments in Section 5.3.

Figure 7 shows a one-parameter bifurcation diagram for
the model working in the operating regime shown in Figs. 5a
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and 6a but now reparametrised in terms of contrast c as
described above. At low contrast there is a stable steady-
state response tuned to the direction D. The peak response
max{p} increases with contrast. This steady-state response
loses stability at a travelling-wave Hopf instability Htw

beyond which there is a stable oscillatory branch. The
dependence of w1D on the contrast affects the solutions in
the two following ways. Firstly, the unstable branch asso-
ciated with the D direction decreases in max{p} at large
contrasts; see dashed curve in panel a. Secondly, the period
and amplitude of the oscillations in v̄ does not saturate but
continues to increase with contrast as shown in the inset a1
and panel b. We also note that close to the bifurcation point
Htw there are long transients before the onset of oscillations,
see panel c, and that further from the bifurcation point the
onset of oscillations is faster, see panel d.

5 Comparison of the model with experimental results

5.1 Experimental results

Figure 8 shows a summary of experimental data obtained
in psychophysics experiments with 15s presentations of the
complex stimulus shown in Fig. 4b (Meso et al. 2012b).
Four healthy volunteers who provided their informed con-
sent were participants, of whom two were naive to the
hypothesis being tested. All experiments were carried out
with, and following CNRS ethical approval. An SR Eye-
link 1000 video recorder was used for the eye movement
recordings and psychophysics stimuli were presented on a
CRT monitor through a Mac computer using Psychtoolbox
version 3.0 running stimulus generation routines written in
Matlab. Positions of the right eye were recorded and con-
tinuous smooth trajectories estimated after removing blinks,
saccades (very fast abrupt movements) and applying a tem-
poral low pass filter. The presented stimuli covered 10
degrees of visual angle (the size of the side of the square
in Fig. 4b) and were presented at a distance of 57cm from
the monitor. Each task was done over 8 blocks of up 15
minutes over which 36 trials spanning a range of six con-
trasts were randomly presented each time. In this paradigm,
recorded forced choice decisions indicating shifts in per-
ceived direction through the three directions H, D and V
and the estimated eye directions were found to be coupled
and both indicative of perceived direction. Further details of
these experiments can be found in our previous presentation
(Meso et al. 2012b) and a full description will appear in the
experimental counterpart of this manuscript.

The temporal resolution of the eye traces is much higher
than that of the reported transitions and allows for a rela-
tively continuous representation of eye movement direction
that can be compared with model simulations. Figure 8a and

a
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Fig. 8 Summary of results from psychophysics experiments for the
complex stimulus shown in Fig. 4b. a, b Time traces of average direc-
tion from eye-movements during two individual stimulus presentations
at c = 0.08. Error bars show the standard deviation of the computed
direction of smooth components over 200 samples; the re-sampled
value at 5Hz is the mean. c Relation between contrast and mean switch-
ing rate in terms of perception (reported by subjects) and as computed
from eye-movement traces; grouped data is averaged across the four
subjects with standard error shown. d Switching-rate data (from per-
ception) separated out by subject with standard error for each subject
shown

b show, for two different subjects, time traces of the time-
integrated directional average of eye-movements from a
single experimental trial at c = 0.08. Switches in perception
can be computed from these trajectories by imposing thresh-
olds for the different percepts. Both trials show that the
directions H and V are held for extended durations and reg-
ular switches occur between these two states. The switches
involve sharp transitions through the diagonal direction D.
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The diagonal direction can be held for extended durations
immediately after presentation onset. However, we note that
the eye-movement direction during the first 1s of presen-
tation has a more limited history in its temporal filtering.
Short presentations of the same stimulus were investigated
in a related set of experiments (Meso et al. 2012a) and
modelling work (Rankin et al. 2013).

Figure 8 also shows the relationship between the aver-
aged rate of switches between H and V over a range of
contrast values c ∈ {0.03, 0.05, 0.08, 0.1, 0.15, 0.2}; in
panel c the data is averaged across the four subjects and
in panel d it is separated out by subject. The lowest con-
trast shown c = 0.03 corresponds to the smallest contrast
value for which subjects were able to reliably report a direc-
tion of motion for the stimulus. For the grouped data, at low
contrast (c < 0.1) the rate of switching increases with con-
trast with the rate being maximal at approximately c ≈ 0.1.
Beyond the peak, for contrasts c > 0.1, the rate of switching
decreases with contrast. For the data separated by subject
shown in panel d, the subjects MK and AB have a peak
rate around 3.5 switches per 15s presentation and the peak
occurs at c ≈ 0.1. For subjects JR and AM the peak rate
is lower at around 2.5 switches per 15s presentation and
there is a less prominent peak occurring at a higher con-
trast value c > 0.1. However, the common pattern reveals
two qualitatively different regimes with respect to changing
contrast. A low contrast regime for which the switching rate
increases with contrast and a high contrast regime for which
the switching rate decreases with contrast.

5.2 Model simulations with noise (kX = 0.0025)

We now study the dynamics of the model in the presence of
additive noise in the main neural field equation. Recall that
the stochastic process in the model is operating on the same
slow timescale τα as the adaptation and that the strength
of the noise is kX = 0.0025. Two cases will be studied,
first the low contrast case at c = 0.04, close to the contrast
threshold on the steep part of the model’s contrast response;
see Fig. 5e. Second, the high contrast case at c = 0.08,
which is above the contrast threshold on the saturated part
of the contrast response function. In the first case, noise is
introduced in a parameter regime where the model is close
to bifurcation and oscillations only occur after a long tran-
sient, see Fig. 7c. When operating in a nearby parameter
regime close to bifurcation the noise causes random devia-
tions away from the direction D and can drive the model into
an oscillatory state more quickly. In the second case, noise is
introduced in a parameter regime where the model produces
an oscillatory response with a short transient behaviour, see
Fig. 7d. In this regime the noise perturbs the regular oscilla-
tions either shortening or prolonging the time spent close to
H and V.

Figure 9a–d shows 15s time traces of the population
activity p for the cases c = 0.04 (first row) and c = 0.08
(second row). Note that each individual model simulation is
quite different due to the noise, but we have selected rep-
resentative examples that allow us to highlight key features
in the model responses and compare the different contrast
cases. In processing this simulated data we observe that the
activity is initially centred around the direction D. After
some transient period switching occurs primarily between
H and V. In order to detect switches between the direc-
tions H and V a so-called perceptual threshold (PT ) has
been set at v = ±10◦. The first switch from D to either
H or V is detected the when the corresponding threshold is
crossed for first time. Subsequent switches are only detected
the next time the opposite threshold is crossed. Note that
although other algorithms could be employed to detect these
switches, we found that these do not have a great effect on
the presented results.

Across all the examples shown in Fig. 9, the average
direction v̄ oscillates in a random fashion and as time pro-
gresses the amplitude of these oscillations grows in v. For
the case c = 0.04 there is a long transient and the first
switch occurs for approximately t ∈ [5s, 10s]. For the case
c = 0.08 the overall amplitude of the oscillations is larger
and the first switch occurs for t < 3s. Note also that the
level of activity shown as an intensity in Fig. 9 is higher in
the c = 0.08 case. An important difference between the two
contrast cases is that in the low contrast case, the transitions
between H and V occur gradually when compared with the
abrupt transitions in the high contrast case. This suggests
that at low contrast the direction D could be seen during the
transitions, where as in the high contrast case the switches
occur directly from H to V.

With respect to the experimental data, the model con-
sistently reproduces the characteristic behaviour of regular
switches between the H and V. Furthermore, the sharp tran-
sitions through the diagonal direction D are also captured
well by the model. Compare the second row of Fig. 9 with
the two examples shown in Fig. 8a and b.

5.3 Dependence of switching rate on contrast

Figure 10 shows the relationship between contrast and
switching rate as computed with the model where the rate is
expressed as the mean number of switches per 15s simula-
tion. Panel a shows the relationship without noise (kX = 0)
and with noise (kX = 0.0025). We show the average switch-
ing rate at discrete contrasts c ∈ [0.02, 0.25] and at each
contrast value we plot the switching rate averaged across
500 model simulations.

The deterministic (no noise) case can be explained in
terms of the bifurcation diagram shown in Fig. 7. At low
contrast, no switching behaviour is observed as the model
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Fig. 9 Time traces from individual model simulations where inten-
sity shows the population activity across direction space (vertical axis).
The solid black line is the average of this activity (average direction v̄)
and the dashed lines indicate perception thresholds (PT ) for detection

of switches between the directions H and V; switches are indicated by
vertical white lines. First and second rows shows examples from the
low and high contrast cases, respectively

can only produce a steady-state response weakly tuned
to the direction D. With increasing contrast, the onset of
switching is abrupt, occurring just above c = 0.04 after
the bifurcation Htw at c ≈ 0.03. Switching does not begin
immediately at the bifurcation point, due to long transients
for values of c nearby, see Fig. 7c. The switching rate
remains constant at around 3 switches per 15s interval, and

b

a

Fig. 10 Mean switching rates computed with the model and recorded
from psychophysics experiments. a Switching rates computed with the
model without noise and with noise. b Switching rate curves computed
with the model for a range of PT values

starts to drop off for contrasts c > 0.12. The reduction in
switching rate for larger contrasts is due to the increasing
period of the oscillations as shown in Fig. 7a1.

The introduction of noise with fixed intensity across all
contrasts leads to an increase in average switching rate, see
Fig. 10a. Here we only consider the average rate, but the
distribution of the switching times will be discussed in Sec-
tion 5.4. At larger contrasts, far from the bifurcation Htw,
the switches are primarily governed by an underlying adap-
tation driven oscillation and the increase in switching rate
is minimal. At lower contrasts, the shortest period of the
oscillations is predicted to be immediately after the bifur-
cation; see Fig. 7a1. However, close to bifurcation, the
theory also predicts that a long transient behaviour will be
observed before the onset of these fast switches. The tran-
sient behaviour is important here, due to the fact that we
consider short 15s simulations. At very low contrasts, before
Htw, only the noise can drive a deviation from the diagonal
direction leading to a switch. However, just after the bifur-
cation Htw, the main contribution to the increased switching
rate is noise shortening the transient period before the
onset of adaptation-driven switching. Therefore, the bifur-
cation analysis provides an explanation for the fact that the
peak in switching rate occurs shortly after the bifurcation
where transients are curtailed by the noise and the period is
shortest.

The model results with noise are able to accurately cap-
ture the two contrast regimes from the experimental data: an
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increase in switching rate at low contrasts and subsequent
decrease in switching rate at higher contrasts, compare
Fig. 10a black curve with Fig. 8a. The values of W0, W1

and τα were chosen in order to fit the experimental data,
however, the two contrast regimes are robustly produced
by the model independent of the specific values chosen.
In Fig. 10(b) we show how, in the model, the relationship
between switching rate and contrast changes with respect
to PT . When PT is low the peak switching rate is high-
est and occurs at a low contrast value. As PT is increased,
the peak rate decreases and also occurs at a higher contrast
value; the relationship also appears to flatten out for larger
PT . Figure 8b shows the reported switching rate curves
from the experiments, separated out by individual subject.
The data shows a range of peak switching rate between
the subjects. For the two subjects with the highest switch-
ing rate (MK,AB), the prominent peak occurs at c ≈ 0.1.
For the other two subjects (JR,AM), the peak rate is lower,
the response is flatter and the peak rate occurs at a larger
value of c. We conclude that differences in perceptual
threshold between subjects can account for inter-subject
differences.

5.4 Distribution of switching times

In the previous section, we showed example model out-
puts for which switches between the directions H and V are
detected. We found that the times between these switches
vary and that, particularly in the low contrast case, the early
transient behaviour can be very different from one simula-
tion to the next. In order to investigate the distribution of
the switching times we ran 1, 500 model simulations each
of 15s and formed a data set by extracting the times between
consecutive switches from each simulation.

Figure 11 shows histograms of the computed switching
times tsw. In the low contrast case approximately 1, 483
switches were recorded with mean time t̄sw = 3.73s and
SD= 2.89 (Coefficient of Variance COV= 0.56) and in the

high contrast case 3, 154 switches were reported with mean
time t̄sw = 4.07s and SD= 2.08 (COV= 0.51). Although
the mean of tsw is smaller in the high contrast case, more
switches are detected because there is a shorter transient
period before switching begins; the average time to the first
switch in the low contrast case is 7.47s (SD= 2.87) com-
pared with an average time of 3.02s (SD= 1.56) in the
high contrast case. The aim now is to determine from which
distribution the model data could have arisen. We follow
the method presented in (Shpiro et al. 2009) and compare
the model data with a Weibull probability distribution func-
tion (pdf), a gamma pdf and a log-normal pdf each with
parameters chosen using a standard maximum likelihood
estimate. By inspection, it appears that the data in the low
contrast case are well fitted by a log-normal distribution and
that the data in the high contrast case are well fitted by a
gamma distribution. In order to confirm this we perform a
Kolmogorov-Smirnov goodness-of-fit test. In the low con-
trast case the log-normal distribution provides best fit (P =
0.087) but the gamma and Weibull distributions can be
rejected at the 5 % significance level. In the high contrast
case the gamma distribution provides best fit (P = 0.635)
and both the log-normal and Weibull distributions can be
rejected.

Clearly, studying only the mean and standard devia-
tion for the two different contrast cases does not reveal a
significant difference. However, we do find a change in
the underlying distributions governing the switching times,
which is indicative of a change in the dominant mechanism
driving the switching. Typically switching behaviour that is
driven by adaptation over noise will have a lower peak that
occurs later and a smaller spread with shorter tail as char-
acterised by the gamma distribution (Shpiro et al. 2009).
However, when noise plays a more significant role, the peak
is higher, earlier and the tail longer as characterised by the
log-normal distribution. We also highlight the fact that the
first switch occurs much earlier in the high-contrast case,
this prediction could easily be tested experimentally.

a b

Fig. 11 Distribution of perceptual switching times and test distribu-
tions. Histograms show the distribution of switching times as com-
puted from model simulations with PT = 15◦ (see text for details).
Candidate distributions are overlaid, where the shape and scale

parameters have been chosen to best fit the model data. a Low contrast
case in which the log-normal distribution provided a better fit. b High
contrast case in which the gamma distribution provided a better fit
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6 Discussion

Spatially extended neural fields models with a linear imple-
mentation of spike-frequency adaptation have been studied
both in ring models (Hansel and Sompolinsky 1998; Curtu
and Ermentrout 2004; Kilpatrick and Ermentrout 2012;
Ermentrout et al. 2012) and infinite spatial domains (Pinto
and Ermentrout 2001; Ermentrout et al. 2012). A sim-
pler version of the model presented in this article, without
an input or noise, was studied in Curtu and Ermentrout
(2004). The existence of parameter regions with homoge-
neous, stationary tuned, travelling-wave and standing-wave
responses was shown. In the absence of an input, these
various different solution types are known to exist close
to a so-called Bogdanov-Takens (BT) point in parame-
ter space, which acts as a parametric organising centre
for different types of dynamics. In the presence of sim-
ple inputs it has been shown that new solution types can
be produced such as breathers and pinned travelling-wave
solutions (Hansel and Sompolinsky 1998; Ermentrout et al.
2012). In this article we presented an in-depth numerical
study of the complex organisation of these various solution
types in three-dimensional parameter space. We were able
to show that much of the structure local to the BT point
is preserved with the introduction of a small, simple input,
albeit in a subtly modified form. We gave an account of
the changes that occur in terms of the complicated series
of bifurcations that delineate regions of parameter space
exhibiting qualitatively different dynamics. It was found
that close to a travelling-wave-type Hopf bifurcation, solu-
tions are pinned to the input. Furthermore, it was shown
that for a standing-wave-type Hopf bifurcation giving rise
to unstable solutions with no input, a region in parame-
ter space with stable standing waves solutions was opened
up when an input was introduced. Although great progress
has been made analytically in the study of this class of
model for simple inputs where a single location in feature
space is stimulated (Hansel and Sompolinsky 1998; Ermen-
trout et al. 2012), the question of more complex inputs with
stimulation of multiple locations provides a challenge. The
advantage of the numerical approach used here is that we
can directly extend earlier results when a complex input
is introduced. In a recent study, perceptual multistability
has been investigated in a model with synaptic depression
and a two-location stimulus in a continuous feature space
(Kilpatrick 2012).

We subsequently investigated perceptual multistability
for a stimulus that is multistable in terms of its perceived
direction of motion and that has been the subject of recent
psychophysical experiments, of which a summary was pre-
sented (see Meso et al. (2012b)). This specific applica-
tion allows for the model’s continuous feature space to
be exploited; it allows for a truly dynamic consideration

of perceived direction, which unlike binocular rivalry or
ambiguous shapes, is known to be neurally represented
on a continuous scale. We study the multistable barber
pole, which consists of a diagonally drifting grating viewed
through a square aperture. The stimulus is known to be mul-
tistable between the diagonal grating direction D and the
horizontal H and vertical V aperture-edge directions. The
characteristic perceptual response is dominated by D imme-
diately after onset followed by regular switches between
horizontal H and vertical V directions. In the model the
complex multistable barberpole can be represented by three-
bumps in the feature space of motion direction based on
experimental insights about the different ways in which 1D
and 2D motion cues are processed by the visual system. The
simple input is used to tune model parameters and intro-
duce a contrast parameter such that its behaviour matches
the known contrast response properties from (Sclar et al.
1990). It is found that for a fixed adaptation strength, we are
able to select a range of the nonlinear slope parameter such
that the model’s activity response can be matched to
the qualitative and quantitative behaviour close to con-
trast threshold observed in physiological experiments. Once
appropriately parametrised for the simple input, we find
that for a complex input the model produces behaviour that
is consistent with the characteristic perceptual responses
described above.

We further investigated the relationship between contrast
and the switching behaviour; in the experiments two differ-
ent regimes were identified for the first time, at low contrast
the switching rate increases with contrast and at higher con-
trasts the rate decreases with contrast. In the model we
study a low contrast regime operating close to bifurcation
and a high contrast regime above the contrast threshold.
For both regimes we find common features in the switch-
ing behaviour produced by the model. Initially the percept
D is dominant, but after some delay there is a shift to either
H or V, typically within the first 1 − 8s (this behaviour is
consistent with existing studies (Castet et al. 1999; Fisher
and Zanker 2001; Rankin et al. 2013)), after which regular
switching occurs between H and V. In the high contrast case
this regular switching starts earlier, which we would expect
as the 2D cues associated with the aperture edges and H/V
directions should be stronger with increased contrast. We
also find that typically the transitions between H and V are
relatively smooth, passing gradually through the direction
D in the low contrast case when compared with the sharper
transitions in the high contrast case. Furthermore, by study-
ing the dynamics either with or without noise, we find that at
high contrasts the mean rate of switching is governed by the
adaptation-driven oscillations. Although the noise produces
random deviations in these switching times, the mean rate
is unaffected. However, at low contrast, where the model is
operating close to bifurcation the noise has a larger effect on
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the dynamics. At low contrast the increasing regime is asso-
ciated with noise curtailing transient behaviour driving the
model into an oscillatory regime. We further quantified the
difference between the two contrast regimes by showing that
the switching times are best fitted by a log-normal distribu-
tion in the low contrast case and by a gamma distribution in
the high contrast case.

7 Conclusions

In classical rivalry models competing states are modelled as
discrete populations (Laing and Chow 2002; Shpiro et al.
2007; Moreno-Bote et al. 2007; Shpiro et al. 2009). The
neural fields model at the core of this study has a continuous
feature space, which allows multistability to be investigated
in a motion integration problem where the different percepts
are represented on a continuous scale. The minimal model
incorporating spike frequency adaptation, additive noise and
an input representing the multistable barberpole can capture
characteristics of the switching observed in experiments:
extended periods spent at the stimulated directions asso-
ciated with different percepts and rapid switches between
them. The bifurcation analysis allows for these dynamics
to be related back to the travelling-wave-type solutions that
are first pinned by a simple input and further modulated by
the complex input in order to produce the desired behaviour.
The bifurcation analysis predicts a change in the mecha-
nisms driving switches between a low contrast and a high
contrast regime characterised respectively by increasing and
decreasing switching rates in the psychophysical experi-
ments. The switches are driven primarily by noise at low
contrast and adaptation at high contrast. The peak switch-
ing rate is predicted by the bifurcation analysis to occur just
after bifurcation where the fastest adaptation-driven dynam-
ics are reached after transients that are shortened by noise;
in effect, when there is a balance between adaptation and
noise.

The general approach applied to a neural field model in
this paper — making use of bifurcation methods for tuning
parameters such that the model operates close to bifurcation
whilst simultaneously matching known response properties
from physiological studies — will allow for much broader
studies of multistable perception. In particular, extensions
to models that consider physical space in conjunction with
an abstracted feature space would allow for the particular
spatial properties of multistable visual stimuli to be inves-
tigated. For example, more detailed neural fields models
taking into account the spatial integration of motion stim-
uli such as (Tlapale et al. 2011) could be used to, within a
single model architecture, investigate the underlying motion
integration mechanisms that yield multistable perception
across a broad range of stimuli, e.g., barberpoles, plaids,

moving diamonds. Multistability has not been investigated
in this kind of model to which the methods of numeri-
cal continuation and bifurcation analysis would be most
applicable.
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Appendix

A The Ornstein-Uhlenbeck process

The noise X(v, t) that appears in Eq. (1) is a clas-
sical Ornstein-Uhlenbeck process, see e.g. (Ermentrout and
Terman 2010), that is described by the following stochastic
differential equation

ταdX(v, t) = −X(v, t)dt + σdW(v, t), (9)

where W(v, t) is a feature uncorrelated Wiener or Brownian
process. Note that the timescale τα is the same as the one
for the adaptation α in Eq. (2).

The solution to Eq. (9) is readily found to be

X(v, t) = e−t/ταX0(v)+ σ

∫ t

0
e
− t−s

τα dW(v, s), t ≥ 0

where X0(v) is the initial noise distribution, assumed to be
independent of the Brownian. Its mean is therefore given by

〈X(v, t)〉 = 〈X0(v)〉e−t/τα ,

and its variance by

Var(X(v, t)) = Var(X0(v))e
−2t/τα + τασ

2

2
(1 − e−2t/τα )

It is seen that as soon as t becomes larger than the timescale
τα the mean becomes very close to 0 (it is even exactly equal
to 0 for all times if the mean of the initial value is equal to 0),

and the variance becomes very close to τασ
2

2 . By choosing
σ 2 = 2/τα we ensure that Var(X(v, t)) is close to 1 as soon
as t becomes larger than the timescale τα .
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B Explanatory one-parameter bifurcation diagrams

Figure 12 shows one-parameter bifurcation diagrams with
zero adaptation gain kα = 0, first with no input in panel a
and with a small simple input (kI = 0.001) in panel c. In
order to best represent the solution branches we plot them
in terms of the even, first-order mode of the solutions p̂1

(the cos(v)-component). Figure 12a shows that for small λ
there is a single, stable solution branch with p̂1 = 0; this
corresponds to the flat (untuned) response shown in Fig. 2d.
When λ is increased beyond the pitchfork P0, this flat state
loses its stability and a ring of tuned responses are created.
Figure 12b shows the profiles of the different solutions that
exist at λ = 23. The dashed curve B2 is the unstable flat
state, the tuned state B1 centred at v = 0 corresponds to
when p̂1 is largest and the tuned state B3 centred at v =
±180 corresponds to when p̂1 is smallest. Due to the pres-
ence of translational symmetry, intermediate states centred
at any value of v also exist; discrete examples of these are
shown as grey curves, but note these exist on a continuous
ring filling in the direction space v. The easiest way to see
the effect of introducing the stimulus and the fact that this
breaks the translational symmetry is by studying the states
that exist in the small input case also at λ = 23 shown in
Fig. 12d. Now the only stable solution is the tuned response
D1 centred at v = 0, there is a counterpart unstable solu-
tion centred at v = ±180 and all of the intermediate states

a b

c d

Fig. 12 Symmetry breaking of the pitchfork with introduction of a
stimulus. a and c show bifurcation diagrams in λ for the no-input
and small input cases, respectively; stable states are solid curves and
unstable states are dashed curves. b and d show the solution profiles
in v-space at the labelled points for λ = 23; stable states are solid
curves and unstable states are dashed curves. In panel b the solid black
curves correspond to the solution B1, for which p̂1 takes its largest
value and the solution B3, for which p̂1 takes its smallest value; several
intermediate solutions are plotted as grey curves, see text

have been destroyed. In the bifurcation diagram Fig. 12c the
pitchfork bifurcation has been destroyed and there remain
two disconnected solution branches. On the unstable branch
the unstable solutions D2 and D3 are connected at a fold
point F0; this bifurcation is traced out as F in Fig. 3a. On
the (upper) stable branch there is a smooth transition with
increasing λ from a weakly- to a highly-tuned response cen-
tred at the stimulated direction. It is useful to detect where
the increase in p̂1 is steepest as this signifies the transition
to a tuned response. We denote this point P̂0 and as this is
not strictly a bifurcation point we call it a pseudo pitchfork;
it is still possible to trace out where this transition occurs in
the (λ, kα)-plane and this is plotted as P̂ in Fig. 3a.

Figure 13 shows one-parameter bifurcation diagrams in
λ for three different cases:

– No input cases with kα = 0.03; see Fig. 13a–c; corre-
sponds to the horizontal line through the point labelled
B in Fig. 2a.

– First small, simple input case with kα = 0.03; see
Fig. 13d–f; corresponds to the horizontal line through
the point labelled B in Fig. 3a.

– Second small, simple input case with kα = 0.01; see
Fig. 13g–i; corresponds to the horizontal line through
the point labelled C slice in Fig. 3a.

In order to best represent the solution branches we plot them
in terms of the maximum of the sum of the even and odd
first-order mode of the solutions max{p̂1 + p̂2} (the cos(v)
and sin(v)-components). Figure 13a shows that two solu-
tion branches bifurcate simultaneously off the trivial branch
at the twice-labelled point Htw1Hsw. In panel b we show
one period of a stable travelling wave solution from the
branch corresponding to Htw1; the wave can take either pos-
itive or negative (shown) direction in v. In panel c we show
one period of an unstable standing wave solution from the
branch corresponding to Hsw1; the standing wave oscillates
such that 180◦-out-of-phase (in v) maxima form alterna-
tively. The phase in v of the entire waveform is arbitrary
and, as for the pitchfork bifurcation, any translation of the
whole waveform in v is also a solution. With the introduc-
tion of a stimulus, as for the pitchfork bifurcation discussed
earlier, the translational symmetry of the solutions is broken
resulting in changes to the solution structure. The bifurca-
tion point Hsw shown in Fig. 13a splits into two bifurcation
points Hsw1 and Hsw2 in panel d and solution profiles on the
respective bifurcating branches are shown in panels e and f.
On the first branch, which is initially stable close to Hsw1,
one of the maxima is centred on the stimulated direction v =
0◦. For the second unstable branch bifurcating from Hsw2

the maxima are out of phase with the stimulated direction.
The travelling wave branch is now a secondary bifurcation
from the branch originating at Hsw1 and the solutions now
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Fig. 13 Changes to standing-
and travelling-wave branches
born in Hopf bifurcations with
introduction of the stimulus. The
first column shows one-
parameter bifurcation diagrams
in λ where black curves are
steady-state branches and grey
periodic branches; stable
solution branches are solid and
unstable branches are dashed.
Hopf bifurcations to travelling
waves are Htw1 and Htw2, and to
standing waves are Hsw, Hsw1,
and Hsw2. Second and third
columns show one period T of
the solutions at corresponding
points on solution branches
from one-parameter diagrams

a b c

d e f

g h i

have a small modulation when the travelling wave passes
over v = 0◦ (similar to the solution shown in panel i). In
panel g, at a lower value of kα, the steady-state solution
branch is initially weakly tuned and forms a highly-tuned
solution after P̂0. The tuned response becomes unstable at
Htw2; close to this bifurcation point the solution is pinned
by the stimulated direction, as was shown in Fig. 3c, and as
λ is increased further the amplitude in v of these oscillations
about the stimulated direction increases, see panel Fig. 13h.
When the point PS is reached in panel h the oscillations
become large enough such that there is a phase slip and
beyond this point we obtain a standard travelling wave solu-
tion once more, see panel i. Note that the travelling wave
is still modulated as it passes over the stimulated direction.
We reiterate the qualitative difference between the branches
forming at Htw1 and Htw2: for branches of travelling wave
forming directly from an untuned or weakly tuned steady
state as at Htw1 the solutions cannot be pinned to a stim-
ulated direction, however, for branches of travelling wave
forming directly from a tuned steady state as at Htw2 the
solutions are pinned to a stimulated direction close to the
bifurcation. Furthermore, we note that, with the introduction
of a stimulus a region of stable standing wave solutions, in
phase with the stimulated direction, are introduced between
Hsw1 and Htw1; see branch segment through the point E
in Fig. 13d.

C Tuning the model’s contrast response

Here we describe the way in which the model is
reparametrised such that its response matches known phys-
iological behaviour. In (Sclar et al. 1990) contrast response
functions were computed across several stages of the visual
pathway for a drifting sinusoidal grating. At cortical lay-
ers, individual cell recordings were made with the stimulus
moving in the cell’s preferred direction. The Naka-Rushton
function was used to fit contrast response data and the
response R as a function of contrast c is given by

R(c) = Rmax
cn

cn + cn50
+M, (10)

where Rmax is the maximal response cn50 is the contrast at
which the response reaches half its maximum value and n

is the exponent that determines the steepness of the curve.
For visual area MT in the macaque these parameters were
estimated to take the following values: Rmax = 36, cn50 =
0.07 and n = 3; the Naka-Rushton function is plotted for
these values in Fig. 14f (dashed curve). Note that it is also
necessary to adjust for the spontaneous firing rate M , which
typically takes a value M ∈ [0.05, 0.3].

We wish to reproduce the known contrast response prop-
erties for a drifting grating stimulus represented by the input
in Fig. 14a. For very low contrasts c < 0.01, the model



J Comput Neurosci (2014) 36:193–213 211

a

b d f

c e

Fig. 14 Model response for drifting grating stimulus and tuning of λ-
dependence on c. a Stimulus profile I1D(v) for a visual-field-covering
drifting grating. b Steady state responses at λ = 13 (grey curve) and
at λ = 25 (black curve); dashed horizontal lines indicate the maxi-
mum activity for these steady states. The tuning bandwidth, or tuning
width at half-height, is δ and the maximum level of activity above the

spontaneous level (dashed grey line) is R. c Tuning width δ of response
for λ ∈ [λmin, λmax]. d Normalised response R for λ ∈ [λmin, λmax].
e Variation of λ with respect to c. f Contrast response curve with
λ varying as in panel e (black) and the Naka-Rushton function with
parameters as described in the text (dashed grey)

should respond to a stimulus with a low level of activity
that is weakly tuned or not tuned. Increasing c should result
in a change in the model’s response that is consistent with
crossing the contrast threshold:

1. an increasing level of activity consistent with the Naka-
Rusthon function Eq. (10),

2. a response that is tuned to the model’s input with
an appropriate tuning width (consistent with values
reported in (Albright 1984; Diogo et al. 2003)).

We find that, for kα = 0.01 and λ = 13, the model’s
weakly-tuned, steady state response has an appropriate level
activity that we take as the value for M = 0.18; see the
lower curve in Fig. 14b. Furthermore, changing to λ = 25
we find that the model produces a tuned response that is
consistent with a response above contrast threshold c > 0.2
with a maximum level of activity that agrees with the value
of Rmax = 0.52 − M = 0.36; see upper curve in Fig. 14b.
We also find that varying λ in the range λ ∈ [13, 25]
that the tuning widths at half-height δ fall in the range
δ ∈ [80◦, 115◦] (see Fig. 14c), which is consistent with
the tuning widths obtained by individually probing a pop-
ulation neurons in the studies (Albright 1984) (mean 90◦,
standard deviation SD= 29◦) and (Diogo et al. 2003) (mean
104◦, SD= 35◦). Figure 14d shows the model’s response
R plotted against λ ∈ [13, 25] and we see that initially,
close to λmin = 13, the response has an appropriate shape,
but for larger λ the response does not saturate as required.
It is therefore necessary to introduce a function λ(c) that

saturates smoothly at the value λmax = 25. We
reparametrise the model so that λ depends on the contrast
using a function that increases linearly from λ = λmin and
saturates for large c at λ = λmax. We effectively use the top
half of a sigmoid function S(x) = 1/(1 + exp(−x)). After
fixing λmin = 13 and λmax = 25, it suffices to vary just the
slope parameter μ in the following equation in order to find
a good fit. The equation

λ(c) = λmin + (λmax − λmin)

(
S(μc)− 1

2

)
, (11)

is plotted in Fig. 14e with μ = 60. By construction, we
have set dependence of λ on c in order to obtain a func-
tion of the model response R in terms of c that matches a
Naka-Rushton function appropriately parametrised for MT;
see Fig. 14f (solid curve).
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