
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 1

In-Network Cache Management and Resource Allocation for
Information-Centric Networks

Ioannis Psaras, Member, IEEE, Wei Koong Chai, Member, IEEE and George Pavlou, Senior Member, IEEE

Abstract—We introduce the concept of resource manage-
ment for in-network caching environments. We argue that in
Information-Centric Networking environments, deterministically
caching content messages at predefined places along the content
delivery path results in unfair and inefficient content multiplexing
between different content flows, as well as in significant caching
redundancy. Instead, allocating resources along the path accord-
ing to content flow characteristics results in better use of network
resources and therefore, higher overall performance.

The design principles of our proposed in-network caching
scheme, which we call ProbCache, target these two outcomes,
namely reduction of caching redundancy and fair content flow
multiplexing along the delivery path. In particular, ProbCache
approximates the caching capability of a path and caches contents
probabilistically to: i) leave caching space for other flows sharing
(part of) the same path, and ii) fairly multiplex contents in caches
along the path from the server to the client.

We elaborate on the content multiplexing fairness of
ProbCache and find that it sometimes behaves in favour of
content flows connected far away from the source, i.e., it gives
higher priority to flows travelling longer paths, leaving little space
shorter-path flows. We introduce an enhanced version of the
main algorithm that guarantees fair behaviour to all participating
content flows.

We evaluate the proposed schemes in both homogeneous and
heterogeneous cache size environments and formulate a frame-
work for resource allocation in in-network caching environments.
The proposed probabilistic approach to in-network caching
exhibits ideal performance both in terms of network resource
utilisation and in terms of resource allocation fairness among
competing content flows. Finally, and in contrast to the expected
behaviour, we find that the efficient design of ProbCache results
in fast convergence to caching of popular content items.

Index Terms—Information-Centric Networks, In-Network
Caching, Content Multiplexing, Cache Capacity

I. INTRODUCTION

Information- or Content-Centric Networks (ICN/CCN) have
been recently proposed as an alternative to the traditional host-
to-host communication paradigm [1], [2]. One fundamental
property of ICNs is direct naming of individual content ob-
jects, instead of their respective end-host machines [3], [4]. In
turn, request routing has to be directly associated with content
names, something that makes symmetry another property of the
majority of ICN routing approaches (i.e., forward and return
paths have to be the same).

Naming content objects and routing to those objects directly,
instead of the machines that host them, gives the opportunity
to identify contents as they travel from source to destination

The authors are with University College London, Dept. of Elec-
trical and Electronic Engineering. Contact addresses: Ioannis Psaras
(i.psaras@ucl.ac.uk), Wei Koong Chai (w.chai@ucl.ac.uk), George Pavlou
(g.pavlou@ucl.ac.uk).

[1]–[3]. In turn, given that the network transfers named objects
(instead of unidentifiable data containers, i.e., IP packets),
these objects can be cached in the network and be forwarded
to subsequent users interested in the same content [5], [6].

In-network caching has therefore emerged as a distinct
research field in the context of Information-Centric Networks.
In-network caching exhibits fundamental differences from
overlay Web-caching [7], [8], or hierarchical and co-operative
caching approaches [9], [10] and poses new challenges [11],
[12]. For instance, past research considered mainly caching
of whole files (with a few exceptions, e.g., [13]) as well
as administration of their placement [14] and location [15]
by centralised entities, e.g., DNS and HTTP redirection.
Centralised administration of content placement gives the
opportunity to control and manage network resources better
at the cost of: i) increased communication overhead to update
the content location database, and ii) reduced flexibility in
terms of available cache locations.

In contrast, Information-Centric Networking enables
caching of addressable content chunks [2], [13] in any cache-
equipped network device and replacement of cached chunks
at line-speed [16], [17]. Although, this operation increases
the availability of cache locations [18], it also introduces
new problems. In particular, line-speed operation renders
prohibitive the process of updating logically-centralised
content location databases with the exact location of cached
contents. This operation in turn leads to decentralised,
location-independent management of contents and caches,
which alters many of the basic features of past overlay
caching techniques, e.g., content-to-cache allocation [14],
while it invalidates the applicability of some others, e.g.,
content placement based on fixed overlay topologies of caches
and servers [15].

In this paper, we address the problem of cache management
operations that have to be adjusted to fit in a completely
decentralised and uncoordinated environment. We focus on
the allocation of the available cache capacity along a path
of caching entities among different content flows. We consider
each path of caching entities as a pool of caching resources and
try to find optimal ways of distributing content in these caches.
Subsequently, our goal is to reduce caching redundancy and
make more efficient use of available cache resources, in order
to increase user-perceived quality.

To achieve our goal, we approximate the caching capability
of a given path per unit time (Section II) and we design
ProbCache, a probabilistic algorithm for distributed content
caching and fair content multiplexing along a path of caches
(Section III). In particular, ProbCache allocates caching space
to content flows based on the number of hops from source

Digital Object Indentifier 10.1109/TPDS.2013.304 1045-9219/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 2

to destination. That is, flows connected close to the content
source will be given priority to cache in the available caches
along their short route, over content flows that travel further
away and which have the opportunity to cache their contents
in other nodes along the path. Content multiplexing fairness
is therefore, associated with the amount of caching resources
along a path of caches that a specific content flow utilises.
ProbCache was initially introduced in [19]. In the present

study, we elaborate on the content flow multiplexing fairness
of ProbCache and find that although it significantly improves
the overall network performance (e.g., in terms of cache
hits), it sometimes fails to multiplex content flows in a fair
manner (Section IV). Based on these observations, we apply
modifications to the original design of ProbCache in Sec-
tion IV-B. We propose an enhanced version of the algorithm
(called ProbCache+) in Section IV-B, which together with
our analytical modelling constitute the main contributions of
this paper.

We evaluate the performance of both versions of
ProbCache under several conditions in Section V. We com-
pare ProbCache against well-known caching approaches,
such as universal caching and Leave Copy Down (LCD)
[20]. Our results suggest that there is indeed a lot of space
for resource management optimisation of in-network caching
policies, given that appropriate resource allocation rules are
in place (Section V). We show that careful content flow
multiplexing in caches can achieve up to 20% more cache
hits in case of small scale flash crowd events and an average
of 11-13% under normal conditions. This translates to an order
of magnitude reduction in terms of cache evictions, which in
turn means less computation load and longer cache times for
individual contents. We define the Content Multiplexing Fair-
ness Index to better capture the resource allocation properties
of the protocols and show that ProbCache exhibits desirable
properties in that respect as well.

This paper includes the following companion supplementary
sections: i) the extension of the basic algorithm ([19])
for heterogeneous cache environments (Section VIII), ii) the
analytical modelling of both the basic and the enhanced
version of the algorithm (Sections IX and X), iii) one extra
evaluation scenario with variable cache sizes (Section XI) and
iv) a comprehensive survey of related works in the area (in
Section XII).

We use the terms “router”, “cache” and “node” interchange-
ably to refer to cache-enabled network devices [16]; it should
be noted that our approach does not require every router to be
cache-enabled, but it will work in hybrid architectures as well.
Furthermore, we refer to content “messages” and “chunks”
interchangeably to refer to the cacheable unit, which is not
necessarily of similar size to an IP packet. In fact, we leave
open the actual size of the cacheable unit which is yet to be
defined by the ICN research community. We highlight that
the concepts and algorithms proposed in this paper are cache
unit- as well as architecture-agnostic and would directly apply
to those ICN environments where symmetric routing is used,
e.g., [2], [21], while it will need slight modifications to fit to
asymmetric routing architectures, e.g., [22]–[24].

II. SYSTEM MODEL AND ASSUMPTIONS

We argue that in-network cache management has to take
into account the approximate cache capacity of the path of
caches and the estimated amount of traffic that these caches
serve per unit time, in order to make decisions on whether
to cache incoming contents or not. In Section II-A, we make
assumptions to approximate the cache capacity of a given path
and in Section II-B, we present our design principles.

A. Assumptions on Caching Technologies

By definition, caching is different to storage, both in net-
works and in computer systems, in that caching keeps contents
stored for a specific amount of time and not indefinitely, as in
storage. Therefore, the size of a cache is a relative factor,
which cannot stand on its own, but instead has to be linked to
the amount of time that a given content is cached for. We
therefore, associate the cache size with the traffic that the
corresponding router serves per second. Our cache size unit
is the number of seconds worth of traffic cached in a given
router and depends on the speed of the outgoing links of the
router in question.

One important question then is: “For how long can we
afford to cache contents in a given router?”. Furthermore,
given that we are concerned with paths of caches and not
with single-caches only, another important question is: “For
how long do we need to cache contents in a given path in
order to minimise redundant traffic and maximise gain?”. Our
reasoning for answering these questions is as follows:

• Today’s memory access technologies guarantee line-
speed access to DRAM or RLDRAM chips of up to
10GBytes at a reasonable price [16]. This means that
a 5GByte-long cache behind a 40Gbps link can safely
be assumed to hold contents for one second (see also
Table I) [17]. Without loss of generality, we assume that
each cache along a path has sufficient memory to cache
contents in a (RL)DRAM chip for at least one second (see
third column in Table I).

• Authors in [6] show up to 60% bandwidth savings by
redundant traffic elimination within the first 10 seconds
after the original transmission, in some enterprise net-
works. We associate redundant traffic, i.e., subsequent
requests for the same content, with the aforementioned
figure. That is, we consider, without loss of generality,
that any content should be kept in any one of the path’s
caches for a target time window, Ttw, of 10 seconds.

Both the above settings are relatively arbitrary and can
change in the future, but these values are a good starting
point based on today’s technology. We note that our concepts
and algorithms presented next are still applicable should these
values change. For example, the setting for the target time
window is used here to obtain benchmark results. Larger
values for Ttw will result in contents staying in the cache for
longer, while smaller values will result in more evictions. We
briefly evaluate different values for Ttw in Section V-B, but
we note that the setting for the target time-window depends
also on the traffic characteristics of the domain (e.g., temporal

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 3

LINK LINK 1-SEC OF SECS OF TRAFFIC IN
NAME SPEED TRAFFIC A 10GB CACHE

OC-24 1,2 Gbps ∼ 0.15 GBs ∼ 64 secs
OC-48 2,4 Gbps ∼ 0.31 GBs ∼ 32 secs
OC-192 9,9 Gbps ∼ 1.25 GBs ∼ 4 secs
OC-768 39,8 Gbps ∼ 5 GBs ∼ 2 secs
OC-1536 79,6 Gbps ∼ 10 GBs ∼ 1 sec
OC-3072 159,2 Gbps ∼ 20 GBs ∼ 0.5 secs

TABLE I
LINK SPEEDS AND RELATED CACHING PROPERTIES

locality characteristics of the traffic [25]) and therefore, it is
up to the ISP to set this value for its own network.

B. System Model

We assume the topology of Fig. 1 and consider (for sim-
plicity) that all network routers also have caching capabilities.
Note that the proposed scheme does not necessarily require
all routers to be caches. The decision (of an ISP) as to which
nodes to turn into cache routers depends on several parameters,
such as the topology, the number of inter-domain links and
the traffic characteristics. Our recent study that estimates the
proportion of time that a given content stays in-cache given
its relative request rate [18] can assist on this direction.

In Fig. 1 the path from source to destination comprises
n routers, where router ri has Ni cache slots, each able to
hold one addressable content chunk (one-to-one relation of
chunks and cache slots). We assume that content chunks are
of fixed size, similarly to the fixed size of an IP packet or
the MTU; based on the discussion above, we assume that N i

slots can hold one second worth of traffic. Our model notation
is given in Table II. We also assume a Request - Response
model of Information-Centric Networks, where Request and
Content messages follow the same route (symmetric routing),
similarly to recent proposals, such as [1], [21], [2], [26].
This is a fair assumption in general, given the name-based,
location-independent routing assumed in Information-Centric
Networks. We introduce the following concepts:
Path Cache Capacity. The caching capacity of the path of
caches is

∑n
i=1 Ni in terms of memory, which amounts to n

seconds worth of traffic cached along the delivery path.
Path Cache Capability. Given that our target time window
is Ttw seconds worth of traffic cached along a given path, the
caching capability of an n-hop long path, as a fraction of the
required capacity for Ttw seconds, is

∑n
i=1 Ni

TtwN , where N is
the average cache size along the path. We revisit the issue of
average cache size in the next section.
Path Length Monitoring. Similar to the Time To Live (TTL)
field included in IP packets, our design requires that ICN
request message headers include the Time Since Inception
(TSI) field and content message headers include both the TSI
and the Time Since Birth (TSB) fields. Every router increases
the TSI value of request packets by one. The content source
attaches the TSI value that it sees on the request message to
the content message. Every router increases the TSB value
of the content message by one, as shown in Fig. 1. Hence,
during the content message’s journey back to the client, the

SYMBOL MEANING

n Number of caches on the path
Ni Cache size of router ri: holds 1-sec worth of traffic

Measured in fixed-size chunks
Ttw Target Time Window (set to 10 secs here)
TSI, c Time Since Inception (Header field of Request):

Hop-Distance from Client, Value range: 1 to n
TSB, x Time Since Birth (Header field of Content):

Hop-Distance from Server, Value range: 1 to n
Nx Cache size of router x

Router x is TSB hops away from content source

TABLE II
MODEL NOTATION

TSI value in the content message is a fixed value and denotes
the path-length of this specific content flow, while the TSB
value denotes the number of hops that the content message
has travelled so far. In case of a cache hit, the TSI and TSB
values are treated as if the cache is the actual source, that is,
the TSI value of the content message is replaced by that of
the Request message, while the TSB is set to 1. Furthermore,
in case of request aggregation, TSI starts counting from the
aggregation point, that is, TSI counts as if the requesting client
was attached to the aggregation node. The rationale behind this
decision is that concurrent requests for a content reveal high
content popularity, hence, it is better to cache this content at
central nodes, such as the aggregation node or its neighbours.

Fig. 1. Design Topology

III. BUILDING ProbCache

We approach the problem of content placement within a
system of caches from the path caching capability point of
view. In particular, each router, based on the amount of traffic
that it has to serve per unit time, indirectly approximates
the number of copies of incoming contents that the (rest
of the) path can accommodate. This value is the T imesIn
factor (see Section III-A). Based on the T imesIn indication
and on the router’s distance from the user, which we call
CacheWeight (see Section III-B), each router probabilis-
tically caches contents as they travel along the path (see
Section III-C). ProbCache was initially introduced in [19].
In this study we elaborate on the behaviour of the algorithm’s
components and we propose ProbCache+ (in Section IV-B),
an enhancement to the original algorithm that allocates cache
resources to flows in a fairer manner. We note however, that
the main concepts introduced in this section remain the same
for both the original version of ProbCache [19] and for its
enhanced version.

A. Estimating the Caching Capability of a Path

Consider two users shown, in Fig. 1, five and four hops away
from the server, respectively. The total cache capacity of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 4

path is
∑n

i=1 Ni, where n1 = 5 for Request1 and n2 = 4
for Request2. Grey circles denote the caches that have to be
shared between the two users, while white and black circles
denote caches used exclusively by Users 1 and 2, respectively.

The number of times that the path can afford to cache
this content chunk is reflected in the T imesIn factor, whose
calculation takes place as follows:

T imesIn(x) =

∑c−(x−1)
i=1 Ni

TtwNx
(1)

where c is the Time Since Inception (TSI) value and x is the
Time Since Birth (TSB) value that the router sees in the header
of the content message (Table II). Therefore, in Eq. 1, Nx

denotes the size of cache x, TSB hops away from the source.
As an example, consider content messages traveling through
router r2 to fulfil Request1, in Fig. 1; these messages will
have TSI = 5 and TSB = 2, while contents for Request2
will have TSI = 4 and TSB = 2. Given that the sum in Eq. 1
is calculated in every node the content traverses, it considers
the result of the subtraction of TSI minus TSB (or c− (x−1)
in Eq. 1) to account for the remaining caches only, instead
of the total number of caches from the content source to the
client. In Fig. 1 for example, and for a content chunk in r3

that travels to User 1, the T imesIn value refers to the white
circles, in order to leave the grey circles for users connected
closer to the source.

B. Weight-based Caching

We argue that in order to achieve fair resource (in our case
cache) allocation in a distributed environment, each content
flow has to take into account other content flows sharing the
same path (grey circles in Fig. 1). Hence, to decide where to
cache the number of copies that T imesIn indicated, we use
the Cache Weight factor:

Cache Weight(x) =
x

c
(2)

where x is the TSB value of the packet header and c is the
TSI value; therefore, Cache Weight ∈ [1c , 1]. We note that
the TSI value is fixed during the content chunk’s journey from
the source to the client, while the TSB value is increasing for
each router the chunk traverses; hence, CacheWeight→ 1 as
the content chunk is getting closer to its destination. This is a
desirable system property considering path-diversity, in terms
of hops, between different client - source pairs.

C. ProbCache: Probabilistic In-Network Caching

ProbCache is the product of T imesIn and CacheWeight
as shown in Eq. 3. Each router along the path caches incoming
chunks according to ProbCache(x), denoted as P (x) in all
equations, depending on their TSI and TSB values:

P (x) =

∑c−(x−1)
i=1 Ni

TtwNx︸ ︷︷ ︸
TimesIn

× x

c︸︷︷︸
CacheWeight

(3)

The intention behind the Cache Weight factor is to in-
crease the probability of a content being cached closer to

its destination. This way, we expect to achieve fair content
flow multiplexing between contents that travel to different
destinations in terms of path length. For example, contents for
User 1 in Fig. 1 should be cached inversely proportionally to
User 1’s distance from the server, i.e., in (white) routers r4, or
r5, in order to leave (grey) routers r1−r3 for clients travelling
shorter paths to cache their contents. This is in accordance to
our previous findings in [18] that contents tend to be cached
for longer towards the edge of the network.

In Section IV, we evaluate the effect of the CacheWeight
factor in combination with T imesIn. We find that in con-
trast to our expectation, ProbCache behaves unfairly despite
the effect of CacheWeight. We proceed to fix the unfair
behaviour of ProbCache in Section IV-B by modifying
CacheWeight and proposing an enhanced version of the
algorithm, which we call ProbCache+.

We note the following regarding the overall design of
ProbCache (which also apply to ProbCache+ introduced
later in this paper):

1) The T imesIn factor may indicate that more than one
copies of a content chunk can be accommodated along
the content delivery path. This is especially so in case
of long-haul transmissions, where content flows travel
through many hops before they reach their destination.
Therefore, ProbCache is not bounded to a maximum
value of 1, but can take on bigger values depending on:
i) the path-length, and ii) the target time window (T tw -
see Table II and related discussion in Section II-A). The
theoretical upper bound of ProbCache is the number of
hops from source to destination for each content flow,
that is, the extreme and rather unrealistic case where
there is enough cache capacity along the path to keep
one copy at each node the chunk is going through. In this
extreme case, the operation of ProbCache is similar to
that of universal caching.

2) To calculate the T imesIn factor each router has to
conjecture on the size of the rest of the caches on the
path. However, given that we do not know what amount
of cache each router will have, or if backbone routers,
for instance, will have bigger caches than edge-network
routers, we make the following simplifying assumption.
Each router assumes that all other routers on the path
have the same amount of cache as it has got. Even in a
random-size cache deployment scenario, this assumption
serves our purposes well. That is, a router with a big
cache, compared to the caches along the path, will
be caching contents with higher probability, while a
router with a small cache will experience the opposite
effect (Eq. 1). This is a desirable system property which
alleviates the effect of unknown cache sizes, but at the
same time guarantees fair load distribution among nodes
with diverse amounts of cache memory. In [19], we have
shown that although our simplifying assumption does
not harm the performance of ProbCache in heteroge-
neous cache size environments, it fails to fully exploit
extra caching resources.

3) ProbCache is a raw number that does not have a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 5

unit. The raw number essentially represents the caching
probability of incoming content chunks. Although T tw

is physically interpreted in terms of time (and therefore,
the formula in Eq. 3 points to 1

second for the unit of the
function), it is essentially a raw number, which acts as a
weight factor to determine the replacement granularity of
contents in the system of caches. The smaller the value
is the faster items are replaced in caches, as discussed
earlier in Section II-A.

In [19], we have modified ProbCache for the case of het-
erogeneous cache sizes along the delivery path. In particular,
we have considered three cache size settings: homogeneous
cache sizes, larger caches towards the core and larger caches
towards the edge of the network [27]. We provide a summary
of our findings in Supplementary Section VIII, where we also
present the modification of ProbCache for heterogeneous
settings. We refer the reader to that section for a more detailed
presentation of these versions of ProbCache. In the rest
of the paper, we focus on two cache size settings, namely
homogeneous caches and larger caches towards the edge and
evaluate the behaviour of ProbCache based on these.

IV. THEORETICAL ASSESSMENT

A. Analysis of Basic Functions

Our intention is to explore the behaviour of ProbCache
for homogeneous cache sizes (Pc→e(x), Eqs. 3 and 7) and
heterogeneous cache sizes (Pc→E(x), Eq. 9) with regard to
its resource management and utilisation properties. We are
interested in fair and efficient content flow multiplexing in in-
network caching architectures, which would in turn increase
the overall network performance.

We begin by plotting the behaviour of the two versions of
ProbCache for users connected at different points along a
sample six-hop path in Fig. 2.

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
ro

bC
ac

he
V

al
ue

c � 3 c � 4 c � 5 c � 6

(a) Behaviour of Pc→e(x), Eq. 3.

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
ro

bC
ac

he
V

al
ue

c � 3

c � 4

c � 5

c � 6

(b) Behaviour of Pc→E(x), Eq. 9.

Fig. 2. Behaviour of Pc→e(x) and Pc→E(x) along a six-hop delivery path.
We observe that the longer a flow’s distance is from the content source, the
higher the chances it has got to cache its contents along the whole path. This
is in contrast to our design considerations for fair content multiplexing.

We observe that although fair content multiplexing was one
of the main design considerations for ProbCache [19], and
the main operational property of CacheWeight, in reality, the
path capacity calculation (T imesIn factor) has unexpectedly
high impact on the overall behaviour of the algorithm. That
is, we see that the longer the distance from a client to the
source of content, the higher the probability this client has to
cache contents along the entire path (i.e., even far from its
attachment point and closer to the source; nodes 1 to 4 in

1 2 3 4 5 6
Time Since Inception �TSI�

P
ro

bC
ac

he
V

al
ue

Ttw � 5

Ttw � 10

Ttw � 15

Ttw � 20

(a) Behaviour of Pc→e(x) with vari-
able Ttw , Eqs. 3 and 7.

1 2 3 4 5 6
Time Since Inception �TSI�

P
ro

bC
ac

he
V

al
ue

Ttw � 5

Ttw � 10

Ttw � 15

Ttw � 20

(b) Behaviour of Pc→E(x) with vari-
able Ttw , Eq. 9.

Fig. 3. Behaviour of Pc→e(x) and Pc→E(x) along a six-hop delivery path
with variable Ttw for c = 6.

Fig. 2). Clearly, this behaviour leads to unfairness in terms of
resource allocation between clients. In Fig. 3 we also plot the
behaviour of ProbCache for variable Ttw (from 5 to 20) and
with constant c = 6, where we see that although the absolute
values of the function vary with different T tw the overall trend
is similar to the default value of 10.

To verify this observation and get a deeper understanding
of the operational properties of the algorithm, we elaborate on
the distribution of values that the function gets along a path of
caches for clients connected at different points along the path.
We initially calculate the derivatives of the two versions of
the algorithm, in Supplementary Section IX-A to see at which
point along the path ProbCache gets its maximum values; we
also calculate the integrals of ProbCache in Supplementary
Section IX-B to monitor the density distribution of the value
range of ProbCache along the delivery path. Our analysis
in Supplementary Section IX-B validates our observation in
Fig. 2 that ProbCache behaves unfairly for flows connected at
different points along the delivery path and gives more caching
opportunities to flows connected far from the content source.

Based on those findings, we proceed to investigate further
and fix the behaviour of ProbCache in the next section; we
base our analysis on the versions of the algorithm that apply
to homogeneous caches and for larger caches towards the edge
of the network.

B. Enhancing the content multiplexing fairness of ProbCache

Fig. 2 shows that ProbCache increases the probability of
contents being cached very early compared to the distance of
the client to the source. In contrast, according to our design
principles, the ideal algorithm would increase its value directly
proportionally to the distance of the client from the source.
That is, it would get low values when going through the first
nodes of the path and would increase as it would get closer to
its destination. To accommodate this requirement and improve
the content multiplexing fairness of ProbCache we apply the
following modification: we raise the value of CacheWeight,
x
c), to the power of c (i.e., the TSI value of the delivery path),
(xc)

c.
Our modified ProbCache functions, which we denote as

P
′
c→e(x) and P

′
c→E(x) for the homogeneous and the hetero-

geneous case, respectively are therefore, the following:

P
′
c→e(x) =

Ni(c− x+ 1)

TtwNx
(
x

c
)c = K1(c− x+ 1)(

x

c
)c (4)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 6

where K1 = Ni

TtwNx
, and

P
′
c→E(x) =

1

2

Ni

TtwNx
(c2 − c− x2 + 3x− 2)(

x

c
)c ⇒

P
′
c→E(x) = K2(c

2 − c− x2 + 3x− 2)(
x

c
)c

(5)

where K2 = 1
2

Ni

TtwNx
.

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
'�c
�
�

e�
V

al
ue

c � 3 c � 4 c � 5 c � 6

(a) Behaviour of P
′
c→e(x), Eq. 4

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
'�c
�
�

E
�

V
al

ue

c � 3

c � 4

c � 5

c � 6

(b) Behaviour of P
′
c→E(x), Eq. 5

Fig. 4. Behaviour of P
′
c→e(x) and P

′
c→E(x) along a six-hop delivery

path. The modified CacheWeight factor (Eqs. 4 and 5) results in caching
probability directly proportional to the node’s distance from the source. This
is in accordance to our initial design principles.

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
'�c
�
�

e�
V

al
ue

Ttw � 5

Ttw � 10

Ttw � 15

Ttw � 20

(a) Behaviour of P
′
c→e(x), Eq. 4

1 2 3 4 5 6
Time Since Birth �TSB�: Distance from Server

P
'�c
�
�

E
�

V
al

ue

Ttw � 5

Ttw � 20

Ttw � 15

Ttw � 10

(b) Behaviour of P
′
c→E(x), Eq. 5

Fig. 5. Behaviour of P
′
c→e(x) and P

′
c→E(x) along a six-hop delivery path

with variable Ttw and c = 6.

We plot the behaviour of these enhanced versions of
ProbCache in Fig. 4. Clearly, the performance of the algo-
rithms is different now and much closer to what we expected.
Depending on the attachment point of the clients, the value of
the algorithm adjusts accordingly, in order to leave resources
closer to the source of the content for clients travelling shorter
paths. In Fig. 5, we plot the behaviour of the enhanced version
of ProbCache for variable values of Ttw and constant c = 6.
We see, similarly to Fig. 3, that the function behaves as
desired for different values of Ttw, although the absolute
value of the function varies, as also discussed in Section II-A.
In Supplementary Section X of the Supplementary file, we
repeat the methodology followed before to verify our initial
observations. We initially calculate the derivatives of both
versions of the enhanced algorithm; we equal the derivatives to
zero to find the maximum values of P

′
c→e(x) and P

′
c→E(x),

which we plot in Fig. 12; finally, we calculate and plot the
integrals to evaluate the density distribution of the enhanced
version of ProbCache.

C. Summary of Theoretical Analysis and Findings

We have elaborated on the performance of the original
version of ProbCache [19] and found that it favours content

flows that connect far from the content source, over content
flows that travel shorter distances (Fig. 2). We verified this
observation by capturing the value density distribution of
the basic equations of the algorithm, where we saw that
longer content flows (in terms of hops from source) behave
more aggressively and therefore, attempt to occupy resources
along the entire delivery path. Based on these findings, we
have modified the formula of ProbCache in order for its
value density distribution to evolve according to path lengths
(Fig. 4). Our theoretical findings show that the new version of
ProbCache (which we denote from now on as ProbCache+
and is given in Eqs. 4 and 5) is indeed more fair in terms of
resource allocation and content flow multiplexing along a path
of in-network caches.

V. PERFORMANCE EVALUATION

A. Simulation Environment and Setup

We test our algorithm in a custom-built simulator, where we
use Least Recently Used (LRU) caches. Given that the ultimate
goal of ProbCache is to manage caching resources more ef-
ficiently, by reducing caching redundancy, the straightforward
metric of interest is the reduction of Server Hits. Furthermore,
the gain from serving user requests from intermediate caches,
instead of travelling to the origin server, depends on the
number of hops that the request travels before it eventually hits
cached contents. Clearly, as the number of hops increases, the
overall gain decreases. To measure this gain, we also monitor
the Hop Reduction Ratio. Our simulator, which we also make
publicly available in [28], is an event-based simulator, hence,
all metrics are explicitly measured at the end of the simulation.
Cache Hits achieved by all nodes are summed up, while the
Hop Reduction Ratio is summing the distance (in terms of
hops) to the nodes where hits have happened over the sum of
the distance to the origin server.

Apart from the above well-known metrics, which have been
widely used in caching research in the past, we also introduce
one extra metric in order to capture the resource management
and content flow multiplexing properties of in-network caching
algorithms. We call this metric Content Multiplexing Fairness
Index (CMFI) and we define it as the amount of caching
resources that the algorithm under consideration has left
unused in order for other content flows to exploit over the
total amount of cache resources available along the entire
delivery path. The formula according to which the CMFI index
is calculated is given below in Eq. 6 for the homogeneous and
heterogeneous cache deployment cases, respectively:

CMFIc→e =

∑x
1 Ni∑c
1 Ni

=
xNi

cNi
=

x

c

CMFIc→E =

∑x
1 iNi∑c
1 iNi

=
x(x+ 1)

c(c+ 1)

(6)

The rationale behind the design of CMFI is as follows:
considering that a relatively realistic representation of the
Internet topology comprises of fewer nodes at the core, which
then fan out to more leaf/edge routers that finally reach out
to residential connections, the CMFI index considers fairer to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 7

cache towards the edge of the network, rather than in the busy
core. Therefore, the index gets bigger values for algorithms
that tend to cache towards the edges of the network.

Although someone may argue that by caching contents at
the edge of a delivery path implicitly restricts access to those
contents by clients connected further up towards the source,
we consider that increased demand for content from across the
delivery path will minimise the effect of this argument.

Furthermore, we highlight the following important property
of the index introduced here: CMFI is not a flow-oriented
metric, but rather a content-oriented one. It targets multiplex-
ing of contents (and not of flows) in caches. That said, an
algorithm that does not cache any content in any cache is
100% fair (when compared to itself), as it leaves space for
other contents to be cached - this is similar to a transport
protocol that forces all flows to consume a tiny portion of the
available bandwidth, which is fair, but still rather inefficient.
The related flow whose contents are not cached is not treated
unfairly, as contents will be delivered to this flow anyway.
Unfairness here comes in terms of the content, rather than the
respective flow i.e., the content will not be available in the
cache network for potential future requests.

We use scale-free topologies following the Barabasi-Albert
model [29], where nodes follow power-law degree distribution
to reflect realistic Internet topologies. We use a benchmark
topology of 200 nodes, but we note that results remain
qualitatively similar in larger topologies of up to 700 nodes.

We set the exponent of the Zipf distribution of content
popularity (a) to 1.2 to capture the case of medium-popularity
content [30], while requests are generated following Poisson
distribution. Again, content popularity affects the results in
a quantitative way, as can also be verified from the results
presented in our previous study in [19], where we have set Zipf
a = 0.8. That is, although higher popularity (i.e., exponent of
Zipf distribution) results in higher performance for caching
algorithms, this improvement is similar for all algorithms
tested. Hence, qualitatively, the results follow similar trends for
exponents between 0.5−1.5. As we show later in this section,
when popularity exceeds a certain threshold and causes small-
scale flash-crowd events, then performance is affected more
drastically. We discuss such issues in Section V-C.

The experiments run until 100,000 content requests have
been successfully completed. We use two content servers,
which are connected at two different nodes in the core of the
network, that is, at the most well-connected part of our topol-
ogy. This placement of servers was done on purpose in order
to: i) reflect a relatively realistic network topology1, and ii)
avoid overwhelming isolated nodes (by attaching busy servers
next to them), as this would (negatively) impact the behaviour
of some of the protocols, as discussed further later on. We set
the cache-to-catalogue size ratio to 0, 0001%− 0, 001% and
as discussed before, we set the default cache size to be one
second worth of traffic transmitted through the incoming link
at each router.

1Although content sources and big content providers are not necessarily
placed in tier-1 domains, most CDNs are placed towards the core of the
network from the view-point of the clients.

We compare the following caching strategies:
1) universal, or ubiquitous caching, a scheme that we call

Cache Everything Everywhere (CE2) (and was implic-
itly supported in [2]);

2) the Leave Copy Down (LCD) [20] algorithm proposed
in the past for overlay caching topologies. According
to LCD, cache hits cause contents to be copied one hop
closer to the user, or one level down the cache hierarchy;

3) the Leave Copy Edge (LCEd) algorithm. LCEd caches
contents deterministically one-hop before the client.
According to the main design principle of ProbCache,
contents should be cached closer to their destination with
higher probability, in order to leave caching space at the
core of the network for shorter content flows. Therefore,
one might contend that a simpler algorithm that caches
contents at the very edge of every content-flow path
might achieve similar results. We, therefore, include
LCEd in our performance evaluation for completeness;

4) the original version of ProbCache, Eq. 3, [19];
5) the enhanced version of ProbCache (Eqs. 4 and 5,

which we introduced in the present study.
We note that in [19] we have evaluated the performance of

ProbCache against simpler approaches to in-network caching,
e.g., with probabilistic algorithms that cache with probability
p = 0.7 and p = 0.3 at every cache. Our evaluation showed
that such algorithms perform similarly to LCD, hence, we
omit further comparison against such approaches in the present
study. Modulo caching [31], an algorithm proposed in the
past in the area of active networks, caches contents along
the path according to a modulo calculation. This results in
caching content messages every few hops along the delivery
path. Although this approach might seem close to our design,
we highlight that it follows a resource-management-agnostic
approach and therefore, performs similarly to LCD or the
fixed probability algorithms evaluated in [19]. For this reason,
we have chosen not to include modlulo-caching [31] in our
evaluations in this paper.

We present three evaluation scenaria, which capture the
most important aspects of the behaviour of the above-
mentioned caching protocols. In the first scenario (Sec-
tion V-B), we test the performance of the algorithm in an
homogeneous cache-size environment, where all nodes in the
network cache traffic for one second. In the second scenario
(Section V-C), we assess the performance of the caching pro-
tocols with regard to their convergence properties to popular
content, that is, how fast are the protocols getting aware of a
content that is becoming popular in order to keep copies of it in
several caches. Finally, in our last evaluation scenario, which is
presented in Supplementary Section XI we use heterogeneous
caches along the paths and in particular, we assume larger
caches towards the edges of the network.

B. Scenario 1: Homogeneous Cache Environment

We evaluate the performance of the five caching strategies in
a homogeneous cache-size deployment in the 200-node topol-
ogy. In Fig. 6, we present the Server Hits performance of the
five protocols. We see that ProbCache outperforms the rest

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 8

of the protocols by approximately 4-5%, while ProbCache+
reduces the number of Server Hits by an additional 5.5%
compared to the original ProbCache algorithm. This means
an overall performance difference of approximately 10-11%
for ProbCache+ compared to CE2, LCD and LCEd, which
perform largely the same.

In the same Figure we also evaluate the performance of
both ProbCache and ProbCache+ for different values of
Ttw = [1, 5, 10, 20] (default value is 10). The results are pre-
sented in terms of errorbars in the lineplots of ProbCache and
ProbCache+. In particular, the errorbars above the lineplots
depict the performance of the protocols when T tw = 1, while
the errorbars below the lineplots show the performance when
Ttw = 5. For Ttw = 20 the performance is identical to the
default setting. These results reveal the following based on
the specific settings of this experiment: i) Small values of
Ttw (equal to 1 in our case) result in many cache evictions
and degrade the overall performance. ii) Large values of T tw

(equal to 20 here) do not affect the performance, as the caching
probability is very similar to the default setting. iii) T tw = 5
seems to achieve better performance than the default setting,
especially for the original version of ProbCache [19]. iv)
ProbCache+ seems to be less affected by the setting of Ttw

than ProbCache. Although interesting, we stress that these
observations regarding different values of T tw should not be
considered as conclusive statements for every network setup.
Further investigation and experimentation is needed before
general conclusions can be drawn.

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 1 2 3 4 5 6

S
er

ve
r H

its

Number of Seconds worth of Traffic Held at each Cache

CE2

LCD
LCEd

ProbCache
ProbCache+

Fig. 6. Scenario 1: Server Hit Performance, Set of Simulations Applying
Increasing Amount of Cache in each Experiment

To get a better understanding of the performance of the pro-
tocols, we trace the per-hop Cache Hits and Cache Evictions
of the protocols along a random 6-hop path in our topology.
The results are presented in Fig. 7. Fig. 7(a) depicts the overall
cache hit behaviour of the protocols, while Fig. 7(b) focuses on
cache evictions. For example, we see in Fig. 7(b) that LCD,
in line with its core design principles, is pretty aggressive
in evicting contents from caches close to the source of the
content. In contrast, as we move away from the source LCD
is becoming less aggressive. This behaviour results in more
hits (and more evictions) at the core of the network (i.e.,
close to the server) and less towards the edges. These hits,
however, are not enough in order to guarantee satisfactory
overall performance as shown in Fig. 6. On the contrary, LCEd
caches always at the edge of the path and hence, results in
more aggressive behaviour (and therefore, more evictions) at
the edges of the network. Both algorithms, however, always
cache at least one copy of the content along the path an action
that might not always be affordable, given the limited caching

resources available. Furthermore, LCD and LCEd cache at
fixed and predefined places along the path, resulting in poor
resource management and content distribution in the pool of
available caching space.

The sophisticated resource management approach of
ProbCache and ProbCache+ clearly makes better use of
available resources as shown in Figs. 7(a) and 7(b). We
see a clear difference between the cache evictions of the
two versions of ProbCache and the rest of the protocols
(Fig. 7(b)). The resource management framework proposed
here and integrated in both versions of the protocol caches
incoming content chunks according to the resource availability
along the path. This means that not all content chunks that
traverse a path get necessarily cached in one of the router-
caches, but instead, some chunks might not get cached at all.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6

C
ac

he
 H

its

Number of Hops Away from Source

ProbCache+
ProbCache

LCD
LCEd

CE2

(a) Per Hop Cache Hits

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6

C
ac

he
 E

vi
ct

io
ns

Number of Hops Away from Source

ProbCache+
ProbCache

LCD
LCEd

CE2

(b) Per Hop Cache Evictions

Fig. 7. Scenario 1: Cache hits and cache evictions along one delivery path.

Elaborating on the performance of the two versions of
ProbCache, we observe the following. The original version
of ProbCache [19], due to its slightly unfair content flow
multiplexing behaviour (also shown in Figs. 2(a) and 2(b))
tends to cache contents half-way through the path from source
to destination. This is clear from Fig. 7(b), where nodes 2,
3 and 4 are forced to evict the highest number of chunks.
Although this does not necessarily translate to less cache
hits, as shown in Fig. 7(a) for nodes 2, 3 and 4, it does
impact the overall performance of the protocol (see Fig. 6).
In contrast, the enhanced version of the algorithm (see Eqs. 4
and 5 and Fig. 4 in Section IV-B), which targets more fair
resource allocation along the path achieves less evictions in
all nodes along the path, as shown in Fig. 7(b). This verifies
our claims in the previous Section and in Supplementary
Section X, where we presented the density distribution of
the algorithm (see Fig. 13 of the Supplementary sections),
as well as the local maxima distribution (see Fig. 12 of the
Supplementary sections), where both plots fall within the fair
content distribution area (grey area in Figs. 12 and 13 of the
Supplementary sections).

As a final step to verify our theoretical findings regarding
the multiplexing behaviour of the two versions of ProbCache,
we plot the Content Multiplexing Fairness Index (CMFI)
introduced earlier. The result is shown in Fig. 8.

We see that the design principle of LCD to gradually
move contents down the cache-path towards the edge of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 9

network results in low content multiplexing capability. In
contrast, LCEd, by caching contents only at the edges of
the network, leaves caching space for other content-flows.
However, the deterministic nature of LCEd results in lower
overall performance (e.g., in terms of server hits) as we have
shown in Fig. 6. Finally, the original version of ProbCache
shows little potential for fair content multiplexing, in contrast
to our original design goals and in accordance to our findings
in Section IV. ProbCache+ on the other hand, exhibits
ideal content multiplexing performance, by caching contents
according to their path lengths, but also according to the path
cache capability. These results verify the theoretical analysis
of the two versions of ProbCaches in the previous Section.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

Fa
irn

es
s

Number of Seconds worth of Traffic Held at each Cache
CE2 LCD LCEd ProbCache ProbCache+

Fig. 8. Scenario 1: Content Multiplexing Fairness Index (CMFI, see Eq. 6)

C. Scenario 2: Caching Convergence to Popular Content

In this scenario, we test the performance of the caching
protocols with regard to their convergence time in case of
emerging popular content. That is, we consider that after
the 1000th second of the simulation, a previously unpopular
content, which we refer to as the Content of Interest or CoI,
becomes popular and constantly receives 5% of the total
requests generated per second. We use the same 200-node
topology and the homogeneous cache size setup to capture the
behaviour of the algorithms in the basic setting. We note that
the proposed algorithms are inherently popularity-agnostic.
The results are summarised in Figs. 9 and 10.

In Fig. 9, we see significant performance differences
between ProbCache, ProbCache+, CE2 (which perform
roughly the same) and LCD, LCEd, both in terms of Server
Hit ratio (which now is very close to 20%, Fig. 9(a)) and
in terms of Hop Reduction Ratio (which is approximately
10%, Fig. 9(b)). In particular, LCD and LCEd being de-
terministic algorithms that cache one copy of every content
in specific points along the content delivery path fail to
exploit the popularity of the CoI. This owes to the fact that
the deterministic nature of caching in these cases results in
contents (and particularly the CoI) being evicted from the
cache before it receives further requests. CE 2, which also
caches deterministically, escapes (to a certain extend) this
behaviour due to its inherent caching redundancy feature.

Although someone might expect that caching contents prob-
abilistically might result in slow convergence and therefore,
reduced performance, both versions of ProbCache invalidate
this claim. The sophisticated design of ProbCache (and
ProbCache+) bases its probabilistic caching behaviour on
the amount of traffic served by the router per unit time
and not based on arbitrary assumptions regarding the server
catalogue size. Having said that, ProbCache is essentially
choosing contents from a small range of incoming traffic (see

Eqs. 7, 8 and 9 in Section VIII). This feature of the proposed
algorithm reduces the caching redundancy and increases the
number of contents cached along the entire path. Therefore,
although popular content might not get immediately cached in
all routers along the path, it still gets cached at one point along
the delivery path and therefore avoids being fetched from the
origin server.

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 1 2 3 4 5

S
er

ve
r H

its

Number of Seconds worth of Traffic Held at each Cache

CE2

LCD
LCEd

ProbCache
ProbCache+

(a) Server Hits

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1 2 3 4 5

H
op

s
R

ed
uc

tio
n

Number of Seconds worth of Traffic Held at each Cache

CE2

LCD
LCEd

ProbCache
ProbCache+

(b) Hop Reduction Ratio

Fig. 9. Scenario 2: Caching Convergence to Popular Content - Set of
Simulations Applying Increasing Amount of Cache in each Experiment.

To prove our claims further, we plot the number of caches
that hold the CoI in Fig. 10(a) and the hit-miss ratio in
Fig. 10(b) as the experiment progresses. In Fig. 10(a), we
observe that indeed CE2 populates the caches faster with
the CoI compared to ProbCache and ProbCache+, but this
difference is in the order of 120 to 150 seconds, as can be
seen in the beginning of the experiment from the 1050 th to
the 1200th second. In the long term, however, we see that
CE2 evicts the CoI faster than new requests come in and
therefore results in less cache hits. This is shown in Fig. 10(b),
where although for the interval between the 1050 th and the
1200th second CE2 has higher hit-miss ratio, after the 1200th

ProbCache+ is performing better. With regard to LCD and
LCEd, we see in Fig. 10 that the deterministic approach to
content caching results in very poor performance in terms of
convergence to caching of popular content. This behaviour is
due to high contention for caching slots in the fixed places
where these algorithms cache contents. In turn, this results in
evicting the CoI faster than new requests come in.

VI. SUMMARY AND CONCLUSIONS

We have argued that caching named chunks in network
routers’ DRAM memory, as opposed to caching large objects
or files in proxy disks, calls for reconsideration of past
approaches to caching. In-network caching in ICNs has to
happen in an uncoordinated and distributed fashion, taking
also into account the available cache resources. We have
therefore, introduced the concept of resource management for
in-network caching environments and have argued that indis-
criminate and/or deterministic caching presents little potential
for efficient resource utilisation.

We have proposed ProbCache, an algorithm that approx-
imates the capability of paths to cache contents, based on

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 10

 0

 50

 100

 150

 200

 1000 1500 2000 2500 3000 3500 4000 4500 5000
N

um
be

r o
f C

ac
he

s
H

ol
di

ng
 C

oI

Time

CE2

LCD
LCEd

ProbCache
ProbCache+

CE2

ProbCache+

ProbCache

LCD

LCEd

(a) Number of Caches Holding CoI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1000 1500 2000 2500 3000 3500 4000 4500 5000

H
it-

M
is

s
R

at
io

Time

CE2

LCD
LCEd

ProbCache
ProbCache+

CE2

ProbCache+

ProbCache

LCD

LCEd

(b) Hit-Miss Ratio

Fig. 10. Scenario 2: Caching Convergence to Popular Content

path lengths, and multiplexes content flows accordingly. The
ultimate goal of ProbCache is to utilise resources efficiently,
reduce caching redundancy and in turn, network traffic redun-
dancy. We have considered both homogeneous and heteroge-
neous cache sizes and have adjusted ProbCache to fit in both
environments.

Although the calculation of the value of ProbCache in-
troduces extra computation complexity, we report savings of
up to 20% in server hits; 7-8% in the number of hops to hit
cached contents; and reduction by an order of magnitude in
cache evictions. We argue that the reduction of cache evictions
counter-balances the extra computation cost of ProbCache.

Several issues in our design warranty further investigation.
For example, our formula can be adjusted to enforce caching
towards the edge of a domain and before an expensive transit
link. Furthermore, in this study, we have not considered selec-
tive caching in terms of content importance. Given the long
tail distribution of Internet traffic, as well as temporal locality
characteristics, we consider that only a subset of contents
are worth caching inside the network. Content identification
policies can be based on expected content popularity, which
can be driven by SLA agreements between content providers,
CDNs and ISPs. We hope that our study will trigger further
research as the ICN research field matures.

Finally, security and billing issues constitute major open
issues in the area of ICN. Clearly, by scattering contents
along the content delivery path, ProbCache avoids both cache
polution and sniffing attacks [32]. This is because the attackers
are not able to locate the exact cache where sequences of
chunks of the same content might be cached. As regards billing
issues between ISPs and CDNs, we believe that the target time
window value (Ttw) of ProbCache, together with our previous
modelling work on the proportion of time that a given content
stays in the network’s caches [18] can assist in the design of a
billing framework for ICN. We leave those topics as directions
for future work.

REFERENCES

[1] T. Koponen and et al., “A Data-Oriented (and beyond) Network Archi-
tecture,” SIGCOMM, ’07.

[2] V. Jacobson and et al., “Networking Named Content,” in ACM CoNEXT
’09, 2009, pp. 1–12.

[3] A. Ghodsi and et al., “Naming in content-oriented architectures,” in ACM
SIGCOMM ICN Workshop, 2011, pp. 1–6.

[4] A. Detti, M. Pomposini, N. Blefari-Melazzi, and S. Salsano, “Supporting
the web with an information centric network that routes by name,” in
Computer Networks, August 2012.

[5] A. Anand and et al., “Packet caches on routers: the implications of
universal redundant traffic elimination,” in ACM SIGCOMM.

[6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in SIGMETRICS ’09.

[7] L. Breslau and et al., “Web caching and zipf-like distributions: Evidence
and implications,” in In INFOCOM, ’99.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, pp. 281–293, June 2000.

[9] H. Che, Z. Wang, and Y. Tung, “Analysis and Design of Hierarchical
Web Caching Systems,” in INFOCOM. IEEE, 2001, pp. 1416–1424.

[10] N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov, “Coarse-grain replica
management strategies for dynamic replication of web contents,” Com-
put. Netw., vol. 45, no. 1, 2004.

[11] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in ACM SIG-
COMM ICN Workshop, 2011, pp. 26–31.

[12] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric
networking,” eEnergy, 2010.

[13] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort
Content Location in Cache Networks,” in INFOCOM, 09.

[14] A. A. Jiang and J. Bruck, “Optimal content placement for en-route web
caching,” in Proc. of IEEE NCA ’03, 2003.

[15] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, 2000.

[16] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in ReArch Workshop, 2010.

[17] M. Varvello, D. Perino, and J. Esteban, “Caesar: a content router for
high speed forwarding,” in SIGCOMM ICN workshop, 2012. [Online].
Available: http://doi.acm.org/10.1145/2342488.2342505

[18] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling
and Evaluation of CCN-Caching Trees,” in Proc. of IFIP NETWORK-
ING, 2011.

[19] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proc. of 2nd ACM SIGCOMM ICN
Workshop, August 2012.

[20] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
lru caches and its analysis,” Perform. Eval., vol. 63, no. 7, Jul. 2006.

[21] W. K. Chai and et al., “Curling: Content-ubiquitous resolution and deliv-
ery infrastructure for next-generation services,” IEEE Communications
Magazine, vol. 49, no. 3, pp. 112–120, 2011.

[22] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “LIPSIN: line speed publish/subscribe inter-networking,”
in SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp. 195–206.

[23] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. Siris, and G. Polyzos,
“Caching and mobility support in a publish-subscribe internet architec-
ture,” Communications Magazine, IEEE, vol. 50, no. 7, pp. 52–58, 2012.

[24] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf) an information-centric
networking architecture,” Computer Communications, vol. 36, 2013.

[25] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann,
“Improving content delivery using provider-aided distance information,”
in Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, ser. IMC ’10, 2010, pp. 22–34.

[26] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “Multicache: An overlay
architecture for information-centric networking,” Comput. Netw.,, 2011.

[27] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache
allocation for content-centric networking,” in ICNP 2013.

[28] “Icarus: A simulator for icn cache networks,” 2013. [Online]. Available:
http://www.ee.ucl.ac.uk/∼lsaino/software/icarus

[29] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” in Science, vol. 286, no. 5439, Oct. 1999, pp. 509–512.

[30] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing,” Technical Report, 2011.

[31] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self-organising wide-
area network caches,” in IEEE INFOCOM ’98, 1998.

[32] T. Lauinger and et al., “Privacy risks in named data networking: what
is the cost of performance?” SIGCOMM CCR, vol. 42, 2012.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MAY 2013 11

Ioannis Psaras (i.psaras@ucl.ac.uk) received a diploma
in Electrical and Computer Engineering from Democritus
University of Thrace, Greece in 2004, and the Ph.D. degree
from the same institute in 2008. He won the Ericsson
Award of Excellence in Telecommunications for his diploma
dissertation in 2004. Ioannis has worked, as a research intern
at DoCoMo Eurolabs (MaySeptember 2005) and at Ericsson
Eurolab (MaySeptember 2006). His research interests are
in the areas of Congestion/Flow Control, Transport-layer
Protocols, Information-Centric Networks, Delay-/Disruption-
Tolerant Networks (DTNs), User-Provided and User-Centric
Networks. He is currently working as senior research associate
at the Electronic and Electrical Engineering Department of
University College London (UCL). Further information on
current and previous research projects he has been involved
in can be found at http://www.ee.ucl.ac.uk/∼uceeips/.

Wei Koong Chai (w.chai@ucl.ac.uk) was awarded the
BEng degree in Electrical Engineering from the Universiti
Teknologi Malaysia, Malaysia in 2000 and both the MSc
(Distinction) and the PhD degrees from University of Surrey,
United Kingdom, in 2002 and 2008 respectively. He is
currently a senior research associate at the Department of
Electronic and Electrical Engineering, University College
London, United Kingdom. His research spans across
heterogeneous networks including wired / wireless networks
and cyber physical systems such as smart grid. His current
research interests include information-centric networking
(ICN), smart grid communication, quality of service (QoS),
resource management (e.g., for satellite networks and
wireless mesh networks), cross-layer design (specifically on
interaction of protocols at different layers), traffic engineering
and network optimisation.

George Pavlou (g.pavlou@ucl.ac.uk) is Professor of Com-
munication Networks in the Department of Electronic and
Electrical Engineering, University College London, UK where
he co-ordinates research activities in networking and network
management. He received a Diploma in Engineering from the
National Technical University of Athens, Greece and MSc and
PhD degrees in Computer Science from University College
London, UK. His research interests focus on networking and
network management, including aspects such as traffic engi-
neering, quality of service management, policy-based systems,
autonomic networking, information-centric networking and
software-defined networks. He has been instrumental in a
number of European and UK research projects that produced
significant results with real-world uptake and has contributed
to standardisation activities in ISO, ITU-T and IETF. He
has been the technical program chair of several conferences
and in 2011 he received the Daniel Stokesbury award for
“distinguished technical contribution to the growth of the
network management field”.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

