
Redefining the Audio Editor

Toine Heuvelmans

Master of Philosophy
Bournemouth University, United Kingdom
University of the Arts Utrecht, the Netherlands

July 2014

This copy of the thesis has been supplied on condition
that anyone who consults it is understood to recog-
nise that its copyright rests with its author and due
acknowledgement must always be made of the use of
any material contained in, or derived from, this thesis.

2

this page intentionally left blank

3

Abstract

This thesis describes new design principles for audio editing software. This
kind of software, also called audio editor, is the digital cutting table for sound
and music production in which audio can be loaded or recorded, then selected
and edited.

First an understanding of the audio editor is established. Then a new
approach to audio editing software design is developed, based on research
into current software. This new approach consists of a set of design principles
that aim at improving coherency, flexibility and creativity in the audio editing
process. These principles are formed by carefully rethinking core elements in
audio editing such as audio representation, selection and manipulation, editing
flexibility, automation and personalisation.

As artefact of this research, a concept audio editor called OFFline is presented
in a second section. This audio editor demonstrates a possible implementation
of the new design principles.

4

this page intentionally left blank

5

Table of Contents

Abstract 3

Table of Contents 5

List of Illustrations and Tables 7

1. Introduction 11
1.1 Motivation 11
1.2 Methodology 12
1.3 Relevance 14
1.4 OFFline 14

2. Literature & Repertoire 15
2.1 Narrative – Part 1 15
2.2 Defining the Audio Editor 19

2.2.1 Delineation 19
2.2.1.1 Terminology 19
2.2.1.2 Scope 21

2.2.2 Three studies 23
2.3 Design Considerations 24

3. Redefining the Audio Editor 30
3.1 Modular Editing 30

3.1.2 Non-destructive Editing 32
3.1.3 Batch Processing 33
3.1.4 Summary 34

3.2 The Source Browser 35
3.2.1 A Better File Dialog 35
3.2.2 Recording 37
3.2.3 Synthesis 38
3.2.4 Searching Audio Files 38
3.2.5 Summary 40

3.3 Representation & Manipulation 41
3.3.1 The Waveform 41
3.3.2 The Spectrum 43
3.3.3 Reading Waveforms And Spectra 45
3.3.4 Quick Editing 51

3.3.4.1 Editing Using The Waveform Display 51

6

3.3.4.2 Editing Using The Spectrum Display 53
3.3.5 Other Representations 56
3.3.6 Summary 57

3.4 Smart Selections 59
3.4.1 The Standard Selection 59
3.4.2 Multiple Selections 60
3.4.3 Automated Selections 61
3.4.4 Finding Audio 63
3.4.5 Summary 63

3.5 Layered Audio 64
3.5.1 Blending Audio 65
3.5.2 Special Pasting 69
3.5.3 Summary 72

3.6 Sonic Composition 73
3.6.1 Parameter Automation 73
3.6.2 Branch Editing: Creating a Sound Morphology 77
3.6.3 Summary 76

3.7 Extendability 79
3.7.1 The Module Development Environment 80
3.7.2 Summary 88

4. Narrative – Part 2 89

5. Recent Developments in Audio Editing Software 92

6. Conclusions 95

OFFline 99

Appendices 107

References 141

7

List of Illustrations and Tables

Illustrations
Figure 1. Audiofile Engineering’s “Wave Editor”; a collection of individual win-
dows, each with a separate function. 13
Figure 2. A wave editor (Audacity) and a spectrum editor (iZotope RX) 20
Figure 3. The Edit menu in WavePad, displaying a plethora of editing options. 24
Figure 4. TranQuilizr, an equaliser plug-in by A.O.M. 28
Figure 5. The editing chain, in which each edit is represented as a module. 31
Figure 6. Multiple output modules allow simultaneous saving in different
formats. 34
Figure 7. Mac OS X (10.9) file dialog in column view, providing duration,
sample rate and bits per sample as audio-specific info. It also provides a
player to pre-listen a file, though this only supports audio file formats that
the system can play. 35
Figure 8. The Source Browser, showing a column view for browsing a file
structure, and a batch list for selecting and loading multiple sources. 36
Figure 9. Recording in the Source Browser, allowing specification of input
and output. A compact waveform display is provided below. New recordings
can be added to the batch. 37
Figure 10. The Source Browser facilitates generation of audio sources using
basic synthesis techniques. 38
Figure 11. The Source Browser allows one to find an audio file not by name
but by audible characteristics. 39
Figure 12. a) The waveform in Rogue Amoeba’s Fission only shows positive
and negative peak values. b) Audacity (by Roger Dannenberg) displays a
waveform that shows both peak and RMS. 42
Figure 13. a): a line spectrum with frequency on the horizontal and magni-
tude on the vertical axis. b) a spectrogram with time on the horizontal and
frequency on the vertical axis, using color to represent magnitude. c) a
waterfall plot with frequency on the horizontal and magnitude on the vertical
axis. Time is represented on the third axis. 44
Figure 14. A rainbow gradient 45
Figure 15. a) A steady-frequency 440Hz sine tone at fixed gain 0.3. b) Signal
a, with spikes (1-sample ticks) added. c) Signal a, crescendoing linearly,
from 0 gain to 0.3. d) Signal a, with a 5Hz tremolo (amplitude modulation)
between 0.1 and 0.5 gain. e) Signal d, but with the modulation frequency at
100Hz. 46
Figure 16. f) A square wave with fundamental frequency 440Hz and fixed
gain of 0.3. g) A sine wave at 0.3 gain, going linearly from 220Hz to 880Hz.
h) A sine wave with a 6Hz vibrato (frequency modulation) between 435 and
445Hz. i) A sine wave with a 100Hz frequency modulation between 340 and
540Hz. 47
Figure 17. j) A sine wave getting louder than maximum, being clipped. k, l,

8

m) A sine wave getting louder than maximum, respectively being wrapped,
folded and soft-clipped. 48
Figure 18. n) A single decaying piano note. 48
Figure 19. o) A small Tibetan bell. 49
Figure 20. p) A steady clarinet note. 49
Figure 21. q) White noise. r) Pink noise. 50
Figure 22. A waveform display that provides gain adjustment by dragging
up or down. Other parameters can be adjusted using moderator keys (see
bottom-left). 52
Figure 23. Spot healing in Adobe Audition. a) shows a small but audible noise
element amidst background noise. Spot healing allows selection and auto-
matic removal of this element, filling it up with similar background noise. 54
Figure 24. A selection displayed as a module in the editing chain. 59
Figure 25. A gain change on a section that doesn’t start at a zero-crossing
(arrows) can result in a hard tick. 60
Figure 26. Random cutting (a), shredding (b) and one form of brassage (c).
Random cutting: the segments have a random position and length, and can
overlap. Shredding: similar, but no overlap. Brassage: overlap is allowed, but
segments are sequential, which is characteristic for this technique. (Wishart
1994a) 62
Figure 27. Multiple selections are automatically made by specifying selection
criteria. 62
Figure 28. Finding similar audio based on a benchmark selection. 63
Figure 29. Audio tracks in Adobe Audition. Audio is represented as a con-
tainer so that it can be repositioned along the time axis. 64
Figure 30. Adding tracks versus blending layers. 65
Figure 31. Layer B will be blended with layer A using multiplication. Mask C
is applied to layer B before blending. The result of the blend is shown in D. 68
Figure 32. The Special Pasting dialog in TwistedWave. 70
Figure 33. Inserting audio using layers. 70
Figure 34. Inserting audio with a crossfade. The yellow line indicates gain
adjustment. 71
Figure 35. Mixing audio using layers. Layer 1 is slightly attenuated. 71
Figure 36. Replacing audio using layers. The gain of layer 1 is set to 0, while
the gain of layer 2 is set to 1. 72
Figure 37. A head-up display for defining a parameter automation curve. 74
Figure 38. a) A curve that spans the full length of the audio file. b) The same
curve but applied relatively to the selected segment. 75
Figure 39. a) A segment table to gradually increase gain over consecutive
selections. b) A segment table specifying automated selection segment
length. 76
Figure 40. When time-compressing a selection (a) it can either leave a
gap, or all subsequent audio can be pulled towards it to fill the gap. When
time-expanding a selection (b) the extra audio that is generated can either
be mixed with or replace the audio it will overlap in time, or it can push all
subsequent audio further in time. The same problem occurs when applying a
reverb that has a tail longer than the selection. 80

9

Figure 41. The module development environment in OFFline. A module can
be created or edited through this interface. Parameters can be specified for
the graphical user interface, and a code editor allows for programming the
processing part of the module. 81
Figure 42. Compression is based on level detection (an envelope follower),
a static curve to derive a gain factor from the result of the envelope follow-
er, a smoothing filter to prevent too abrupt gain changes and a multiplier to
weight the input signal (Zölzer, 2008; 2011). 86
Figure 43. Three modes of convolution. a) shows regular convolution in
which every value of the input (top) is multiplied with every value of the im-
pulse response (middle). b) shifts the impulse response relative to the input
sample, allowing the convoluted samples to occur before the input sample.
c) doesn’t add all convoluted samples but returns only the maximum convo-
luted sample values. 86
Figure 44. OFFline at launch. The module chain is empty except for an input
module. The Source Browser is displayed to allow selecting one or more
sources to load through this input module. 100
Figure 45. Different modes in the Source Browser: a) Finding an audio file
based on audible properties. 101
b) Recording an audio file. 101
c) Generating an audio file using signal generators. 101
Figure 46. Basic actions represented as modules: input, visualisation, selec-
tion, cut and paste. 102
Figure 47. The edit module selector. 102
Figure 48. OFFline with a single audio file loaded. Both a waveform and a
spectrogram are displayed, visualising the audio at a specific point in the ed-
iting chain (here right after the input module). A spectral edit is made through
manipulating a spectral (time-frequency) selection. 103
Figure 49. Automated selections based on a recipe that describes the num-
ber of selections and the length to be a fixed value, but the position to be
random. This causes certain segments to be selected multiple times. 104
Figure 50. Parameter automation in OFFline. Here the playback speed is
varied over time, as specified by the curve that is drawn over the waveform. 104
Figure 51. Audio layers for vocoding. The modulator is the file we loaded,
displayed as the topmost waveform. The carrier is a secondary input source
loaded through the vocoding module and is displayed beneath the modula-
tor waveform. 105
Figure 52. The module development environment in OFFline. A module can
be created or edited through this interface. Parameters can be specified for
the graphical user interface, and a code editor allows for programming the
processing part of the module. 106
Figure 53. A self-organising model of audio editors. In this model, audio edi-
tor features are compared to organise the editors in a two-dimensional plane. 115

10

Tables
Table 1. Editors not included in the comparison. 110
Table 2. Classification of audio editor users. This table lists their everyday
activities, of which those that are performed using audio editors are empha-
sised. It also lists which features each group generally regards as essential
in audio editing software. (September 2010) 113
Table 3. List of possible audio editor types, some of which can be discrimi-
nated from the self-organising map. 116
Table 4. Top 10 Audio Editors, among 94 participants 118

11

1. Introduction

I developed my previous techniques in a classical tape studio, using only
editing, mixing and speed changing.

(Trevor Wishart, 1988)

1.1 Motivation
This research is part of a personal pursuit for a specific tool. It began years

ago when I was introduced to the work of composer Trevor Wishart and one
of his compositions in particular, Tongues of Fire (1994b). For this composition,
Wishart used as his only source material an audio sample of just 2 seconds
long to create an immensely varied composition of almost 25 minutes.
Tongues of Fire demonstrated to me the virtually endless possibilities in “sonic
composition”1, and I wanted to be able to use these techniques myself.

At that time, I had a relatively limited knowledge of available software,
and my fascination was followed by disappointment, since I couldn’t find
any software that included these transformations in any familiar form (an
effect, for instance in the form of a VST plug-in2) that I could comprehend.
All of my teacher’s demonstrations were programmed by himself (mainly in
SuperCollider), and I had not yet heard of the Composers Desktop Project3.

As a developer, my typical response to this disappointment was to invent
something myself, that would provide this simple effect-approach to Wishart’s
techniques, allowing one for instance to simply select octave stacking4 from
a list of audio transformations, specify its parameters and apply it to a piece
of audio. I decided the best way to approach this, was to build an audio

[1] Composing a sound. Sonic composition will be discussed in more detail in chapter 3.

[2] Virtual Studio Technology (VST) is a software technology that allows audio software to
be extended with synthesiser and effect plug-ins. Plug-in architectures are described in more
detail in chapter 3.7 (Extendability).

[3] The CDP is a company and cooperative network (which includes Trevor Wishart, whose
work has been of great influence on the design principles discussed in this thesis) based in the
UK that has been developing software for working with sound materials since 1986. The CDP
software includes many techniques which, as with those used in Tongues of Fire, are described
in Trevor Wishart’s book Audible Design (Wishart 1994a, p.46).

[4] Octave stacking is a simple yet impressive technique described by Trevor Wishart in
Audible Design (Wishart 1994a). It takes a piece of audio, stretches it up and/or down a
number of times, each time by a factor of 2 (the ratio for an octave higher or lower). Stretching
up, this causes the audio to be played twice as fast and sound exactly one octave higher. All
these stretched versions are combined (stacked) with the original audio. If the audio has a
distinct onset, all these onsets will occur somewhat simultaneously, creating a massively rich
onset. Each layer of this stack will end at a different time, first the highest and shortest version,
ending with the lowest and longest version.

12

editor, that already provided such an approach for more mainstream audio
processes like normalisation, dynamic compression and reverberation, as well
as including features such as cutting and pasting. The audio editor was hence
suitable to be extended to include these audible design techniques.

My choice for the software type audio editor was based on what I thought
it to be: the digital equivalent of an analogue tape studio, in which you can
cut and paste audio, as well as transform it. Because I wanted my software
to be recognisable in use, I felt firmly about labelling it correctly, since each
label brings certain expectancies of what a software should and should not
do. However, the term audio editor as well as the software it should describe
appeared to have a very ambiguous definition. I required a definition because
I wanted to see how far I could stretch it, extending the audio editor for sonic
composition purposes, without diluting its identity. If this extending the audio
editor was to be the subject of my research, it first needed to be clear exactly
what that audio editor was.

Therefore, this thesis begins with a search for defining the audio editor.
Through a number of surveys the area covered by it was determined, which
also gave me an insight into what audio editing software is currently available.

It appeared that not much has been happening in audio editor design.
Throughout the years such software has followed a small set of principles that
dates back to the mid 80’s, only deviating from it slightly as new features were
introduced. Such new features were commonly added rather than integrated in
these basic principles, accumulating into a somewhat incoherent Swiss Army
knife.

I was convinced there was room for improvements in audio software
design. Over the years, other kinds of software did undergo rethinking and
refinements. From my experience with other kinds of software – particularly
image software such as Adobe Photoshop – I saw design principles that could be
adapted to audio editing software. This made my focus on extending the audio
editor shift to defining a more fundamental redesign of the audio editor.

1.2 Methodology
The audio editor is a subject on which there is very little research literature5.

The aim to redefine this type of software demanded an understanding of what
an audio editor is, who uses it and for what purposes it is used. Three surveys
were conducted6 in order to delineate this area, a full treatise of the surveys

[5] Besides a handful of academic publications and books on music technology, audio editors
are mainly discussed in popular literature and on the internet, mostly in the form of software
reviews and incidental surveys or comparisons. A more detailed list of such resources is
mentioned in chapter 2.

[6] The surveys conducted in this thesis for Bournemouth University have been conducted
between 2007 and 2010, while I was registered at Portsmouth University. The MPhil was
suspended and no awards were given based on these surveys so far.

13

is included in chapter 2. The analysis of these surveys is used as the basis on
which new design principles are mapped.

Redefining the audio editor involves answering the question “how can it be
made better?”. Often software is made “better” by adding extra features, but it
should be done with careful thought. Audio editing software throughout the
years has seen quite some new features being added rather than being integrated.
The tendency to add discrete features instead of rethinking the fundamental
principles has led to some inconsistent cluttered audio editing software design
(see figure 1).

In this thesis an attempt is made to redefine the audio editor by focussing
on software design. Seven subjects – aspects of audio editing or common
software design – are explored: the process of editing, obtaining audio material,
representation and manipulation, audio selection, audio layering, sonic
composition, and software extendability. First, fundamental design principles
and currently available features will be reflected upon, outlining the status
quo and examining the usefulness of the current design. Then, new design
principles are proposed, the foundations for which either originate from other
audio software design, non-audio software design (of which Adobe’s Photoshop
is the most exploited) or recent technological possibilities. These new principles
are intended to extend and enhance existing design, or replace it with an
approach that unifies existing but distinct functionality. Evaluations of common
scenarios in audio editing will illustrate the differences between the old and
new approach. Some proposed design principles introduce concepts that have
not yet been implemented in audio editing software.

Figure 1. Audiofile Engineering’s “Wave Editor”; a collection of individual windows, each
with a separate function.

14

1.3 Relevance
The relevance of this research has been given by developments in audio

software development during the writing of this thesis (chapter 5 describes
recent developments in audio editing software). Some of the described design
principles are by now available – to some extent – in a number of audio editors.
This proves their value as individual features, but this also emphasises the most
important aspect of this research. As described in the methodology, the design
principles should not be added to the software but be integrated in it. In doing so,
one principle can build on another, and become more powerful than when it is
implemented as an individual feature.

Therefore, read this thesis not as a list of features, but as a single approach to
audio editor design.

1.4 OFFline
This thesis includes a section that presents a concept audio editor called

OFFline. This audio editor is not (yet) a real and functional audio editor, it is a
non-working prototype. OFFline is the author’s vision of the redefined audio
editor. For the reader, OFFline serves as a demonstration of how each design
principle discussed in this thesis can be expressed. Throughout this thesis,
mock-up screenshots illustrate a possible implementation of these design
principles.

Personally, OFFline served as a structure in which all the design principles that
are described in this thesis could be developed and synergistically incorporated.
As described in chapter 1.1, the motivation for this thesis was the longing for an
audio editor that included an effect-like approach to more artistic techniques,
such as those described by Trevor Wishart (1994a). OFFline would be an audio
editor, but also a sonic composition tool, yet still be easy to use. These are the
basic principles on which the design was developed.

15

2. Literature & Repertoire

2.1 Narrative – Part 1
The design principles discussed in this thesis are a product of a long period

of research into audio editors. As discussed in the motivation (chapter 1.1),
it started with the desire to develop an audio editor that incorporated new
features, mainly modular non-destructive editing as well as unusual audio
effects. The modular editing approach would fundamentally change the editing
flow that is common in many existing audio editors, which might give rise
to the question if this new audio editor could still be labelled an audio editor.
Labelling it as such would help to characterise the software and thus aid in
discussing the audio editor’s features.

That question was however immediately followed by the question of what an
audio editor actually is. Available definitions are scarce and quite ambiguous.
Without a more substantiated definition of the audio editor it was difficult to
discuss a new audio editor’s features.

It was therefore important to discover:

• What users expect from an audio editor;
• How such audio editors are used, and for what purposes;
• What kind of audio editors and features currently exist

A definition was formed in a three-step process:

1. An initial iteration was constructed through a literature review.
This delineation is formed by a terminology and scope (see chapter

2.2.1). The terminology reviews the different labels used in literature to
identify audio editing software, concluding on the term “audio editor” to
be the most general and appropriate descriptor to identify software which
main purpose is to edit (cut and paste, adjust, transform) audio.

The definition of a scope (the sphere of action of an audio editor) was
meant to set fundamental ground rules for identifying audio software as
audio editors. From both a historical and logical point of view, key aspects of
an audio editor were formulated to direct further research.

2. Then, by asking users about what they considered to be the important
characteristics of an audio editor in their work.

A questionnaire (see appendices 1 and 2) was constructed and
distributed to audio practitioners in order to obtain a generally conceived
concept of the audio editor, identifying what it is used for. It was divided
as follows:

16

• general questioning about the participant’s background.
• the participants’ audio software usage, mainly to identify what audio

software was used for what purpose.
• how an audio editor was used and which aspects of audio editing

software the participant preferred.

This questionnaire was intended to answer the first two questions:
• what do users expect from an audio editor? and
• how and for what purposes do they use an audio editor?

Answering these questions would help identify and name specific audio
editor usages in the exploration towards developing a new audio editor.
But as not every user is the same, it would be useful to see if specific usages
could be associated with a specific user group. The results gathered from
the many participants were very varied, everyone had their own specific
background, methods and preferences. Grouping these participants could
be done based on their background information and particularly the
descriptor they provided with that background (such as composer or sound
designer). This identified a comprehensible set of user groups, with a char-
acterisation of audio editor usage and preferences for each of these groups.

3. Finally, by reviewing existing audio editing software.
The questionnaire was also used as a means to gather names of existing

software that participants used as audio editors. The initial delineation
formed in the first step, together with the generally conceived concept
formed in the second step, now functioned as a filter to identify which
software was considered to be an audio editor and which software was
something else. (While reviewing the terminology, other kinds of audio
software and their descriptors were found – such as Sequencer and Digital
Audio Workstation – which helped in this process.) Of the remaining audio
editors, those that could be reviewed first-hand or through documentation
or literature were listed. The reviewing of these audio editors (see
appendix 3) was aimed at identifying available features, as well as
identifying different kinds of audio editors (such as wave editors and
spectrum editors).

For each audio editor, all included features were listed (appendix 4).
Then, using a number of algorithms for comparison, averaging and
deviation, the more common of those features were deduced, and for each
editor a focus on either common or uncommon features, or an all-round
feature set could be identified. A Self Organising Map was then used
to identify which audio editors were similar, and by using the earlier
reviewed terminology these groups of audio editors could be labelled.
Some audio editors did not fit in such a cluster because one or more
prominent features that characterised it differentiated the editor from the
group. An example of this is DSP Quattro, which has basic editing features

17

but focuses heavily on audio CD mastering.
The features listed in the comparison were all expressed quantitatively, only

identifying whether an audio editor included them or not. To a fair extent
these features matched the options that were chosen by users as “preferred
features of audio editors” in the questionnaire. No insight however was yet
gained about qualitative aspects, such as speed and simplicity. For this a
follow-up questionnaire was conducted (appendix 5). Participants had to
identify themselves with one of the user groups that were deduced from the
first questionnaire, and score various qualitative aspects for their relevance.
The outcomes confirmed a number of assumptions, particularly about a general
preference for speed and quality, and some group-specific preferences such as
connectivity and compatibility often preferred by performers, and an interest
for extendibility generally preferred by software developers.

The audio editor comparison mapped the breadth and width of audio editors
to date. It revealed a number of different types of audio editors, ranging from
basic to comprehensive, and from the most common waveform editors to less
common spectrum editors. On a deeper level common design principles could
be discriminated, such as how audio is displayed visually and how it can be
selected for editing. In most audio editors, many of these design principles
were implemented in practically the same way as in the very first audio editor
(Digidesign’s Sound Designer), which dates from the mid 1980’s. This is not a
bad practice per se; it might prove that these design principles initially were
well conceived. However, many features that were included in more recent
audio editors were often only made accessible through menu structures, a
design approach that from an intuitive standpoint is quite cumbersome and
lacks proper visual feedback on the process of editing. It moves the user away
from the central user interface, which in every audio editor contains at least one
visual audio representation serving as main graphical user interaction element.

The modular editing approach mentioned at the beginning of this narrative
was directly inspired from image editing software such as Apple’s Core
Image Fun House and Adobe PhotoShop, and from that same area other design
principles could be adapted better to implement a number of audio editor
features currently only available through menu structures (particularly the
application of certain audio effects).

A more fundamental issue, however, was also in need of improvement.
Audio editing requires audio to be obtained from an external source before
editing can begin. This can either be through loading a file, making a recording
or synthesising an audio signal. In all audio editors these three actions were
provided to the user in very disconnected ways, through separate elements of
the user interface, but they all provide the user with audio that can be edited.
If the first user action in editing audio is presented through such fragmented
design, there is room for improvement. It was this issue that tipped the focus
of developing a new audio editor, to a more fundamental deliberation on audio
editing design principles. Consequently, this lead to the development of new

18

the design principles discussed in this thesis.
There were seven areas to be considered. First, the modular editing approach

would pose a solution for various challenges in the process of editing. With the
initial conceptualisation of this approach it was not yet foreseen for how many
different aspects of audio editing this would turn out useful; this understanding
was only achieved after conducting the comparison, and through the process of
developing other design principles.

The deliberation on obtaining audio material followed, posing a unified
user interface element from which file loading, recording and synthesis could
be conducted. With a single user interface element for audio source selection,
there was now a logical setting for addressing related matters such as batch file
selection and finding audio files.

Personal experience with image editing software profoundly influenced the
proposed design principles, a first example of which is the modular editing
approach. Correspondingly, two other fundamental aspects of audio editing
could also be improved, mainly through adapting principles from image editing
software, where similar concepts have become more sophisticated than their
audio editing counterparts:

• A visual audio representation as a user interface element for audio
manipulation.

In most audio editors these interface elements only allow cutting and
pasting selected audio regions, but by also allowing manipulation of
such selected regions, a great variety of audio transformations can
become available in an intuitive way;

• The way(s) in which a specific region of audio can be selected.
Most audio editors only allow selecting a specific time range of
audio. The selection of time-frequency ranges (optionally changing in
frequency range over time) can enable the user to make more precise
edits.

As described in the section on motivation, there was a personal desire for an
audio editor that included unusual effects and allowed for more creative forms
of audio editing. Consequently, three more subjects would be explored:

• audio layering: how multiple layers of audio can be combined in
different ways (such as various modulation techniques and morphing);

• sonic composition: how creative and complex edits can be made
through different kinds of parameter automation; and

• extendibility: how the audio editor can be personalised by enabling the
user to write their own audio effects.

19

2.2 Defining the Audio Editor
Although there is a wide range of audio editors available today, there isn’t

much written about this kind of software, other than reviews. This might be
because developers of commercial software don’t have the tendency to share
with the public the development process; they rather advertise the end result.
But perhaps it is also because there is no such thing as the audio editor. An audio
editor is merely a collection of functions, some of which are common amongst
most audio editors, and are therefore regarded as essential. Audio editor is
therefore more a generally conceived concept (Pope 1993, p.25), rather than a
definition. In this chapter that concept will be traced to formulate a definition of
an audio editor. A framework will be provided by explaining a terminology and
determining a scope. Then the generally conceived concept of an audio editor is
distilled through three studies.

2.2.1 Delineation

2.2.1.1 Terminology
Consulting resources7 that do write about the kind of software that can be

described as an audio editor, will reveal that there is a lot of ambiguity in the
assembled nomenclature concerning this subject. This thesis focuses on the type
of software program that is called digital audio editor. The term audio editor will
be used from this point on, since a software program is by nature digital.

An editor program lets one create and modify a text, image or in this case
audio (Roads 1996, p.706). One might hear a multitude of different names for
this same kind of software, but audio editor is favoured for the following reasons.

A sound editor is the most common variant in use. Audio is sound, but
explicitly when recorded, transmitted or reproduced. In other words, audio is
sound captured on tape, disk or any other analogue or digital storage medium.
Opting for audio editor will identify this state of sound.

Furthermore, sound editor is also used to describe a profession or person (in
this profession), as one might find for instance when querying Wikipedia. Audio
editor might be used in the same way, though this happens far less frequently.

A more difficult reason why not to use the term sound editor is that audio
can be sound as well as music. Determining the boundary between sound and
music is an almost impossible undertaking (Wishart 1996, p.3). One might
regard sound as an individual audible event, and music (in its more traditional
form) as a composition of multiple sounds. However, sound and music both
occupy the same sonic space and can sometimes appear in such a way that they

[7] (Milano 1985; Kirby and Shute 1988; Herzberg 1989; Moorer 1990; Pope 1993a; Roads
1996; Mazzoni and Dannenberg 2001)

Further reading includes magazines such as Sound On Sound, Future Music and Interface, and
websites such as KVR and Wikipedia.

20

are indistinguishable. In this respect, an audio editor can edit both sound and
music, however it can only edit music as a whole, a single audio file; it cannot
edit its individual sounds8.

An audio editor is always a graphical editor, meaning that it can provide a
graphical representation (or visualisation) of the material being edited. This
representation is part of the Graphical User Interface (GUI), in that it provides
not only a view of but also access to the audio, by allowing the user to select
portions of audio through clicking and dragging in the graphical representation.
Non-graphical audio editing applications go by different names, such as audio
processing command line utility9 or textual programming environment (designed for
audio processing).

Almost as common as sound editor is the term wave editor, which defines
a graphical audio editor that displays the most common time domain
visualisation of audio, the waveform (time versus amplitude, see figure 2a). An
audio editor primarily working in the time domain can also be called a sound
sample editor, since it directly operates on a stream of samples. Less common is
the spectrum editor, operating on partials in the frequency domain (figure 2b). A
spectrum editor presumes a prior analysis stage (Roads 1996, p.768). Its type of
visualisation and operations depend on the kind of analysis10. An audio editor
might include both time domain and frequency domain operations, so neither
wave editor nor spectrum editor fully covers the focus of this research.

[8] Melodyne implements a technique called Direct Note Access, which analyses a piece of
music (a single file which has to be clearly tonal) and separates all notes as portions of audio,
which can then be edited individually. Handling note information is outside the scope of an
audio editor, and therefore Melodyne is not an audio editor. For more information about scope,
please read the following section.

[9] The command line can execute a program such as SoX, which is provided with arguments
such as input file and effect parameter settings. For example, “sox input.wav output.wav
gain -6“ will read input.wav, change the gain by -6dB, and save the result to output.
wav.

[10] The most commonly used technique to transform from time domain to frequency domain
is the Fourier Transform, which provides amplitude (and phase) information per frequency
per time-frame. Another method is the McAulay-Quatieri technique (Mcaulay and Quatieri
1986), which attempts to represent a sound with many individual sinusoidal tracks (partials),
each corresponding to a single sinusoidal wave with time varying frequency and amplitude
(examples of which can be found in SPEAR and Otkinshi).

Figure 2a). A wave editor (Audacity) and b) a spectrum editor (iZotope RX)

21

2.2.1.2 Scope
Scope defines the sphere of action of an application – the range of things

that can be affected by it. An application can only access something it has an
“understanding” about.

An audio editor doesn’t need an understanding of music
A digital audio editor is essentially a virtual realisation of an analogue tape

cutting studio. Sound and music can be recorded on tape, but only as amplitude
fluctuations. Tape provides a signal representation of music, whereas a score
provides a symbolic representation of music (Vinet 2003, p.194). Intrinsic
musical information such as notes, tempi and instrumentation are not available
from tape, hence the digital audio editor does not deal with this kind of
information either: a musical understanding is not included in its scope. For
example, an audio editor could not handle a request such as “Delete the C4
played by the piano in measure 36” because its knowledge of musical signals is
limited to time and amplitude points (Roads 1996, p.706).

An audio editor can be used for composition
In the context of this thesis, “composition” is commonly interpreted as

composition of music. Music can be regarded as emotive sound, but not all
emotive sound can be regarded as music (Deutsch 2007, p.3). Any sound can
be edited with an audio editor, as long as it is digitally recorded. With an audio
editor a sound can be slightly adjusted, but it can also be shaped, sculptured
and moulded into another sound, regardless of serving an emotive or literal
purpose. This shaping of sound is sometimes referred to as sonic composition11. A
sonic composer shapes the internal structure – aspects such as timbre, texture,
and dynamic development – of a sound. The ways in which sound may be
transformed are limited only by the imagination of the composer (Wishart
1994a, p.1). As long as the compositional process doesn’t involve symbolic
musical information (Vinet 2003, p.194), one can use an audio editor as a sonic
composition tool. A wide range of techniques can be developed using only
editing, mixing and speed changing (Wishart 1988, p.21).

Sequencers and Digital Audio Workstations
An audio editor is often confused with a Digital Audio Workstation (DAW)

and vice versa, as became clear through the questionnaire (described in
appendix 1). A DAW serves as a complete virtual production studio, facilitating
multi-track recording, editing, sequencing, and mastering. The editing
environment – the source of the confusion – is but one part of the application,
and often not the most important.

Most DAW’s present in their main window a multi-track sequencer, along
with a mixer displaying virtual channel strips for each track. A track is often

[11] The term “sonic composition” can also be used to identify the musical organisation of
sounds into compositions.

22

used to position sections of audio in time, but sequencers also include control-
tracks, generally containing MIDI information12 to control software or external
hardware synthesizers. This control signal often contains discrete musical
events that can be represented as a musical score (a symbolic representation, Vinet
2003, p.194). If a program has such an understanding of music, a track is often
regarded as an instrument, along with its own mastering parameters and effects
processing section. With these, audio on a single track can be shaped to become
a distinguishable “object” in a composition.

The sequencer in a DAW is often an audio and MIDI sequencer, so a DAW
can have an understanding of music at least to the extent of the MIDI protocol.
Multi-track audio editors do incorporate a sequencer, but only for sequencing
audio signal portions. A visible difference between these sequencers is that in
a DAW the time-line is generally displayed in bars and beats, and playback
depends on a tempo and measure parameter, whereas in an audio editor the
time-line often is just divided in seconds, minutes and hours.

A survey on audio editing in Digital Audio Workstations can be found in
appendix 6.

An audio editor can edit in non-real time
A real-time operation is one that processes input data within milliseconds so

that it is available virtually immediately as feedback (Stevenson and Lindberg
2005). A live band instrumentalist, for example, plays an instrument, which
might be processed by an effects processor in real time, making the effect
immediately audible.

Real-time operations do not necessarily have to be fast, but they do have to
be fast enough to keep up with the system (Loy 2007b, p.9). Processing high
quality audio in real time requires a faster processor than when processing a
low rate control signal.

An offline operation involves processing of a sort that cannot proceed in real
time, due to causality. An operation is said to be causal if it depends only on its
present and past inputs as well as its past outputs; it does not depend on future
inputs. The output of a noncausal (or acausal) operation, by implication, might
depend on future inputs as well (Moore 1990, p.114). Hence, acausal operations
cannot exist in real time; however they are perfectly realisable in nonreal time
(offline), such as when operating on a prerecorded signal (Loy 2007b, p.219).
For example, level normalisation requires examination of an entire sound,
beginning to end, before the normalisation factor can be calculated (Apple
2007).

The aforementioned Digital Audio Workstation commonly serves as a
so-called host for effects plug-ins13. Such an effect can be designated to a track,

[12] MIDI (Musical Instrument Digital Interface) is a standard that allows electronic musical
instruments, computers and other related devices to exchange musical information. This
information can include notation, pitch and velocity, as well as control signals for parameters
such as vibrato and tempo.

[13] A plug-in is a software extension, often developed by a third party, that extends the

23

processing all audio on that track. Effects plug-ins operate in real time, allowing
an instrument connected to the DAW to be processed immediately. The host
provides the effect with audio to process, which can also be done faster than
real time. The effect only processes the audio it receives, it cannot inspect input
audio from a different point in time, other than past inputs it might have stored.
This architecture makes an effects plug-in unsuitable for acausal operations.

Audio editors operate offline, allowing for such basic operations as
normalisation14 and reversing, but also more uncommon processes as
reordering and time stretching. Time stretching both covers time compression
and expansion. Compressing in time requires future inputs to occur earlier in
time, which constitutes an acausal process. Expanding time will cause inputs
to occur later in time. All inputs will be delayed, which does not necessitate
acausal processing.

2.2.2 Three studies
With the right terminology and an initial scope in place, three studies have

been conducted to further define the audio editor, which are described in detail
in appendix 1. From these studies, the following conclusions could be made.

The audio editor is an umbrella term for a number of different audio editing
software types, ranging from wave editors to spectrum editors, and from basic
to all-round multi-track audio editors. The majority includes a common set of
basic features (file loading / recording, waveform display, selecting, cutting /
pasting, amplitude adjustment, undo) that was also found in the earliest audio
editors, which were little more than a virtual audio tape recorder and cutting
table.

Audio editors are used in a wide variety of occupations, and for different
purposes (mainly basic editing and recording, but in lesser degree also
conversion and analysis). A number of user groups could be discriminated by
looking at occupation, though many participants identified themselves with
multiple occupations. No clear preference for an audio editor type by any user
group could be identified.

Though no one definition of “the audio editor” can be formulated, the area
covered by it and users associated with it are identified, forming a usable lattice
for further research.

functionality of the host software.

[14] Normalisation is a way to adjust the volume range of an audio recording. The overall
volume is increased or decreased so that the loudest peak is set to the digital maximum.
Normalisation is often used to avoid clipping, and to ensure multiple recordings are within a
common loudness range.

24

2.3 Design Considerations
The design of the audio editor

The audio editor (as discussed in this thesis) is a type of software that was
first introduced in the mid 80’s when Digidesign released Sound Designer. It
was the first software that allowed one to load an audio file, see a (zoomable)
waveform display, cut and paste segments of audio and change the gain15. It
even provided freehand waveform drawing (Milano 1985; Herzberg 1989).
Sound Designer became the archetype for almost all audio editors that followed
to date. It presented design principles that offered the bare essentials of audio
editing in an intuitive manner. Hence even in recent years new audio editors
have been released that hardly diverge from what Sound Designer offered. The
widespread adaptation of these design principles demonstrates their value in
the field of music technology. However, at the time of this writing we are nearly
30 years further, technology has developed and with it the consumption and
utilisation of it have changed.

It thus seems that in audio editor
design little has happened. At first
glance, the majority of all currently
available audio editors look alike.
Only when diving into the sometimes
elaborate application menus (figure 3),
real differences can be discriminated.
Functionality is often not offered
through the main graphical user
interface, but appended to the software
as a dialog that can be accessed through
the menu. All these menus, submenus
and sometimes multiple windows
create a fragmented user experience,
there is little coherency to be found in
these lists of individual functions. It
is even worse when an audio editor
(such as Audacity and Wave Editor) hosts

plug-ins such as VST by listing them in a menu, because each of these plug-ins
has its own graphical user interface and style. Sometimes a functionality can
only be provided through a specific user interface, and therefore presenting this
in a separate dialog may be the only option. However there are many cases in
which functionality is hidden in menus which could have been made accessible
through the available graphical user interface, if only the design had been given
a little more thought. In doing so, multiple functions can sometimes become
available through a single user interface object, increasing coherency. Why up to
now this happens so little, might be ascribed to a reservation towards altering

[15] The level of amplification of an audio signal.

Figure 3. The Edit menu in WavePad,
displaying a plethora of editing options.

25

the archetypical design principles too much; it might confuse the user. But this
very same user might have seen and become familiar to the developments that
have taken place in other areas of software, developments that can sometimes
be adapted to audio editors.

In finding new design principles it can be beneficial to look at other editing
software. Audio, text, image and video are all media that can be edited with a
specific kind of software. Between these media there are a number of parallels
– particularly dimensions such as time, position and frequency – along which
one might find adaptable paradigms (Heuvelmans 2005). Think of the way(s)
in which the medium is represented, selections are made along specific axes,
or how a medium is composed from components such as layers. Though not
directly associated with audio, some already generally accepted and understood
editing design principles in other media can be translated to audio.

Modern design
In this digital era one of the most important driving forces in software

innovation is the ever increasing available processing power. More can be
done in less time, and on more affordable devices. Processes that were initially
only feasible on a supercomputer, are now accessible through mobile phones.
Real-time audio processing, high quality image processing, live video effects;
with these processes becoming available to a greater user group, a fitting user
interface for them is required; not only a good graphical user interface, but
also one that applies to the hardware on which the software runs, an aspect
that has become more relevant with the rise of smartphones. These devices are
small, mobile and have a multi-touch interface. The accompanying software is
typically simple and intuitive, yet very powerful.

Mobile software, called apps, is not window-based, as opposed to desktop
software. The user is confronted with just one app at a time, that occupies the
entire screen. An app has no application menu as one can encounter in most
desktop software. Interaction is done through touch, and multiple touches
can be interpreted, as well as gestures. This allows for very intuitive design, in
which natural mappings16 can be exploited. Where the combination of mouse
and keyboard can provide an accurate user interface, the touch interface is
often empowered by smart content-aware software that helps the user achieve
the same precision. Through automation and interpretation, an app helps and
guides the user in expressing their decisions. This can be as evident as guiding

[16] A natural mapping implies that the relationship between two things - in this case the user
action and the result of that action - is based on commonly understood physical analogies or
cultural standards (Norman 1990, p.23).

26

them to make exactly the right selection17, but it can also produce “magic”18,
functionality such as “auto-enhance”, an opaque function in Apple’s iPhoto that
improves your photo. Modern software can and should help the user where
possible, but for each software the right balance between assistance and magic
must be found.

Photoshop
The conceptualisation of the design principles described in this thesis was

considerably directed by concepts from the domain of image editing software.
Most notable is Adobe Photoshop, arguably the de-facto standard in image
editing software, which over the years has become incredibly powerful by
taking advantage of the increasing available processing power. Not only
can edits be done faster, but also smarter. Photoshop allows for “quick”
selections, guiding the user in defining a precise selection by finding adjacent
regions similar to the selected one. It includes content-aware editing and
“puppet warp”, enabling the user to scale, remove or move objects in a photo,
automatically filling in the areas that are left blank. With very little input the
user can achieve very complex edits.

Most of these edits can be done through a single user interface element: by
directly interacting with the canvas, the plane on which the image is rendered.
This way there is good feedback on the user’s actions. Direct feedback in audio
editing can only be done when applying real-time edits19. To get at least some
direct feedback on an edit, a good visual representation of the audio is needed.
The user should also be able to interact with the representation in a logical
manner; good mapping between a user action and the visual result is important
(Norman 1990, p.23).

Human Computer Interface considerations
In designing software there is a trade-off between ease of learning and

long-term power and flexibility (Gentner and Nielsen 1996). Audio editing is
an inherently complex task, as it requires at least some knowledge about sound
and how it is stored digitally; it takes time to master. Audio editing takes place
in sessions that can be very short, but just as well can last for hours. Therefore
the best interfaces for audio editing tend to fall towards the long-term end
of the trade-off (Holland 2013, p.7). The first element with which the user is
confronted is the graphical representation of sound, commonly in the form of
a waveform. In order to read this waveform and work with it, the user has to
know that audio is stored as time-varying amplitudes, and understand that the

[17] A selection for instance of audio, text, image or video. Making selections will be
discussed in great detail further on in this thesis.

[18] A term that Apple used in describing software that, using complex automated processes
without making this visible to the user, helps the user achieve wonderful things with only
minimal effort.

[19] A real-time effect (see chapter 2.1.1.2 Scope) can be applied and adjusted instantly,
making the effect audible on the currently playing audio.

27

peaks that are visualised in the waveform represent the loud parts in the audio
recording. Most audio edits can be understood (up to some degree) through
a trial-and-error process, but effective audio editing often does require some
knowledge of digital audio processing20. Audio editing is therefore an imple-
mentation-centric process (Cooper 2007, p.269); the user must understand what
an edit does (and what its side-effects might be, such as the introduction of
distortion or phase shift artefacts) in order to apply it effectively. This doesn’t
mean however that the graphical interface design should also be implemen-
tation-centric and expose every parameter that concerns the edit. The design
should help accomplish an audio edit. Provided that that goal can be reached,
the design can be very different than a list of parameter controls. The user might
have to learn how to use this interface design in order to accomplish his/her
goals, but with a good design that will be easier than having to learn exactly
how the edit works and how its parameters interact before being able to apply
it. A good design makes the user more effective (Cooper 2007, p.149).

Dials and sliders are commonly used interface elements in audio software.
As these elements resemble elements on audio hardware, users of audio
software can easily understand them. A dial or slider also provides visual and
easy-to-comprehend feedback on the parameter setting it represents (on both
its value and range), making it an effective interface element for a single effect
parameter.

More elaborate visual interface components are less feasible to technically
realise in hardware, but this is exactly where audio software can differentiate
itself. Figure 4 shows a graphical equalizer21 plug-in with two distinct interface
sections. The lower section contains a series of dials to adjust centre frequency,
gain and bandwidth for each of the 8 bands that constitute this multi-band
equalizer. This is reminiscent to how a hardware equalizer would look. The
upper section is not merely a visual graph of the equalizer curve; it is an
interface element itself, allowing the user simultaneously to adjust a band’s
centre frequency and gain by grabbing a band’s anchor (one of the coloured
dots)22. The user is given visual feedback of his adjustments both through the
visual manipulation of the curve and the real-time line spectrum of the audio
that will be shaped accordingly by the equalisation.

Direct manipulation (Shneiderman 1983) of audio requires a good visual
representation of the audio, as well as visible and gestural mechanisms for
acting upon the audio representation. The visual representation gives direct

[20] Consumer-level music playback software such as Apple’s iTunes often includes a
multi-band equaliser. Many users see this as an opportunity to further increase the volume,
and move every band to its maximum amplification setting. The software then punishes the
user when it distorts the audio, but this isn’t always followed by an understanding of how
equalisation should be used.

[21] Equalisation is the process of selective filtering of audio in order to boost or cut levels
within a specific frequency range.

[22] Graphical equalisers on multi-touch devices commonly also allow the adjustment of
bandwidth through a pinch gesture.

28

visual feedback of the user’s actions. The gestural mechanisms should be
visible and communicate the possibility of a manipulation action23. For such
mechanism to be intuitive in use, its mapping – the relationship between the
control and its movement and the result – should be logical. For example,
stretching a waveform up along the amplitude axis making it taller should
not result in the audio being attenuated. It is a universal standard that a rising
level represents more, and a diminishing level less (Norman 1990, p.23), hence
amplification would be the logical effect.

Getting direct manipulation right is difficult in audio software design,
because the user isn’t directly manipulating the audio, but the visual
representation of audio. The model, mapping and effect of manipulation
gestures should be logical not only to the visual representation, but should also
be translatable to the represented audio.

Menus
An important criticism that has driven the development of the design principles

discussed in this thesis is that new features in audio editing software are frequently
added rather than integrated. In worst cases these features are only accessible

[23] The gestural mechanism should communicate both pliancy (hinting that an object may
be manipulated) and affordance (exhibiting how it can be used) (Cooper 2007, p.386; Norman
1990, p.9).

Figure 4. TranQuilizr is an equaliser plug-in by A.O.M., that (like many other equalizer
plug-ins) offers both a graphical equalisation curve that can be edited by dragging anchor
points, and a series of (very skeuomorphic) dials for more precise control over the curve com-
ponents..

29

through the application menu – a user interface element to which an extra item can
be added. Many audio edits (particularly audio effects) that are made accessible
through the menu, are presented to the user via a dialog box or separate window.
In his book About Face 3, Cooper (2007) describes this as poor design, as the subject
to which the edit applies is located in the main window. Putting a function in a
dialog box emphasises its separateness from the main task – in this case editing the
audio that is presented in the main window. Contrary to user-interface paradigms
of 20 years ago, menus and dialog boxes shouldn’t be the main method by which
users should apply edits. Primary interactions with the audio should be made in
the primary window.

Cooper goes on to say that this doesn’t mean that the menu should be empty. To
provide a good pedagogic vector, menus must be complete and offer a full selection
of the actions and facilities available in the application. A scan of the menu should
make clear the scope of the application and the depth and breadth of its various
features. Hence, the menu is the primary control for beginners, allowing them
to learn the app. The menu is less direct (and actually one of the more difficult
controls to physically operate), but it does provide more verbal descriptions. In
short, the menu should contain all features, but it shouldn’t be the primary location
for these features.

30

3. Redefining the Audio Editor

Audio editors come in various configurations. However, the fundamental
design principles are very similar, and have barely changed since the very first
audio editor. Sticking to these principles impedes smooth integration of new
features.

In this chapter, a set of design principles are presented, that in many cases
take a different approach to some key features in audio editing. In doing so,
they fundamentally change the design of an audio editor, but also incorporate
existing features and present them in a more consistent way. The design
principles are conceptualised with existing audio editor functionality in mind,
but open up possibilities for sonic composition as well.

3.1 Modular Editing
What is an edit?

Audio editors enable the user to apply edits to audio material. This can be
as elementary as cutting and pasting portions of audio, just as one would do
with real tape and scissors. Edits can also involve adjustments, often in overall
or frequency-specific amplitude, as one would accomplish for instance by
applying gain change, normalisation or equalisation. Audibly more obvious
are transformation edits, which alter the character of the original material, for
instance by pitch shifting or time stretching.

The common editing workflow
The most common workflow in audio editors follows a simple sequence of

decisions. If the user wants to cut or paste24, this can be done respectively by
dragging or clicking in a graphical representation of the audio. Other edits, such
as gain change, normalisation or reverb, can be selected from a list (often in a
menu structure), prompting a dialog in which editing parameters can be set.
Either way, the software then applies the selected edit by altering the audio data
accordingly. For every subsequent edit this process is repeated, and after each
edit the user can play back or save the result.

The undo mechanism
But what if the user is unhappy with the result? A so-called undo mechanism

allows the user to undo sequentially all actions done so far. When undoing an
edit, the mechanism retrieves a temporarily stored backup of the audio data as
it was before the edit was applied. As convenient as this might sound, there are
however several downsides to the undo mechanism as it is implemented in the

[24] Cutting and pasting will be discussed in more detail further on.

31

common editing workflow. Firstly, when undoing, the entire edit is discarded,
and reapplying it slightly adjusted means every parameter of the edit must be
set again. Moreover, this mechanism is sequential; if one wishes to undo an edit
which was followed by other edits or actions, all of these have to be undone
first and cannot be reapplied without having to reconfigure each of them.

The edit chain
A different approach can circumvent

this problem. A chain of edits can
be constructed, which sequentially
holds all edits that must be applied.
Every edit, whether it is a simple cut
or a more elaborate transformation,
is represented as a module in this
chain (see figure 5). The various
parameters for an edit are listed in
its corresponding module, presented
through appropriate controls25. The
module keeps track of the current
parameter settings, which the user can
change at any moment.

This approach is actually very
similar to the existing plug-in
architecture found mainly in Digital
Audio Workstations. However, that
architecture is designed to operate in
real time26, which limits what can be
represented as a module or plug-in.
Cutting at a specific point in the audio,
selecting a specific segment of audio,
normalisation; these edits require
access to any part of the audio being
processed. Allowing these edits to also be
represented as a module is what differentiates the edit chain from the existing
audio plug-in architecture.

Examples of such an edit chain can be found in e.g. Apple’s Soundtrack Pro
and Audiofile Engineering’s Sample Manager. This approach brings with it a
number of benefits, that will be described in the following sections.

[25] For many parameters a slider suffices to specify a value within a certain range. Other
parameters may require a switch (on/off) or a control that presents a set of options. For a filter,
an editable graphical curve might be the best interface. Controls come in various shapes,
whatever is appropriate.

[26] Real-time plug-ins cannot look at a specific point in time other than the present, they
cannot affect the past or future. When editing offline, the entire timespan of an audio file is
known, there is no “present”. This for instance makes it possible to cut a portion of audio
starting at a specific point in audio file and then paste it at the endany other point.

Figure 5. The editing chain, in which
each edit is represented as a module.

32

3.1.2 Non-destructive Editing
The term non-destructive editing is used for a variety of concepts, and not

always appropriately. Ranging from the fact that one doesn’t physically cut tape
with audio editing software, to the fact that an earlier applied operation can be
undone or even changed, non-destructive editing is a quite ambiguous term.

Considering the early history of audio editing, non-destructive illustrates
the benefit of the digital audio editor, that indeed nothing is physically cut
(Roads 1996, p.759). A “non-destructive digital audio editor” however already
implicates this advantage because it is digital, so non-destructive must mean
something else here.

In a digital audio editor, a file is loaded from disk memory (or other source
memory) into a working memory or temporary file, and can then be edited27.
The original file is only changed when the user chooses to save his changes to
this same file. Only then is the initial state of the data in this file destroyed and
replaced by new data. Since this practically is standard practice for almost all
editing software, the term seems not completely appropriate here.

The ability to undo a previously applied operation is not so much a feature, it
is merely a means to an end, it allows one to rehearse an operation to perfection.
A downside to the general undo mechanism is that if one applies a first
operation and then a second, and then wishes to change the first, the second
must be undone as well and cannot be redone just by selecting “redo”. In other
words, it is destroyed, and this means the undo mechanism is not non-destruc-
tive.

An editing program is non-destructive when an edit (every edit) can be
rehearsed and adjusted ad infinitum. Each edit causes the system to write
a description of the edit in an “electronic logbook” (Roads 1996, p.780).
This means that not the change of data is stored, but merely the operating
parameters.

By storing all edit information, the user can change this information at any
moment. This is called non-destructive editing. With the common editing
approach, only the audio is stored, and recalculated each time an edit is
applied. The non-destructive approach takes the source audio data, “renders”
(calculates) the entire chain of edits at once, resulting in output audio data.
Both source data and edit information remain preserved, and only the edit
information is subject to change.

As said, this information includes edit sequence, parameter settings and
selections. Figure 5 shows a graphical user interface, in which each edit – just as
earlier described – is represented by a module in a vertically oriented chain. By
dragging a module up or down this chain, the sequence in which the edits are

[27] Some programs operate directly onto the data on disk. The altered data cannot be
changed to its initial state, unless it is stored elsewhere (in working memory or temporary files).
The initial state of the data is otherwise lost, so this kind of operation is therefore destructive.

33

applied can be altered28. A module can be removed from the chain, discarding
the edit all together. A new edit can be inserted at any point between edits,
or just at the end of the chain. Allowing the user to change the parameter
settings enables him to precisely fine-tune his edits. The start- and end position
of a selection can be altered just as easily, for instance when one wishes to
cut-and-paste a slightly shorter portion of audio.

It must be noted that when ready, the audio processing must be rendered
again in order to apply all changes. If the edit chain includes complex effects
such as convolution29, having to re-render them might slow down the editing
process. For simple edits such as normalisation this most likely will not be too
noticeable. An audio editor does render offline, which can mean that with a fast
processor (and almost every new processor gets faster) rendering might as well
be faster than real time30.

3.1.3 Batch Processing
With the modular edit chain every edit is represented as a module. This

principle can be extended by regarding every step in the editing process as a
module, including loading and saving a file. A user selects an audio source (e.g.
an audio file), specifies a number of edits, and also states how the output must
be saved to disk. These are all modules, and when the user selects to render the
whole chain, the source is loaded, the edits are applied to this source, and the
result is saved to disk, all in the manner the user prescribed. Since this approach
is non-destructive, every aspect of the editing process is subject to change – now
also including the selected audio source. The user can change this by going to
the first module in the chain which loads the file, and selecting a different audio
source. When rendering again, the new source is loaded, the exact same edits
are applied and the output is stored to disk in a similar fashion31. This way of
editing is similar to using an effects stack, which can be found in GoldWave and
Acoustica Premium32, allowing the user to re-apply his favourite effects.

When having to edit a small number of audio files in a similar fashion this
is an easy solution. But in some cases one needs to edit a huge amount of
files, a batch, for example applying normalisation and a fade-in and -out on

[28] Altering the editing sequence can have serious effect on the end result. Take for instance
compression and reverb. If you would first apply a reverb to a sound and then compress it, the
soft reverb tail can become much louder as when first compression and then reverb would be
applied.

[29] Convolution – in its most basic form – is a process in which each discrete amplitude value
of a digital audio signal is multiplied with each amplitude value of another signal. Convolution is
discussed in more detail in chapter 3.7.

[30] In this case meaning it takes as less time to apply the edits as the length of the audio
material.

[31] To avoid overwriting the result of the first render (which will happen if every result is
simply stored as fe.ig. outputname.wav), one can specify as output file name a variation on the
source file name. For instance, sourcename.wav will result in sourcename_processed.wav

[32] By Acon Digital Media

34

every single file. Batch processing is particularly used by sound designers,
producers and audio engineers, often having to uniformly process and convert
large quantities of files in preparation for a production that requires all audio
files to be at a specific level and of a specific file type. To achieve this, they use
so-called batch processors that let the user select a list of files, specify a number
of (generally basic) edits, and describe how the processed files must be saved
to disk (also allowing file type conversion). The modular editing approach can
also deal with batches of files, simply by introducing a file loading module that
allows for multiple files to be selected. This way editing multiple files is just as
easy as editing one file, providing the same editing capabilities.

Batch processing is often used for file type conversion, when a large number
of audio files need to be converted for instance from an uncompressed format
such as Linear PCM to a compressed
format such as MP3. With the modular
approach the output type (in this case
MP3) can be set when specifying the
output module. The processed audio will
then be saved to disk in the specified
format. But sometimes a user needs a
number of different formats of a single
file, e.g. varying compression qualities for
online playback. The audio passing from
one module to the next does not need to
stop when an output file is generated. A
second output module or even more can
be appended – or even inserted at any
other point in the chain – and for
each a different output format can be
specified (figure 6).

3.1.4 Summary
When regarding each step of an editing process as a module in a chain, the

editing workflow is improved in several ways. The user can edit non-destruc-
tively, because all editing information is stored and can be changed at any
moment. By also regarding the loading and saving of audio as modules, the
editing chain can be reused and applied on multiple files, hence combining
two existing concepts – the effects stack and batch processing – into a single
principle.

The modular editing workflow serves as the foundation for some of the other
design principles that will be discussed later on, revealing more subtle benefits
of this approach.

Figure 6. Multiple output modules allow
simultaneous saving in different formats.

35

3.2 The Source Browser
Audio editing software operates on audio files, stored on disk. An audio file

can contain anything from a single sound to an entire musical composition.
It might be the result of either recording natural world sounds, or generating
(synthesising) virtual world sounds, making the possibilities of what an audio
file contains endless. One might have numerous audio files, in various formats,
stored on hard disks, compact disks or any other digital storage medium.
Almost every user of audio software utilises a different, personal approach to
organising these files, sorting them (often in folders33) by name, project, charac-
teristics, or what else might be a useful parameter.

3.2.1 A Better File Dialog
Most audio editors present a default file dialog to navigate the folder

hierarchy on a disk in order to locate a file. Such a file dialog has a generic
design in order to fit in any kind of software running on the same operating
system. Though this provides a uniform and recognisable approach to selecting
a file, it lacks some aspects that would make navigating audio files easier.

The default file dialog on Mac OS X (in column view, see figure 7) provides
the user with file details, such as name, type, size and creation, modification
and last access date. A preview of the file is added if the file can be read by the
system software; in the case of an image file, a thumbnail of this image could
be displayed. For audio files – of a format that can natively be processed by the
[33] meaning disk folders

Figure 7. Mac OS X (10.9) file dialog in column view, providing duration, sample rate
and bits per sample as audio-specific info. It also provides a player to pre-listen a file,
though this only supports audio file formats that the system can play.

36

system software – duration info and approximate bit rate are also displayed, as
well as simple playback for previewing the audio file, though this only provides
play and pause functionality.

When browsing files – for instance a set of photo’s – and looking for a specific
file, one can quickly recognise photos by looking at the provided thumbnail.
Because of the nature of audio (being time dependent), it is much harder to
likewise browse a set of audio files. Being unable to play and then jump through
an audio file makes it more difficult to recognise lengthy files or files with an
unspecific start. A progress bar can be added to the playback functionality
which indicates playback progress and can also be used to select a different
position in the file to be played. This way a user can preview the portion of
audio he is interested in, which might just as well be at the very end of a file.

Now the user has selected one file, s/he might want to select additional files
in order to create a batch of files to be processed uniformly. A default file dialog
might provide the selection of multiple files, but this comes at the expense of
obtaining the above described file details for a single file (current file size, date,
duration, bitrate and particularly preview); these can only be viewed when a
single file is selected, because only info for a single file can be displayed. For
this purpose, one part of the file dialog can be dedicated to creating a batch,
enabling the user to add the currently selected file, and possibly remove
previously added files. When satisfied, the entire batch can be loaded, just as
easily as one would load a single file (see figure 8).

The selected file will be opened, which in most audio editors means a visual
representation of the audio is provided, and the user can now edit the audio

Figure 8. The Source Browser, showing a column view for browsing a file structure, and a
batch list for selecting and loading multiple sources.

37

either through the visual representation (depending on which user interface
actions are implemented), or through additional windows and menus that
provide editing functionality. Implementing the earlier described modular
approach, a first module will be displayed representing the file or files that
were selected. By doing so, the selected file(s) can at any moment be changed,
regardless of any modules (representing edits) added after file selection. This
effectively changes the subsequent chain of edit modules in an effects stack, that
can be reapplied in exactly the same configuration to any other file.

3.2.2 Recording
The ability to record audio is one of the most implemented features among

audio editors. The input can come from external sources such as a microphone
or an instrument connected to a sound card, or from an internal source being
another piece of software, for instance a software synthesizer or a radio
streaming application. Multiple channels might be recorded, and recording
settings such as input device (sound card), sample rate, bit depth and input gain
can be specified.

The approach to recording audio varies among audio editors. While some
only provide a dialog for the above described details, others provide real-time
analysis of the incoming audio, visually representing what is being recorded. In
either case, when the recording is done, the recorded audio is presented just as
one would load an audio file. In other words, it results in having a source that
can be edited.

Figure 9. Recording in the Source Browser, allowing specification of input and output. A
compact waveform display is provided below. New recordings can be added to the batch.

38

It would be logical to present recording an audio file in the same dialog
as selecting an audio file (also a source), making the file dialog more a “Source
Browser”. This also enables the user to add new recordings to a batch that can
already contain files selected from disk (figure 9).

3.2.3 Synthesis
To extend the idea of a Source Browser further, another common audio editor

feature34 namely synthesis, might be added to this same dialog window.
Synthesis in audio editors mostly comes in the form of signal generators. These
are basic synthesizers used most often to generate arbitrary lengths of basic
waveforms such as sine waves, or noise. Such basic sounds are useful for testing
purposes, but might also be used as a source material for shaping a new
sound, using transformations and effects to get a more complex sound. In either
case, generating a signal amounts to generating a source, and so it fits as well in
the Source Browser as selecting or recording a file (figure 10).

3.2.4 Searching Audio Files
Searching audio files is a dreadful undertaking. File search systems are aimed

at finding files by name (or textual content), so one’s naming conventions for
audio files must be sound, and must cover what one might be searching for.
This shouldn’t pose a problem when searching for a man shouting

[34] Around 45% of all surveyed audio editors; see appendix 1.

Figure 10. The Source Browser facilitates generation of audio sources using basic synthe-
sis techniques.

39

(e.g. “shouting_man.wav”) or a damped major C chord on a piano
(e.g. “piano_major_c_chord_damped.aiff”), but it might be problematic
when you want to search for less specific details and characteristics, such as a
soft high-pitched sound of specific duration, or a crescendoing sound with a
wide spectrum. You might even want to find any audio file that just “is similar”
to the one you have selected.

The Source Browser is an ideal place to include detailed audio-aimed
searching functionality, as it will hopefully lead to finding files that can then be
selected for editing (figure 11). A search filter might be constructed by adding
property-value parameters, such as “channels: 2” or “duration: < 5 seconds”,
or using multiple values such as “spectral centroid35: within 2 kHz to 4 kHz”. It
might even be possible to specify a rough curve (moving up / down) to be able
to find the crescendoing sound mentioned earlier. Other parameters can include
format, sample rate, spectral density and overall magnitude.

Searching audio files by their content requires analysis, which is a process
that requires some time. For best performance, the filesystem on which the
search is conducted might be scanned beforehand to index and analyse all
available audio files. This makes it possible quickly to search for characteristics,
but also lets you represent available files on a grid. The axes of this grid can be
defined by the user, set to represent one characteristic on each axis. One might
for instance select spectral centroid on one axis, and overall magnitude on the

[35] The spectral centroid is an indication of where the “centre of mass” in a given spectrum
is.

Figure 11. The Source Browser allows one to find an audio file not by name but by audible
characteristics.

40

other axis. Every indexed audio file will be placed somewhere along these axes,
according to its spectral centroid and overall magnitude. It is not essential that
the user understands exactly what these parameters indicate and how they are
mapped along an axis; given these two parameters, all audio files with similar
parameters will be grouped close together, and the user can discover what s/
he is looking for by listening to various sounds across the grid, searching for
example that soft high-pitched sound best suited for their needs.

3.2.5 Summary
An audio editor requires audio material to be edited. This audio can come

from various sources, such as a file on disk, a recording or from synthesis. In
current audio editors these various ways to obtain source audio material are
detached, scattered throughout the graphical user interface. They do however
all provide the user with audio material to be edited. The Source Browser
provides the user with just a single window from which an audio source can
be obtained. Existing audio files can be located through a file system dialog,
extended to provide audio-specific details and pre-listening functionality. A
search engine based on audio analysis enables the user easily to find audio files
that match certain audio-specific criteria, such as temporal and spectral charac-
teristics. Within the same window, audio can also be recorded and synthesised,
both resulting in new audio files. Either way, a selected audio file can be
individually loaded or added to a batch, both resulting in a source module (see
the previous chapter on modular editing) representing the selected file(s). Edits
will then be uniformly applied to all audio files this module represents.

41

3.3 Representation & Manipulation
A visual representation of audio is an integral part of audio editing software.

It provides the user with visual indications of notable aspects of the loaded
audio file, such as overall dynamics, peaks, balance, progression, recording
or processing artefacts and noise. It can also serve as visual feedback of the
user’s edits, illustrating the effect of, for instance, fading audio in or out,
compression, normalisation or noise removal. Used solely as a graph, visual
audio representation is the primary tool for audio analysis. Used as graphic
user interface element, a visual representation can also serve as an editing
tool, allowing to select portions of audio on which to perform edits, to indicate
time-varying curves for specific edits such as fades, or to directly perform trans-
formations such as stretching, shifting or bending.

3.3.1 The Waveform
In the majority of audio software – not just audio editing software – the

(default) approach to representing audio visually is by displaying a waveform.
The waveform display shows amplitude changes over time, representing the
pressure changes registered by a recording device. A microphone, just as the
human eardrum or any physical object, registers sound (air pressure changes)
as a combined pressure amplitude of all incoming pressure waves at a single
instance of time. A waveform display thus represents the physical nature
of sound. For a single frame of time, a single value or sample represents the
average registered amplitude over a small span of time, the length of which
depends on the sampling rate. Multiple channels might be available within
the same timeframe. For example, stereo audio is generally recorded using 2
microphones, resulting in two channels of audio, represented by two samples for
a single frame of time.

Uncompressed audio is typically stored as a list of samples. CD quality audio
is stored as 2 sets (i.e. 2 channels) of samples, counting 44100 samples for every
second of audio (the sampling rate), for each channel. From a developer’s point
of view, generating a waveform display is almost36 as simple as plotting a line
that follows each sample or amplitude value. Other representations – that will
be discussed below – require complex transformations of the sample values to
obtain a different data set and hence a different display.

A waveform is generally plotted on a horizontal axis representing time,
against a vertical axis representing amplitude. If we were to plot every frame
of samples on a single column of pixels, then on an average computer display
we could only see about 40 milliseconds of CD quality audio. Zooming out will
require a single pixel width to represent multiple frames of audio, meaning
some kind of averaging needs to be performed. Just adding all sample values

[36] Apart from having to account for converting between integer and floating point values,
endianness (byte order) and interlacing of channels.

42

within a single frame and dividing it by the number of samples might result
in a value of 0, especially in the case of a steady oscillation such as a pure sine
wave, moving equally as much above as below zero amplitude. The decision on
what then to display differs among software.

Different kinds of waveforms
A common approach is to find the loudest sample, or peak value, amongst

each group of samples needing to be represented by a single value. For very
short timespans (zoomed in) a line can be drawn between each consecutive
peak value, which can be positive or negative. For wider timespans (zoomed
out) both a positive and negative peak value are determined for each group of
samples, and the area between these two values is coloured in. This approach
can be found for instance in Rogue Amoeba’s Fission (figure 12a).

An elaboration on this approach is to draw the root mean square or RMS value
on top of the peak value graph. The RMS is the square root of the average of
the squares of each sample within a timeframe, and as it uses averaging it
will never exceed the peak value, thus fitting nicely within the peak graph.
Combined, it provides feedback on the average loudness and maximum
amplitude of a timeframe. Audacity and Sweep are examples of audio editing
software implementing this approach (figure 12b).

In most cases, amplitude is plotted on the vertical axis on a linear scale. This
might however be misleading, as it doesn’t correspond to the way the human
ear works. If we halve the amplitude of a sound, we won’t perceive it as half
as loud. Utilising a logarithmic scale gives an image more approximate to our
loudness perception. The logarithmic scale is used in decibel meters, as decibel
is a logarithmic unit. Making a sound softer by a factor of 2 (halving the power)
means decreasing it by 10 log(2) = 3dB. For sound pressure (dB SPL), a change
by a factor of 2 means a change by 20 log(2) = 6dB. Our loudness perception
differs in relation to frequency (Roads 1996, p.38; Collins 2010, p.8), but by

Figure 12. a) The waveform in Rogue Amoeba’s Fission only shows positive and negative
peak values. b) Audacity (by Roger Dannenberg) displays a waveform that shows both
peak and RMS.

43

approximation an increase of roughly 10dB SPL is perceived to be twice as loud.

Waveform displays are used for a great variety of purposes, and depending
on the importance of speed, accuracy and aesthetics, different approaches are
taken in transforming sample values to a visual graph. Surprisingly often the
bottom half of the waveform data (below zero) is discarded and replaced by
a mirror of the top half, just for nicer appearance. When accuracy is of less
importance than visual quality, the rough contour of the waveform might
suffice, and one might even opt to leave out the bottom half all together.

Certain DJ applications need to emphasise visually beats so that the DJ can
visually cue to specific points to prepare a transition. One way to accomplish
this is to take the n’th power (e.g. the fourth) of the amplitude value, which
will emphasise the difference between lower and higher amplitudes, hence
accentuating peaks. The popular DJ software Traktor (by Native Instruments)
takes the waveform a step further by colouring it with extra analysis data.
This can be a spectral analysis, from which a spectral centroid or spread37 can
be deduced. By using a colour gradient to discriminate high values from low
values, a waveform can be coloured in, displaying for instance high spectral
density with a bright colour, and low density with a darker colour. Sonic
Visualizer38, a true audio analysis application, goes even further by allowing
the user to overlay different analysis visualisations, making it possible to see a
wide range of sonic parameters and characteristics in a single view, on a single
timeline.

3.3.2 The Spectrum
Spectral analysis can provide valuable insights in audio editing. It describes

the energy distribution of an audio wave over frequency bands, one band
constituting a range of frequencies. As mentioned earlier, sound, being air
pressure waves, is registered by our eardrum. The vibrations then pass a
number of different and complex components of our inner ear to finally
reach the cochlea, an organ lined with nerve cells, each of which resonates
with a different frequency. These nerve cells signal the brain, enabling us to
perceive different frequencies (Marieb and Hoehn 2007, p.587). If we perceive a
high-pitched sound, this means there’s much energy in the higher frequencies.
A spectrum display can show this energy distribution, and thus closely relates
to the perceived nature of sound.

A frequency can only be determined by observing the number of cycles of a
sound wave over a period of time. The more cycles, the higher the frequency. As
the amplitude values of the waveform are measured against time, the waveform
is expressed in the time domain. To see the power of individual frequencies (or
frequency bands), a transformation to the frequency domain is required. The

[37] Spectral spread is an indication of the bandwidth of a spectrum.

[38] Developed by Queen Mary University of London. www.sonicvisualiser.org

44

most widely used mathematical technique for this is the Fourier Transform39.
There’s an abundance of literature on this subject, a fine example of which
is Loy (2007b), to which is referred for further details on this technique. The
Fast Fourier Transform (FFT) is, as the name implies, a fast Fourier algorithm,
and therefore so popular and thus widely used that in audiophile parlance a
frequency analysis (or spectral analysis) is often simply referred to as an FFT
(Rockmore 1999; Loy 2007b, p.111).

It must be noted however, that much as with plotting a waveform, there
is no single approach to implementing the Fourier Transform. The Fourier
Transform itself is a purely mathematical theory, its implementation for digital
audio is generally the (Discrete-Time) Short-Time Fourier Transform. This
implementation determines the spectral content for a small window in time. A
windowing function40 must be applied to each window to get a more accurate
analysis. The window size determines the frequency resolution of the analysis,
but also inversely influences the time resolution, always posing a trade-off.
Analysis windows can be overlapped to improve time resolution. The choice
of window size, overlapping method and windowing function make the
number of possible implementations countless. These decisions are important
for a developer as it will affect the quality, speed and usefulness of the spectral
analysis; a user will rarely be directly confronted with them.

Audio is divided in a number of small, optionally overlapping, time frames
(the aforementioned windows) and a single analysis is made for each time
frame. This analysis reveals the magnitude for a series of frequency bands or
bins. These values can be plotted either by drawing a time-varying line on a
frequency versus magnitude grid, known as a discrete or line spectrum (figure
13a), or by using a (colour) gradient to express the magnitude of each bin
plotted on a time versus frequency grid, known as a spectrogram (figure 13b).
Another approach is the waterfall plot (figure 13c), a 3D landscape-like plot of
magnitude on the vertical axis versus frequency on the horizontal axis and time
along the third axis optionally moving in real time (Roads 1996, p.541).

[39] There are other techniques to derive a spectral analysis, among which the Wavelet
Transform, Constant Q Transform and Dictionary-Based Methods (Sturm et al. 2009).

[40] A windowing function is a mathematical function that has a value of 0 outside of a
specific range, and commonly a positive value within that range. For the use of windowing
functions in spectral analysis, see Loy (2007b, p.140-145).

Figure 13. a): a line spectrum with frequency on the horizontal and magnitude on the
vertical axis. b) a spectrogram with time on the horizontal and frequency on the vertical
axis, using color to represent magnitude. c) a waterfall plot with frequency on the hori-
zontal and magnitude on the vertical axis. Time is represented on the third axis.

45

Each frequency band is equally wide (for instance 25 Hz), consequently
often resulting in bins plotted along a linear frequency axis. The visual space
occupied by frequencies between 1000 and 2000 Hz then is equally wide as
between 8000 and 9000 Hz. The human perception of musical intervals is
however (more or less) logarithmic, meaning 2000 Hz sounds an octave higher
than 1000 Hz, while 9000 Hz only sounds a major second higher than 8000 Hz.
Plotting bins over time against a logarithmic frequency axis, as for instance
IRCAM’s AudioSculpt does, results in a spectrogram that can be read as a piano
roll, a much more informative approach for musical purposes (Bogaards 2008).
This way musical intervals look invariant over the frequency scale (Risset 1991).

A spectrogram uses a gradient to express bin magnitudes. Commonly used
are grayscale brightness gradients, where white indicates a high magnitude
value and black a low magnitude value, and rainbow gradients, where –
resembling temperature maps – blue indicates a low magnitude value, running
through green and yellow to red indicating a high magnitude value. The human
eye can discriminate colour differences more easily than brightness differences,
which is why many spectrograms are coloured using a rainbow gradient. This
gradient is however contrasting over the entire magnitude range. Enabling
the user to modify the gradient would allow him to specify regions of interest
where highly contrasting colours are used. In
order visually to emphasise small differences
in low magnitude frequency bins, one
could use a gradient such as in figure 14.
AudioSculpt also incorporates a contrast filter
that can be applied to the spectrogram, for example to remove noise or to bring
out details within a noisy spectrum.

3.3.3 Reading Waveforms And Spectra
A waveform display offers sample-accurate timing information and allows

the user to see overall magnitude and magnitude changes over time. A
spectrum display provides frequency information, valuable in music production
and analysis environments, but due to the nature of the analysis there is always
a trade-off between frequency resolution and time resolution (Roads 1996, p.557).

To get an idea of what can be determined from both audio representation
methods, a set of 18 test signals (following as signals a to r) are used, selected
to illustrate a variety of sound properties such as waveform, noise, harmonic
structure, modulation, distortion and recording artefacts.

a) A steady-frequency 440Hz sine tone at fixed gain 0.3
 - Waveform: Because the signal is only one steadily oscillating wave,

the 0.3 amplitude can clearly be determined. The sine wave can be
seen, but there is no certainty this is a pure sine.

 - Spectrogram: A single line, indicating a pure sine, can be seen at 440Hz.
It is uniformly coloured, so there is no substantial gain change.

Figure 14. A rainbow gradient

46

b) As signal a, but with spikes (1-sample ticks) added
 - Waveform: The spikes can clearly be seen with their individual

amplitudes and they each span only a single sample.
 - Spectrogram: The spectral impact of the spikes can be seen as a narrow

(one window width) light line across the entire spectrum.

c) As signal a crescendoing linearly, from 0 gain to 0.3
 - Waveform: A triangular envelope exactly describes the crescendo.
 - Spectrogram: The brightness of the line gradually changes, but no exact

values or shape can be determined.

d) As signal a, with a 5Hz tremolo (amplitude modulation) between 0.1 and
0.5 gain
 - Waveform: As with the crescendo, a smoothly oscillating envelope

describes the kind of modulation. The speed cannot be determined
exactly.

 - Spectrogram: The brightness of the line periodically changes from dark
to light, but here too no exact modulation speed cannot be determined.

e) As signal d, but with the modulation frequency at 100Hz
 - Waveform: No details can be deduced, other than that (when

zoomed in, e2) it appears to be a sinusoidal oscillation with changing
amplitudes.

 - Spectrogram: A denser and slightly wider line indicates there might
have been introduced some side frequencies. That this might be due to
the rapid modulation cannot be determined.

f) A square wave with fundamental frequency 440Hz and fixed gain of 0.3
 - Waveform: The waveform shows why this signal is called a square

wave.
 - Spectrogram: The harmonic structure of a square wave consists only of

odd-integer harmonics, consecutively getting softer. On a linear scale
this shows equally spaced lines, brightness gradually getting less in the
higher frequencies.

Figure 15. a) A steady-frequency 440Hz sine tone at fixed gain 0.3. b) Signal a, with
spikes (1-sample ticks) added. c) Signal a, crescendoing linearly, from 0 gain to 0.3. d)
Signal a, with a 5Hz tremolo (amplitude modulation) between 0.1 and 0.5 gain. e) Signal
d, but with the modulation frequency at 100Hz.

47

g) A sine wave at 0.3 gain, going linearly from 220Hz to 880Hz
 - Waveform: The signal looks much as a, but it can be seen the wave

period is getting smaller.
 - Spectrogram: A straight line going from 220Hz to 880Hz exactly

describes this glissando.

h) A sine wave with a 6Hz vibrato (frequency modulation) between 435 and
445Hz
 - Waveform: This signal cannot be distinguished from signal a.
 - Spectrogram: The frequency line has a slight oscillating character. The

speed of the oscillation cannot be determined. The upper and lower
frequency are approximately 10Hz apart, but it cannot be determined
exactly.

i) A sine wave with a 100Hz frequency modulation between 340 and 540Hz
 - Waveform: This somewhat looks as signal g, but now the wave period

gets longer and smaller periodically.
 - Spectrogram: A dense line at around 440Hz is surrounded by a softer

area between approximately 340 and 540Hz. Due to the time-frequency
trade-off it can hardly be seen that there is any modulation.

j) A sine wave getting louder than maximum, being clipped
 - Waveform: Every amplitude above 1 is set to 1. Values below −1 are

set to −1. This is hard clipping.
 - Spectrogram: A very bright line is accompanied by evenly spaced

harmonics when the signal goes above maximum. The sharp edges of
the clipping have introduced overtones.

k) A sine wave getting louder than maximum, being wrapped (aurally very painful!)
 - Waveform: The parts of the oscillation that should be above 1 are now

popping up at the bottom (from −1) and vice versa. They are wrapped
around.

 - Spectrogram: Very many and very bright (loud) overtones are
introduced, as well as a lot of noise in-between them. Wrapping is
disastrous.

Figure 16. f) A square wave with fundamental frequency 440Hz and fixed gain of 0.3. g)
A sine wave at 0.3 gain, going linearly from 220Hz to 880Hz. h) A sine wave with a 6Hz
vibrato (frequency modulation) between 435 and 445Hz. i) A sine wave with a 100Hz
frequency modulation between 340 and 540Hz.

48

l) A sine wave getting louder than maximum, being folded (every amplitude
above 1 is subtracted from 1)
 - Waveform: The parts that were wrapped in signal k are now folded

back, creating dips at the peaks of the oscillation.
 - Spectrogram: Similar to signal j, but slightly more extensive.

m) A sine wave getting louder than maximum, being soft-clipped
 - Waveform: As the signal gets louder, the sinusoidal waveform

gets rounder, slightly wider at its peaks. It looks as signal j but with
smoothened edges.

 - Spectrogram: Similar to signal j, but slightly less extensive.

n) A single decaying piano note41. This intentionally is a bad recording,
having a DC offset42, a noisy background, and a hard cut at the end.
 - Waveform: A DC-offset can clearly be seen as the amplitude center is

not at 0. The signal starts out loud, but then decays rapidly. At the end
of the decay the line quickly jumps from its DC-offset to 0 amplitude.

 - Spectrogram: The piano note has a number of harmonics, each
decaying at a different rate. There is an irregular distribution across

[41] Freesound: Grandmither’s Piano (28).wav (Techsetsu - 11647)

[42] If a signal has a DC offset, it oscillates not around an amplitude value of 0, but just above
or below it. Playing such a signal for a prolonged time can harm your speakers.

Figure 17. j) A sine wave getting louder than maximum, being clipped. k, l, m) A sine
wave getting louder than maximum, respectively being wrapped, folded and soft-clipped.

Figure 18. n) A single decaying piano note.

49

these harmonics, indicating a more complex harmonic structure
than for instance the square wave of signal f. The spectrum has a
lot of background noise, as well as a steady gradient at the very
bottom, which might be the DC-offset being interpreted as a very low
frequency. At the end of the signal there’s a very sharp line across a
wide frequency range, the result of the hard cut from offset to 0.

o) A small Tibetan bell43 struck once, decaying
 - Waveform: The signal starts out loud, but then decays more rapidly

than signal n.
 - Spectrogram: This signal is much cleaner than signal n and has a far

more complex harmonic structure. There are many overtones, even in
the very high frequency ranges, varying in decay length, loudness and
even amplitude modulation.

p) A steady clarinet note44

 - Waveform: A relatively complex but quite periodical waveform can be
seen. Overall it looks a bit similar to signal f.

[43] Freesound: Tibetan bell.wav (djgriffin - 15401)

[44] Freesound: Largo.wav (insinger - 25898)

Figure 19. o) A small Tibetan bell.

Figure 20. p) A steady clarinet note.

50

 - Spectrogram: A harmonic structure similar in complexity to the piano
is displayed, as well as some varying noise. Where there’s little noise,
there are more or brighter harmonics in the higher frequency range,
indicating the noise might be unvoiced tones and breath.

q) White noise
 - Waveform: Zoomed out this signal looks much as a steady signal

such as a or f. Zoomed in it appears to be an irregularly and extremely
varying signal. White noise is total randomness, so this might be it.

 - Spectrogram: Equally distributed noise from left to right, from top to
bottom, much as when your old TV isn’t working; this most likely is
white noise.

r) Pink noise, having a 3dB falloff per octave
 - Waveform: Overall it looks much more random than white noise,

but when zoomed in one can see the variations are more gradual,
indicating less high-frequency variation.

 - Spectrogram: This signal looks like white noise but with a gradient,
getting softer towards the higher frequencies.

A waveform display can best be used when overall characteristics of a signal
must be monitored. Amplitude changes and anomalies as well as low-frequency
oscillations are clearly visible and sample-accurate timing information is
available, so very precise selections can be made (selections will be discussed
further on). Depending on their severity, recording artefacts such as clipping,
ticks and DC-offset are visible on a waveform display. It must be noted that a
periodic waveform with a certain amplitude spectrum can look very different
when altering the phase spectrum. It will however sound the same, as the ear
is phase-deaf (Risset 1982, p.55). In this respect a signal might sound such as a
square wave (signal f) but look very different.

A spectrum display can provide insights in spectral content such as
fundamental frequency, frequency modulation, harmonics and noise. It can
reveal individual parts such as the breathing noise in signal p between its tonal
parts, or the intricate harmonic structure in the Tibetan bell (signal o). It can also
reveal recording artefacts such as undesired harmonics, the effect of DC-offset

Figure 21. q) White noise. r) Pink noise.

51

and background noises (signal n). Though a spectrum display provides
valuable information for music production, recording and analysis, due to its
time-frequency tradeoff it lacks the time precision the waveform display can
offer.

For the discussed signals it was often a combination of a waveform display
and a frequency display that revealed the entire “picture” of a signal, one
example of which was the square wave (signal f), which has a typical waveform
as well as spectral characteristic. Signals j to m demonstrated a cause visualised
in the waveform display with great effect that was revealed in the spectral
display. Therefore it would be ideal if audio editing software presents both a
waveform display and spectrum display. Fine examples of software already
incorporating both alongside are Adobe Audition and IRCAM’s AudioSculpt.

3.3.4 Quick Editing

3.3.4.1 Editing Using The Waveform Display
The waveform display can also serve as a user interface control. Most often

the waveform display is used as an interface to define selections of audio on
which to perform edits. This practice is so common that a whole group of
software can be discriminated that has a waveform control as centrepiece of the
user interface: the wave editor.

Basic Selection
The simplest user action is to click45 on the waveform. A single click will

specify a point in time within the waveform, which can be used as start point
for playback, or to position a marker. Markers serve as an aid for subsequent
selections, indicating points of interest. Selecting a segment of audio can
be performed by clicking and then dragging over the waveform along the
time axis, defining a start and end point. The selected segment can now be
separately edited, without affecting the unselected audio. Audio selection will
be discussed further in the following chapter, “Smart Selections”. Here, the
manipulation of a selected segment will be discussed.

Axes
The waveform display represents audio as amplitudes on the vertical axis,

along time on the horizontal axis. A selection on a waveform display is only a
selection along the time axis. Selecting a range of amplitudes might serve useful
only for processes for which a more fitting user interface already exists46.

Basic editing actions on a segment of audio are cutting, copying and pasting.
This way, audio can be moved, removed, and duplicated, just as one might do

[45] In this thesis, for the examples of user input the combination of computer mouse and
keyboard is used as input device, which currently is still the most predominant input method.

[46] One example might be wave shaping, mapping amplitudes to different amplitude values.

52

with text in a text editing application. Along this resemblance, a less common
procedure in audio editing is repositioning, “grabbing” a selected segment and
dragging it along the time axis to the desired position.

So far, these basic editing procedures do not alter the audio within the
selected segment. Considering the two axes along which our user interface
actions might operate, two types of transformations can easily be applied.
Stretching the selection along the time axis can equate to time-stretching the
audio. This is becoming a common practice in modern music production
software such as Apple’s Logic (“Flex Time”) and Ableton Live (“Warping”), where
it becomes a powerful tool when for instance synchronising a sampled piece of
music to the beat of the final project.

As the selection is only a selection on the time axis, it cannot be stretched out
vertically. Therefore a horizontal line inside the selected segment (either along
zero amplitude or along the bottom of the display) might be used to present
a value that can be shifted up or down. Shifting along the vertical axis can be
associated with a gain change, as this will change the amplitude up or down
(see figure 22). An example of this can be seen in Adobe Audition. A less straight-
forward association may be pitch shifting, often appearing paired with time
stretching and therefore a suitable candidate for the vertical axis transformation.
Pitch being conceived as relatively “higher” or “lower” to another pitch is also
strongly directionally associated with the vertical axis.

Modifier Keys
Time stretching and pitch shifting are but two possible processes that can

be applied by manipulating the waveform display. Looping a selection by
extending it along the time axis can be desirable in (combination with) music
production software such as Apple’s Garage Band. Considering the loudness
war (Katz 2007), dynamic compression by dragging along the vertical axis
(louder, louder!) is conceivably also convenient. In any way, the employed
process might be replaced through a settings menu, or alternated using
so-called modifier keys. These keyboard keys, among which most common the

Figure 22. A waveform display that provides gain adjustment by dragging up or down.
Other parameters can be adjusted using moderator keys (see bottom-right).

53

Shift, Control, Alt and Command key, modify the behaviour or action of other
computer keyboard keys and mouse actions. As figure 22 illustrates, a possible
implementation can have gain change as the default vertical axis process, while
pressing the Apple Command key (⌘) to alternate this to pitch shifting, or
pressing the Apple Option (or Alt) key (⌥) to alternate to high pass filtering.
Combinations of modifier keys, such as Command + Shift, can extend the
number of available processes even further47.

Transitions
The waveform display in figure 22 also provides a basic means for parameter

automation. In the illustrated example, the gain is increased for the selected
audio. The unselected audio is kept unchanged, which can be regarded as
having a gain change of zero. On the left side of the selection, the direct
transition from unchanged audio to the increased gain within the selection will
be unpleasant audibly. On the right side of the selection, a transition area is
defined by dragging a handle at the top of the display apart from the selection.
Within this area a smooth transition from increased gain to zero is performed by
automating (meaning to automatically change) the gain parameter, making the
audible result more pleasant. Some audio editing software (such as Audiofile
Engineering’s Wave Editor) incorporate this approach to create fades (fade in
/ out) at the edges of a selection, but no other effect parameters can yet be
automated this way. Parameter automation will be discussed in detail in chapter
3.6, “Sonic Composition”.

3.3.4.2 Editing Using The Spectrum Display
Spectral Selections

A spectrogram is a two-dimensional image on a time axis and a frequency
axis. As with a waveform, a selection in time can be made, but now a specific
frequency range can also be specified. Using a rectangular selection tool (in
Photoshop called a marquee tool) a portion of the two-dimensional image can
be selected that delineates both a timeframe and frequency range. Another
commonly implemented and more precise tool is the free selection tool or lasso.
With it a specific region can be drawn, allowing the user to trace a portion of
the spectrum, varying over time. This is particularly useful for selecting partials
that change over frequency, or small bits of noise between other components,
without also selecting and affecting (see spectral editing further on) the
directly surrounding spectral components. Adobe, creator of both Photoshop
and Audition, implements another selection tool called paintbrush, allowing the
user to paint the selection using a round brush tool of a specified width, which
results in a similar time-varying frequency selection. AudioSculpt also includes
a Magic Wand tool that allows the user to click anywhere on the spectrum
display, automatically selecting contiguous spectral bins within a predefined

[47] In a touch user interface, alternate control can be realised by using two or more fingers
instead of just one.

54

range in dB around the clicked bin. This makes it easy to for instance select a
frequency-modulated partial, or a cloud of noise, which can then be moved or
otherwise manipulated (Bogaards 2008).

Spectral Editing
The ability to select both a segment in time and in frequency allows for effects

to be applied to just the specified time frame, and to just the specified frequency
range. This can be as simple as amplifying or attenuating partials or noise
elements, but any effect that can be applied to a standard time selection can also
be applied to a time-frequency selection. Think of reverberating only the higher
frequencies of a voice, or compressing specific components of a recording. Some
processes do make less sense, such as high-pass-filtering only high frequency
components.

To continue with Audition, another tool implemented is the spot healing tool
(figure 23), which exactly resembles an image editing tool from Photoshop, to
draw over a time-frequency region that will be levelled with the surrounding
spectral content. This is ideal for removing sharp noises on a slightly noisy
background, not removing all the noise but just the sharp aspect. Audition also
provides a gain adjustment control directly above the selection, which makes
amplifying or attenuating selections easy.

Editing by directly manipulating the selection becomes more advanced now
there are two axes along which audio can be affected. In a two-dimensional
space, we have the following transformations at our disposal: move, stretch,
scale, skew, distort and flip. Photoshop does offer more transformations (rotate,
warp and perspective), but these are less meaningful in audio editing.

• Move
Moving along the time axis equals the aforementioned
repositioning, though now it can be frequency-independent.
Moving along the frequency axis will shift or transpose the
frequencies, depending on the selected scale (respectively
linear and logarithmic). While shifting moves all frequencies

Figure 23. Spot healing in Adobe Audition. a) shows a small but audible noise element
amidst background noise. Spot healing allows selection and automatic removal of this
element, filling it up with similar background noise.

55

a same amount, transposing moves all frequencies a same ratio. The
latter will preserve the harmonic structure of for instance an instrument
and the resultant will hence be more recognisable to the original than
when frequencies are shifted48.

• Stretch
Stretching up along the frequency axis on a linear scale
will effectively be the same as transposing, moving the
frequencies up a same factor. On a logarithmic scale the
harmonic structure will be stretched out in the higher
frequencies. Stretching downwards will have the same
effect on the lower frequencies, while preserving the
harmonic structure within the higher frequencies.

Stretching along the time axis accounts to frequency-independent
time stretching. This time stretching can be made content-aware. This
is interesting, considering the onset problem. If one were to simply
stretch out a single recorded trumpet tone, the most important part
of that recording for us to recognise it as a trumpet, the onset, will be
stretched out as well. The short burst of noise parts and inharmonicity
that forms the onset of the played tone is what guides us in recognising
the instrument (Howard and Angus 2001, p.213). This goes for
trumpets as well as violins and practically most instruments that can
be used to produce sustained instrumental tones. Stretched far enough,
the onset and thus the instrument will no longer be recognisable. The
onset is followed by a more harmonic and less varying spectrum which
dictates the timbre, which is more suitable for time stretching.

• Scale
Scaling is stretching along both axes. An interesting
examination of tape-speed variation can be made here. When
playing back audio twice as fast, the audio is twice as short,
and all wavelengths are halved making the audio sound
twice as high. This then effectively scales down along the
time axis (twice as short) and up along the frequency axis

(twice as high). The inverse is true when playing back audio twice as
slow; the audio becomes twice as long, and sounds twice as low. When
stretching along both axes, any variation and deviation on this process
can be made, including time-preserving pitch shifting and pitch-pre-
serving time stretching, or anything in-between.

[48] It must be noted that in this case the formant structure is lost. A formant is a peak of
energy in the spectrum, which can include both harmonic and inharmonic partials as well as
noise (Roads 1996, p.296). The formant structure can be regarded as the filter that defines the
character of a voice (particularly the vowels) or a musical instrument. A pitch-shifted voice will
not be recognised as originating from the same person.

56

• Skew
Skewing allows one side of a selection to remain fixed
while the opposite side is shifted. Along the frequency
axis this allows for applying a gradual pitch shift over
time. Along the time axis a very interesting effect called
spectral delay can be introduced, meaning components of
the selected audio are individually delayed, which can for

instance result in having the lowest frequency component played first,
followed progressively by the higher components.

• Distort
Distorting the selection means corners can freely be moved.
It offers simultaneous time stretching, spectral delaying and
time-varying pitch shifting, making it an extremely powerful
tool.

• Flip
Flipping spectral content along the time axis will effectively
reverse the selected audio. Along the frequency axis the
results will be obscure, as recognising audio depends heavily
on relationship between the lower and higher frequency
components.

These more artistic transformations are rarely found in current audio editing
software. The ability to amplify, attenuate and remove spectral content is found
in various applications, and is particularly useful for audio restoration and
cleaning. One might also find use of such software outside the music industry,
for instance in forensics, where spectral editing is used to isolate and enhance
certain parts of audio recordings.

3.3.5 Other Representations
The waveform is by far the most predominant visual representation method

in audio software. Spectrum displays are more often found in the more
comprehensive audio editing software packages, where it is generally presented
as a secondary display. Some audio editing software, such as iZotope RX, is
aimed at editing spectral aspects and therefore presents the spectral display
as the key display. Such software is typically referred to as a spectrum editor, as
opposed to the wave editor.

It must be noted that, though rare, there are spectrum editors that employ
a different or alternative approach to spectrum analysis and the associated
editing. SPEAR as well as AudioSculpt49 use a sinusoidal modelling technique

[49] Using the sinusoidal modelling technique instead of a Fourier Transform is optional in
AudioSculpt

57

(Mcaulay and Quatieri 1986) to attempt to represent a sound with many
individual sinusoidal tracks called partials. This looks similar to a spectrogram,
but instead of displaying amplitude changes within a frequency range (a bin),
each partial corresponds to a single sinusoidal wave varying over time in both
magnitude and frequency. This approach effectively separates the tonal parts
of a sound from its noise parts, as noise cannot be captured as time-varying
sinusoids. Editing using this model allows for example to shift individual
harmonics of a pitch-varying note of a recorded instrument. The technique
is however heavily arbitrary, because the decisions needed to track partials
(determining partial birth, death, cross-frame movement, etc.) are not set in
stone and are open to interpretation. Therefore there is no guarantee that what
you see in SPEAR resembles what you see in AudioSculpt.

A unique approach to audio analysis and editing is Celemony’s Direct
Note Access, as found in their landmark software Melodyne. An analysis on
polyphonic audio material identifies the individual notes, which are presented
on a piano-roll grid as small waveforms, thus forming a kind of mix between
waveform and spectral display. Each waveform is one note that can be
transposed, stretched, moved or removed, allowing for intuitive retuning,
recomposing and decomposing of polyphonic audio material. As this software
is aimed at accessing and editing the musical content of audio, it is not regarded
as an audio editor. Audio editors, as the name implies, aim at providing an
audio signal representation. A musical representation as provided by Melodyne
can be regarded as a symbolic representation. This differentiation is important.
A symbolic representation can only represent what is within the limits of its
symbolic vocabulary (here music theory), and can only represent this discretely.
Yet an audio signal representation can continuously50 transmit any, non-musical
kind of sound, even non-audible signals (Vinet 2003, p.194).

3.3.6 Summary
The most common method visually to represent audio is to plot a waveform,

which represents the physical nature of audio. Depending on the importance
of speed, accuracy and aesthetics, the appearance of such a waveform can vary.
A waveform display can give precise timing information and a clear image of
amplitude characteristics.

An approximation of the perceived nature of audio can be visually
represented by plotting a spectral analysis. The appearance of this is also
dependent on various choices, such as algorithm, representation type and
colouring method. A spectrum display can reveal individual parts within the
spectral content of audio.

For accurate representation of audio characteristics a combination of these
two displays is recommended, allowing precise time and amplitude inspection
using the waveform display, whilst observing the related spectral content using
the spectrum display. Being able to see the relation between these two can give

[50] apart from being digitised through sampling

58

insights in cause and effect of certain audio artefacts. For instance, sharp edges
in a waveform caused by a sudden gain change or clipping will effect in added
harmonics, which will be visible in the spectrum display.

Both a waveform display and a spectrum display can serve as audio editing
interface. By manipulating and dragging a selected time or time-frequency
segment of audio, various transformations can be applied, ranging from gain
change to time stretching and pitch shifting, even spectral delaying. Finding
logical analogies between the audio content that is visually represented and the
editing gesture of that representation can result in an intuitive and powerful
editing interface. For sound designers and composers – people who use an
audio editor to shape a sound towards a desired result and who value a good
visual representation – such an immediate and clear approach can prove very
useful, allowing them directly to see what they are doing.

59

3.4 Smart Selections
As described in the previous chapter, a visual representation of audio can

be used to select a segment of audio on which to perform edits. This chapter
explores how this most basic and essential action in audio editing can be
extended.

3.4.1 The Standard Selection
The basic selection, as found in most audio editing software, involves clicking

and then dragging over a waveform display, demarcating the desired audio
segment. Once a selection is made, edits can be applied to only this segment of
audio – the audio that is not selected is generally51 not affected by the applied
edit. The selected segment might also be cut, copied and pasted somewhere else
along the time axis. The selection can be discarded at any time, but when doing
so, it cannot be retrieved. In some editing software it can be reconstructed if
markers can be set along the time axis.

When observing the modular editing
approach described in chapter 3.1,
a selection can be interpreted as an
individual module (figure 24). This
module keeps track of the start and end
time of the selected segment. By doing
so, a selection is ever retrievable as long
as it exists as module, but moreover it
is adjustable. The segment boundaries
can be shifted, affecting the edits
following the selection module. Every
time the modules are rendered, the specified selection is taken and as long as no
other selection or deselection is specified, consecutive edits will be applied to
that selection. The selection module can also be copied, making the selection
reusable.

When clicking and dragging over a waveform to specify the boundaries of a
selection, commonly the resulting start and end points in time are determined
by the point where the mouse was pressed down and where it was released.
In situations where in the visual representation a single pixel width spans a
considerable amount of audio samples, setting a start or end point is far from
precise. When the boundaries are not on or near a so-called zero-crossing52, an
edit can cause a sharp change in amplitude, resulting in a hard tick (see figure
25).

[51] Some edits might involve tails. For instance, a reverb might be applied to the selected
segment, of which the delayed reverberations might be added to the subsequent audio.

[52] A zero-crossing is a point where the signal values go from positive to negative or vice
versa, crossing a value of zero.

Figure 24. A selection displayed as a module
in the editing chain.

60

In another scenario, one might
require to apply an edit to a specific
audible event such as a beat, but
selecting the exact onset of the beat can
prove to be difficult when having to set
the selection manually.

To aid manual selection, snapping
can be introduced. Snapping means
that when dragging a selection near
a snapping point, that point is given
priority over the cursor point to
determine the selection border. For
audio, an analysis of the audio is made to identify zero-crossings, transients,
onsets and beats (Collins 2010, p.99). Now, when dragging over a waveform
display, the selection boundary is snapped exactly to any identified point of
interest, aiding the creation of precise selections. Snapping to zero-crossings
is quite common, examples can for instance be found in TwistedWave, which
also snaps to transients, and Wave Editor by Audiofile Engineering, which also
supports snapping to time units, markers and the playback head. Beat detection
in conjunction with selection can be very useful when slicing samples for
looping purposes, aiding in precisely selecting a desired number of beats or
bars.

As described in the previous section, selections can be extended with
transitional edge areas. At the edges of the selection small handles are provided
in order to define an area adjacent to the selection, in which a dry-wet53
transition is made between the processed selected segment and the unprocessed
adjacent audio, smoothening in and out the effect of the applied processes.

3.4.2 Multiple Selections
In the previous section we discussed various audio transformation methods

that find their roots in image editing software. These transformations were
based on manipulating a selection. This section discusses the process of making
a selection, where again concepts from image editing software can be adapted
for audio editing software.

In image editing software it is very common to make multiple selections.
When a normal selection is made, a selection mode for succeeding selections
can be defined. Photoshop provides the following:

• New
The next selection will replace the current selection.

• Add
The next selection is added alongside or, wherever selections intersect, to
the current selection. This allows for multiple basic selections.

[53] Dry indicates the original unprocessed signal, wet indicates the processed signal. A
dry-wet mix combines a bit of dry and a bit of wet signal.

Figure 25. A gain change on a section that
doesn’t start at a zero-crossing (arrows) can
result in a hard tick.

61

• Subtract
Wherever the next selection intersects with the current one, the selected
segment is deselected.

• Intersect
Wherever the next selection intersects with the current one, this becomes
the new selection. Everything else is deselected.

• Exclude
This is the inverse of intersect, deselecting only where selections intersect.

Being able to define multiple selections allows the user to process all selected
parts at once, instead of having to select and process each part individually. The
selection modes help to refine and shape selections. They are however quite
uncommon in audio editing software; most editors do implement additive
selection to extend the current selection, but that is it. Only rarely54 is it possible
to define multiple selections, whilst this can be very useful. Imagine a recording
with a number of coughs in it, and you want to filter out these coughs. The
easiest way would be to select each cough and then process them all together
equally. Similarly, a set of beats or onsets can be uniformly processed for more
oomph by selecting each and processing them together.

With the above described additive selection mode, overlapping selections
are joined into one selection. It can however be desirable to define multiple
overlapping selections. Techniques such as random cutting, shredding and
brassage (as described in Wishart 1994a, p.59) are based on reordering segments
of audio. Segments are cut from the source audio and then respliced together
to produce a new sound (see figure 26). The selection here functions to define a
segment to be repositioned instead of a segment to be processed. Overlapping
segments cause certain parts of the selected source to be captured multiple
times in the result.

3.4.3 Automated Selections
A couple of coughs or a handful of beats can quite easily be selected

manually. But if, for instance, you want to select ticks and pops from a digitised
vinyl recording, it becomes much harder. Not only are these probably much
more numerous, they are sometimes much harder to identify. Therefore a
selection can be automated. Given a definition of what needs to be selected,
everything matching that definition is selected (figure 27). This can be ticks and
pops that can then be attenuated or filtered out, or beats that can be sliced into
individual samples. Everything under or above a given volume threshold can
be selected, for instance to completely silence out almost-silent parts (again,
see TwistedWave), or to soften the loudest bits of a recording. In spectral editing
mode, background hums or other components with a distinguishable character
might also be automatically selected. Automation can be very precise as well as

[54] see again TwistedWave

62

timesaving when needing to select many segments.
This way, automated selections can also be applied in re-synthesis and

reordering techniques such as described earlier. A number of segments can be
selected, possibly of random length and at random points, which are then cut
and recomposed in a specific way. As the process of selection is now automated,
the size of these segments can be very small and the number of segments can
be very large. It can even be applied to select wavesets or grains55, allowing for
more techniques described by Wishart (1994a) to be applied, such as waveset
reversal, shuffle, and shaking, granular time-stretching and reordering.

[55] A waveset is the signal between any pair of zero-crossings (Wishart 1994a, p.17). A grain is
a small segment of audio, normally in the region of 10-100 milliseconds long (Roads 1996, p.168).

Figure 26. Random cutting (a), shredding (b) and one form of brassage (c). Random
cutting: the segments have a random position and length, and can overlap. Shredding:
similar, but no overlap. Brassage: overlap is allowed, but segments are sequential, which
is characteristic for this technique. (Wishart 1994a, p.60)

Figure 27. Multiple selections are automatically made by specifying selection criteria.

63

3.4.4 Finding Audio
With automated selections, most of the criteria of what needs to be selected

are predefined by the software. By letting the user specify all the criteria, a find
function becomes available. The user can now say “give me everything that
meets these criteria”, specifying the minimum and/or maximum length, the
average amplitude or volume thresholds and perhaps a spectral centroid or
density. Every segment of audio that matches these criteria is then selected. This
process is similar to finding entire audio files, described in the chapter on the
“Source Browser”.

In case of the coughs-example, it can even be made easier to select all coughs.
A find-similar approach requires selecting one segment (one cough in this case)
that serves as benchmark. Given the characteristics that are determinant for this
selection, such as length, loudness or spectral characteristics, every segment
that matches the benchmark on the specified characteristics is selected as well
(figure 28).

3.4.5 Summary
The ability to select segments of audio to edit is a fundamental aspect

of audio editors. It allows for applying edits not only to an audio file in its
entirety but to specific time or time-frequency segments within that file.
Selecting exactly what you want can be difficult. Aiding the selection process by
providing content-aware snapping speeds up and eases this process.

A selection is made in order to apply an edit to the selected audio segment.
If such an edit should be applied to multiple segments, the specification of
multiple selections can offer a swift approach to applying a uniform edit to
these segments.

To make it easier to select all required segments, a multi-selection can be
automated to pick just the segments that match certain criteria, or that are
similar to a specific segment. Automating the selection process also allows for
selecting very many, very short segments.

Multiple selections, whether specified manually or automated, can be used
to quickly apply an edit uniformly, but also for reordering techniques. This
extends the possibilities for using an audio editor for sonic composition.

Figure 28. Finding similar audio based on a benchmark selection.

64

3.5 Layered Audio
Tracks, channels and layers

 One common aspect of many audio editors is the support for multiple tracks.
A track is a placeholder along the time axis onto which audio can be recorded or
loaded. Multiple tracks are represented under each other (with time progressing
along the horizontal axis) to illustrate the simultaneous playback of these tracks.
A single track needs not be filled entirely with audio, a section of audio can be
represented as a container on a track that can be moved and positioned along
the time axis (see figure 29).

An audio editor that supports multiple tracks is often called a multi-track
editor. Multi-track editing allows for a sound to be constructed out of multiple
sounds. Each individual sound can be regarded as a layer of the final
composition that can be edited separately and can be moved in time relatively
to the other layers. During playback a mix is made of all tracks, at a single time
instance producing the sum of all audio present in any track at that time. The
resultant can also be bounced, registering the track mix to a single track or to
disk.

 Each track can consist of multiple channels, each representing one part of
a multiphonic (multichannel) section of audio. In a mix all audio is mixed per
channel. If one track contains a mono recording and a second track contains a
stereo recording, the resultant will be a stereo mix where for each channel of the
stereo track the mono track is added.

Figure 29. Audio tracks in Adobe Audition. Audio is represented as a container so that it
can be repositioned along the time axis.

65

 In chapter 2.1.1.2 a distinction was made between audio editors and Digital
Audio Workstations (DAW’s). In DAW’s, a track is often regarded as an
instrument, along with its own mastering parameters and effects processing
bank (an instrument track). Such a track can contain an audio signal, just as a
track in a multi-track audio editor can. But in a DAW, a track can also contain
a symbolic music representation (Vinet 2003, p.194), such as a MIDI control
signal. This control signal can be visually represented as a musical notation
score or a piano roll, and is interpreted by a synthesiser associated with the
instrument track. This way an instrument track can for instance represent a
piano or a guitar (synthesiser) that plays the score that is placed on this track.

 Whereas music production software such as a DAW uses tracks to construct
music out of multiple instruments, an audio editor uses tracks to construct a
sound out of multiple layers of sound. By using the term layer instead of track a
firmer distinction between instrument tracks and nonmusical tracks is made. It
also establishes a connection to imaging software, where layers are an essential
composition tool and layering possibilities have become plentiful over the
years. Inspired by these possibilities, in this section I will describe a number of
audio layering techniques.

3.5.1 Blending Audio
In a multi-track editor the mix that is played back or bounced is created by

adding all tracks together. In most of these editors a gain and a panning can be
defined for each track, allowing some control over how each channel on each
track is added to those of other tracks. When observing tracks as layers, one
might regard a layer to be a part of a composite. This composite can be made
up simply by the sum of its parts, but it can just as well be a more dynamic
body of sound, where layers influence each other (figure 30).

In digital image editing the
compositing of layers is called
blending. Layer blending uses a
background-to-foreground (or
bottom-to-top) approach; what is
visible on the top most layer (the
actual mix) is influenced by the
content of the layers beneath it.
There are several blending modes,
aimed at either accentuating or
attenuating parts of the colour
spectrum as well as affecting colour
saturation, brightness and contrast.

This is done by taking the content of two layers and using colour info from
one layer as control for adjusting the other, or by compositing individual
components. The content of the bottom layer that is taken for this blend is
actually the resultant of a blend between its original content and the content

Figure 30. Adding tracks versus blending layers.

66

of the layer beneath it. This in turn can also be a resultant of a blend, so on
repeating down to the bottommost layer.

Layer blending in image editing is often used to accentuate components
of an image by adding contrast or by increasing colour saturation. For such
purposes the layer dictating this effect is carefully constructed to have the
desired effect on specific areas of the original image, while leaving the rest as
much unchanged. A good knowledge of the mathematics behind blend modes
is required to effectively apply them. A blend between two layers can be very
intricate, therefore a layer is rarely the result of a blend with a blend with a
blend and so on, because anticipating the result gets harder when adding more
layers and blends to the process.

The simple mix of audio channels can be expressed as adding all layers
together, meaning for each frame of time all samples are summed up. No
particular relationship between any two layers is defined, other than that their
blend is their sum; you will hear one layer regardless of the content of the other.
With other basic arithmetic operators a first step towards more interesting blend
modes for audio can be made.

Negation can be used to cancel out audio. Though rarely truly effective,
imagine one can use a recording of one instrument with unwanted spill56 of
another on one layer, and the recording of the second instrument on the other
layer. In theory, when the spill and second recording are exactly the same and
perfectly aligned, they should cancel out. In practice this is nigh on impossible
to achieve, and audio subtraction is not very useful for anything else.

Multiplication of two audio signals can be seen as a process called ring
modulation57 or amplitude modulation, depending on both speed and shape of the
modulating waveform. By multiplying two signals, one signal (the modulator)
effectively modulates the amplitude of the other signal (the carrier). For ring
modulation the modulator waveform is commonly of a simple shape (such as
a sine) and a low frequency. A very well known application of ring modulation
is for producing the voice of the Daleks from the BBC television series Doctor
Who58.

Side-chain Effects
Blending two audio signals per each individual sample value can be too

convoluted. Using an abstraction is a way to obtain more foreseeable effects.
One such an abstraction can be an average loudness curve or envelope of
the modulator audio signal. Attenuating the carrier signal whenever the

[56] Spill is sound picked up by a microphone from a source other than that for which the
microphone is intended.

[57] Ring refers to the shape of the analogue circuit of diodes originally used to implement this
technique.

[58] Attributed to Brian Hodgson of the BBC Radiophonic Workshop. See YouTube for various
Dalek Voice Tutorials.

67

modulating signal is loud creates an effect called ducking. It allows for the
modulating signal whenever present to be more perceivable as the level of
the carrier signal is lowered. Commonly a compressor is used to attenuate
the carrier. Ducking can be used for voice-overs, where the music is lowered
in volume when the voice starts, smoothly returning to its original volume
whenever the voice stops. A pumping effect can be achieved by more tightly
following the loudness curve59 of the modulator audio signal, changing the
volume of the carrier more quickly and varyingly. A simple example of this
effect as applied in popular music can be found in Benny Benassi’s “Satisfaction”
(2003), where the kick drum is used to reduce the volume of the bass-line,
resulting in a pumping sound.

In plug-in architectures found in Digital Audio Workstations, using one track
of audio in the processing or synthesis of another is commonly referred to as
using a side-chain. The side-chained track can be used to trigger or modulate
one part of an effect or synthesis process. Using a compressor that is controlled
by a side-chain track, as is just described for ducking, is often called side-chain
compression. Side-chain compression can also be employed to reduce sibilant
or plosive sounds. These are respectively the hissing and popping sounds in
vocals. For sibilants, this process is known as de-essing, for plosives one might
call it de-popping, though this term is used less commonly. A copy of the original
vocal track is made, in which these sounds are accentuated using equalisation.
Using this track as a modulator for the compression will emphasise on these
accentuated sounds, reducing them in the original track that is compressed. In
contrast with ducking, the modulating signal is not taken into the resulting mix,
it only serves as modulator.

As illustrated by these approaches to side-chain compression, a blend
between two layers of audio can be far more than applying simple arithmetic
to them. It can just as well be an effects processor that takes one layer as the
carrier and the other layer as the modulator. With ducking, de-essing and
de-popping, the modulation is fairly simple, it is a single envelope curve that
controls the gain of the compressor. A popular technique called vocoding uses a
more complex form of modulation. The modulator audio is passed through a
filter bank, and for each filter band the envelope is followed. The carrier is also
passed through a filter bank set at identical frequencies as the modulator filter
bank, and each filter band is amplified by the envelope of the corresponding
modulator filter band (Roads 1996, p.197). Originally developed for encoding
and decoding voice for effective and secure transmissions, it is a technique that
would later be used particularly for voice synthesis effects such as robot voices.
Such synthesised voices can be found in the works of many music artists,
such as Kraftwerk (among others in “The Robots”, 1978) and Isao Tomita (“The
Visionary Flight to the 1448 Nebular Group of The Bootes”, 1978), to name just a
very few.

[59] This process is called envelope following.

68

Blend masking
A blend between two layers describes the effect one layer has on the other.

In the chain of layers the result of a blend between two layers replaces the top
most layer of these two. The content of this result layer is determined by the
relationship between the two blending layers.

Blending as implemented in image
editing software allows for a mask to
be assigned to the modifying layer in
a blend. A mask can be regarded as an
additional layer that reveals parts of a
layer and hides others. It is a monochrome
layer (using just one colour dimension),
ranging from minimum value black to
maximum value white. This black-and-
white mask serves as a multiplier of
the layer to which it is applied. Black
stands for 0, white for 1, with a grey area
in-between. When an area of the mask is
black, the area of the layer will be hidden
(any colour value multiplied by 0 will
result in 0); it is fully masked. A white
area in the mask will reveal the layer
content (multiplied by 1 it will stay the
same); it is unmasked. Grey areas will partially hide or reveal layer content.
Applied to a modifying layer in a blend (see figure 31), an unmasked area can
fully modify the other layer, a partially masked area will only partially have
effect, and a fully masked area will have no result at all, revealing the other
layer unblended.

In audio processing, a similar paradigm can be found in the dry/wet mix
parameter that is commonly available when applying an audio effect. This
is a mix between the original audio and processed audio. Dry indicates only
the original audio is heard, wet indicates only the processed audio is heard.
When blending audio, a fully blended layer (unmasked) can be considered a
completely wet mix, whereas dry would mean no blending takes place and just
the content of the lower layer is heard.

Spectral blending
The filter bank used in vocoding constitutes a very rough spectral analysis.

We use the spectral contour – that is the shape of the spectrum as dictated by
the magnitudes of all spectrum bands – of one layer of audio and impose this
on the other layer. Though a vocoder generally uses time domain envelope
followers and amplitude modulators, in effect the spectral domain is the
domain in which the blend is determined. A frequency analysis offers an
envelope for every single frequency band, providing a richer basis for blending.

One interesting technique that can be achieved using spectral blending is
spectral interpolation. If you want to gradually change one sound into the other,
you need to interpolate between the audio data of both signals. In the time

Figure 31. Layer B will be blended with
layer A using multiplication. Mask C is
applied to layer B before blending. The
result of the blend is shown in D.

69

domain, gradual interpolation based on the amplitude values constitutes what
is known as a cross-fade; one sound is faded out, while the other is ”faded”
in. Far more interesting is interpolation between the time-changing spectra
of the two sounds (Wishart 1994a, p.96). The spectral contour of one sound,
while changing over time, is gradually moved towards the contour of the other
sound, resulting in a morph60 between these sounds.

Earlier we discussed ducking, a technique that can be used to make one
sound give way for the other to be heard more easily. Ducking is based on
loudness envelope following; for each timeframe it analyses the loudness of
the sound in its totality. Spectral analysis can provide a more fine-grained
approach to ducking, which might be called spectral masking61. Now each
individual spectrum band of one sound can be attenuated (ducked) dependent
on the loudness of the corresponding spectrum band of the other sound. If the
sound that will be ducked has a broad spectrum and the other sound only has
a narrow spectrum, only the parts that overlap will be attenuated, the rest of
the spectrum will remain unchanged – time domain ducking will attenuate the
sound in its entirety.

3.5.2 Special Pasting
Pasting is one of the fundamental editing actions, next to cutting and copying,

to be found in any editing program, being it text, image, video or audio – even
files on a file system can be cut, copied and pasted. These editing actions don’t
involve scissors or glue, they are often provided in multiple ways; through
menus, key combinations and/or buttons. In order to cut or copy something
– a word, a sentence, a specific region in an image or audio recording – the
user first selects it, as described in the previous section. If it is then cut, it is
effectively removed from the original and depending on the software this either
leaves blank space or silence, or it pulls together the ends between which is cut.
Copying keeps the original intact, it only copies the selected content, as one
might expect.

Editing involves an imaginary clipboard. Whenever something is cut or
copied, it or its copy is put on the clipboard, a temporary storage. Whatever
ends up on the clipboard (generally wiping off anything that was on there
before) can then be pasted. Here it becomes interesting, because there are
various ways in which something can be pasted.

Figure 32 shows the Special Pasting dialog found in TwistedWave. It offers
three ways of pasting: insert, mix or replace. Additionally both the document62

[60] The quality of this morph is strongly dependent on the perceptive similarity of the sounds
and the time that is given to recognise these sounds, see (Wishart 1996, p. 101/2).

[61] In (Wishart 1994a, p.100), a technique called spectral masking is proposed, which
for each frequency band takes the loudest amplitude of two sources. This is all-or-nothing
approach can be considered as one variety of the approach discussed in this thesis.

[62] The document refers to the audio „“document”” which the user is editing. Any cuts,
pastes and other edits such as effects are applied to this document.

70

and the clipboard content can be
faded in and out, optionally using a
crossfade. These pasting methods will
be described in more detail shortly, but
first an explanation for this digression
into pasting audio. Earlier on we
discussed non-destructive editing, as
well as layered audio. Editing actions
such as cutting, copying and pasting
generally are destructive. The start
and end points of a region that is cut
or copied, are definitive, they cannot
be tweaked after the edit is performed.
A pasted segment is merged into the
whole of the subject audio and cannot
be discerned afterwards. That is, unless
a modular editing approach as described
earlier is used. Cutting and copying segments as well as pasting points can be
altered at any time when they are regarded as module parameters. For audio
pasting, audio layers might offer a non-destructive approach that allows for
special pasting methods to be explored.

Insert
The default approach, that is for text and audio, is to insert the clipboard

content wherever an insertion point is specified, done in a similar fashion
as to making a selection. Insertion is logical for text and audio as these can
gradually be observed along a single dimension, from the beginning to the end.
Inserting text makes the sentence longer, not taller. Inserting audio makes the
duration longer, nothing else. Insertion on an image, something which has two
dimensions and which content is observed as a whole, would make little sense.
We can’t make room for extra image content without seriously interfering with
the original content.

Inserting audio by using layers will imply that the clipboard content is put
on a secondary layer, below the primary audio layer on which the insertion
takes place (see figure 33). This primary layer is split on the insertion point, the

Figure 32. The Special Pasting dialog in
TwistedWave.

Figure 33. Inserting audio using layers.

71

first part is aligned tail to head with the secondary layer content, which in its
turn is tail to head with the last part of the primary layer. This way a visual
representation of the insertion action is made.

This visual representation can be instructive when specifying crossfades
(figure 34). With audio, insertion can also interfere with the content, for example
if a vocal recording is interrupted by an inserted bell sound. Here a smoother
insertion can be realised by crossfading on the start and end point of the
insertion, gradually leaving the vocal track for the bell sound and returning
back.

Insert-pasting is particularly useful for reconstructing and reordering
purposes. When for instance working with a voice or instrument recording,
words or phrases can be inserted or moved by cutting away and inserting
them at different points. This can be done more smoothly when using short
crossfades.

Mix
Earlier I described the use of ducking for voice-overs, where music is

attenuated when a voice-over starts. Special pasting using mixing is somewhat
similar. Mixing in the clipboard content will position this content at the
insertion point on a secondary layer, and will optionally attenuate the primary
layer. Opposite to ducking, this method is more static, it does not perform any
envelope following. This means that when the clipboard content is silent, it can
still attenuate the primary layer content. Though less dynamic, the user now
has more control over the attenuation, along with fading in and out (figure 35).

Figure 34. Inserting audio with a crossfade. The yellow line indicates gain adjustment.

Figure 35. Mixing audio using layers. Layer 1 is slightly attenuated.

72

Replace
Pasting audio as replacement involves selecting a segment of audio that

will be sacrificed in favour of the clipboard content. The clipboard content is
trimmed to the length of the selection. This way of pasting is useful for instance
if one has multiple takes of a guitar recording and wants to select a short bit
from one take and paste it in another (final) take. By trimming the clipboard the
overall timing of the primary audio is preserved. It might however be desirable
to replace a short bit of audio with a considerably longer bit of audio. This in
effect will be a combination of replace and insert pasting; the selection is replaced
with the clipboard content, everything after that is shifted to make room for the
remaining clipboard content to be inserted63.

All these pasting methods can be approached using layers, as illustrated
by figures 33 to 36. Using layers the pasting parameters become non-destruc-
tive; boundaries and insertion points can be shifted, attenuation levels and
crossfades can be altered at any moment. Perhaps equally important is that the
layer approach gives the user a clear image of what is actually happening when
pasting in a specific way – what remains, what is replaced, and when does it
start and end.

3.5.3 Summary
A sound can be constructed out of multiple layers. An audio layer can

represent a single component of a sound. Layers can simply be added together,
but can also influence each other. The act of combining two layers of audio in a
specific way is called a blend. Blending can be as straightforward as adding two
layers, but can be as unusual as masking one layer based on the spectral content
of the other layer.

By analogy with image layers, audio layers are useful for visually
representing audio compositing. Moreover, audio layers offer a non-destructive
and highly flexible approach to a variety of audio processes such as ducking
and de-essing, as well as special pasting edits.

[63] When the clipboard content is shorter than the selected region, the layer approach
cannot be applied, as the primary layer has to be contracted. The only way to perform such a
replace-paste is to first cut away the selected region – which can be done non-destructively
using the modular approach – and then inserting the clipboard content at that point.

Figure 36. Replacing audio using layers. The gain of layer 1 is set to 0, while the gain of
layer 2 is set to 1.

73

3.6 Sonic Composition
The digital domain permits not merely composing with sounds, but
composing the sounds themselves.
 (Risset 1998)

In delineating the scope of audio editing, we discussed sonic composition,
which focusses not just on composing with sounds, but also on the composing of
the sounds themselves. The elements with which the sonic composer works are
sound aspects such as timbre, texture, and dynamic development. Outside the
digital domain, only limited influence can be expressed on these parameters.
Take for instance a note played on a wind instrument; its dynamics can be
altered and, to a certain extent, its pitch. On some instruments a mute64 can be
used to apply some time-varying filtering. However, the instrument’s nature
will always stay the same, and through its fixed physical form and its possible
ways of playing it imposes constraints on the sonic possibilities. Perhaps
the most sonically versatile instrument is the human voice65. It can produce
a wide variety of timbres with time-varying dynamics, as well as noise-like
sounds. More interesting is that it can gradually change between tonal and
noise sounds, or produce both simultaneously. Still there are limits imposed by
physical form, lung capacity and muscle flexibility.

It has only been since the advent of the digital domain, that total control over
sonic parameters can be achieved. Using a computer, sounds can be shaped
into anything within reach of the composer’s imagination. In the time domain,
the amplitude curve can be manipulated with sample-accurate precision, and
filter or effect parameters can be altered over time. Using techniques such as
spectral analysis and re-synthesis, sound can be decomposed into frequency
components, which can individually be altered.

This section focusses on two aspects of sonic composition. When shaping
a sound, the sonic composer can specify time-varying parameter settings
for a filter or effect, a technique called parameter automation. An approach to
parameter automation will be discussed, in which the earlier described multiple
and automated selections are integrated. Then, taking this approach a step
further, the creation of a sound morphology is presented, with which a tree of
sonically related sounds can be produced.

3.6.1 Parameter Automation
Parameter automation is a technique that is mainly found in multi-track

audio editors and DAW’s. These kinds of software allow the user to apply

[64] A mute is a device fitted to a musical instrument to alter the sound produced, by affecting
the timbre, reducing the volume, or most commonly both.

[65] Trevor Wishart describes in detail the “human repertoir”, the possibilities of the human
voice, in his book On Sonic Art (1996, p.263).

74

effects to a single track. Then, using parameter automation, the settings of these
effects can be changed over time. This generally works by defining an envelope
curve. This curve runs parallel to the audio waveform, giving the user a visual
guide to determine where to set breakpoints in the curve. Curves for different
parameters can be overlapped, making it possible to easily synchronise changes
in various parameters.

In an audio editing environment which does not use the notion of tracks
and track-wide effects, automating parameters is far less common. In such an
environment an effect is selected, specified and then applied destructively.
The dialog in which the effect settings were specified is then closed, losing any
reference to the applied effect with its specific settings. Parameter automation
requires a non-destructive approach (and hence a persistent reference to the
effect) to allow the automation curve to be adjusted. The modular, non-destruc-
tive approach to applying effects that was described earlier, provides a means to
keeping reference to effects and parameter settings and can therefore provide a
structure for parameter automation.

Whenever an effect is selected, it will be displayed as a module in the editing
chain. Its parameters can be set to a specific value, but can also be selected for
automation. A curve representing the parameter value over time is displayed
below or on top of the waveform. An important point is that the waveform here
displayed reflects the audio state on input of the effect. If the waveform reflects
an earlier state, the timing or length of the audio might have been altered by a
preceding effect.

Due to the offline nature of the modular approach, it requires all effects in
the chain, or at least up to the effect the user is currently setting, to be rendered
first before the parameter automation is audible. However, it also allows for
parameter automation on offline effects. A simple example of what could be
achieved this way is gradually increasing the playback speed66 of an audio file.

Defining a curve
An envelope curve used for parameter

automation is often a segmented line
defined by a number of breakpoints.
By default, values between points
are derived by linear interpolation.
Some audio editors, such as Adobe
Audition, also offer a spline curve
interpolation67 for smoother transitions
along breakpoints, which also is more
appealing audibly.

Defining a curve can be done more

[66] Known by an old-fashioned term, Tape Speed Variation is playing an audio file at a
different rate, resulting in time-stretching and pitch-shifting.

[67] A spline curve is a curve constructed to pass smoothly through a given set of points. The
values between the points are derived from this curve.

Figure 37. A head-up display for defining a
parameter automation curve.

75

detailed when adding a non-graphical overview of the breakpoints, for
instance listed in a head-up display (or HUD68, see figure 37). Per point the exact
value and time position can be inputted. By default, the parameter value will
change linearly from one point to the following. Specifying an interpolation
or smoothing function between a point and its preceding point will make the
parameter value change smoothly.

For now this HUD will only add a level of precision in defining a parameter
automation curve, but further on in this chapter the added value of the HUD
will be made more clear.

Selections
When applying an effect to only a selected segment of audio, one of two

approaches to parameter automation can be taken. Either the parameter value
is deduced from only the selected time segment of a curve that spans the full
length of the audio file (figure 38-a), or a curve is defined that will be applied
relatively to the length of the selected segment (figure 38-b).

Both approaches appear to have a downside. In the first case, defining a
curve of which only a part will be used seems unnecessary. The parts of the
curve outside of the selection are not used, so there is no reason for them to
be defined. In the second case, positioning breakpoints graphically makes less
sense because the points at which breakpoints will be effective will be different
when applying the curve to a different (smaller) audio segment. However, the
latter case is preferred, when we look at applying curves to multiple selections.

Applying an effect to multiple selections is comparable to applying an effect
to multiple files: a batch edit. A simple scenario might be to fade in at the
beginning and fade out at the end. How much time is taken for the fade might
be fixed, say 0.5 seconds, but it might also be relative, such as 10% of the total
duration. Using the HUD one can define for each setting if its position is fixed

[68] A head-up display is a transparent, commonly small display component in the graphical
user interface. It can be moved around and miniaturized so that it interferes very little with
the users gaze. It is used mainly for displaying additional information, but can also contain
adjustable parameters.

Figure 38. a) A curve that spans the full length of the audio file. b) The same curve but
applied relatively to the selected segment.

76

or relative. A fade out at 10% before the end effectively starts at 90% of the total
duration of the selected segment. Now, to all selected segments a fade in and
fade out can be applied uniformly, without having to define a curve for each
segment.

Segment Tables
Having multiple segments selected, another way of automating parameters

can be introduced. Where the earlier described envelope curve would define
a parameter value at a specific point in time, it can also be interesting being
able to define a different parameter value for each individual selected segment.
Enumerating segments on one axis and parameter value on the other, a curve
can be defined passing through these segments, effectively resulting in a table
with parameter values per segment index. This for instance makes it possible
to apply a gain of 0 to the first selected segment, gradually increasing the gain
over consecutive selections until a gain of 1 is applied to the last selection (figure
39a). The curve can be set to a fixed number of selections, but a relative curve
as just described is more flexible in use, particularly when using automated
selections, which can result in an unexpected amount of selections.

It becomes truly flexible when using a segment table to define an automated
selection.

The table can now be used to specify an aspect of each selection that will be
created, such as length or relative starting position, and for time-frequency
selections the lower and upper frequencies (figure 39b).

These two uses of segment tables, for defining per-segment parameter values
as well as automated varying segment selection, is particularly interesting
regarding the aforementioned brassage technique (Wishart 1994a, p.60),
which is based on cutting up, altering and repositioning audio segments. For
example, an automated selection is made separating an audio file in a number
of segments. Then – similar to increasing the playback speed gradually along
the file – for each segment a different playback speed can defined, resulting
in a stepped speeding up of the audio. Segment tables are also suitable for
other sonic composition techniques described by Wishart (1994a, p.55), such
as granular or waveset based transformation and repetition techniques. Grains
are normally in the region of 10-100 milliseconds long (Roads 1996, p.168) and

Figure 39. a) A segment table to gradually increase gain over consecutive selections. b) A
segment table specifying automated selection segment length.

77

wavesets are only the distance from a zero-crossing to a third zero-crossing
(Wishart 1994a, p.17). Using an automated selection, these short segments can
be selected, on which then techniques such as incremental repetition or varying
pitch shifting can be applied.

3.6.2 Branch Editing: Creating a Sound Morphology
The parameter automation HUD provides a detailed overview of the

parameter value curve. For each automated parameter it lists all line segments
of a single curve. From this user interface it is only a small step to introducing
multiple settings per parameter. What this means is that for a single parameter,
there can be a number of variations that will be applied. These multiple settings
can be automation curves, but can just as well be fixed settings. Starting with a
single input source, an effect can be applied a number of times, each time with
different settings, resulting in multiple outputs, all having the same origin.
The number of results can grow exponentially when defining multiple settings
for multiple parameters. Take for instance a simple band pass filter, define 3
settings for centre frequency and 3 settings for band width. Now there will be 9
outcomes, because for each centre frequency each band width will be applied.

This technique might be called “branch editing”, as a variation on batch
editing. With batch editing, you start with multiple input files and commonly
end with that same amount of files, all processed equally. With branch editing,
as with a tree, you start with a single source, and each parameter can be a point
where the tree branches, resulting in multiple, possibly thousands of leaves or
outcomes.

Branch editing can be useful in different situations. It is ideal for “gold
digging”, a top-down approach to finding the right sound. If a user has a vague
idea of how a sound should be processed, they can apply some effects, specify
variations on parameter settings of which they are uncertain, and render all
possible variations. Doing this manually can be very exhausting and one can
easily miss one combination of settings if it gets numerous.

It is well possible these variations will sound very different, but it can also be
that the variations are ever so small. Obtaining all these variations can increase
the chance of finding the perfect combination of settings, hence the term gold
digging.

Another use for branch editing is found in composition. Branch editing
facilitates the creation of a sound morphology, a tree of interconnected sounds
that can be (but are not necessarily) perceptually related. This must be regarded
as merely a generative method, not a compositional rationale (Wishart 2000,
p.22). However it can ease the process of finding sounds with the right audible
connection. Two sounds can have significant audible similarities without being
generatively related, and the opposite is also true. When composing a morph
from one sound into another, the best route needn’t follow a single branch
to create the most interesting result. A sound morphology can stimulate the
composer in exploring unexpected directions in transforming a sound.

78

3.6.3 Summary
Parameter automation allows the sonic composer to apply time-varying

transformations to audio. The common approach to parameter automation is by
defining a curve along the time axis, so that a parameter value can be deduced
from it for each point along this time axis.

Combining parameter automation with multiple selections allows for a curve
to be applied relatively to each selected segment. Using a segment table, the
parameter value can differ per selected segment. Automatically selecting very
many very short segments on which such parameter automation can be applied
facilitates interesting transformation techniques.

Parameter automation can also be extended to provide more than one value
setting or curve for a parameter. When multiple settings are provided, for each
setting the audio will be processed, producing a different output. Consecutive
parameters with multiple settings will create a tree-like branching of editing
variations, hence this technique can be called branch editing. The earlier
described modular editing approach can facilitate this technique.

Branch editing is ideal for “gold digging”, when looking for the perfect
combination of effects settings. It is also useful when creating a convincing
morph, requiring audibly related sounds.

The combination of parameter automation with more advanced selection
methods and the modular editing approach can make the audio editor a
powerful tool for sonic composition.

79

3.7 Extendability
The ways in which audio may be transformed are limited only by the
imagination of the composer.
 (Wishart 1994a)

This quote is true in theory. In practice, the ways in which a composer can
transform audio are limited by the tools s/he uses. These tools are limited by
the imagination and skills of the developer69.

Most audio editing software is designed in such a way that it is not
extendable. This means that the functionality provided to the user cannot be
extended, other than by updating to a new version, if there is one. Users can
make requests to the developer for new features, but there is no guarantee these
will be implemented in a future release of the software. If a user is not entirely
happy with an audio editor’s functions, this leaves them either waiting for an
update or looking for an alternative editor.

There are some audio editors that function as a so-called plug-in host for
audio effect plug-ins. A plug-in is a means to dynamically add functionality to
a piece of software (the host), either by the same developer or by a third party
if the plug-in architecture is open. Audio plug-in architectures such as VST,
Audio Unit and LADSPA have been widely acknowledged and there is a great
variety of effects plug-ins available in these formats. Audacity also supports
effects plug-ins written in the Niquist programming language, which can be
developed in an ordinary text editor. For audio analyses there exists a plug-in
system called VAMP, developed by Queen Mary University of London. Their
Sonic Visualiser is built on this plug-in system, and Audacity also supports these
kind of plug-ins.

Adding effect plug-ins is a means to extend the effects arsenal in an audio
editor. VST, Audio Unit and LADSPA are however designed to process audio in
real time and by this nature such effect plug-ins are inherently causal. An effect
plug-in is applied offline by passing an audio file through it from start to end,
much as a meat grinder works. Such an effect cannot inspect audio at a specific
point in an audio file, it just receives something and outputs it processed.
Processes and effects that require this inspection such as normalisation, reverse
reverb70 or speed variation are not possible through this architecture.

Offline effect plug-ins do exist. Apple’s Audio Unit specification (Apple 2006)
describes an offline type, though implementations of both hosts and effects are
hard to find. Pro Tools71 includes an offline variant of their Real Time AudioSuite
(RTAS) plug-in format called the Offline AudioSuite. These plug-ins are mainly
used for pre-processing to avoid heavy and repetitive real-time processing.

[69] Which can be the same person as the composer.

[70] Reversing a sound, applying a reverb and reversing the sound back again.

[71] Pro Tools is an industry standard Digital Audio Workstation by Avid.

80

Noise removal, compression and equalisation can be such processes that don’t
need to change over time and can be expensive to calculate in real time. The
Offline AudioSuite also includes some processes that can only be calculated in
non-real time, such as normalisation, reversing and time compression.

Where a realtime effect plug-in works relatively straightforward (such as a
meat grinder), an offline audio effect plug-in is more complex. It must be able
to inspect any point in the audio file, it must respect selections, and it requires a
strategy for compression and expansion of selections (see figure 40). It depends
on the possibilities of its host.

The design principles discussed in this thesis stretch the possibilities of the
audio editor. In an audio editor that implements these principles, each edit
module in the edit chain can exist as a plug-in. By allowing the user to develop
new modules, such an audio editor is not limited to the developer’s skill or
imagination. The user can become the toolmaker for his own imagination as
well as the imagination of
other users.

3.7.1 The Module Development Environment
In essence an edit module needn’t be complex. Audio data, optionally with

a specification of selections, is provided to be processed and then passed to
the next module. Hence, the development of a module can also be relatively72
simple.

Earlier mentioned plug-in architectures require a separate development
environment and downloading of software development kits. Both generally
have a steep learning curve. Once a plug-in is developed, testing happens in
a different application, a plug-in host such as a Digital Audio Workstation. A
developer can choose his own development environment and host application,
but developing in this way can be elaborate.

By integrating a simple development environment within the audio editor,
there is no need for complex all-purpose development software, and testing can
be done instantly. Figure 41 shows such a module development environment

[72] Software development and digital audio processing are inherently complex.

Figure 40. When time-
compressing a selection (a) it
can either leave a gap, or all
subsequent audio can be pulled
towards it to fill the gap. When
time-expanding a selection
(b) the extra audio that is
generated can either be mixed
with or replace the audio it will
overlap in time, or it can push
all subsequent audio further in
time. The same problem occurs
when applying a reverb that has
a tail longer than the selection.

81

in OFFline (see chapter 1.4). Parameters can be specified for the graphical user
interface, and a code editor allows for programming the processing part of the
module.

An integrated audio module development environment serves more than
extending the audio editor. It can be a didactic tool for educating audio
processing. A technique can be implemented without worrying about file
import and export, knowledge of development software or kits. This lowers
the bar for students to try things out, and clears the view when a technique
needs explaining73. For developers of audio software, it can also serve as a rapid
prototyping environment. They can quickly try out a new audio processing
concept before creating a full-fledged product.

Language
The audio processing part of a module needs to be described in some

computer language. The language should be capable of the following:

• signal processing (generation and manipulation)
• analysis (for instance spectral analysis)
• visualisation (a module can produce a visual representation)
• understanding selections (time or time-frequency)
• receiving input from the graphical user interface

This does not mean the language should specifically include all of this

[73] See the section on motivation (chapter 1.1).

Figure 41. The module development environment in OFFline. A module can be created or
edited through this interface. Parameters can be specified for the graphical user interface,
and a code editor allows for programming the processing part of the module.

82

functionality, but at least should be versatile enough to facilitate it74.
An investigation into existing audio related programming languages was

conducted for this thesis. The full list of investigated languages can be found
in appendix 7. Many of these languages were aimed at composition, control
or sound synthesis, sometimes involving complex syntax for creating intricate
compositional structures. Some were too basic, others such as SuperCollider were
too sophisticated and extensive.

A language for composition might benefit from a special syntax. Through
the language a specific compositional structure and order must be defined,
the syntax – the structure of statements – can aid or even guide this. Signal
processing does not require any special syntax. A declaration can be very
similar to the mathematical formula describing the signal processing. A very
simple low pass filter:

math: y(n) = (x(n) + x(n-1)) / 2

code: output[n] = (input[n] + input[n-1]) / 2

This example displays signal processing at the level of the individual audio
samples; input[n] stands for a single sample at time n. For some developers,
signal processing at this low a level might be desirable, but then in every
module code one has to explicitly consider aspects such as multichannel audio
and selections. This unnecessarily complicates the language, particularly with
respect to the aforementioned possible didactic purposes of such a language.

Trevor Wishart developed a number of techniques “using only editing,
mixing and speed changing”75. Indeed, a great variety of audio processing
techniques can be derived from a small set of procedures. A scripting language
with some well chosen fundamental building blocks (procedures) such as
amplification, mixing and speed changing, can be versatile enough to create
numerous different edit modules. The intricacies of handling multiple channels
and respecting selections can be implicitly dealt with by these procedures.

Procedures
An edit such as amplification is very straightforward and unambiguous.

Therefore it can be notated as a simple procedure such as in the following
statement:

output = Amplify(input, selection, factor);

Three arguments are taken into account: the audio that is being amplified
(input); the selection of this audio on which the amplification should
be applied; and the amplification factor. This one line can constitute the

[74] If a function is not included directly in a language, but the language does allow for the
creation of such a function, than the language can facilitate this function.

[75] Also quoted at the beginning of chapter 1, (Wishart 1988, p.22).

83

amplification module since it does not need to do anything else. The factor
parameter can be associated with a graphical user interface element such as a
slider. If this parameter is automated (see chapter 3.6.1), the Amplify procedure
will internally determine the time-varying factor to be applied to each audio
sample.

Other procedures that are equally unambiguous are cut, insert (paste), add
(mix) and delay. These can be regarded as equally fundamental as mathematical
operations such as multiplication and addition. More procedures can be derived
from these basic procedures. A fade is in essence a time-varying amplification.
Normalisation is finding a maximum in a section of audio and then multiplying
(amplifying) the entire section by the reciprocal of this maximum. However,
because both fading and normalisation are common elements in more complex
operations, these should also be available as a procedure.

A different reason to provide an operation as a procedure is because of its
complexity. The aforementioned speed changing is easy to accomplish with
analogue tape. In digital signal processing it is more complex to achieve76.
Likewise, the Fourier Transform requires a series of complex mathematical
operations. The user need not be bothered with implementing this, but should
be able to readily use it as a procedure. This way, speed changing can easily be
used to construct the octave stacking technique mentioned in chapter 1.1:

octaves.each(i) {
 speedFactor = pow(2, i);
 output = Mix(output, Speed(input, speedFactor));
}
output = Normalise(output);

‘Octaves’ is the parameter that defines which octaves to stack. We iterate
over each octave, where i represents the current octave. The speed factor
is calculated by taking 2 to the power77 of i; if we want the input to sound
three octaves higher (i = 3) the speed factor needs to be 8. Then the output is
cumulatively formed of itself and the speed-changed input at the given speed
factor78. The final mix can now be very loud, so we normalise it before we are
done.

A spectral operation, which might necessitate a Fourier Transform or other
complex transformation, can be done without exposing this complexity. In the
following example, spectral frequency shaking is implemented:

inputSpectrum = Spectrum(input);
output = Shake(inputSpectrum.frequencies, shakeFactor);

Spectrum() performs a spectrum analysis on the input signal. The specifics

[76] Digital audio is sampled at a certain rate. Playing it back at a lower speed requires
approximation of unsampled audio using interpolation methods.

[77] pow is an exponentiation function as available in languages such as C, where the first
argument is the base and the second is the exponent.

[78] For sake of clarity, a selection parameter is omitted from this example.

84

of this analysis – such as window size, step size and windowing function –
might be accessible through a general settings dialog. Shake() is a procedure
that adds random offsets to any numerical data; in this case the frequencies of
the input spectrum, but it can just as well be the amplitudes of this spectrum,
a collection of formants or a set of delay times.

As the language is an integrated part of the audio editor, it should not distract
the user from their main goal, editing audio. The language should be expressive
enough to let the user extend and personalise the audio editor, allowing them
to become a toolmaker. On the other hand it should be simple enough not
to obfuscate how an edit operation is constructed. Hence a bit of “magic”79 –
taking care of some distracting or complex details – can be part of this language.
In the above shake example, it is not visible that the spectrum is time-varying
and that for each separate spectral analysis frame the frequencies should be
shaken. The fact that Shake here performs an operation on spectral information
but outputs a time domain signal is also not noticeable. These details are
implicitly dealt with, giving clarity to the language.

One other such magical procedure can be Impose, which takes an analysis
as argument and imposes it onto an audio signal. This analysis can be an
amplitude envelope, effectively resulting in amplitude modulation, but can just
as well be a spectral contour, resulting in vocoding (also mentioned in chapter
3.5.1). The procedure internally finds out what exactly to do, the user can just
state what to impose on what.

When not just using Impose, vocoding requires a secondary input source and
a user-defined number of filter bands per octave. Within each filter band, the
envelope of the input source (the modulator) is applied to the secondary source
(the carrier).
baseFreq = 50;
highestFreq = input.nyquist;
// Niquist is the highest possible frequency
// as determined by the input samplerate.
factor = pow(2, 1 / bandsPerOctave);

// Create a sequence of frequency values, starting at 50,
// each time multiplying by factor until highest frequency is reached.
frequencies = CreateSequence(baseFreq, highestFreq, MULTIPLY, factor);

frequencies.each(f) {
	 //	Get	the	input	envelope	within	a	filter	band
 inputEnvelope = Envelope(BandPassFilter(input, f));
 // At same frequency, multiply the carrier band with this envelope
 carrierBand = BandPassFilter(carrier, f);
 vocodedBand = Amplify(carrierBand, inputEnvelope);
 // Add it to the output
 output = Mix(output, vocodedBand);
}
output = Normalise(output);

[79] “Magic” as described in chapter 2.2.

85

This example demonstrates the creation of numerical sequences, in the form
of CreateSequence(). It takes an initial value and a limit, as well as a
calculation mode and a constant to use in this calculation.

 The two input parameters are bandsPerOctave, controlling the number of
filter bands, and carrier, the secondary input source. Note also that in this
example, Amplify() does not take a single amplification factor as argument,
but a time-varying envelope curve. Again for clarity, details such as selection
and filter parameters such as Q and gain were omitted.

As an example of the combination of this language with the graphical user
interface, brassage, a technique discussed in chapter 3.4.2, assumes multiple
(selected) segments of audio to be cut and reordered. The selection process is
done through the graphical user interface of the audio editor. There, parameters
such as length, spacing and order influence the brassage character. With the
selections defined, the brassage edit module can be described as:

selection.each(s) {
 output = Append(input, s, output);
}

For each selection as s, that segment of input audio is cumulatively appended
to the output.

Brassage is an acausal operation; a single output value can depend on any
input value, from the start to the end of the input source. Offline editing makes
such acausal operations possible (see also chapter 2.1.1.2). Reversing a source
is the most basic of acausal operations, where the first output value equals
the last input value and vice versa. Acausal operations can also be exotic, like
preverberation, a variation on reverb where a sound “reverberates” before it is
heard. It can be implemented as follows:

output = Convolve(input, impulseResponse, -1.0, ADD);

Reverberation can be implemented using convolution80, by using an impulse
response that in essence is a recording of the reverberation of an impulse, a sharp
tick. Convolving this with the input will give the input the same reverberation.
Note in this example the –1.0, which represents a negative delay; the impulse
response is offset backward in time relative to the input (see also figure 43),
effectively resulting in preverberation.

A more practical example of an acausal operation is a look-ahead
compressor81. Real-time compression faces the compromise between reacting
smoothly but also sufficiently to sudden peaks in volume. A look-ahead
compressor can identify these peaks on forehand and gradually adjust the
compression rate in time.

[80] A good treatise on convolution is Smith (1997, p.107). Convolution reverb is discussed in
Zölzer (2011, p.184).

[81] Compression is discussed in chapter 3.5.1.

86

Following the basic compressor schematics illustrated in figure 42, a
look-ahead compressor can be implemented as:
// 1. Create a smoothing function: (length 50 values)
// f(x) = (1-|x|)^s for -1 <= x <= 1 where s is smoothingFactor
functionSequence = CreateSequence(-1, 1, ADD, 2/50);
smoothingFunction = pow(1 - abs(functionSequence), smoothingFactor);

// 2. Determine peaks in envelope
envelope = Envelope(input);
peaks = Threshold(envelope, threshold);

//	3.	Create	smoothed	curve	using	convolution	(fig.	45c)
smoothedPeaks = Convolve(peaks, smoothingFunction,
 -(smoothingFunction.length / 2), MAX);

//	4.	Calculate	gain	factor
gainFactor = (threshold + (ratio * (1 - threshold))) / smoothedPeaks;
output = Amplify(input, gainFactor);

Three parameter settings are provided by the user: a smoothing factor
which determines how fast the compressor responds to a peak as well as how
fast it turns back to normal level, a threshold above which the compressor
should compress and a ratio that determines how strong it should adjust the
gain (a ratio close to 0 will clip everything above the threshold to that value).

Figure 42. Compression is based on level detection (an envelope follower), a static curve
to derive a gain factor from the result of the envelope follower, a smoothing filter to pre-
vent too abrupt gain changes and a multiplier to weight the input signal (Zölzer 2008,
p.213; 2011, p.100).

Figure 43. Three modes of convolution. a) shows regular convolution in which every
value of the input (top) is multiplied with every value of the impulse response (middle). b)
shifts the impulse response relative to the input sample, allowing the convoluted samples
to occur before the input sample. c) doesn’t add all convoluted samples but returns only
the maximum convoluted sample values.

87

A smoothing function serves as impulse response. It is convolved with the
peaks, in which the offset is negative half the impulse response’s length. It uses
a MAX mode, in which for each audio sample the convoluted samples aren’t
added together as usual, but only the highest sample value is returned (see
Smith (1997, p.107) for details on convolution). This results in a curve which is
less smooth but still has enough attack and decay (figure 43c).

It is also important to note the implicit calculation power resulting in
the time-varying gain factor. It does not matter that smoothedPeaks is a
time-varying signal and threshold and ratio can be either a single value
or varying over time (using parameter automation). Under the hood the right
values for each instance in time are determined to use in the calculation.

One final example illustrates the use of analysis methods (other than
envelope following) in the language. It is a rudimentary auto-tune, correcting
off-key pitches in music using transposition.
// calculate equal tempered scale note frequencies (Loy 2007):
noteOffsets	=	CreateSequence(-50, 50, ADD, 1);
frequencies	=	440	*	pow(pow(2,	1/12),	noteOffsets);
// obtain all “voiced” segments, i.e. not containing noise.
voicedSegments = Voiced(input);
voicedSegments.each(s) {
 fundamental = FundamentalFrequency(s.input);
 tuned = Quantize(fundamental, frequencies);
 ratio = tuned / fundamental;
 s.output = Transpose(s, ratio);
}

Analysing the input for voiced segments (any part not containing noise
that can be described as a sum of sinusoids), for each of those segments the
(possibly time-varying) fundamental frequency is determined. This frequency
is then quantised to the pre-calculated set of note frequencies in the equal
tempered scale. The ratio between the original and quantised frequency is
used to transpose the input so that its fundamental frequency now is on this
scale.

These few examples illustrate a language suitable for swift development
of audio editing operations. Already a great variety of techniques can be
developed with building blocks such as described here.

Expressiveness
The procedures form the vocabulary of the language, and hence its

expressiveness. A number of existing languages, among which SuperCollider and
Pure Data, allow developers to extend this vocabulary by adding and modifying
procedures. The available procedures are stored in and loaded from a single
location. The implementation of such a procedure is often written in a lower
level language that allows the specification of the aforementioned sample-accu-
rate multichannel audio processing and processing of selections. This approach
to language implementation effectively creates three levels of use:

88

• At the highest level, a user only sees an edit module in the audio editor,
that performs a single specific audio editing task. This user is the ordinary
audio editor user.

• One level lower, still in the audio editor, a user can see and modify the
workings of an edit module, using a language of procedures that allows
them to focus on the characteristic elements of this editing task. New edit
modules can be developed at this level.

• At the lowest level, a developer can extend the vocabulary of procedures
by developing their own. This development is not done inside the audio
editor itself.

There is a clear separation between these levels, each satisfying a different
kind of user. If you don’t want to know what happens under the hood of the
audio editor, you are not bothered with it. If on the other hand you want to
extend the audio editor’s range of editing modules, it can be done relatively
easily. If the language with which you extend the audio editor isn’t expressive
enough, it can also be extended, though this is far more complex. This approach
allows for the audio editor’s editing capabilities to be extended indefinitely
without having to modify the actual code of the audio editor itself.

3.7.2 Summary
The limits to what an audio editor can do restrict the creative process of

its user. An audio editor need not be limited to the set of editing operations
with which it is distributed. Extending the audio editor with an environment
in which its editing capabilities can be extended, its editing possibilities can
become virtually limitless. The practicality of such a development environment
is determined by the language on which it is based. A simple grammar and a
well chosen vocabulary, combined with some implicit processing, can yield
a clear yet powerful language suitable for quick development of new editing
operations. Such a development environment can also serve didactic purposes
as well as provide a means for rapid prototyping.

89

4. Narrative – Part 2

The modular editing approach was the first design principle that was
developed. Its initial incarnation originates from 2004, at that point merely
reflecting real-time audio effect plug-in architectures in the way effects can be
chained non-destructively. As such, similar implementations can be found in
AudiofileEngineering’s Sample Manager and Apple’s Soundtrack Pro.

Extending the design by including the input audio file as a module, enabled it
to be used as an effect stack and for batch editing, a feature desired by multiple
user groups (as identified from the survey). Other novel aspects presented here
are module representations of the output audio file and of selections.

The Source Browser is a unified approach to obtaining an audio source for
editing. It combines audio file selection, audio recording and audio synthesis in
one user interface element, instead of accessing them in disparate ways. As such
it is unique, as it is not found in any audio editor to date.

The audio “find” feature originates from a personal desire to be able to find
audio files in a more intuitive way than through filename search. It can also be
regarded as an approach to “audio file management”, an audio editor feature
preferred by producers and audio engineers (see appendix 1.2.1).

The deliberation on visual audio representations is one that any developer
of audio software faces at some point. The waveform is relatively easy to
implement, but is it the most useful? Its most common counterpart, the
spectrogram, is more difficult to implement, but for this as well can be
asked how useful it is. A varied series of test signals was used to identify
strengths and weaknesses of both waveform and spectrogram. It appeared
that a combination of the two gives the most complete insight in the audio;
implementing only a waveform or spectrum view would leave out a lot of info.

It was also known from professional experience that there is no single
approach to drawing a waveform or a spectrogram. Many audio editors
currently available have slightly different drawing implementations. This aspect
was also considered in this thesis, because a developer should not only carefully
consider which visual representation(s) to include, but also how best to present
them.

The comparison of audio editors revealed several that offered audio editing
through manipulating the waveform display. In most cases this encompassed
only gain change, but Apple’s Logic also included a feature they called Flex
Time, which can be regarded as a form of time stretching. This encouraged
the deliberation on finding other edits that could be made accessible through
intuitive waveform display manipulations. Similarly, audio editors such as
Adobe Audition, iZotope RX and AudioSculpt offered spectral editing tools

90

that allowed direct manipulation of selected audio content, but it wasn’t
possible to transform the audio by transforming the selection. Applying such
transformation concepts from image editing to the spectrogram revealed how a
variety of audio effects would become more accessible.

Selecting an area for editing is an essential aspect of the audio editing process.
Compared to the selection possibilities in image editing software, selection
in audio editing software is quite unsophisticated; it is a single, one-dimen-
sional (time axis only) selection, only in some cases guided by intelligent
snapping (to zero-crossings, beats, or other points of interest). Again inspired
by image editing software, the first logical step toward improving the audio
selection seemed to be the introduction of multiple selections. This was already
implemented by TwistedWave as a means automatically to select and then
edit all silences in an audio file. The concept was then extended further to
allow selection based on characteristics other than silence, such as noisiness
or recording artifacts, and to select automatically audio regions similar to a
preselected one. The automated selection of very many very short regions
facilitates some more creative audio reordering techniques described by Trevor
Wishart (in Audible Design, 1994a).

The concept of layered audio was formed partially by insights from image
editing software, and partially by the deliberation on what an audio track
represents in an audio editor as compered to a track in a Digital Audio
Workstation. As it appeared from the audio editor comparison, Audiofile
Engineering already included a very similar concept called Layers in their
WaveEditor. It allows layers of audio to be blended together using a specific
blend mode.

Layered audio can also be regarded as a means to provide better insight in
certain audio edits involving multiple sources of audio. With this in mind, the
blend modes could be extended to include various effects that use a so-called
side-chain. Taking this further, spectral blending between two sources can also
be investigated using audio layers.

A constant throughout this research has been the desire to design an audio
editor that allows for more creative and unusual effects – particularly audio
transformation techniques described in Audible Design by Trevor Wishart
(1994a). One recurring aspect in many of these techniques was that parameters
could change over time, gradually changing for instance the amount of spectral
morphing between to audio sources. A concept called parameter automation
(defining such a time-varying curve for a parameter) was already present in
most Digital Audio Workstations. As discussed in chapter 3.6.1, translating
parameter automation to audio editors posed a challenge to make it work
intuitively with selections. After introducing multiple selections and trying to
combine this concept with parameter automation, the idea for segment tables
was conceived, a concept that allows the user to define different parameter

91

settings for each selected region.
Looking at combining parameter automation with other design principles, the

combination with the modular editing approach then gave rise to the concept of
branch editing. This is a novel approach to audio editing with which different
combinations of parameter settings can easily be explored.

As became apparent from the survey, people do want to be able to personalise
and extend an audio editor. An investigation towards a programming language
or environment with which audio editors could be extended was conducted
early in this MPhil trajectory as a possible research subject. It was discontinued
in favour of the design principles, but could still be incorporated in an extended
project which would focus on finding a solution for audio editor extendability.
With the modular editing approach, each single edit is represented by a
module through which its settings can be accessed and altered. Integrating a
development environment for such a module would allow the user to focus
on developing a single effect or other editing task, without having to worry
about audio input or output technicalities (the details of which are described in
chapter 3.7).

The design principles were not developed in a strict sequential order, they
rather evolved simultaneously. Parameter automation and branch editing are
not possible without the use of the nondestructive modular editing approach.
Batch editing is also facilitated by that approach, and the batch of files can
be defined through the Source Browser. The possibility to make multiple
selections (optionally automated using segment tables) allows for very
interesting sonic composition techniques, which can easily be programmed
using the module development environment described in chapter 3.7.1. This
synergy demonstrates the value of combining design principles, rather than
implementing just one of them. It echoes the initial theme in the discussion that
instead of merely including a feature it is better to integrate it; good integration
might require more fundamental changes.

92

5. Recent Developments in

Audio Editing Software

Software development is an ongoing process. It takes place in many different
areas, and little of which finds its way into commercially available software.
This study has focused on commercially available software because a wider
focus is beyond the scope of this thesis.

As mentioned in chapter 1.3 (“Relevance”), during the writing of this thesis,
a number of design principles have become available in new audio editors.
This section focuses on these developments, as well as on other developments
in audio editing software that have a significant influence on how people edit
audio.

“A Simpler Interface”
One interesting development is the discontinuation of Audiofile

Engineering’s Wave Editor. A screenshot of this audio editor was used in chapter
1 to illustrate the cluttered user interface resultant of adding features in separate
windows. Audiofile Engineering replaced Wave Editor with Triumph, and audio
editor and post-production tool with, to cite them literally, “a simpler interface,
which focuses on content”.

Mobile Audio Apps
The mobile app market has grown immensely over the past few years,

not just in size but also in quality. Mobile devices are becoming increasingly
powerful and the user by now is well accustomed to those concepts that
differentiate mobile software from desktop software, particularly in regards to
user interface.

The specific architecture of apps and the platform on which they run – an
app is an isolated entity on the device, it has no awareness of other apps and
hence cannot communicate with them – for years meant that one couldn’t really
use professional audio apps the way one would use desktop audio software.
Apps could not send or receive audio to/from other apps, making a DAW
app practically useless, unless it included its own synthesisers and effects. On
Apple’s iOS this problem was lifted in 2012 by a platform called Audiobus,
soon to be followed by a similar native solution called Inter-App Audio. With
these technologies – which allow audio apps to be chained so that they can
send and receive audio to and from other apps – an audio app could focus on
just one thing, such as synthesis, processing or recording. This development

93

has initiated a quick growth in new professional audio apps. Though this
market is still relatively young and users have only just started to integrate
mobile devices in their audio setup, such development seems to be continuing
rapidly. This doesn’t stop developers from creating new and innovative touch
interfaces for audio apps. These interfaces often make use of multi-touch
gestures, and when the mapping between such a gesture and what it controls is
well designed, such an interface can be controlled more intuitively than through
mouse and keyboard operations. Mapping and guidance (see also chapter 2.3)
are of great importance in the design of a touch interface, because a finger is
less precise than a mouse. For this same reason, app interfaces are often much
cleaner and uncluttered than desktop apps.

There is much debate about the position of mobile devices (smartphones
and tablets) in a professional music environment. Though it is now possible
to exchange audio between apps, a mobile device does have considerably
less hardware connectivity options than most desktop computers. Hardware
audio interfaces generally still require wires, but increasingly more hardware
controllers can be used wirelessly. As for processing power, many recent mobile
devices can match desktop computers from only a few years earlier. For both
mobile and desktop software, ease of use depends on the users and the context
in which they use audio software. An abundance of (often tiny) controls in
desktop software doesn’t necessarily make it easy to use. Mobile audio software
is of course ideal in mobile audio setups.

Audio editing apps are relatively rare. As there is generally no accessible
file-system on mobile platforms, one cannot simply select a file to edit. From
early on there has been a focus on voice recording/editing and ringtone editing.
Thanks to cloud/sharing services such as Dropbox it has become easier to
load and save audio files across devices (both mobile and desktop), and with
technologies such as AudioCopy & AudioPaste by Sonoma Wire Works it has
become possible to exchange audio between compatible apps.

The desktop audio editor TwistedWave is also available on iOS, and together
with Hokusai by Wooji Juice Ltd and Pocket Wavepad HD by NCH Software,
these can be regarded as the more feature-rich audio editors. These apps offer
the essential audio editing features such as audio recording, audio import
and export, a zoomable waveform display, cut/paste actions, an undo/redo
mechanism, as well as a wide variety of audio effects. Apps such as Monle
(Ochen K.), Audioforge and Reforge (Audioforge Labs Inc.) are more basic editors
with a smaller feature set.

Layers
In chapter 3.5 audio layers are introduced as a different way to look at and

combine audio tracks. At the time of writing that chapter, only one audio
editor, the earlier mentioned Wave Editor by Audiofile Engineering, included
such a concept. Both Wave Editor and its successor Triumph offer add, subtract
(add out-of-phase) and ring as “layer combination types” (blend modes), and

94

each layer can be assigned its own effects and fades. Masking the blend over
time is however not possible. Audiofile Engineering calls this their “Layers
technology”, and since recently holds a patent on this technology.

Another recent audio editor called Fluctus also uses the term “layer”, but here
it is merely a separate layer in which the amplitude of the audio file layer can be
edited non-destructively (by applying functions for fades, mute, pass).

Complex Analyses
As long as Moore’s law remains in force, commercially available processing

power will continue increasing. In recent years there have been introduced a
number of software applications that, through very complex and particularly
computationally heavy algorithms, enable to user to perform operations that
seem magical. As mentioned above in chapter 2.1.1, Melodyne introduced
Direct Note Access in late 2009. This technique, also known as polyphonic
pitch correction, was long regarded as a ‘holy grail’ in digital audio processing.
In more recent years, pitch correction algorithms (mainly monophonic) have
been adopted by an increasing number of audio applications, particularly
DAW’s. Polyphonic pitch correction has not been much implemented by
other developers, apart from a company called Zynaptiq, creator of a range of
audio plug-ins that seem to include multiple audio processing techniques that
until recently were regarded nigh on impossible. Zynaptic’s plug-ins include
real-time polyphonic pitch correction, de-filtering and de-reverberation. The
latter technique can by now also be found in the Advanced version of iZotope RX
4, the audio repair and enhancement software.

Thanks to the increase in available processing power, it has become feasible
to include complex analysis algorithms in commercial audio editing software
that enable the user to take control over more naturally understandable aspects
of audio such as pitch, filtering and reverberation, instead of just samples and
frequency bands.

95

6. Conclusions

This project aims at redefining the audio editor by introducing new design
principles. Through these design principles coherency, flexibility and creativity
in the audio editing process can be improved. Furthermore, this thesis
proposes the construction of an audio editor according to these principles, in
which OFFline, the concept audio editor described in chapter 1, can serve as a
conceptual example.

Briefly summarising the discussed design principles, it becomes apparent
how these design principles can interact.

Modular Editing is an approach to represent consecutive applied edits. It is
non-destructive, allowing any previously applied edit to be altered, removed
or repositioned in the chain of edits. Representing each editing action as a
module also allows adjustment of selections, input source(s) and output con-
figuration(s). It also facilitates batch editing (editing multiple files uniformly),
parameter automation (see chapter 3.6.1) and branch editing (see chapter 3.6.2).

The Source Browser unifies the various ways in which the audio source to
be edited is obtained. Whether this is a file on disk, a recording to be made
or a signal to be synthesised, ultimately it is an audio file that will be edited.
The Source Browser provides detailed information on selected files on disk,
as well as a means to find specific audio files based on audible characteristics
rather than by name. It also allows to create a batch of sources (files, recordings,
syntheses) that can then be uniformly edited using the modular editing
approach.

Representation and Manipulation are united in a single key element within
the graphical user interface of an audio editor. The choice of representation type
influences the visual cues offered to the user that tell them where to apply an
edit and what the effect is. It determines the ways in which a specific segment of
audio can be demarcated through selection, as making such a selection is often
carried out on this visual representation. It also determines the ways in which
audio can be manipulated through this visual representation.

The waveform and spectrum display – the most common visual representa-
tions of audio – need to be displayed together to provide sufficient visual cues
needed to precisely inspect and edit a variety of audio signals. For both types of
representation, a number of intuitive manipulations are proposed that in some
cases (spectral delay, time-varying pitch shifting) considerably simplify the
application of such an edit.

96

Smart Selections extend the standard single time or time/frequency selection
by introducing multiple selections, as well as ways in which these multiple
selections can be made. Defining multiple selections allows audible elements
such as beats, onsets or noises to be edited quickly and uniformly. It also
facilitates sonic composition techniques that involve cutting, reordering and
repeating multiple audio segments. Selections can be made manually, but can
also be made automatically, either by specifying selection criteria or by selecting
a single segment based on which similar segments are sought.

Layered Audio is a visual approach to combining multiple layers of audio.
It allows for defining a relationship between two layers (a blend), which can be
anything from mixing to modulating. It provides a transparent and uniform
graphical interface for a great variety of effects in which one audio source
influences another. Through this same interface, fundamental edits such as
cutting and particularly pasting become obvious and can easily be adjusted.

Sonic Composition, the composing of sounds, is what I aspired to do using
an audio editor. Within the context of the audio editor, sonic composition is
stimulated through parameter automation and branch editing.

Parameter automation is made possible in the audio editor using the
non-destructive modular approach. It allows for parameters to be varied in
time by defining a curve along the time axis. In the offline environment of an
audio editor, acausal operations such as tape speed variation now can also be
precisely controlled. Parameter automation can be applied to multiple selections
by defining a relative curve that is applied to each selected segment. Using
segment tables, parameter automation can also be used to define a different
parameter value for each individual selected segment.

Branch editing builds further on the combination of the modular approach
and parameter automation, allowing one edit module to apply multiple
variations of its edit by defining multiple settings for a parameter. Each
consecutive edit module can multiply the number of outputs by also defining
multiple parameter settings. A single input source can thus result in a multitude
of related output sources. This is an ideal approach for finding just the right
combination of parameter settings, and for finding sounds with the right
audible connection.

Extendability of the audio editor is provided through an integrated module
development environment, in which the user can inspect and modify existing
edit modules or create their own. Modules can be developed using a relatively
simple yet powerful scripting language. This language implicitly handles
details such as data types, multichannel audio, parameter automation and
dealing with (multiple) selections, hence clearing the view for the user to focus
on the edit process itself. By integrating this development environment directly
in the audio editor, it also becomes suitable for didactic purposes and rapid
prototyping of audio effects.

97

Each design principle on its own unites a number of existing features that in
existing audio editors are generally found disjointed. Attention to intuitive user
interfacing makes these design principles highly flexible in use by allowing a
variety of edits through a single principle, unveiling more creative and novel
methods of audio processing that are as yet uncommon to audio editors.

Taken together, these design principles provide a synergetic approach to
audio editing in which one principle builds on the other. This demonstrates
how pervasive the contribution of some of these design principles can be.
As noted before, by now some elements of these design principles have been
implemented in existing audio editors, but it is only through combining these
design principles that the audio editor is profoundly redesigned.

A redesign however doesn’t necessarily redefine the audio editor. Redefining
the audio editor means to define it again or differently. In this thesis this is
carried out by observing how various elements are implemented, and then
extending on existing approaches as well as introducing different approaches
to these elements. Through the presented design principles, the audio editor is
still a software with which one can edit audio. Characteristic features to such
software – file loading and recording, graphical display of audio, selecting,
cutting and pasting audio and audio processing – are all still available, yet the
principles through which these features are offered differ. The audio editor
is now more coherent, as fundamental aspects in the workflow have been
rethought and redesigned. Through the same design principles, the audio editor
is also extended to allow for more creative editing processes without requiring a
design tailored to these processes. In other words, the audio editor is still what
one may expect, but it is no longer the same; it has been redefined.

An actual implementation of the design principles has not yet been
developed. Hence, though theoretically improving coherency, flexibility and
creativity, it cannot yet be said if the proposed design principles indeed make
the audio editor better as long as no one has actually experienced them in
practice. However, through the various real-life scenarios discussed in this
thesis it becomes apparent that many edits can be made easier, and in turn
easier can be considered as better. Moreover, given that some elements of what
has been discussed are by now implemented in existing software, this may also
prove their practicability. Observing the preferences for the various user groups
in appendix 1.2.1, the design principles do provide in the market’s needs.

This thesis addresses just an instant of a continuously developing subject.
Though for decades indeed little has changed in the design and development of
audio editing software, the recent developments in mobile software cannot be
unaddressed. Mobile devices more and more often replace laptops and desktop
computers in audio setups. Though this is especially true in live performance
sets, in which the audio editor is seldom used, it is also true for mobile audio
recording solutions. In the production studio, in which the audio editor is

98

most often used, it is not as necessary to go mobile, so it will be unlikely that
the audio editor ceases to exist in a desktop format any time soon. That said,
the innovations in mobile and touch software give rise to increasingly smarter
and easier (more accessible) software applications. This makes it worthwhile to
re-evaluate the status quo and perhaps again redefine the audio editor at some
point in the next decade. For that, there now lies a foundation in the form of this
thesis.

99

OFFline
The Redefined Audio Editor

– a concept –

100

OFFline

As artefact of this research, a concept audio editor called OFFline is presented
that illustrates a possible implementation of the discussed design principles.
Throughout this thesis, mock-up screenshots of OFFline have been presented
to exemplify aspects of these design principles. In this section, a more
comprehensive overview of OFFline is provided.

A source
Any audio edited with OFFline is regarded as a source, whether it is an

audio file on disk, a generated signal or a recording. When opening OFFline,
it immediately displays the Source Browser (chapter 3.2), with which one or
multiple sources can be selected (figure 44). When selecting multiple sources,
this creates a batch of which all files will be edited uniformly.

The Source Browser provides default file selection as well as a sophisticated
finder, allowing the user to find files on disk based not on filename but on
audible properties, such as duration, envelope, spectral characteristics and
noisiness (figure 45a, also chapter 3.2.4).

Recording audio also takes place in the Source Browser, as this also leads to a
source that will be edited. The specification of input and output is provided as

Figure 44. OFFline at launch. The module chain is empty except for an input module.
The Source Browser is displayed to allow selecting one or more sources to load through
this input module.

101

well as input VU meters and an output waveform (figure 45b, also chapter 3.2.2).
The Source Browser also includes signal generators for creating test tones,

noise, chirps (or sweeps) and other basic signals (figure 45c, also chapter 3.2.3).

Figure 45. Different
modes in the Source
Browser: a) Finding an
audio file based on audi-
ble properties.

b) Recording an audio
file.

c) Generating an audio
file using signal
generators.

102

The module chain
As is visible in figure 46, a single input module is present by default. This

module can represent a single input source as well as a batch of multiple
sources. When a source is specified, a second module, visualisation, is added that
renders both a waveform and spectrum in the righthand side of the window
(figure 48).

There are now a number of ways to add
new edit modules to the chain. Selecting
audio and then copying, cutting or pasting it
are fundamental actions that almost always
are performed in the same way: selecting
audio is done by clicking and dragging over
the visual representation, copying, cutting
and pasting is done either through the
Edit menu or through keyboard shortcuts.
Whenever one of these actions is performed,
this automatically adds an associated module
for that edit action in the module chain
(figure 46). This way, the user does not even
need to be aware of the edit chain, allowing
him to focus on basic editing.

Similarly, quick edit actions that are applied
through interaction with a visual representation
are also automatically listed as edit module in the chain. These can include gain
change, pitch shifting, time stretching and many more, as described in chapter
3.3.4, Quick Editing.

An edit module can also be added by clicking the ⊕ button at the end of the
chain. A popup menu will appear that groups and lists all available edits that
can be applied (figure 47).

Editing
The user can thus choose to edit audio by only interacting with the visual

representation (quick editing), or by only specifying modules in the chain, or a
combination of these two approaches.
In this combined approach, an edit can
be roughly specified through quick
editing and then fine-tuned through its
associated edit module.

Quick editing can be done either
through the waveform display or the
spectrum display. Selections can be
made by dragging over a display, and
the kind of selection can be changed by
selecting the mode in the top-right of
the visualisations section (see figure 48

Figure 46. Basic actions represented
as modules: input, visualisation,
selection, cut and paste.

Figure 47. The edit module selector.

103

– options are time selection, rectangular selection and lasso, the latter two are
only applicable in the spectrum display). Automated selections, as discussed in
chapter 3.4, can be made by adding the respective module to the chain. When a
selection is made, its contents can be manipulated, as is illustrated in figure 48.
In this example, a time-frequency selection made in the spectrum display is
stretched and skewed, respectively resulting in transposition and spectral delay
of the selected audio.

OFFline supports defining multiple selections, which allows the user to edit
multiple segments uniformly and simultaneously. The selections can be defined
by hand or, as just mentioned, through automation, either by providing a
specification that includes details such as number of segments, segment length
and position, or by providing a benchmark segment that is used to select similar
segments of audio. Selections may overlap, allowing for segments of audio to be
processed multiple times (figure 49). This is particularly interesting for
techniques in which the selected segments are reordered and concatenated,
causing a segment that is selected multiple times to also occur multiple times in
the result of the reordering.

Parameter Automation
The visualisations can be used to define a great variety of edits, but they can

also be used to define time-varying parameters, by drawing a curve on top of
a visualisation along the time axis. The curve now specifies the time-varying

Figure 48. OFFline with a single audio file loaded. Both a waveform and a spectrogram
are displayed, visualising the audio at a specific point in the editing chain (here right after
the input module). A spectral edit is made through manipulating a spectral (time-fre-
quency) selection.

104

value of an edit parameter. This process is called parameter automation (chapter
3.6.1). Every one-dimensional numerical parameter is suitable for parameter
automation, as its value can change over time. Figure 50 illustrates how a
parameter can be automated, in this case the playback speed, following the
example described in chapter 3.6.1.

The curve is drawn on top of the waveform by setting breakpoints that can be
moved to a different time or value position. Using a HUD the breakpoints can
be precisely set to a specific time or value and an easing function can be defined
for a smooth transition to the next breakpoint. Through this same HUD the
user can specify multiple settings for the same parameter, resulting in multiple
variations of the edit. This technique of creating multiple outputs from one
input is called branch editing, which is described in chapter 3.6.2.

Layers
OFFline implements a principle called Layered Audio. In essence this is

multi-track editing, but it goes beyond simply mixing together tracks. Layered
Audio is foremost a means to visually apply edits in which one or more layers
of audio influence another or in which multiple layers are combined in a
specific way. Such edits can include ducking, modulation-based techniques

Figure 49. Automated selections based on a recipe that describes the number of selections
and the length to be a fixed value, but the position to be random. This causes certain seg-
ments to be selected multiple times.

Figure 50. Parameter automation in OFFline. Here the playback speed is varied over
time, as specified by the curve that is drawn over the waveform.

105

such as ring modulation and vocoding, side-chain compression, morphing and
many more.

When selecting such an edit, it requires specifying a secondary input source
(or more when applicable). The visualisation section will now show each input
source as waveform under each other. Here each waveform can be positioned
horizontally along the time axis. Figure 51 shows how this is done for vocoding,
which requires a modulator and carrier input source.

By visually layering the involved audio sources in an edit, this edit becomes
easier to understand and adjust. Layers can visually be repositioned relative to
each other, enabling the user to fine-tune their edit.

Module development
OFFline can offer a great variety of possible edits, but can also be extended

by the user to include even more edits. Through an integrated development
environment, edit modules can be constructed using a dedicated and powerful,
yet simple programming language. Figure 52 (also 41) shows how any existing
module – in this case the vocoding module from figure 51 – can be inspected
and adjusted. This way OFFline can be personalised to exactly meet the user’s
needs. In a similar fashion new edit modules can be constructed. In the top
section of the module edit screen, parameters can be defined by specifying a
parameter type (such as input source, slider, drop-down), a name to display
in the user interface as well as one for use in the module code (a code tag), and
aspects applicable for the selected type. In the lower section of the screen, the
code editor allows the user to write the audio processing code for the module,
providing access to the module parameters through their code tags. Intricacies
such as correctly processing multi-channel audio and handling selections are
dealt with implicitly by OFFline, making module development relatively easy.

Summary
OFFline demonstrates a possible implementation of the design principles

discussed in this thesis. It is recognisable as an audio editor in that it offers the

Figure 51. Audio layers for vocoding. The modulator is the file we loaded, displayed as the
topmost waveform. The carrier is a secondary input source loaded through the vocoding
module and is displayed beneath the modulator waveform.

106

same functionality that is common to most other audio editors: file loading and
recording, defining selections, cutting and pasting audio, a visual representation
of the audio as the most prominent user interface element and of course the
possibility to apply a variety of edits and transformations to the audio.

OFFline is different because it offers this functionality in a more coherent and
flexible way. Through combinations of modular editing, quick editing, multiple
selections, parameter automation and layered audio, a great variety of audio
edits become available in an intuitive, informative and non-destructive manner.

Figure 52. The module development environment in OFFline. A module can be created or
edited through this interface. Parameters can be specified for the graphical user interface,
and a code editor allows for programming the processing part of the module.

107

Appendices

1. Research Methods 108
1.1 Three Studies 108

1.1.1 A Questionnaire 108
1.1.2 A Comparison 109
1.1.3 A Follow-up 112

1.2 Results 113
1.2.1 User Groups 113
1.2.2 Students and Teachers 114
1.2.3 Average Usage 115
1.2.4 Types of Audio Editors 115
1.2.5 Basic Features 117
1.2.6 Audio Editor Preference 117
1.2.7 Qualitative Aspects 118

1.3 Summary 119

2. A Questionnaire 120

3. A List of Audio Editors 124

4. Audio Editor Features 126

5. A Follow-up 130

6. Digital Audio Workstations 133

7. Audio Programming Languages 137

108

1. Research Methods

1.1 Three Studies
Three studies have been conducted to define the audio editor:
1. A questionnaire on user background and usage determines user types

and audio editor usage for each user type.
2. A comparison between audio editors determines the current state of audio

editors, available audio editor types, and common features among these
audio editor types.

3. A follow-up questionnaire joins these first two studies by determining
which editors are used by which user types.

This section will describe how each of these studies was set up. The following
section will describe the results.

1.1.1 A Questionnaire
A survey was conducted in the form of an online questionnaire, for which

more than 700 people active in the field of sound & music technology were
invited to participate. The survey was divided into 5 pages:

1. Occupation & Method
A number of 7-point semantic differential scales (poles such as music ↔
sound / hardware ↔ software / graphical ↔ textual) was used to determine
the participants’ professional background and method of working.

2. Work Division
The participants specified how much time they spend on composition,
performance, recording, editing, synthesis and analysis.

3. Software Usage
Different types of audio software were listed, for which participants
specified how much they use each kind, through how many different
software applications. Additionally they could specify how much free and
commercial software they use, and if they use default settings or presets,
or personal presets.

4. Audio Editor Usage
The participants could specify for what purpose they use an audio editor
(editing, recording, conversion, analysis, synthesis, arranging), and which
features they regard as unimportant or essential.

5. Field Research
A list of audio editing software was provided, which could be
supplemented by the participant. Any available research literature
concerning audio editing software the participant might know of, was also
requested.

109

A definition of the software type audio editor was intentionally not provided
beforehand, because through their answers, the participants might help form
this definition. The survey was designed to answer two main questions:

Users: What kind of people use an audio editor?
• Which user groups can be distinguished?
• What are their characteristics?

Usage: How do they use an audio editor?
• What role does the audio editor have amongst other audio software?
• For which purposes is it used?
• Which features are essential?

Additionally, the survey would provide a list of audio editors that
would function as the basis for the second survey described further on, the
comparison.

Target Group and Turnout
The survey was aimed at people who are in any way involved in sound

and/or music technology. An invitation for participation was sent by email to
the entire list of members of the International Computer Music Association,
students and teachers from the Utrecht School of Music & Technology,
people from the Sonic Arts Research Centre at Queen’s University in Belfast,
and a large number of colleagues from the author’s personal address book.
Additionally, some participants proposed to forward the invitation to fellow
colleagues and/or students, which brought the total number of invited people
somewhere between 700 and 800. The survey website tracked around 350
visits, and registered some 230 completed surveys, of which after investigation
211 provided valid data. With this selection of people it is not the intention to
cover fully every possible user group, but just to gain a clearer understanding
of which user groups exist in the field. For that purpose this selection should
be appropriate for an acceptable representation. The survey was conducted
between July and November 2008.

1.1.2 A Comparison
The software type audio editor covers a collection of widely varying

applications. Each one displays a variety of features, principally including the
most general features, but also including less prevalent features. Only when one
has an overview of all editors, it is possible to say whether a feature is common
or not. A comparison was conducted between close to 50 audio editors, scoring
the available features, which resulted in such an overview. This comparison was
conducted in the first quarter of 2010.

110

Editors
The list of audio editors used for this comparison was initially assembled

from personal knowledge, then extended by reading literature1 and searching
on internet. Additionally, through the questionnaire the participants were asked
to list what they thought were audio editors. The full list of editors included
in this comparison can be found in the appendices. A number of software
applications from the original list are excluded from the comparison, for various
reasons; some were discontinued, others didn’t have any editing capabilities or

could better be categorised as a different kind of audio software. These editors
are listed in table 1.

Features
The list of features was initially quite small, but grew whenever an editor

revealed an unlisted feature. The features were grouped in the following
categories:

• Operating Systems
On which Operating Systems does the software run?

• Source Selection / Import / Export
How is the source audio material loaded, recorded, generated, organised?

[1] Mostly magazines such as Sound on Sound and Interface (a Dutch magazine for musicians
and producers – not to be confused with the similarly named predecessor of the Journal of
New Music Research)

Reason not included Applications

Discontinued
(no available literature)

Spark XL – TC Electronic
Sound Sculptor – Jeff Smith

Analysis / Visualisation
(no editing capabilities)

Sonic Visualizer – Queen Mary University London
Raven – Cornell Lab
INA Acousmographe – GRM

Synthesizer Coagula – Rasmus Ekman

MIDI editor Rosegarden – Chris Cannam & Andy Green

Digital Audio Workstation Pro Tools – Digidesign
Cubase / Nuendo – Steinberg
Logic – Apple
XO Wave – XO Audio
Digital Performer – MOTU
Ardour – The Ardour Company
Reaper – Cockos Inc.

No editing capabilities Jokosher – Jokosher

Table 1. Editors not included in the comparison.

111

• Work-flow / Basic Actions
What kind of editing tools are available?

• Effects
What kind of audio transforming processes (“effects”) are available?

• Plug-in Support / Extendibility
Through what kind of architectures can the software’s functionality be
extended?

• Miscellaneous
Various extra features, often presented in individual windows or
dialogues.

The full list of features can also be found in appendix 4. Qualitative features,
such as high resolution or phase-correct signal processing, are not taken in
account, since it is hard to express these quantitatively. A good example of the
consequence of this decision can be found in the two highest scoring audio
editors, being WaveLab and Audacity. WaveLab costs over $500, while Audacity
is free. The difference can mainly be found in aspects that influence how well
it can be used in a professional setting, such as format support, usability and
integrability.

Comparison Tool & Statistics
For each editor that was inspected, a checklist of its features had to be

stored. An online application was built to insert the audio editor data and
automatically (re)calculate comparison statistics. It can be found on
www.audio-editor.info/comparison. Audio editors can be sorted by name, as
well as by the following values:

• Feature count
How many features the audio editor includes.

• Score
• Similar to feature count, but features are weighed by their occurrence. If

the score is much higher than the feature count, the included features are
the more common ones.

• Average match
An indication for how well an audio editor matches to each other audio
editor in the comparison. The number of features that an audio editor has
in common with an other audio editor is expressed as a match percentage.
The average of the match percentages against all other audio editors in the
comparison is expressed as the average match of an audio editor.

Features can be listed by category, as well as by weight (in how many audio
editors it is included) and score (similar, but weighed by the feature count of the
audio editors in which it is included).

These statistics provide insight in which audio editors are the most versatile,
the most common or most eccentric, as well as which features are most
common. The results follow in section 1.2 of this appendix.

112

1.1.3 A Follow-up
In order to join the results of the questionnaire and the comparison, a shorter

questionnaire was written, as a follow-up. This consisted of only 5 questions:

1. With which user group(s) do you identify yourself?
2. Are you a student or teacher?
3. When choosing audio editing software, which quality / qualities do you

prefer?
4. Which of the following applications do you use?
5. What, do you believe, is missing in current audio editors?

All questions except question 5 are multiple-choice. The options for question
1 are the user groups deduced from the questionnaire, which are listed in the
following section. The qualities that can be selected for question 3 are listed
below, and the applications listed as answers for question 4 are all audio editors
that are included in the comparison.

• Speed
Fast rendering waveforms, swift processing

• Accuracy
Sample-accurate control, precise processing parameters

• Quality
Pristine processing, without artefacts that might occur from resampling,
resynthesis or (de)compression

• Simplicity
Easy interface, no unnecessary adornments, basic actions

• Diversity
A wide range of functions, all-in-one, can be used for different purposes

• Compatibility
Can be used in different set-ups, on different Operating Systems, with
different file types

• Connectivity
Fits in a digital studio with all sorts of signals and files moving between
applications and devices

• Creativity
Flexible, including non-standard functionality, allowing creative editing

• Personality
Can be personalised through settings and presets

• Extendibility
Can be extended through programming or scripting

This follow-up should provide insight in which user group uses which
audio editor type(s). The comparison only included quantitative data, and
therefore question 3 is included to gain some understanding of quality as
well. For this article, data was gathered from 93 participants, 43 of which had

113

also participated in the first questionnaire. The follow-up was conducted in
November 2010.

1.2 Results

1.2.1 User Groups
Participants were asked for a concise description of their occupation. Most

of them used conventional descriptors such as “producer”, “sound designer”
or “composer”, though in practice people gave them a highly personal

Classification Activities Preferences

Sound Designer recording
editing
synthesis

•	 sample-accurate, nondestructive edits
•	 batch editing
•	 various kinds of (fast rendering) analysis

methods
•	 multiple channels
•	 advanced synthesis options

Producer recording
editing
sequencing

•	 efficient recording
•	 batch editing
•	 audio file management

Audio Engineer recording
editing
analysis

•	 efficient recording
•	 batch editing
•	 personal presets
•	 audio file management

Composer /
Sound Artist

composing
editing

•	 plug-in support
•	 fast waveform and spectrogram
•	 signal generators
•	 nondestructive editing

Composer /
Researcher

composing
editing
conversion
analysis
programming

•	 format conversion
•	 analysis methods

Performer performance
composition

•	 memory usage
•	 personal presets

Software
Developer

programming
synthesis
analysis

•	 technical terminology

Table 2. Classification of audio editor users. This table lists their everyday activities, of
which those that are performed using audio editors are emphasised. It also lists which
features each group generally regards as essential in audio editing software. (September
2010)

114

interpretation, resulting in widely varying characteristics among people with a
similar occupation. These descriptors however appeared to be the most useful
starting point for categorising participants. Between all participants a match
was calculated, based on the answers they gave. An algorithm used these
matches to group users. The algorithm was fine-tuned using the descriptors
participants provided. With participants grouped together, a piece of software
was written to analyse the questionnaire data.

For each group, answer averages and differences were identified, as well
as a common conventional descriptor. A descriptor such as “computer music
composer” was derived from similar descriptors each participant in this group
gave themselves. Among all groups, the averages and differences were
compared to see which questions were answered distinctively by individual
groups, which were answered commonly, and on which questions participants
within groups didn’t agree. To further compare groups, a self-organising
map was used. A self-organising map (SOM) reduces the dimensionality of
vectors (feature sets), and can be used to map and organise multidimensional
data – in this case for each participant the answers to all questions – into two
dimensions2, making it possible to see which participants answered similarly.
Each participant was colour-coded according to the group he was identified
with. This way, an image was created of which groups were well distinguisha-
ble and which groups mingled together.

After carefully merging overlapping and indistinctive groups, a selection
of occupations remained. The conventional descriptors did provide a fairly
consistent image of each occupation’s background, roughly corresponding to
generally understood characterisations associated with it. For this research the
following classifications are selected, in descending order according to how
much a group uses audio editors (table 2).

These groups were also listed in the follow-up, where participants were asked
to select with which user group they identified themselves. They were explicitly
asked to only select an option if it applied considerably, but more than 75% of
the participants listed 2 or even more user groups with which they identified.

Observing the activities listed in table 2 reveals that no single user group has
a set of unique activities; each user group overlaps in activities with one or
more other groups. This might explain why so many participants are active in
multiple occupations.

1.2.2 Students and Teachers
Not every participant described their occupation as a profession such as

one of the above. Some stated their occupation was “student”, “teacher” or
“professor”, occasionally also providing some area of expertise. Students and
teachers might be active in any of the above professions, though most teachers
had a great similarity with the “researcher” (which was confirmed through the

[2] The self-organising map only uses the two spatial dimensions to distribute participants; no
specific parameters are mapped along the axes.

115

follow-up), who often happens to be connected to an educational institute.
Students, often still developing a focus, on average provided the same answers
as teachers, though students were more moderate in their answers. Teachers,
as it seems, have a clear idea of how they spend their time on their occupation,
and have developed a firmer opinion about what is important and what not.

1.2.3 Average Usage
An audio editor is a tool that is used very often, compared to other kinds

of audio software. It is primarily used for basic editing actions (cut/pasting,
amplitude adjustments) and recording, but in a lesser degree also for conversion
and analysis of audio files. Some also use an audio editor for synthesis (using
signal generators), or for arranging audio files. Features essential to almost
everyone include a waveform display, the ability to record audio, multichannel
(2+) support, and a good undo mechanism (undo is explained in detail in
chapter 3.1).

1.2.4 Types of Audio Editors
Various types of audio editors could be identified from the statistics derived

from the comparison. Figure 53 shows a self-organising map3 that was used to
identify groups of audio editors with common features. The resulting audio
editor types are listed in table 3.

The highest scoring editors, such as the above mentioned WaveLab and

[3] See User Groups for a description of self-organising maps.

Figure 53. A self-organising model of audio editors. In this model, audio editor features
are compared to organise the editors in a two-dimensional plane.

116

Audacity, are all-round multi-track audio editors, which can be utilised for multiple
purposes, but the choice depends on price, quality and operating system.
WaveLab is only available for Windows, while Audacity is cross-platform, and
free, making it the application of choice for various audio hardware developers
to ship it with their products.

The opposite of all-round audio editors, basic audio editors can be identified
by looking at how much they match with other editors (this is called the average
match in the statistics). Editors such as Fast Edit, Cacophony and Fission, having
a high average match, are focused solely on providing the most basic editing
features. These audio editors are the quick-cut-and-paste applications.

The Apple Mac Operating System is the most supported platform, quickly
followed by Microsoft Windows. Less editors are available for the GNU/Linux
Operating Systems, though Audacity is among them, able to provide in most

Type Description Examples

Wave Editor See Terminology for a description

Spectrum Editor See Terminology for a description AudioSculpt,
SPEAR, iZotope RX

All-round Editor Multipurpose audio editor, with wide
supply of processing, synthesis and anal-
ysis features. Multitrack editors resemble
DAW’s (without musical understanding.
See Scope).

Audacity, Amadeus
Pro, Soundtrack Pro

Basic Editor Opposite of all-round, only including
basic actions. Basic editors often excel in
innovative user interfaces.

Fission, Cacophony,
Eisenkraut,
WaveStudio

List Editor Operating either on multiple files,
presented as file lists or folders, or on
individual files directly from a direc-
tory structure. Batch editors and Asset
Management applications are included in
this category.

Barbabatch,
Snapper, Sample
Manager,
AudioFinder

Processors Not so much an editor, having no basic
editing capabilities like selection, cut/
paste. Processing is applied to the entire
file.

SoundHack,
Mammut,
Argeïphontes Lyre

Partial Editor Sinusoidal-model based partial editing as
basis

SPEAR, Otkinshi

Nondestructive
Editor

Operations can be altered at any time Sample Manager,
Soundtrack Pro

Abstract Editor Extreme processing with fuzzy parame-
ters

Argeïphontes Lyre,
Mammut

Table 3. List of possible audio editor types, some of which can be discriminated from the
self-organising map.

117

needs.
One remarkable outcome was that one of the first audio editors in history, the

archetypical Sound Designer, ended up almost in the centre of the self-organising
map, confirming most editors have something in common with it.

1.2.5 Basic Features
The comparison is dominated by wave editors, applications built around an

amplitude waveform display as the centrepiece of the Graphical User Interface.
Such editors can quickly load an audio file through a standard dialog or record
audio from an external input, thereby displaying the waveform of the audio.
Dragging over this waveform lets the user select a portion of the audio file,
which can than be cut, copied and/or pasted again. Volume can be adjusted
(gain, normalise) over the entire file or the selection. In most editors, all of
these actions can also be undone. More than two-thirds of all editors includes
this basic functionality. Every feature beyond that is supported in less than
two-thirds of all editors, and thus might be considered as nonstandard.

Interesting is that for both time and frequency domain, the ability to visualise
it seems as common as to perform transformations in it. The frequency domain
is a transformed version of the time domain. In the time domain audio can be
observed as time-varying amplitudes. Using mathematical techniques such as
the Fourier Transform, a frequency analysis can be made on a period of time,
revealing the harmonic and phase spectrum within that period of time. These
spectra together form what is called a frequency domain representation (Risset
1991, p.9). A frequency domain representation is both more difficult to read and
to implement; it requires a specific knowledge. Perhaps due to this relatively
complex required transformation and/or possible audible artefacts, frequency
visualisations and transformations are less implemented in audio editors than
their time domain counterparts. Time and frequency domain will be explained
in more detail in chapter 3.3, Representation & Manipulation.

Less common features, such as additional analysis methods, batch editing
(explained in chapter 3.1), signal generators (chapter 3.2.3), expression evaluator
or parameter automation (chapter 3.6) are in many cases added in a separate
dialog window. Perhaps this is because redesigning the entire workflow so that
its features are more completely integrated, hence offering a workflow that is
unlike the more traditional workflow such as can be found in the archetypical
Sound Designer, might confuse the user.

1.2.6 Audio Editor Preference
Audacity, the highest scoring audio editor when looking at included

features, is also the most used editor among all user groups, with 62 out of 94
participants using it. Surprisingly it is followed by SPEAR (44 participating
users) and SoundHack, both spectrum editors. Though all three are freely
available which might explain their popularity, the latter two are not among the
most predominant editor type, being Wave Editors (which includes multi-track

118

editors). That this isn’t per se the most used kind of audio editor is also
confirmed when looking at the top 10 editors (table 4), which includes iZotope
RX at 5th and AudioSculpt at 7th position, both also spectrum editors.

No real preference for a specific type of audio editor by a specific user group
can clearly be identified. Notable however is that some audio editors that were
developed in the academic domain, particularly Snd and AudioSculpt, are also
mostly used by people active in this area.

1.2.7 Qualitative Aspects
As one might expect, high quality processing at high speed is valued by most

participants, quality being especially essential to sound designers and audio
engineers. Speed is considerably more essential to producers and engineers
than to researchers, which is perhaps attributable to different demands in
commercial and academic sectors. Producers and engineers responded much
alike in the first questionnaire as well as the follow-up. For instance, both also
have a relatively higher need for diversity in software functionality compared
to other participants. One difference though is that audio engineers seem to
demand less room for creativity compared to other participating user groups.
This might confirm a common work division in a studio production, being that
the engineer takes care of the technical part of the production, executing the
demands of the producer or artist who are more concerned with the creative
part.

No further remarkable qualitative highlights were revealed by the follow-up,
except from more or less predictable outcomes, such as the greater need for
compatibility and connectivity among performers (as performance setups might
change with each venue) and the relatively higher interest in extendibility
(through programming, scripting and other software development) among
software developers.

Audio Editor Users Editor Type

1 Audacity 62 All-round Multi-track

2 SPEAR 44 Spectrum (sinusoidal model)

3 SoundHack 33 Spectrum (processor)

4 Peak Pro 23 Wave Editor

5 iZotope RX 15 Spectrum Editor

6 Audition 15 All-round Multi-track

7 AudioSculpt 12 Spectrum Editor

8 Snapper 11 List Editor

9 Soundtrack Pro 10 All-round Multi-track

10 WaveLab 10 All-round Multi-track

Table 4. Top 10 Audio Editors, among 94 participants

119

1.3 Summary
The audio editor is an umbrella term for a number of different audio editing

software types, ranging from wave editors to spectrum editors, and from basic
to all-round multi-track audio editors. The majority includes a common set of
basic features (file loading / recording, waveform display, selecting, cutting /
pasting, amplitude adjustment, undo) that was also found in the earliest audio
editors, which were little more than a virtual audio tape recorder and cutting
table.

Audio editors are used in a wide variety of occupations, and for different
purposes (mainly basic editing and recording, but in lesser degree also
conversion and analysis). A number of user groups could be discriminated by
looking at occupation, though many participants identified themselves with
multiple occupations. No clear preference for an audio editor type by any user
group could be identified.

Though no one definition of “the audio editor” can be formulated, the area
covered by it and users associated with it are identified, forming a usable lattice
for further research.

120

2. A Questionnaire
The first of three studies used to define the audio editor was an online

questionnaire. It focussed on user background and usage. It was used
to determine user types and audio editor usage for each user type. The
questionnaire is listed in this appendix.

Occupation & Method
What is more important in your work?
 music □ □ □ □ □ □ □ sound □ N/A

What is the nature of your work?
 acoustic □ □ □ □ □ □ □ electronic □ N/A
 analogue □ □ □ □ □ □ □ digital □ N/A
 live □ □ □ □ □ □ □ studio □ N/A

How do you approach your work?
 emotional □ □ □ □ □ □ □ formal □ N/A
 hardware □ □ □ □ □ □ □ software □ N/A
 graphical □ □ □ □ □ □ □ textual/notation □ N/A
 abstract □ □ □ □ □ □ □ sample-accurate □ N/A
 top-down □ □ □ □ □ □ □ bottom-up □ N/A

What is your background?
 music □ □ □ □ □ □ □ technology □ N/A

How would you describe your occupation?
 […]

How many years have you been involved in this?
 years □ <5 □ <10 □ <20 □ 20+ □ N/A

Work Division
How often do you busy yourself with the following activities?
 composition never □ □ □ □ □ very often □ N/A
 performance never □ □ □ □ □ very often □ N/A
 recording never □ □ □ □ □ very often □ N/A
 editing never □ □ □ □ □ very often □ N/A
 synthesis never □ □ □ □ □ very often □ N/A
 analysis never □ □ □ □ □ very often □ N/A

How much time of the total time you spend on your occupation, is for
(personal) experiments?

 0% □ □ □ □ □ □ □ □ □ □ □ 100%

121

Software Usage
How often do you use the following types of software?
 audio editor
 never □ □ □ □ □ very often □ N/A
 sequencer
 never □ □ □ □ □ very often □ N/A
 digital audio workstation
 never □ □ □ □ □ very often □ N/A
 graphical programming environment
 never □ □ □ □ □ very often □ N/A
 textual programming environment
 never □ □ □ □ □ very often □ N/A
 notation software
 never □ □ □ □ □ very often □ N/A
 synthesizer (including plug-ins)
 never □ □ □ □ □ very often □ N/A
 effect plug-ins
 never □ □ □ □ □ very often □ N/A

How many different applications/packages of the following types of
software do you use?

 audio editor
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 sequencer
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 digital audio workstation
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 graphical programming environment
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 textual programming environment
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 notation software
 □ 0 □ 1 □ 2 □ 3 □ more □ N/A
 synthesizer (including plug-ins)
 □ 0 □ <5 □ <10 □ <20 □ 20+ □ N/A
 effect plug-ins
 □ 0 □ <5 □ <10 □ <20 □ 20+ □ N/A

How often do you use the following kinds of software?
 free/open source never □ □ □ □ □ very often □ N/A
 Commercial never □ □ □ □ □ very often □ N/A

How often do you rely on…?
 default parameter settings never □ □ □ □ □ very often □ N/A
 factory presets never □ □ □ □ □ very often □ N/A
 personal presets never □ □ □ □ □ very often □ N/A

122

What kind of terminology do you find easier to use?
 abstract □ □ □ □ □ □ □ technical □ N/A

Audio Editor Usage
How would you describe the role of audio editing software in your work?
 supportive □ □ □ □ □ □ □ central □ N/A

For what purpose do you use audio editing software?
 basic editing never □ □ □ □ □ very often □ N/A
 recording never □ □ □ □ □ very often □ N/A
 conversion never □ □ □ □ □ very often □ N/A
 analysis never □ □ □ □ □ very often □ N/A
 synthesis never □ □ □ □ □ very often □ N/A
 arranging never □ □ □ □ □ very often □ N/A

How much do you value the presence of the following features in audio
editing software?

 recording
 unimportant □ □ □ □ essential □ N/A
 arranging
 unimportant □ □ □ □ essential □ N/A
 batch editing
 unimportant □ □ □ □ essential □ N/A
 non-destructive editing
 unimportant □ □ □ □ essential □ N/A
 unlimited undo/redo’s
 unimportant □ □ □ □ essential □ N/A
 effect presets
 unimportant □ □ □ □ essential □ N/A
 sample-accurate control
 unimportant □ □ □ □ essential □ N/A
 control over memory usage
 unimportant □ □ □ □ essential □ N/A
 single-window User Interface
 unimportant □ □ □ □ essential □ N/A
 extendibility (programming interface)
 unimportant □ □ □ □ essential □ N/A
 plug-in support (VST, AU, LADSPA)
 unimportant □ □ □ □ essential □ N/A
 >2 channel audio support
 unimportant □ □ □ □ essential □ N/A
 midi-to-audio
 unimportant □ □ □ □ essential □ N/A
 module file import (*.mod, *.xm …)
 unimportant □ □ □ □ essential □ N/A
 waveform display
 unimportant □ □ □ □ essential □ N/A

123

 fast waveform rendering
 unimportant □ □ □ □ essential □ N/A
 frequency analysis
 unimportant □ □ □ □ essential □ N/A
 signal generators
 unimportant □ □ □ □ essential □ N/A
 more advanced synthesis options
 unimportant □ □ □ □ essential □ N/A
 audio file management
 unimportant □ □ □ □ essential □ N/A

Research
Do you know of any audio editors other than the following?
(A list of audio editors was provided)
 […]

Do you know of research literature on audio editing software?
 […]

124

3. A List of Audio Editors
Following are all audio editors included in the comparison described in

chapter 2. The version number refers to the version that was used in the
comparison, not the current version.

Editor name Developer Version Price

Acoustica Premium Acon Digital Media 4.1.0 $ 119,90

Amadeus Pro HairerSoft 1.4.5 $ 40-

Argeïphontes Lyre Akira Rabelais 5.06 Free

Audacity Dominic Mazzoni, Roger Dannenberg 1.26a Free

Audio Editor Master Metrix Audio Solution Inc. 5 Plus $ 29,95

AudioFinder Iced Audio 4.9.8 $ 69,95

AudioSculpt IRCAM 2.5 € 250,-

Audition Adobe 3 $ 349-

Barbabatch Audio Ease 4.0.33 € 403,41

Cacophony Richard Bannister 1.3.1 $ 25-

DAP Richard Kent 2.1.5 Free

DC7 Diamond Cut Productions 7.15 $ 149,99

DSP-Quattro i3 s.r.l. 3.1.2 $ 199-

Eisenkraut Hanns Holger Rutz 0.72 Free

Fast Edit Minnetonka Audio Software Inc. 4.0 $ 199-

Fission Rogue Amoeba 1.6.8 $ 32-

FlexiMusic Wave
Editor

FlexiMusic 6.3.0.1 $ 20-

GoldWave GoldWave Inc. 5.55 $ 49-

iZotope RX iZotope 1.2.1 $ 349-

Mammut Oyvind Hammer, Kjetil Matheussen V0.58 Free

MetaSynth U&I Software 5.0 $ 599-

Otkinshi Naotoshi Osaka, Takafumi Hikichi

Peak Pro BIAS 6.1.1 $ 399,95

QuickAudio Sion Software 2.0 Free

ReZound David W. Durham Free

Sample Manager Audiofile Engineering 3.1 $ 79-

125

Editor name Developer Version Price

Snapper Audio Ease 1.0.11 $ 59-

Snd Bill Schottstaedt 11 Free

SndBite Bill Poser 3.3 Free

Sound Designer Digidesign $ 995-

Sound Forge Pro Sony 10.0b € 351,95

Sound Studio Freeverse 3.6 $ 79,99

Soundbooth Adobe CS4 $ 199-

SoundEdit 16 Macromedia $ 299-

SoundHack Tom Erbe 896 Free

Soundtrack Pro Apple 2.0.1 $ 500-

SPEAR Michael Klingbeil 0.7.4 Free

Sweep Conrad Parker 0.9.3 Free

Total Recorder High Criteria Inc. 8.1 $ 35,95

TwistedWave TwistedWave 1.8 $ 79,90

Wave Editor Audiofile Engineering 1.4 $ 79-

Wave Editor Abyss Media Company 3.0.3.1 Free

WaveLab Steinberg 6.0 $ 549,99

WavePad NCH Software 4.25 Free

WaveStudio Creative Technology Ltd. 7.10.17 Free

WaveSurfer Kåre Sjölander and Jonas Beskow 1.8.5 Free

Wavosaur Wavosaur 1.0.5.0 Free

WireTap Studio Ambrosia Software Inc. 1.1.0 $ 69-

126

4. Audio Editor Features
Listed here are all features on which the audio editors in the preceding

appendix (48 in total) were compared. With each feature the number of audio
editors in which this feature is included is listed.

Operating Systems
• Mac OS (28)

The software runs on a Macintosh Operating System, such as Mac OS X.
• Windows (24)

The software runs on a Microsoft Windows Operating System.
• GNU/Linux (9)

The software runs on a GNU/Linux Operating System.

Source Selection / Import / Export
• Default file dialog (46)

A standard file dialog is presented to select a file from the disk. Playback
of audio files may be integrated.

• Recording (34)
The software provides means to record audio data, either from a
hardware input (possibly a microphone), or from a virtual input (being
another software application running on the same machine).

• Synthesis / Signal generators (19)
The software includes rudimentary synthesis models to generate
waveforms, noise or more complex signals to be used as source material.

• Project sound library / Sound hierarchy (10)
The software facilitates organisation of sound files currently opened or
relating to a project currently opened.

• Non-audio format import (6)
The software can open and process non-audio file formats (such as MIDI,
SDIF, imagery, analysis data etc.) and convert these into audio.

• Non-audio format export (8)
The software can analyse audio files and write non-audio file formats
derived from this analysis to disk (such as MIDI, SDIF, imagery, analysis
data etc.)

Workflow / Basic Actions
• Waveform-centred workflow (39)

A waveform display is the centre part of the Graphical User Interface of
the software, through which most audio operations are performed. The
software is thus a “Wave Editor”.

• Manual selection (42)
A selection on the time axis can be made in a visualisation of the audio,
by dragging over it.

127

• Nonstandard Selection (7)
Selections other than a single portion of time (with amplitude or
frequency information) can be made, such as multiple selections
(manually or automated), frequency bands, or time/frequency chunks
(a frequency band at a time segment), either automatically or manually,
using a rectangular or lasso-like selection tool.

• Cut / Paste / Copy (41)
Basic editing actions (cutting, pasting and copying a portion of audio) are
included in the software.

• Special Pasting (19)
Audio data from the clipboard can be pasted at a certain position, being
inserted before, mixed with or replacing the adjacent audio data. A
fade-in/out of the clipboard data might be specified.

• Track mixing (10)
Multiple tracks are provided to arrange (at the time axis) and mix audio
material.

• Envelope drawing (8)
Envelopes for amplitude or other parameters can be drawn directly over
a visualisation of the audio.

• Markers / Labels (30)
The software allows placing markers or labels at certain positions on the
timeline.

• Unlimited Undo / Redo (36)
Subsequently performed operations can all be undone one by one, and
redone if no new operation was performed after undoing it. There is no
limit to the amount of operations that can be undone or redone this way.

• Non-destructive (8)
Subsequently applied operations can each be altered at any point in time,
without having to undo any other operation.

• Individual sample alteration (12)
By zooming in far enough so that individual samples (amplitude points)
can be distinguished, dragging or drawing on such a point changes its
amplitude value (which can be useful to manually erase spikes).

• Varispeed / Scrubbing (21)
The audio can be played back at different speeds, or can be scrubbed
(moving the playhead manually back and/or forth over the audio).

• Batch Editing / Processing (21)
The software provides a dialog for selecting a batch of files, and equally
processing these automatically.

• Effect Chain (10)
A bit similar to batch editing, a chain of effects can be preset, to be
applied again and again over currently loaded audio data.

• Expression Evaluator (1)
A dialog is provided to program and execute/generate simple audio
processes or signals using a basic syntax.

128

• Layered Audio (1)
The software provides alternative audio track layering. Default track
mixing simply sums the amplitudes of all tracks. Audio Layering enables
blending (masking, ring modulation, ...) consecutive tracks, much as
Photoshop can blend graphic layers in different ways.

Effects
• Amplitude Adjustment (43)

The software includes audio operations and effects affecting amplitude,
such as amplification, normalisation and compression.

• Frequency Adjustment (26)
The software includes audio operations and effects affecting frequency
(or frequency band amplitude), such as filtering, equalisation, Bass Boost
/ Loudness and spectral modifications.

• Noise Removal (16)
The software includes audio operations and effects for removing noise,
artefacts and other undesired aspects of sound.

• Tempo / Pitch Change (31)
The software includes time-preserving pitch alteration and/or pitch-pre-
serving time alteration.

• Delay and Reverb (21)
The software includes audio operations and effects based on delay, such
as chorus, echo and reverb.

• Unusual / Radical Effects (11)
The software includes audio operations and effects that may alter the
character of the sound considerably, more applicable for artistic purposes
than for enhancing audio quality. Effects might include vocoding,
convolution, freezing, and the Phase Vocoder.

Analysis / Visualisations
• Time domain visualisations (44)

The software includes visualisations based on time domain information
(not requiring any complex transformation such as FFT). The standard
waveform, a decibel plot, etc.

• Frequency domain visualisations (28)
The software includes visualisations based on frequency domain
information (requiring a Fourier- or similar analysis). Spectrogram.

• Pitch / Partial Tracking (6)
The software is capable of tracking the time-varying fundamental pitch
or frequencies of individual components of a sound.

Plug-in Support / Extendability
• VST / AU / LADSPA (22)

The software supports one or more plug-in architectures, which allow the

129

user to apply external effects plug-ins.
• Scriptable (9)

The software allows scripts, written e.g. in AppleScript, to be executed to
automatically perform certain tasks within the software.

• Programming (5)
The software can be extended through an integrated programming
environment, an API (Application Programming Interface), or by
providing a custom plug-in architecture.

Miscellaneous
• Edit / Insert Meta Data (21)

Meta Data, such as ID3, can be inserted or edited.
• CD Mastering / Burning (11)

The software provides means to master and burn a CD.
• Corrupt File Repair (1)

The software includes means to repair files that cannot initially be loaded,
due to errors in the raw data structure of the file.

130

5. A Follow-up
An online follow-up questionnaire was designed to join the first two

studies (the questionnaire in appendix 1 and the audio editor comparison)
by determining which editors are used by which user types. The user type
definitions are not universal, they are resultant of the questionnaire (appendix
2) and only apply in the context of this thesis.

1. With which user group(s) do you identify yourself?
Multiple answers are possible, but do so only if an answer applies considerably to you.

• Sound Designer
A Sound Designer acquires, specifies and manipulates audio, to create
a desired effect or mood. This involves manipulation of previously
composed or recorded audio, or composition of new audio material.
Sound Design is employed in a variety of areas including film, TV
commercials and games.
emphasis: Sound

• Producer
A Producer oversees and manages the recording of an artist’s music,
supervising the entire process through mixing and mastering, shaping
the music according to an overall creative vision for the production.
The Producer might also be responsible for arranging and managing
recording sessions, musicians, budgets and other entrepreneurial aspects.
emphasis: Music

• Audio Engineer
An Audio Engineer records, edits, manipulates, mixes and/or masters
sound by technical means in order to realise an artist’s or producer’s
creative vision. This can be employed amongst others in music
production, post-production for video or film, broadcasting, live sound
reinforcement and games. In smaller productions the engineer is often
also the producer.
emphasis: Technology

• Composer / Sound Artist
A Composer / Sound Artist makes extensive use of synthesisers and
effects in his compositional process. In many aspects a Sound Artist is the
same as a Sound Designer, though there is a much greater emphasis on
composition.
emphasis: Composition and Sound Synthesis

• Researcher
A researcher (often connected to an institute as professor or educator)
explores (new) methods for music composition and / or sound
processing, working on the foundations of music production rather than
the end result.
emphasis: Music- and Sound Technology

131

• Computer Music Composer
A composer of computer (or electronic) music focusses on music
production, sound design (and sonic composition) and the development
of music systems, exploring possibilities of composing with computers
and electronic devices. Composers of computer music have much in
common with a “researcher”, though they often focus more on practice
rather than theory.
emphasis: Music- and Sound Technology

• Performer
The Performer composes and / or produces music from the viewpoint of
a musician (instrumentalist), while considering an audience. Activities
may include performance, production and post-production, but also
design of new instruments or playing methods.
emphasis: Music and Play

• Software Developer
A Software Developer (for sound or music) can be designer and computer
programmer of software that is used in music production, sound
synthesis, manipulation and analysis, or (algorithmic) composition. The
latter requires a background in musical composition, whilst the others
require expertise in digital signal processing.
emphasis: Digital Technology

• Other
None of the above descriptions apply to you.

2. Are you a student or teacher?
• Student
• Teacher
• Both
• Neither

3. When choosing audio editing software, which quality /
qualities do you prefer?

• Speed
Fast rendering waveforms, swift processing

• Accuracy
Sample-accurate control, precise processing parameters

• Quality
Pristine processing, without artefacts

• Simplicity
Easy interface, no fancy stuff, basic actions

• Diversity
A wide range of functions, all-in-one, can be used for different purposes

• Compatibility
Can be used in different set-ups, on different Operating Systems, with
different file types

132

• Connectivity
Fits in a digital studio with all sorts of signals and files going between
applications and devices

• Creativity
Flexible, including non-standard functionality, allowing creative editing

• Personality
Can be personalised through settings and presets

• Extendability
Can be extended through programming or scripting

4. Which of the following applications do you use?
(Here a list of all audio editors used in the comparison was provided)

5. What, do you believe, is missing in current audio editors?
 […]

133

6. Digital Audio Workstations
In defining the audio editor, the software type called Digital Audio

Workstation1 has been mentioned in the exegesis (see 2.2.1.2: Scope and
appendix 1.1.2: Comparison) but deliberately not explored in detail. So far the
discussion has focussed on delineating the software type audio editor, and
although most Digital Audio Workstations contain an audio editing section,
DAW software itself is distinctively different. Digital Audio Workstations
typically include multitrack audio recording and sequencing capabilities, as
well as editing and mixing sections. Modern DAW’s include MIDI recording,
editing and playback (sometimes in the form of an extensive music notation
editor), as well as sophisticated audio routing capabilities and plug-in support
for software effects and instruments.

A Digital Audio Workstation can be used for editing audio, but that is just
one of its functions. It was kept out of the comparison of audio editor types,
because its functions go beyond audio editing. However, though DAW’s were
excluded from the discussion what an audio editor is, they (or at least their
editing sections) can be included in surveying what an audio editor can do.
The complete list of the DAW’s that have been surveyed can be found in the
appendices.

Common Ground
Audio editing in a DAW is done at the level of a clip (other names are

region, item, event or object), a single piece of audio positioned on a track. In the
user interface, a clip is represented by a rectangular block, commonly with a
waveform drawn into it, that can be dragged and dropped horizontally to a
different point along the time axis, or vertically to a different track. Many audio
editors (particularly multi-track editors) adopt a similar concept for the visual
representation of a segment of audio. Aside from repositioning, a clip can also
be trimmed, removing audio from the start or the end. It can be copied and
pasted, cut, split, spliced and reversed. A very common feature that is accessible
through the graphical user interface of a clip are fades (in and out). These can
often be applied simply by dragging the edges of a clip inwards, from a specific
corner or handle. Equally common is overall gain adjustment of a clip, which
can be applied by either dragging vertically inside the clip, adjusting a gain line
that runs through the clip or by adjusting a pop-up gain knob or slider.

Different Scope
The main difference in editing capabilities between audio editors and DAW’s

can be attributed to the difference in scope. As described in chapter 2.2.1.2, an

[1] The term Digital Audio Workstation historically describes a specialised hardware setup
(possibly computer-based) that facilitates recording, editing and producing audio. With the
advent of software that was capable of facilitating this in a single application, the term Digital
Audio Workstation became a more general term, identifying either hardware or software that
facilitates audio recording, editing and producing.

134

audio editor doesn’t normally use musical markers or reference points, whereas
a DAW includes various musical reference points, such as pitch, tempo, metre
- its representations are essentially musical. A DAW has a timeline that can
be divided in clock time (seconds and minutes) as well as in musical time
(beats and bars). Musical tempo and timing are core concepts in DAW’s. Most
DAW’s also offer MIDI note sequencing for playing virtual instruments and
synthesisers, making tuning also a core concept.

Tempo & Timing
In most DAWs tempo and timing can be controlled very precisely. A bar can

be defined, as can tempo, and these can be specified to changed over time. The
bars and beats are displayed along the time axis. Beats have a fixed width; a
tempo change will make the play-head progress at a different speed over the
beats. Audio clips can be positioned freely at any point along the time axis,
or snap to bars, beats and subdivisions, easing the synchronisation of clips on
different tracks. Snapping makes looping a clip each specific number of beats or
bars very easy too. Clip looping is often provided in a similar way to trimming;
a clip edge is dragged outwards to loop the audio in the clip to fit the new clip
length.

Not only can a clip be snapped to beats, but its individual contents can be
independently snapped to beats as well. If a clip contains audio with distinctive
transients, these can be analysed and serve as points at which the clip is
effectively split. After this analysis stage, the individual segments can then
automatically be moved and quantised to the timeline. It is then also possible
to introduce variations to the timing, for instance to add some swing to an
otherwise straight drum track.

This process of analysing for transients, splitting up a clip and moving
around its segments can cause gaps to occur between segments. If the recording
is really dense or has a distinctive background noise, this might be undesirable.
A relatively recent development alleviates this problem. Flex-Time (also
known as Time Warp, Elastic Time and other variations) also analyses a clip for
transients, but does not split it up. Instead it allows for individual segments to
be time-stretched, allowing some segments to occur earlier or later on in time,
while maintaining a continuous clip of audio.

Tuning
Very similar to Flex-Time is Flex-Pitch (also called Elastic Pitch, pitch shift or

pitch correction), a feature present in a growing number of DAW’s. Flex-Pitch can
be applied to monophonic audio recordings. It performs a pitch analysis and
then commonly splits the audio clip on distinctive pitch changes, repositioning
each segment vertically over a piano-roll to indicate the pitch of each segment.
Any deviation from the specified tuning scale will be visible as an offset from
the piano-roll grid. Pitch can be adjusted by dragging segments up or down
the piano-roll to snap to an exact note, or to a whole different note, allowing
for correction of misplayed notes and for recomposition. The pitch of multiple

135

segments can also be quantised, often in a gradual way (using a slider to vary
the approximation towards exact pitches in the tuning scale), allowing for
some natural-sounding deviation to remain. Vibrato, often recognized as pitch
variation within a segment, can also be removed by straightening a segment to
its particular pitch. This pitch straightening sounds particularly unnatural when
applied to voice recordings, which is what characterises severe auto-tune as
sometimes heard in popular music (when it is used more as an effect instead of
a corrective tool). One artist who is well known for making use of this technique
(and for naming a popular auto-tune app for iPhone) is T-Pain.

In Search of Perfection
Many DAW’s include a feature which is called Comping (short for

“compilation”). It allows the user to compile an ideal final take of a performance
by selecting the best parts of multiple previous takes. Multiple takes can often
be recorded in a single recording session by defining a loop region on the
timeline. When the play head reaches the end and jumps back to the beginning
of the loop region, a new take is recorded and positioned underneath the
previous take (or above, it differs per DAW). The common approach to comping
is then to simply select start and end points in a take, and cross-fades between
different takes are added automatically. Though comping is regularly used in
search of the best available possible take of a musical performance, it is not a
musical feature per se, but can just as well be regarded as a convenient cut-
ting-and-pasting mechanism.

Another feature that can be found increasingly often in DAWs is more
musical. Groove extraction and, related to that, beat replacement are features
that are related to the transient detection mentioned in the paragraph on tempo
and timing. Given a recording of a drumbeat, the groove can be extracted by
analysing the transients and converting this to pure note information (not
so much a pitched note, but particularly the timing of each note). This note
information can then be used to trigger synthesised or sampled beats of which
volume and timing can be quantised or manipulated more precisely.

Corrective Editing
Overall, the audio editing feature set offered by most DAW’s serves a clear

purpose: it focuses on corrective edits. The user begins with trimming, slicing
and fading, removing any unwanted material. Then using comping, the user
selects the best parts of multiple recording takes. The various tempo and timing
tools allow the user to arrange everything in sync and in the right rhythm.
Finally, everything is harmonized using the tuning tools.

Whereas an audio editor is a fully packed tool shed for multi-purpose audio
editing, in which the focus commonly lies on a single audio file, the audio
editing in a DAW is very focused on making the many audio clips in a single
project work well with each other.

These corrective edits are all on the level of an audio clip. More
transformative editing functionality can be found in the effects section of each

136

track. Though there are many plug-ins that serve a corrective purpose (for
tuning, noise removal, gain adjustment), edits in this section are generally
referred to as effects and hence as a different division.

For this survey, the following DAW’s have been inspected (in alphabetical order):

Company Software

Ableton Ableton Live

Sony Acid

The Ardour Company Ardour

Bitwig Bitwig Studio

Steinberg Cubase

MOTU Digital Performer

Image Line FL Studio

Apple Garageband

Apple Logic

Acoustica Mixcraft

MuTools MuLab

Steinberg Nuendo

AVID Pro Tools

Cocos Inc. Reaper

Propellerhead Reason

Magix Samplitude Pro

Cakewalk Sonar

PreSonus Studio One

Tracktion Tracktion

XO Audio XO Wave

137

7. Audio Programming Languages
In search of a suitable existing computer programming language for audio,

the languages listed in this appendix were examined. The list is constructed
from multiple resources, most important of which are the PLUM list2 and a
list of music composition languages constructed by William Alves3. See also
Kornfeld (1980), Krasner (1980), Pope (1993a), Loy and Abbot (1985), Scaletti
(2002).

[2] The PLUM (Programming Languages Used for Music) list by Tim Thompson can be found
at http://www.nosuch.com/tjt/plum.html

[3] William Alves’ list of music composition languages can be found at
http://ftp.cs.uu.nl/pub/MIDI/DOC/music.languages

Language name Author Year

4CED Curtis Abbott 1979

ABC Chris Walshaw 1991

AC Toolbox Paul Berg

Adagio Dannenberg, R. B. 1984

Arctic Dannenberg, R. B., P. McAvinney, and
D. Rubine

1986

ARES/MARS IRIS s.r.l. 1991 (prototype
version), 1997
(commercial
version)

CAL Twelve Tone software (Cakewalk) 1992?

ChucK Ge Wang and Perry R. Cook 2003

CLM (Common Lisp Music) William Schottstaedt 1990

CMIX Paul Lansky

Cmusic F. Richard Moore (UCSD) 198?

Common Music Heinrich Taube

Csound Barry Vercoe (MIT) 1986

CYBIL Alexandre Burton and Jean Piche 1995

Foo Gerhard Eckel 1994

FORMULA Dave Anderson (UC Berkeley) & Ron
Kuivila (Wesleyan U)

1991

Fugue Roger B. Dannenberg, Chris Fraley 1988

GROOVE Mathews, Moore (Bell Labs) 1968

JSyn Phil Burk 1997

138

Language name Author Year

Kyma Carla Scaletti 1986

Loki Juniper Moon 1996

Max Miller Puckette (IRCAM) and David
Zicarelli (Opcode Systems, Cycling 74)

1986

McLeyvier Command
Language

David McLey (et al) 1981

MODE Stephen Travis Pope 1987

MSP David Zicarelli 1998

MUS10 David Poole 1974

MUS8 R. Boudinot 1976

MusBox or MBox Gareth Loy 1979

Music 11 Barry Vercoe 1973?

MUSIC 360 Barry Vercoe (MIT) 1969

MUSIC 4B Godfrey Winham & Hubert Howe
(Princeton)

1964

Music Composition Lan-
guage

Fairlight Instruments 1980

MUSIC N: MUSIC I/II/III/IV Max Mathews (Bell Labs) 1957, ‘58, ‘60, ‘63

MUSIC V Max Mathews (Bell Labs) 1969

Music-1000 Dean Wallraff 1978

MUSIC7 Lejaren Hiller (SUNY Buffalo)

MusicKit David Jaffe, Julius Smith 1988

MusicScript David Piott 2000

MusicXML Michael Good 2000

MUSIGOL Donald McInnis, Paul S. Davis, Wil-
liam A Wulf (U. of Virginia)

1966

NetSound Michael Casey and Paris Smaragdis 1996

Nyquist Roger Dannenberg 1992

OpenMusic (OM) Gérard Assayag and Carlos Agon with
Olivier Delerue

1997

ORGANUM 1 Tisato 1974

OSW - Open Sound World Adriien Fried and then open source 2000

OUTPERFORM D. Jaeger, D. Lester (University of
Toronto)

1972

139

Language name Author Year

PATCH Lynx Crowe

Patchwork Mikael Laurson, Jaques Duthen and
Camilo Rueda

± 1990

Pcmusic F. Richard Moore 1995

Petal Chris Cannam, Andy Green, Richard
Bown and Guillaume Laurent

1995

PILE Paul Berg (Inst. of Sonology, Utrecht) 1977

Pla Bill Schottstaedt (Stanford) 1983

PLACOMP D. Murray, J. Beauchamp, G. Loitz
(Univ. of Illinois)

1978

PLAY (PLAY1, PLAY2) Joel Chadabe & Roger Myers (NYSU
Albany)

1977

PMML Satoshi Nishimura

POD6, POD7 Barry Truax (Simon Fraser University) 1973, 1975

PROD M. Green

Pure Data (PD) Miller Puckette 1997

Pyrite James McCartney

pysco Paul Winkler 1999

Q Albert Graef 1991, 2002 (midi
interface), 2003
(audio interface)

Quasimodo Paul Barton-Davis 1998

Ravel Jim Binkley 1988

Realtime Composition
Library for MAX

Karlheinz Essl 1992 ff.

Sambox Bill Schottstaedt 1979

SAOL (MPEG-4 Structured
Audio Orchestra Language)

ISO MPEG, project led by Eric Scheirer 1997-1998

Sapphire Jim Finnis 1995

Scala Manuel Op de Coul 1996

SCRIPT New England Digital Corp. 1984

SDIF Matthew Wright, Adrian Freed, David
Wessel, et al

1997

Silence Michael Gogins 1996

SKINI Perry Cook 1996

140

Language name Author Year

SMDL Stephen R. Mounce

SMOKE

Snd Bill Schottstaedt

SoundModel (CCPL) Peter Lunden 1993

SSP G. M. Koenig (Inst. of Sonology,
Utrecht)

1975

SSSP Buxton et al. (University of Toronto) 1978

ST Xenakis (CEMAMu, Paris)

STK (Synthesis Toolkit) Perry Cook 1996

STORM Lynx Crowe

SuperCollider Server James McCartney 2003

SuperCollider James McCartney 1996

Symbolic Composer Pekka Tolonen 1991

SYMPFONICS B. Vassaur (U. of Tulsa) 1972

SYN4B Neil Rolnick & Phillipe Prevot (IR-
CAM)

1978

SynSeq.pm kanak 2000

SYNTA L-II Wayne Slawson (University of Pitts-
burgh)

1977

Tclmidi Mike Durian

TREE/COTREE Curtis Roads (MIT) 1978

UPIC Xenakis (CEMAMu)

Zel 1998

141

References

Apple, 2006. Audio unit programming guide. Available from: https://
developer.apple.com/library/mac/documentation/musicaudio/
Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.
html .

Apple 2007. Audio unit component services reference. Available from: http://
developer.apple.com/iphone/library/documentation/AudioUnit/
Reference/AUComponentServicesReference/Reference/reference.html .

Benassi, B. 2003. (music recording) Satisfaction: Energy Production.

Bogaards, N., 2008. Sound editing on the sonogram. In: Proceedings of the 14th
International Conference on Auditory Display, Paris, France.

Collins, N., 2010. Introduction to computer music. Chichester: John Wiley and
Sons.

Cooper, A. R., Robert; Cronin, Dave. (2007). About face 3: the essentials of
interaction design: John Wiley & Sons, Inc.

Deutsch, S., 2007. The soundtrack (putting music in its place). The Soundtrack, 1
(1).

Evangelista, G., 1991. Wavelet transforms that we can play. In: Giovanni De, P.,
Aldo, P., and Curtis, R. eds. Representations of musical signals: MIT Press,
119-136.

Gentner, D. N., Jakob. (1996). The Anti-Mac interface. Communications of the
ACM, 39(8), 70-82.

Giovanni De, P., Aldo, P., and Curtis, R. (Eds.). 1991. Representations of musical
signals: MIT Press.

Haus, G., 1993. Music processing. Madison, Wis.: A-R Editions.

Herzberg, L., 1989. Review: Sound designer. ST-Log.Heuvelmans, T. 2005.
Overeenkomsten tussen dip & dap, not published.

Heuvelmans, T. 2006. Approaching digital audio – a technical audio software
classification, not published.

Holland, S. (2013). Music and Human-Computer Interaction: Springer Publishing
Company, Incorporated.

Howard, D. M., and Angus, J., 2001. Acoustics and psychoacoustics. Butter-
worth-Heinemann.

Katz, R. A., 2007. Mastering audio : The art and the science. 2nd ed. Amsterdam;
Boston: Elsevier/Focal Press.

142

Kirby, D. G., and Shute, S. A., 1988. The exploitation and realization of a random
access digital audio editor. Paper presented at the IEEE Broadcasting
Convention.

Kornfeld, W. A., 1980. Machine tongues vii: Lisp. Computer Music Journal, 4 (2),
6-12.

Kraftwerk. 1978. (music recording) Die roboter: Kling Klang (EMI).

Krasner, G., 1980. Machine tongues vii: The design of a smalltalk music system.
Computer Music Journal, 4 (4), 4-14.

Liscio, C., 2009. Drawing waveforms. Available from: http://supermegaultra-
groovy.com/2009/10/06/drawing-waveforms/.

Loy, D. G., 1985. Designing an operating environment for a realtime
performance processing system. In: Truax, B. ed. Proceedings of the
international computer music conference Vol. 1985. San Francisco: Computer
Music Association.

Loy, D. G., 2007a. Musimathics: The mathematical foundations of music. Vol. 1.
Cambridge: MIT Press.

Loy, D. G., 2007b. Musimathics: The mathematical foundations of music. Vol. 2.
Cambridge: MIT Press.

Loy, D. G., and Abbot, C., 1985. Programming languages for computer music
synthesis, performance, and composition. ACM Comput. Surv., 17 (2),
235-265.

Marieb, E. N., and Hoehn, K., 2007. Human anatomy & physiology. 7th ed. San
Francisco: Pearson Benjamin Cummings.

Mazzoni, D., and Dannenberg, R., 2001. A fast data structure for disk-based
audio editing. Computer Music Journal, 26 (2), 62-76.

Mcaulay, R. J., and Quatieri, T. F., 1986. Speech analysis/synthesis based on
a sinusoidal representation. IEEE Trans. on Acoust., Speech, and Signal
Processing, ASSP-34 (4).

Milano, D., 1985. Digidesign sound designer for emulator ii. Keyboard Magazine.

Miranda, E. R., 1998. Computer sound design: Synthesis techniques and
programming. Second Edition ed.: Focal Press.

Moore, F. R., 1990. Elements of computer music. Prentice Hall.

Moorer, J. A., 1990, September. Hard-disk recording and editing of digital audio.
Paper presented at the 89th AES convention.

Norman, D. A., 1990. The design of everyday things. 1st Doubleday/Currency ed.
New York: Doubleday.

143

Osaka, N. H., Takafumi. 1999. Visual manipulation environment for sound
synthesis, modification, and performance. ICMC Proceedings, 1999,
429-432.

Osaka, N. S., Ken-Ichi; Hikichi, Takafumi. 2002. The sound synthesis system
“otkinshi”: Its data structure and graphical user interface. ICMC
Proceedings, 2002, 188-191.

Pope, S. T., 1993. Music composition and editing by computer. In: Haus, G. ed.
Music processing Vol. 9: A-R Editions, Inc., 25-72.

Pope, S. T., 1993. Machine tongues xv: Three packages for software sound
synthesis. Computer Music Journal, 17 (2), 23-54.

Risset, J.-C., & Wessel, D. (1982). Exploration of Timbre by Analysis and
Synthesis. In D. Deutsch (Ed.), The Psychology of music (pp. 26-58). New
York: Academic Press.

Risset, J.-C., 1991. Timbre analysis by synthesis: Representations, imitations, and
variants for musical composition. In: Giovanni De, P., Aldo, P., and Curtis,
R. eds. Representations of musical signals: MIT Press, 7-43.

Risset, J.-C., 1998. Forerword. In: Miranda, E. R. ed. Computer sound design:
Synthesis techniques and programming. Oxford: Focal Press.

Roads, C., 1996. The computer music tutorial. MIT Press.

Rockmore, D., 1999. The fft: An algorithm the whole family can use. Computing
In Science and Engineering, 2 (1), 60-64.

Scaletti, C., 2002. Computer music languages, kyma, and the future. Comput.
Music Journal, 26 (4), 69-82.

Shneiderman, B. (1983). Direct Manipulation. A Step Beyond Programming
Languages. IEEE Transactions on Computers, 16(8), 57-69.

Smith, S. W., 1997. The scientist and engineer’s guide to digital signal processing.
California Technical Publishing.

Stevenson, A., and Lindberg, C. A. 2005. New oxford american dictionary. In
Mckean, E. (Ed.), The New Oxford American Dictionary (Second Edition
ed.): Oxford University Press.

Sturm, B. L., Roads, C., Mcleran, A., and Shynk, J. J., 2009. Analysis,
visualization, and transformation of audio signals using dictionary-based
methods. Journal of New Music Research, 38 (4), 325-341.

Tomita, I. 1978. (music recording) The visionary flight to the 1448 nebular group
of the bootes, The Bermuda Triangle: RCA.

Vinet, H., 2003. The representation levels of music information. CMMR 2003,
193-209.

144

Wishart, T., 1988. The composition of vox-5. Computer Music Journal, 12 (4),
21-27.

Wishart, T., 1994a. Audible design: A plain and easy introduction to practical sound
composition. York, UK: Orpheus the Pantomime.

Wishart, T. 1994b. (music recording) Tongues of fire: Orpheus The Pantomime.

Wishart, T., 1996. On sonic art. New and rev. ed. Amsterdam: Harwood
Academic Publishers.Wishart, T., 2000. Sonic composition in tongues of
fire. Computer Music Journal, 24 (2), 22-30.

Wishart, T. (2000). Sonic Composition in Tongues of Fire. Computer Music
Journal, 24(2), 22-30.

Zölzer, U., 2008. Digital audio signal processing. John Wiley & Sons Software.

Zölzer, U., 2011. DAFX: Digital audio effects. Wiley Publishing.

	Abstract
	Table of Contents
	List of Illustrations and Tables
	1. Introduction
	1.1 Motivation
	1.2 Methodology
	1.3 Relevance
	1.4 OFFline

	2. Literature & Repertoire
	2.1 Defining the Audio Editor
	2.1.1 Delineation
	2.1.1.1 Terminology
	2.1.1.2 Scope

	2.1.2 Research Methods

	2.2 Design Considerations

	3. Redefining the Audio Editor
	3.1 Modular Editing
	3.1.2 Non-destructive Editing
	3.1.3 Batch Processing
	3.1.4 Summary

	3.2 The Source Browser
	3.2.1 A Better File Dialog
	3.2.2 Recording
	3.2.3 Synthesis
	3.2.4 Searching Audio Files
	3.2.5 Summary

	3.3 Representation & Manipulation
	3.3.1 The Waveform
	3.3.2 The Spectrum
	3.3.3 Reading Waveforms And Spectra
	3.3.4 Quick Editing
	3.3.4.1 Editing Using The Waveform Display
	3.3.4.2 Editing Using The Spectrum Display

	3.3.5 Other Representations
	3.3.6 Summary

	3.4 Smart Selections
	3.4.1 The Standard Selection
	3.4.2 Multiple Selections
	3.4.3 Automated Selections
	3.4.4 Finding Audio
	3.4.5 Summary

	3.5 Layered Audio
	3.5.1 Blending Audio
	3.5.2 Special Pasting
	3.5.3 Summary

	3.6 Sonic Composition
	3.6.1 Parameter Automation
	3.6.2 Branch Editing: Creating a Sound Morphology
	3.6.3 Summary

	3.7 Extendability
	3.7.1 The Module Development Environment
	3.7.2 Summary

	OFFline

