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Abstract 
 

In this study the generation of smooth trajectories of the end-effector of a rotating 

extensible manipulator arm is considered. Possible trajectories are modelled using 

Cartesian and polar piecewise cubic interpolants expressed as polynomial Hermite-type 

functions. The use of polar piecewise cubic interpolants devises continuous first and - in 

some cases - second order derivatives and allows easy calculation of kinematics 

variables such as velocity and acceleration. Moreover, the manipulator equations of 

motion can be easily handled, and the constrained trajectory of the non-active end of the 

manipulator derived directly from the position of the end-effector. To verify the 

proposed approach, numerical simulations are conducted for two different 

configurations. 
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1  Introduction 
 

 

One of the important problems in robotics is the generation of smooth trajectories that 

minimise system energy, jerk and deflection caused by flexibility, clearance and 

components deformation. The problem can be approached by "interpolating" or 

"approximating" the desired path by piecewise interpolating curves through a set of a 

priori defined points that control the manipulator trajectory.  

Various approaches to generate trajectories have been considered so far. Among 

these, piecewise interpolating curves with slope continuity, geometrically continuous 

Catmull-Rom splines [4], parametric and/or geometric continuous splines [9, 15] or 

uniform cubic B-Spline with parametric and geometric continuity, proved to be 

adequate in generating a smooth motion especially when manipulator dynamics [13] is 

considered. Lately, cartesian univariate and bivariate splines have been successfully 

used in [14,15] for preserving the shape of multiscale data. 
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Interpolation in curvilinear or polar coordinate systems - which have received a 

considerable attention lately - may represent an excellent alternative to smooth 

trajectory generation especially when rotating robotic systems are involved.  A general 

approach to polar coordinate interpolation has been considered in [18, 20]. Polar 

coordinate interpolation including polynomial splines approximation has been disused 

in [16] while single values splines and splines focales in [19, 21]. A survey on 

trigonometric splines has been presented in [23] while trigonometric B-splines have 

been considered in [17]. 

In this paper a mathematical approach for generating the smooth trajectory of the end 

effector of a rotating extensible robotic arm is presented. Cartesian and polar piecewise 

polynomial interpolating curves are considered for the generation of the geometric path 

of the end-effector. To verify the proposed approach, the trajectory and the velocity 

profile for the end effector and non-active end of the constrained trajectory are 

computed for two different configurations.  
 

2  Mathematical Modelling of Manipulator Trajectory 
 

2.1 System Model 
 

The rotating extensible robotic arm shown in Fig. 1 is composed of a rigid guide OE 

and a sliding rod SP which is constrained to a curved trajectory by the end S. The non-

active end of the sliding part SP is denoted by S and its active end-effector is denoted by 

P. 

 

 
Figure 1: Rotating extensible robotic arm system model 

 

The rigid guide of the robotic arm has length dOE, the sliding part has the length dSP. 

The total length of the robotic arm denoted by r=dOP (distance between the manipulator 

base location O and its end-effector P) varies due to the rotation of the rigid guide of the 

extensible manipulator. The end effector of the robotic arm OP should reach the 

points  
niiii yxp

,...,2,1
,


. The path followed by the non-active end S of the link SP controls 

the position of the active end of the robotic arm defined by the points  
niiii yxp

,...,2,1
,


 

shown in Fig. 2.  
 

2.2 Piecewise Trajectory Generation 
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2.2.1 Cartesian interpolating curves 
 

In order to achieve some desired properties of the manipulator trajectory piecewise 

polynomial interpolating curves may be considered. Such interpolating curves [2, 3, 8, 

9, 11, 12, 13] guarantee slope continuity, and/or minimal data storage, and/or local 

control and smoothness (no abrupt changes in displacement and velocity). For the 

general case, Hermite interpolation is given based on derivative values at data points 

  ii yxy  ,   ii yxy   ,   . . .  ,ii yxy   , on the finite real interval [x0, xN], where 

NN xxxxx  1210 ... . In each interval  
1,01,
 Niii xx  defined by the two 

consecutive control points
ip , 

1ip , a piecewise cubic interpolant can be expressed as a 

Hermite-type function [15,22] (continuous first derivative) by 
 

   ki

k
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Hermite cubic interpolation has also a continuous second derivative if the given first 

derivative is exact. A more complex representation generally having continuous first 

and second derivatives - which guarantee a smooth trajectory of the manipulator end-
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2.2.2 Polar interpolating curves 
 

To interpolate the periodic data   
Nkkkr ,0

,


  which define the rotating extending link 

with rk > 0 ∀k and rN = r0, one can consider the strictly monotonic angles 

 2... 01210   NN
 defined on the real interval [θ0, θ0 +2π]. In each 

interval 
1,01,
 Niii   defined by the two consecutive control points 

ip , 
1ip , a piecewise 

cubic interpolant (Fig. 2) can be expressed as a Hermite-type function [15,22] by 
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where 
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Figure 2: Trajectory of the end effector  r  expressed as a Hermite-type function, and 

trajectory of the non-active end of the link 

 

 

One can parametrize the Cartesian coordinates using the polar coordinate  ,rq by 
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Once can calculate the velocity using 
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where the derivative of  r  was calculated using     1
3

1





 
k

i

k

i

kkmr   .  

Since 0
2

2






r

q
, 





 




















 q

rr

q

r

q 1

cos

sin22

and
r

q
rr

q























 sin

cos
2

2

 the 

acceleration can be calculated as 

 

 

 

 




















































































































































































cos

sin1
2

sin

cos
   

1
2   

1
2   

   

   

2

2

2

r

r

r
rrr

q

r
r

r

q
rr

r

q
r

q

r
r

q

r

q
r

q

dt

d

rdt

d

r

q

dt

d

rdt

d
r

q

r

q
r

q

dt

d

r

q

dt

d
r

q

r

q
r

qa













    (5) 

 

 

One can calculate now 

 



6 

 

 

 
 

 

       

 

 
 















































































































































































































cos

sin
2     

sin

cos
1   

cos

sin2

sin

cos
   

cos

sin1
2

sin

cos
   

3

0
3

0

1
3

12

3

0

22
3

2

21
3

1

3

0
3

0

3

0

2

2

k

i

k

i

k
k

i

k

i

k

k

i

k

i

k

k

i

k

i

k

k

i

k

i

k

k

i

k

i

k

k

i

k

i

k
k

i

k

i

k

k

i

k

i

k

m

m

km

mkkmkm

m

m

r
mr

r
r

rrr

qa











     (6) 

 

where the second derivative of  r  was calculated as 
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2.3 Equations of Motion 
 

The Lagrange formulation [6] to derive equations of motion can be expressed as 

1,2  , 
















 iR

s

T

s

T

dt

d
i

ii


 

where Ri are the generalized forces, rss  21 , are the time dependent generalized 

coordinates and the subscript 1,2i  represents the number of the generalized 

forces/coordinates. The total kinetic energy of the system can be expressed as  
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where Ti is the kinetic energy, 
iCI is the mass moment of inertia, and i is the angular 

velocity of each rod. The displacement of the end effector along the motion path - when 

the sliding rod SP is flexible (Fig. 3) - can be calculated as in [7]. Then, the equations of 

motion (based on the mode shapes of a clamped-free beam) can be expressed by 
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where F is the axial force that slide the flexible road  in the rigid guide OE, T is the 

torque that rotate the guide, and u is the un-deformed part of the sliding rod (Fig. 3). 
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Figure 3: Trajectory of the end effector for a flexible sliding rod 
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where   iC denote a square matrix [7]. 

 
 

3  Numerical Results 
 

Two numerical examples to generate the piecewise polynomial trajectory of the end-

effector as well as the trajectory of the non-active link end which constrains the motion 

are considered.  

The possible locations of the base as well as the phase diagram (position vs. velocity) 

of the active and non-active end of the robotic manipulator are also presented. 

Simulations have been performed [10] for a rigid guide of length dOE = 0.35 m and a 

sliding part of length dSP = 30 cm. The end of the guide - located on the origin O of the 

Cartesian reference frame Oxy - is rotating with an angular velocity 1 rad/s. The 

material property for the robotic arm has the density 7850 kg/m
3
, Young’s modulus 

2·10
11

 Pa and Poisson’s ratio 0.3.  

Using the points  
10,...,2,1

,
iiii yxp shown in Fig. 4a (convex configuration) a new 

manipulator trajectory in which the end effector can move smoothly [1,4] along the path  

as well as the possible locations of the manipulator base [5] have been obtained.  
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                     (a)                                            (b)                                             (c) 
 

Figure 4: (a) end effector trajectory (red) generated using Hermite interpolation and base 

location (green), (b) end effector trajectory (red)  and non-active link end trajectory (blue), and 

(d) phase diagram (position vs. velocity) of the end effector (red) and non-active end (blue) of 

the extensible link 
 

The end effector trajectory of the active end and the resulting trajectory of the non-

active end of the manipulator are plotted in Fig. 4b. The phase diagram (position vs. 

velocity) of the end effector and the non-active end (Ox trajectories) of the link is 

shown in Fig. 4c. 
 

The same simulations have been performed for the control points 

 
8,...,2,1

,
iiii yxp shown in Fig. 5 for a non-convex configuration. The base location [5], 

end effector and constrained trajectory, and their associated velocity profile (Ox 

velocities) are shown in Fig. 5a, Fig. 5b, and Fig. 5c respectively. Both simulations in 

Fig. 4c and Fig. 5c have shown a continuous velocity profile, that is, the proof of a 

smooth trajectory. 

 

      
 

 

                     (a)                                           (b)                                            (c) 
 

Figure 5:  (a) end effector trajectory (red) generated using Hermite interpolation and base 

location (green), (b) end effector trajectory (red)  and non-active link end trajectory (blue), and 

(d) phase diagram (position vs. velocity) of the end effector (red) and non-active end (blue) of 

the extensible link 
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4  Conclusions 
 

In this paper the generation of polygonal trajectory of the end-effector of a rotating 

extensible robotic arm using Cartesian and polar piecewise cubic interpolants curves is 

presented. The use of polar piecewise cubic interpolants allows easy calculation of 

kinematics variables and smooth trajectories. Moreover, the manipulator equations of 

motion can be easily handled, and the constrained trajectory of the non-active end of the 

manipulator derived directly from the position of the end-effector. To verify the 

proposed approach numerical simulations have been performed for both the convex and 

non-convex configurations. 
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