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Abstract. The latency of the N100m transient component of the mag-
netic auditory evoked fields presents a widely reported correlation with
perceived pitch. These observations have been robustly reproduced in the
literature for a number of different stimuli, indicating that the neural gen-
erator of the N100m has an important role in cortical pitch processing.
In this work, we introduce a realistic cortical model of pitch perception
revealing, for the first time to our knowledge, the mechanisms responsi-
ble for the observed relationship between the N100m and the perceived
pitch. The model describes the N100m deflection as a transient state
in cortical dynamics that starts with the incoming of a new subcortical
input, holds during a winner-takes-all ensemble competition, and ends
when the cortical dynamics reach equilibrium. This model qualitatively
predicted the latency of the N100m of three families of stimuli.

Keywords: cortical dynamics, auditory evoked fields, N100m, pitch per-
ception, perceptual integration, multi-attractor systems

1 Introduction

Auditory evoked fields (AEFs) observed in MEG experiments systematically
present a transient deflection known as the N100m, elicited around 100 ms after
tone onset in the antero-lateral Heschl’s Gyrus. The exact N100m’s latency is
correlated with the perceived pitch of a wide range of stimuli [5,7,8], suggesting
that the cortical source of the transient component has an important role on the
processing of pitch in auditory cortex [9]. However, the biophysical substrate of
the relationship between pitch decoding and the N100 morphology remains an
enigma.

Existing models of pitch, focused on perceptual phenomena, do not explain
the mechanisms generating cortical evoked fields during pitch processing in bio-
physical detail (e.g. [1,6]). Cortical models of the evoked fields, like the Dynamic
Causal Models [3], often assume an unrealistic cortical input (e.g. white noise)
and are thus unable to reproduce stimulus-driven properties of the AEF. In this
work, and for the first time to our knowledge, we introduce a model of interact-
ing neural ensembles describing how stimulus-dependent cortical pitch process-
ing gives rise to the observed human neuromagnetic responses. Specifically, we
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focus on the N100m transient dynamics and its peak latency. Our conclusion is
that the N100m reflects a decoding process occurring in the onset of the stimuli,
that can be described as a competition between neural ensembles sensitive to
different pitch values.

2 The model

Subcortical input was simulated using a realistic model of the peripheral auditory
system generating realistic auditory nerve spike trains [14] followed by a delay-
and-multiply processing carried out by chopper neurons in cochlear nucleus and
coincidence detector units in the inferior colliculus [6]. The spike trains generated
by the peripheral system, represented by the probability of spiking p(t), are
phase-locked to the waveform of the stimulus, thus preserving all the periodicities
of the sound. Chopper neurons systematically delay input spike trains by {δtn}N1 ,
whilst coincidence detector units spike for such specific delays of the auditory
nerve fibres. The final subcortical output An(t) represents a leaky-integration of
the coincidence detectors output as follows:

τscn Ȧn(t) = −An(t) + p(t)p(t−∆t) (1)

Lag-dependent time constants τscn were taken from the literature [11].
The formulation in Equation 1 yields a series of N = 300 channels char-

acterised by the chopper delays δtn. Channel n activates when the stimulus’
waveform presents a periodicity with frequency f0 = 1/δtn. Channels corre-
sponding to lower harmonics of the peridocities of the stimulus (i.e. channels
characterised by delays δtn = 1/kf with k = 1, 2, . . . ) are also coactivated after
the delay-and-multiply process. Figure 1 shows the subcortical inputs elicited by
three different tonal stimuli with the same pitch (f0 = 250 Hz, δ = 4 ms).
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Fig. 1. Left) Average of the subcortical input generated by the model for a pure tone,
a harmonic complex tone, and an iterated rippled noise. All stimuli have the same
f0 = 250 Hz. Right) Average cortical output for the same stimuli. Plots show the
activity per ensemble averaged at 100 − 200 ms after onset.

The cortical model consists of a series of N = 300 cortical microcolumns
described as sets of two neural ensembles: one excitatory He

n and one inhibitory
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Hi
n (see Figure 2). An excitatory ensemble in one of such blocks n receives

realistic input from the nth subcortical channel. A large activation in a column
is typically associated with a fundamental pitch of δtn [1].

Excitatory ensembles connect to both excitatory and inhibitory ensembles
of adjacent blocks; whereas inhibitory ensembles connect globally with other
inhibitory and excitatory populations. Crucially, inhibitory-to-excitatory con-
nections are stronger when they link a population encoding the period δtn with
a population encoding any of its lower harmonics kδtn (see full connectivity ma-
trices in Figure 2); in agreement with reported data on cortical connectivity in
mammals [10]. This setting facilitates the inhibition of low harmonics elicited
during the peripheral processing as will be discussed next.

Fig. 2. Left) Basic schematics of the model. Each block represents a cortical micro-
column. Each column consist of excitatory pyramidal neurons (blue) and inhibitory
interneurons (red). Right) Connectivity weights between the ensembles of the model.
Excitatory-to-excitatory (e-e), excitatory-to-inhibitory (e-i), inhibitory-to-excitatory
(i-e) and inhibitory-to-inhibitory (i-i) connectivity matrices. Note that, although the
excitation is local, inhibition is induced globally.

Ensembles are modelled using a neural rate model with a mean-field approx-
imation, where empirically shaped transference functions φe,i(I) are [13]:

τpop(t) Ḣe,i
n (t) = −He,i

n + φe,i(Ie,in (t)) (2)

with

φe,i(I) =
ae,iI − be,i

1− e−de,i(ae,iI−be,i)
(3)

Excitatory connections consist of NMDA- and AMPA-driven synapses. In-
hibitory connections are only of the GABAA type. AMPA and GABA synapses
were modelled using leaky integrators with instantaneous rising times [2]:

Ṡj
n(t) = −S

j
n(t)

τj
+He,i

n (t), j = AMPA,GABA (4)

NMDA dynamics were modelled considering slow rising times [2]:
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ṠNMDA
n (t) = −S

NMDA
n (t)

τNMDA
+ γ(1− SNMDA(t))He,i

n (t) (5)

Additive synaptic noise was introduced in the form of white noise in the gat-
ing variables Sj

n. Subcortical input was driven by NMDA and AMPA dynamics
according to Equations 4 and 5, using the ensemble firing rates of the coinci-
dence detectors An(t) as gate triggers. Thus, the total synaptic input for the
excitatory populations can be written as follows:

Ien(t) = JNMDA,th SNMDA,th
n (t) + JAMPA,th SAMPA,th

n (t)

+
∑
k

Cee
n,k

(
JNMDA SNMDA

k (t) + JAMPA SAMPA
k (t)

)
−
∑
k

C ie
n,k J

GABA SGABA
k (t) (6)

In equation 6, the first two terms correspond to the subcortical input, the third
term accounts for cortical excitatory input, and the last term accounts for corti-
cal inhibitory inputs. The conductivities JNMDA,th, JAMPA,th, JNMDA, JAMPA,
and JGABA were taken from the literature [13] and slightly tuned within the
biophysical range to match the experimental observations.

Synaptic inputs for the inhbitory populations follow a similar pattern:

Iin(t) =
∑
k

Cei
n,k

(
JNMDA SNMDA

k (t) + JAMPA SAMPA
k (t)

)
−
∑
k

C ii
n,k J

GABA SGABA
k (t) (7)

The connectivity matrices used in Equations 6 and 7 (Cee,Cei,Cie, and Cii)
are depicted in Figure 2. The connectivity patterns were designed ad-hoc, always
following biophysical constraints defined in the literature [10].

Neural adaptation in cortex was modelled as an effective negative input cur-
rent Be,i

n (t) in the neural ensembles He,i
n [4]. Adaptation effective currents fol-

lowed leaky-integrator-like dynamics:

τadaptḂ
e,i
n (t) = −Be,i

n (t) + θadaptH
e,i
n (t) (8)

Adaptation parameters were identical in both excitatory and inhibitory en-
sembles. τadapt was chosen from the literature [4] and θadapt � 1 such that the
effect of adaptation is only noticeable under high firing rate regimes.

3 Results

The model was tested using three families of stimuli typically eliciting N100m
auditory cortex responses highly correlated with pitch: pure tones (PT), har-
monic complex tones (HCT), and iterated rippled noises (IRN, consisting on the
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aggregation of iteratively lagged copies of a white noise with a fixed delay δt).
HCTs typically evoke the pitch of the fundamental frequency f0 of the harmonic
mixture, even if f0 itself is not present in the tone (phenomenon known as virtual
pitch [6]). IRNs evoke a pitch equivalent to the inverse of the delay 1/δt.

We considered a variable number of harmonics in the HCT (with and without
missing fundamental) and IRNs of 8, 16 and 32 iterations; for a range of pitch
values between 200 Hz and 1000 Hz for all stimulus types. After an unstable
transient response of around 100− 150 ms, the activity in the cortical ensembles
systematically converged to a unimodal distribution centred on the population
corresponding to the perceived fundamental (see Figures 1 and 3), fully in line
with predictions of abstract pitch perception models from the literature [1].

Fig. 3. Time evolution of the activity of the ensembles for three different stimuli with
the same pitch (f = 333 Hz). From left to right, plots show the temporal evolution of
the N = 300 ensembles (y-axis) in each of the different groups: excitatory populations
He(t), inhibitory populations Hi(t), and subcortical populations A(t). From top to
bottom, each row shows results for: a pure tone, a harmonic complex tone with 10
harmonics, and an iterated rippled noise with 32 iterations.

Simulations were performed using the same parameters for all stimuli, with
the only exception of the conductivity of the connection between subcortical and
excitatory cortical ensembles Jthal, which was tuned for each of the three fami-
lies of stimuli in order to compensate the large differences between the average
activity elicited in the subcortical patterns (see Figure 1).

Auditory evoked fields were predicted by the activity dynamics of the ex-
citatory pyramidal ensembles in the cortical model. Auditory evoked fields are
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typically represented using equivalent dipoles that model neural activity in a
localised cortical area. Dipoles in auditory cortex are usually fitted using band-
passed MEG fields averaged along a few hundreds of trials. In order to predict the
elicited fields, we assumed that all microcolumns in our model present the same
orientation. Then, the total dipolar moment elicited by the cortical model is pro-
portional to the aggregated activity across populations m(t) =

∑
nH

e
n(t+∆t),

where ∆t accounts for the time elapsed from tone onset until the signal first
arrives in primary auditory cortex (∆t ' 30–50ms). To account for the trial to
trial variability of the model, we further averaged the predicted dipole moment
across 10 runs M(t) = 〈m(t)〉runs.

An example of the simulated fields is shown in Figure 4 for several stim-
uli. The resulting waveform components can be related with the evoked fields
observed in MEG auditory experiments: the first large negative transient pre-
dicts the N100m component, whilst the sustained model response shows a good
agreement with the sustained field.

In order to assess quantitatively the relation between the N100m and the
model’s output, we computed the latency of the component for pure tones and
HCTs and compared them with available results in the literature [5,7,8]. Results
are shown in Figure 4. Good agreements between the model’s response and
the experimental data were generally observed in the range f0 ∼ 150–2000 Hz.
Specifically, latency predictions over 1000 Hz where all quite similar, consistently
with experimental observations.

Stimuli presenting fundamental or effective frequencies under f0 = 150 Hz
yielded an overly late predicted N100m. This is due to intrinsic limitations of
the peripheral model, that does not present cochlear channels solving frequencies
under f = 125 Hz [14]. Stimuli with f0 > 2000 Hz failed to yield satisfactory
perceptual outputs, as a reflection of the limit for phase-locking in the peripheral
auditory system [14].

4 Discussion and Conclusions

We introduced a biophysical model of cortical responses related to pitch process-
ing. The model accounts for the pitch-related components of auditory evoked
fields for the first time to our knowledge, and quantitatively explains the ob-
served N100m transient neural response in a range of stimuli as a transient
instability in the neural dynamics underlying pitch processing. The instability
period begins at the cortical input onset i.e. when cortical ensembles start to
integrate the subcortical activation patterns. Pyramidal neurons encoding the
perceived pitch and lower harmonics become increasingly active, propagating
forward activity to the inhibitory ensembles; whose feedback reduce the acti-
vation of excitatory ensembles encoding lower harmonics. Thus, the aggregated
activity in the excitatory neurons shows a transient component that begins with
the subcortical input onset, peaks when the inhibitory/excitatory input is bal-
anced, and stabilises when the population encoding the perceived pitch is the
more active one; accounting for the perceived pitch. A balanced excitation and
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Fig. 4. Simulations of the auditory evoked fields evoked by pure tones, harmonic com-
plex tones, and iterated rippled noises. In the left column, we show an example of the
M(t) for each of the families of stimuli with a pitch of 500 Hz (blue shades represent the
standard deviation). In the right column, we show the derived predictions of the N100m
latency and the observed experimental data for a range of fundamental frequencies.

inhibition setting such as the one shown in this model has been found to underlie
cognitive flexibility [12].

Importantly, we found that the latency of the N100m component directly
stems from the time required by the model to achieve equilibrium after stimu-
lus’ onset. High-pitched sounds typically have a larger amount of lower harmon-
ics represented in cortex than low-pitched ones, and thus they elicit bottom-up
activation in more excitatory ensembles; which induce top-down inhibitory ac-
tivity in a larger amount of inhibitory populations. Namely, high pitched sounds
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trigger top-down inhibition faster, thus explaining the observed dependency on
pitch of the N100m’s latency.

Conclusion. This study shows that N100m morphology associated with pitch
perception can be explained by transient dynamics of a winner-takes-all com-
petition among balanced, excitatory and inhibitory populations, tonotopically
distributed in cortex. In conclusion, we suggest that these characteristics pro-
vide a specific mechanism which enables alHG ensembles to process pitch.
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