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a b s t r a c t

This paper presents a ubiquitous thermal comfort preference learning study in a noisy envi-
ronment. We introduce Gaussian Process models into this field and show they are ideal, al-
lowing rejection of outliers, deadband samples, and produce excellent estimates of a users
preference function. In addition, informative combinations of users preferences becomes
possible, some of which demonstrate well defined maxima ideal for control signals. Inter-
estingly, while those users studied have differing preferences, their hyperparameters are
concentrated allowing priors for new users. In addition, we present an active learning al-
gorithm which estimates when to poll users to maximise the information returned.

© 2016 Published by Elsevier B.V.

1. Introduction

Building energy consumption is a major factor in overall human energy consumption accounting for an estimated
20%–40% of all energy consumption in the developed world [1], 43% in the US [2]. In addition, the trend appears to be in-
creasing with this consumption in the EU rising at a rate of 1.5% each year; the rate of increase for less developed economies
being far higher (4.2% in Spain for example) as their economies converge with the average [1]. Thus increase in build-
ing energy consumption has the potential to impact greatly on human energy consumption. A large part of this expen-
diture may be accounted for by HVAC systems (50% in the USA) designed to provide occupants with a comfortable working
environment [1].

Occupant comfort is in itself an important factor effecting not just energy consumption but productivity, comfort, and the
health of the occupants [3]. Indeed occupant behaviour, especially thermostat and ventilation flow usage was found to be
a dominant factor in building energy demand prediction [4] outweighing structural quantities (wall conductivity, window
parameters). It is important to note that an occupants comfort is a perception, internal to that occupant effected by, their
clothing, their activity, their health and environmental factors. External environmental sensors alone are a poor estimator
of that variable, however these are likely to remain the best measures available to us as sensing an occupants clothing
index (for example) is overly intrusive. Finally, we may query the occupant themselves to get a measure of their comfort.
Though a humans perception of thermal comfort is also a noisy estimator it has been found in a similar study that use of
this information can yield up to a 20% saving in heating energy usage [5].
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Fig. 1. Overview of control and measurement environment.

In order to assess an individuals perceived comfort level, we need to ask them how they feel. However, with the rise of
ubiquitous computing individuals are now being bombarded by requests for attention and information from many sources
(mobile phones, facebook, twitter etc.). As stated by York in a survey of Human–Computer Interaction [6]; Central to the
concept of ubicomp (ubiquitous computing sic.) is that technologies should disappear into the background so that users can
unconsciously apply them to the task at hand. Thus there is a conflict;weneed to ask the user how they feel but the interruption
caused needs to be minimised. The interface design approach in this research minimises the interaction with the user but
this comes at a cost; users do not consider at length how they feel about their comfort; thus the data collected contains a lot
of noise and artefacts. It is an aim of this paper to show how user preferences can still be extracted from data in the presence
of suchmeasurement noise. In order to further minimise interaction with the user we examine an active learning paradigm.
Under this paradigm the user is polled for their perception only when the expected information returned maximises the
information about their comfort function. To paraphrase, their is no point asking a user if they feel uncomfortable at say
21 °C if prior evidence already suggests they are.

The specific statistical approach used in the study is based on Gaussian Process (GP) Regression. While involved, the GP
approach solves the aforementioned problems allowing a good estimate of a users preference function. In addition, a GP
approach allows for extra functionality which we investigate. Specifically, we show how the GP estimates may be used in a
natural way to combine the preference functions of individuals sharing the same office space. Also the GP estimates can be
used in an online manner to estimate when is the best time to collect a sample (active learning).

The scenario thus described is represented in Fig. 1. In our study we measure the environmental variables at the desk
of each participant and the external weather conditions. Using these and previously measured user thermal preferences as
input an individual model of user thermal preference is constructed. Note that there are two feedback loops in the overall
system, one from the environment to the controller with the setpoint dynamically determined by amodulewhich combines
the preferences of all occupants. The second loop is from the environment to the usermodel with the active learningmodule
acting as a controller to select the best time to ask the user for their preference. Finally, note that this research looks at all
aspects of this scenario except the control loop which will be examined in future research.

In our prior research [7] we examined a Gaussian Process model based on the raw response data alone and a single
combination of those predictions. In this paperwe extend that research by comparing thatmodelwith two alternatemodels.
In addition:

• We examine 4 methods for combining the preferences of several individuals based on maximising the expected neutral
vote (Section 5.3.2),

• We examine the suitability of different combination strategies as control signals,
• We show empirically that all humans share a common set of hyper-parameters,
• We show how this can be used as a prior to give new users a reasonable model and also which improves the active

learning control loop (Section 5.3.1), and
• We show that with active learning (incorporating prior information) a typical user may need as little as 15 samples

to obtain a reasonable fit of their thermal preference model (as opposed to 20 measurements for a random approach)
(Section 5.4).

2. Related work

With reference to Fig. 1 much of the previous work in this area has tended to view the user as the average human being
and so the entire active feedback loop is replacedwith an open loop lookup table. These tables are derived typically from the
ASHRAE standard [8,9] which defines thermal comfort using the Predicted Mean Vote (PMV) [10] and associated Predicted
Percent of users Dissatisfied (PPD). In order to fully estimate these quantities one must also measure the clothing index,
metabolic rate, gender, and other factors which are not possible in a ubiquitous environment [11] (see [12] for a indepth
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study which does identify factors which would be appropriate for ubiquitous systems to measure).1 In addition, a recent
study has proposed that the PMV is now a biased estimate of the average users preference inmany regions of theworld [13].
Further approaches seek to dynamically adjust the setpoint using measured environment variables but all without a human
feedback mechanism [14–16]. One recent notable approach uses Bayesian probit analysis to map PMV and environmental
measures to sensation, acceptability and preference [17] providing a deeper understanding of human perception of their
environment.

Model driven approaches which model individual preferences based on feedback can be found in several papers [11,18,
5] and some commercial systems such as the Comfy system from BuildingRobotics.2 In particular it has been stated that
Building Management Systems’ (BMS) operators tend to set conservative setpoints (to avoid complaints) leading to wasted
energy. [5] estimated in simulations an 18% reduction in energy usage by using models for individual users, while [19] cites
a 10% improvement.

Feedback from occupants has long existed in the form of thermostats but in a multi-occupant scenario this can lead to
conflict and in addition, the fact an occupant is using a thermostat indicates the environment is intruding on their work.
Thermovote [19] is an application using smart devices which measure feedback from users which are combined to control
office environments. The systemdiffers from that examinedhere in that user preferences are combinedwith equalweighting
and the approach is not model driven (a users preference is used immediately in a voting pool to adjust the environment).
Daum et al. [18], discusses the conflict between different users preferences noting the diversity of preferences and problems
faced when trying to combine them into one function with a well-defined peak. Song et al. [20] present a system with a
similar aim to that here which learns user preferences and combines them for use in the BMS system. While our approach
allows combination of preferences and active learning as in [18,20], it differs in that we use a purely Bayesian approach
based on the what the samples themselves reveal rather than assuming a model for the data a priori3; a functional logistic
model relationship in [18] or using a collaborative rule engine in the case of [20]. Zhao et al. [21] proposes two zones, a
comfort and discomfort zone and recursively estimates the boundary set between these.

In an early paper (1989), Cass and Steffey [22] discuss conditionally independent hierarchicalmodel (CIHM’s). A CIHM is a
Bayesian hierarchical model for several processes which have different parameters but a common set of hyper-parameters.
These models are common in the real world including across animals, humans and cities etc [22]. In the current setting, a
CIHM for user preferences would imply each users preference (process) is different but that the hyper-parameters used to
construct the preferences are common.We present empirical evidence that the GP’s used here are in fact CIHM’s; i.e. humans
share a common structure in the second level of the hierarchy (see Section 5.3.1). Daum [18] similarly uses global priors so
that new users will have a profile even though they may not have yet donated any samples. These profiles are then updated
as new measurements arrive as is examined in this research.

Active learning of user preference functions has not to our knowledge been examinedwidely in academia, though several
commercial thermostats exist which seek to learn user behaviour [23]. Active learning differs however in that the aim is only
to poll the user when the information returned is useful (above a threshold or according to some constrained budget). To
the best of our knowledge is it novel in the area of thermal comfort modelling but has a long history and has been applied in
many fields such as robot control [24], fault detection [25], as a general optimisation approach [26] amongst others [27–29].4

3. Interface and data collection procedure

The design of a user interface for preference modelling can have a significant effect on the quality of the data returned
as was examined in [11]. They tested several different interfaces and also noted that the more accurate the measurement
the greater the attention/annoyance required from the user. In this study we seek to cause as little intrusion as possible and
so our interface is designed to be a one-click interface. The interface conveys the scales via colour (blue for cold and red for
hot) and Fig. 2 shows a cropped screenshot in which the user interface appears in the top left corner of the user’s computer
screen.

As can be seen there is a colour bar, with the 7 Ashrae standard labels to the right of the colour bar (hot, warm, neutral
etc.). There are also two vertical lines in the centre of the colour barwhich are called the validation lines. The user is instructed
to click between the validation lines at the appropriate colour using the labels on the right as a guide. In addition, the user
has been asked that in the event they are busy or engaged or just not interested they should click outside the validation
lines in the area where the labels reside (see Section 5.1 for a discussion of this feature and the deadband). Once a click
has been received the interface disappears and does not appear again for several hours (there are a maximum of three
samples times each day chosen randomly but the user might not respond or be present). The deviation from neutral is
the dependent variable in the model, Y , and lies in the continuous range [−3, 3] which corresponds to the Ashrae scale
{Hot = 3,Warm = 2, . . . ,Neutral = 0, Cold = −3}.

1 In our models we use the internal room temperature, the external (outdoor) temperature and the internal room humidity as these can be easily and
non-intrusively measured.
2 http://buildingrobotics.com/comfy.
3 We do however test if using the PMV predictions as a prior is beneficial for the Bayesian model.
4 gaussianprocesses.org is also a good resource for the interested reader.

http://buildingrobotics.com/comfy
http://www.gaussianprocesses.org
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Fig. 2. A cropped screenshot showing the user interface (top left corner). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. External and internal temperature, and the number of samples collected per day at the three sites.

To avoid catching the user just after they have entered work (in which case they are not yet acclimatised to the
environment) a delay is incorporated; the interface is only shown ten minutes after a (any) click has been received on
the computer, the aim being to avoid polling within 10 min of a users entry.

Although the labels in Fig. 2 correspond to the ASHRAE labels there is an important difference; the ASHRAE polls consists
of 7 discrete levels, the polls taken here are continuous. This allows us to take an exact measurement and thus avoid
quantisation error.

The preference collection software was rolled out in three different sites. Table 1 gives a summary of the data collected in
this study and Fig. 3 shows the number of samples collected, for each site, every day. In addition, the prevailing weather and
the room temperatures across the survey are shown. The first is at a room in University College Cork (UCC) in which each
user has a temperature and humidity sensor located at their desk. This site is themost important in terms of instrumentation
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Table 1
Summary of data collected.

Site Number
participants

Average number of
polls (Max, Min, Std)

Mean duration
(days)

Average samples per
day (Max, Min, Std)

Internal
temperature

Internal
humidity

External
temperature

Environment

UCC 4 38 (61, 14, 20) 128 (159, 67, 41) 0.83 (0.98, 0.48, 0.23) Yes Yes Yes Controlled,
large variation.

CIT 21 65.5 (189, 5, 39) 74.1 (277, 4, 54.6) 1.4 (5.3, 0.30, 3.4553) Yes No Yes Controlled and
tuned.

NUIG 53 98.5 (227, 11, 54) 169 (306, 9, 89) 0.5095 (1.66, 0.4, 0.32) Yes No Yes Controlled and
tuned.

and control but contains the least number of participants; just four. The HVAC system consists of underfloor storage heating
(commonly used in regions with cheap night-time electricity rates) and natural ventilation; the room also has a large
south facing window. The environment is difficult to control (as there is a lag of approximately eight hours between
the control/storage heating and the resulting temperature in the room); this site presents the largest variation in the
environment. These users will be used as the main group for the discussion in the results.

The second implementation was in a research building at Cork Institute of Technology (CIT). There are 21 participants
located in 7 different rooms; all with East or West facing windows. These rooms have been fitted out with temperature
sensors in various locations and for the 21 participants there are 13 sensors. The HVAC system here is modern and has been
in usage for several years and so the environment here showed the least amount of variation. The third implementation took
place in the New Engineering Building at NUI, Galway. This building contains two elongated Ph.D.rooms each containing
space for one hundred students. The rooms are south facing, the HVAC system employs a combined heat and power unit
and thewindows are darkened to reduce solar glare.5 TheUCC participants are all Irishmales aged 35–45, The CIT population
consisted of postdoctoral researchers aged in the region of 35. The NUIG population consisted of Ph.D. students from diverse
international backgroundsmostly aged in theirmid to late twenties. All three rooms are research officeswhere the occupants
spend most of their time seated at their desks.

In addition to the sensors located at each site weather information in the form of the external prevailing temperature
was available as samples taken hourly. In addition, the external humidity was measured but was not found to be a major
factor in preference learning.

4. Gaussian processes and active learning

The preference modelling domain has particular characteristics. Here we enumerate these and later in this and other
sections we indicate how those characteristics are considered by the model:

C1: There are numerous factors that influence somebody’s preference which we cannot measure (without being overly
intrusive), such as their clothing or their awareness of their comfort (discussed in Section 1). This leads tomeasurement
noise and this noise can be excessive leading to outliers,

C2: The noise is heterogeneous. Someparts of the input spacewill have a higher expected variance than others. For example,
a neutral vote is particularly suspect due to the demand characteristic (Section 5.1),

C3: Samples are not evenly distributed.We sample an environment that a system (the HVAC) is deliberately trying tomake
comfortable; i.e. it is attempting to force all the samples to come from a narrow region of the input space,

C4: Prior information is available. Comfort modelling has been considered important for a long time and there is wealth of
research already conducted into this area and so there is prior information available which could benefit the models,

C5: Multiple occupancy of space. Rooms are typically occupied by several people and a combined preference is required in
this case, and

C6: Samples are intrusive to collect. Finally, as stated in the introductionwe viewpolling a user as an interruption. Aswill be
shown Gaussian Processes are perfectly suited to addressing the six characteristics cited above in a single framework.

4.1. Gaussian process models

A Gaussian Process (GP)6 is a modelling framework that primarily looks at the shared information between samples. For
example, we might accept that a participants comfort level at say 23 °C tells us a lot of information about their preference
at 23.1 °C, but, perhaps not so much at 35 °C. How do we quantify that shared information? A GP assumes that the
information/correlation between samples is dependent on their distance apart, that dependency being made specific by
a function of distance called the kernel function. If we take several samples together then we can combine them to estimate

5 This buildingwas designed as ‘living laboratory’ andwon several awards for its innovative design. More details may be found on the buildings webpage
http://www.nuigalway.ie/new-engineering-building/greencredentials/.
6 An excellent primer for GP’s may be found in [27].

http://www.nuigalway.ie/new-engineering-building/greencredentials/
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the value of the function at an unknown point where that combination is based on the distance from that point to the known
samples/information. In addition, we may estimate the parameters of the model by optimising how well they predict each
others values. There is no restriction on the distribution of samples (C1), a GP will simply combine whatever information
it has been provided, thereby predicting at any location in the input space. Crucially it will also provide an estimate of that
prediction variance. The specific details of the GP employed here are now presented.

A GP consists of assigning a kernel to each measured data point and performing a regression based on that kernel and
the measurement noise at that data point. In the following we summarise the theory behind this Gaussian Process model
and the interested reader may find more detail in [7]. Given an d dimensional input, x ∈ ℜ

d, the data is first scaled such
that the variation in all dimensions along the data is the same. To achieve this the data is typically multiplied by a scaling
matrixM ∈ ℜ

d×d. There are several choices forM [30] including a factorial analysis form but that chosen here is to haveM
as a diagonal matrix.7 M thus consists of d elements and we choose to keep the first entry on the diagonal as 1. The reason
for this choice is that the first variable is internal (building) temperature, the dominant variable, which is already in units
that can be easily interpreted. Thus M consists of d − 1 unknown elements denoted, {m1, . . . ,md−1}. These unknowns can
be incorporated into the set of hyperparameters for the GP; the estimation procedure is discussed below.

A GP is defined as a process in which realisations from the process are jointly multivariate Normally distributed.
Specifically, the data generated by the process at n sample points, Yx1:n , are drawn from amultivariate Gaussian distribution
as:

Yx1:n ∼ N [µx, Cx,x] (1)

where N denotes a Gaussian distribution, x1:n, denotes n samples taken at points x1 . . . xn, µx ∈ ℜ
d, is the mean of the

process and Cx,x is the covariancematrix, and∼ denotes drawn from. Following appropriate scaling of the inputs (discussed
below) an isotropic covariance matrix can be used in which the variation of the function is equal in all directions. Given an
isotropic covariance function it now becomes more convenient to talk in terms of the correlation function which is related
to the covariance function via8:

Cx,x = σ 2
x Rx,x (2)

as σ 2
x , is the variance of the process and Rx,x ∈ ℜ

n×n is the correlation function.
In this application, a monotonically decreasing kernel is apt as one expects similar environments to provide similar

comfort levels. However, it is unclear just how far knowledge at one point in the input space extends. For that reason the
Matérn Kernel, derived from the t-distribution is used as this kernel can take on a variety of shapes; from a Gaussian-like
shape, to shapes peaked at zero and with a long tail. In addition, it has only two parameters. The Matérn kernel is defined
as:

R(h, θ, ν) =
1

Γ (ν)2ν−1


2
√

ν|h|
θ

ν

Kν


2
√

ν|h|
θ


(3)

where Kν is the modified Bessel function, θ and ν are parameters of the kernel with θ controlling the scale and ν the shape
of the kernel.

Now, given a set of points at which samples have already been taken, x1:n, and a set of locations (called evaluation
points), x∗, at which we have not sampled, the relationship between the sampled and evaluation points may be expressed
by partitioning Eq. (1) in terms of the cross and auto-correlation matrices of the sampled and evaluation points as [27]9:

Yx1:n
Yx∗


∼ N


1n
1∗


µx, σ

2
x


Rx,x Rx,x∗

RT
x,x∗ Rx∗,x∗


(4)

where Yx∗ is the value of the process at x∗, 1n and 1∗ are appropriately dimensioned vectors of ones, Rx,x is the auto-
correlation between the known sample points, Rx,x∗ is the cross-correlation between the sample and evaluation points and
Rx∗,x∗ is the auto-correlation of the evaluation points.

The set of unknown parameters for the GP model is {µx, σ
2
x , θ, ν,m1, . . . ,md−1}. These may be estimated iteratively

using Bayesian conjugate analysis and a hierarchical GP in which the parameters are organised in a hierarchy as:

[µx, σ
2
x , θ, ν] = [µx|σ

2
x ] × [σ 2

x ] × [θ, ν,m1, . . . ,md−1] (5)

where [•] denotes distribution. It is thus assumed that the kernel and data scaling parameters are independent of the process
mean and variance and may be estimated first followed by the next stage in the hierarchy; estimating the variance and

7 The reason is that the inputs involved; internal temperature, external temperature and internal humidity can reasonably be thought to be independent
due to HVAC control; even the internal humidity is controlled separately from the internal temperature by the outside air intake valve.
8 Here is assumed that the overall process mean is zero; alternatively a non-zero mean may be subtracted from the data prior to modelling.
9 This equation allows us to estimate the model at any point while accounting for the distribution of the samples in the input space; C3.
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then the process mean (conditional on the variance). Finally, estimates of the function at particular sample points may
be made given the hyperparameters. [θ, ν,m1, . . . ,md−1] can be estimated by maximising the log marginal likelihood
as [30]:

L = −
1
2
Y T
x1:nC

∗−1Yx1:n −
1
2
log |C∗

| −
n
2
log(2π) (6)

where L ≡ log p(Yx1:n |x1:n, θ, ν,m1, . . . ,md−1) is the log likelihood function, C∗
= σ 2

x (Rx,x∗ + ζx), is the covariance matrix
of the noisy data and ζx is the measurement noise covariance.10

The process parameters are estimated using a conjugate Bayesian approach in which the standard conjugate Bayesian
prior for a mean and (unknown) variance are used; specifically the mean has a normal prior; µx ∼ N


0, σ 2

x δ2

and the

variance has a normal-inverse-Gamma prior; σx ∼ IG [a/2, b/2]. δ is our initial estimate of the variance of the mean, the
variance is initially assumed to lie in the interval [a, b].

An estimate of the function at the evaluation pointsmaybe constructed using least squares (see [27] for details). However,
in the current application we are interested in estimating the value of Yx∗ given that the measurements are noisy. In the
presence of measurement noise equation (4) becomes [30]:

Yx1:n
Yx∗


∼ N


1n
1∗


µx, σ

2
x


Rx,x + ζx Rx,x∗

RT
x,x∗ Rx∗,x∗


(7)

and an estimate of the value of the function at the evaluation points, x∗ may be expressed as [30]:

Ŷx∗ = 1∗µ̂x + Rx,x∗ (Rx + ζx)
−1 Yx1:n − 1nµ̂x


. (8)

An estimate of variance at the evaluation points, σ 2(x∗), may be estimated via [30]:

σ̂ 2(x∗) = σ̂ 2
x


Rx∗ − RT

x,x∗KRx,x∗ +


1 − 1T

nKRx,x∗
2

1T
nK1n + δ−2


(9)

where K = (Rx,x + ζx)
−1 is used to simplify notation. Note that it is through ζx that C1 and C2 may be considered in the

model. The maximum a-posteriori estimates for the process parameters are [24]:

µ̂x =

1 − K + δ−2−1 1T

nKYx1:n (10)

and

σ̂ 2
x =


b + Y T

x1:nKYx1:n − (1T
nK1n + δ−2)


µ̂2

x

n + a + 2
. (11)

4.2. Outlier influence reduction

At this stage the base model has been presented but there still remains one set of unknowns in the equations above, the
measurement noise at the sample points, ζx. In many cases this is assumed to be constant [30] or another GP is employed
to model the variance in addition to the mean (see [31,32]). However here we use an approach similar to that in [29]. This
approach assigns a different variance to each data point and can be used to reduce the effect of outliers (by assigning a higher
variance to those points); this contrasts with other approacheswhich exclude outliers entirelywhich is problematic as there
is no fixed definition of an outlier. In the current setting, an initial guess can be made for the variance of a sample/poll (see
Section 5.2.2), say ζ 0

x . Given this initial guess the GP can be used to produce an estimate of the process at x, i.e. Ŷx, and this
can be taken from the measured value to produce a residual. A recursive procedure can then be used to further estimate the
variance based on the residual as (C1):

ζ i
x = αζ i−1

x + (1 − α)r ix (12)

where r ix = Ŷx − Yx is the residual at x in iteration i and α is a coefficient which is here set to 0.7 (although this algorithm
was found to be robust to different values of α). The net effect of this algorithm is that outliers are excluded as demonstrated
empirically in Section 5.2.1.

10 Note: it is assumed that the noise is heterogeneous [31,32] as will come in useful in the results; Section 5.
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4.3. Active learning

Active learning is a recursive procedure in which an estimate of a process, based on current data, is used to inform on
the best point to sample the function at next. The process is then sampled at that point and the process estimate is updated
and so on recursively (this Section deals specifically with C6). Active learning is appropriate when the number of samples
that can be taken is limited due to time or cost or, in this case, nuisance to the user. Thus, it is important to maximise the
information gained from each sample. Examples of active learning with GP’s may be found in [33–35]. Active learning is
implemented in several stages, each of which must be tailored to a particular application:

(i) A model for the data which also specifies the confidence of the model; in this case we employ a hierarchical Gaussian
Process model for regression (i.e. noisy measurements) in the presence of heteroskedastic noise as explained above,

(ii) A function which takes the mean and variance estimates and converts these into a value representing the expected
return if we were to sample at that point. This is known as the infill function (see Section 4.4). In this case the expected
return is the improvement of the estimate of the entire function, and

(iii) The maximum value of the infill function is estimated and used to select the location of the next sample. This current
application is somewhat different from the standard setting in that the set of possible locations at which the function
can be sampled at are not under our control. Given the environmental conditions (or estimates of them) for the day
ahead, the algorithm must determine at what time it is optimal to sample at. We will call this set of environmental
conditions a path as it is essentially a single path through the input space that takes place in the course of a day. The
aim is to find the point on that path for which the information returned is a maximum.

4.4. Infill function

The role of an infill function is to estimate the expected return from sampling at a particular point. In terms of
approximating a function, there are two commonly used infill functions; the entropy approach proposed byMacKay [36] and
the squared error approach suggested by Cohn [37]. In the entropy approach the expected return is the information gained
about the GP parameters by sampling at a candidate point [36]. This in fact corresponds to sampling at that point which has
the highest sample variance [36], σ̂ 2(x∗), which is immediately available from the GP. In the squared error approach, the
expected return is the average reduction of estimate variance across the entire function. The squared error approach is often
preferred as the entropy approach tends to bemaximised at the boundary of a function.11 The squared error approach can be
costly however, as it requires evaluating the entire function over a fine grid for every candidate sample (the computations
required for the entropy approach are part of the GP algorithm already). In this case we are not free to select the input
candidate points; the candidates are the input path and so the boundary issue does not arise. The entropy approach is thus
preferred in this setting.12

5. Results

The results are broken into four major sections; the first presents a preliminary analysis of the data demonstratingmajor
characteristics 5.1. The aim of Section 2 is to show the GP models in operation and does so by presenting the results from
a single user 5.2. Section 3 validates the models and presents group results from the three sites and combining preferences
5.3. Finally, active learning is given its own Section 5.4.

5.1. Preliminary data analysis

When a user is busy and just wants to remove the interface three events can occur: (i) They could click outside the
validation lines (as instructed), the location of their click being thus irrelevant, (ii) they might alternatively click inside the
lines but at a random location (inwhich case theywill generate an outlier in the data), or (iii) theymight click at the centre of
the interface. The data presented below shows us that event (i) did in essence not happen (only 2% of all clicks are outside the
validation lines), (ii) there are definitely outliers in the data (see Section 4.2) although they may be caused by other factors
and (iii) does occur quite often (23% of all samples) but many of these are also a neutral vote. Fig. 4 shows three specific
examples which encompass the behaviour seen by all users. Fig. 4(a) comes from a typical user; almost all the responses are
between the validation lines (in blue), some indicate it is too hot while others indicate it is too cold, and there is a cluster
of responses around zero which indicate a neutral opinion. Fig. 4(b) shows the responses of a user who misinterpreted the
instructions and clicked instead on the ASHRAE labels; note that for this user there is not a large concentration of points
around zero/neutral, i.e. this user does not exhibit a deadband. Seven users misunderstood the instructions and clicked on
the ASHRAE labels instead of the colour bar; however as the users intention is still clear (if they clicked near the label ‘HOT’

11 Intuitively, a point in the interior of the search space may have samples to its right and left (in 1-D) and thus will be expected to have a lower variance
than points on the boundary. Thus the bias in the infill function in [36]. See [28,29] for a more in depth discussion.
12 See [3] for an example where the squared error approach is preferred.
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(a) All responses between the validation lines. (b) Clicked on the ASHRAE labels by mistake. (c) A user for whom the environment is
always too cold.

Fig. 4. The responses from 3 users: (a) Typical, (b)Misunderstood, and (c) No deadband. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. The deadband of a user: (a) Raw data, (b) Deadband identification, and (c) Deadband removal and a linear fit.

then this provides the same information as them clicking on the red colour), this data was accepted for modelling. It was
found that these models produced similar forecast variances to the rest. Fig. 4(c) shows the responses of a user who appears
to be too cold most of the time. Again there is no obvious deadband for this user. Next we examine the deadband in more
detail.

Fig. 5(a) shows the responses of a typical user with respect to the internal temperature (note that there are other
dimensions to the data not shown here). As can be seen the relationship between internal temperature and the deviation,
Y is quite cluttered and there appears to be a band around Y = 0 for which the response is invariant to the input; the
aforementioned deadband.

The Gaussian Mixture model (GMM) [38] function in matlab is used for cluster detection under the assumption of three
clusters one at Y = 0 (the deadband), one at Y = −0.7 and one at Y = +0.7 (the latter two being nuisance clusters used
to assign non-deadband data). The resulting deadband is shown in Fig. 5(b) and shows a clear band of entries from 21 to 26
° C for which the user gave a near zero response. The likely causes of this deadband are several fold; some are expressions
of genuine comfort. However, others may come from the demand characteristics [39] of the poll, that is, participants have
a tendency to answer what they believe the questioner wants to hear, in this case that they are comfortable. It was found
that very few clicks occur outside the validation lines; i.e. users are not using this feature to indicate that they do not care
to answer the poll at this time. Anecdotally users indicated that when they did not care they usually clicked at the neutral
position. In addition, even though a user may be too warm/cold when polled theymight not be aware of that fact as the skin
is a very bad at perceivingwarmth and cold [40] especially when the roomheats up slowly13 and so click again at the neutral
position. Statistically the deadband constitutes a different processwhich should either be taken out of the data altogether or
discounted during modelling. Note that for approximately half of users a deadband does not exist. Given a ‘deadband’ from
the GMM it may be tested to see if the centre of the band is statistically different from zero using the usual t-test. This was
found to be a robust way of detecting the presence or not of the deadband for all users.

Fig. 5(c) shows the same data as in Fig. 5(b) but this time with the deadband removed. The relationship between internal
temperature and Y is now somewhat clearer. Indeed a simple linearmodel (shown in Fig. 5(c)), created purely for illustration
purposes (the actual model is a GP), shows a reasonable fit to the data; this model implies that this users optimal internal
temperature is in the region of 24 °C; a plausible result. Given the preliminary elimination of the deadband data a more
complex models based on Gaussian processes may now be constructed.

13 A well known example is the urban legend about boiling a frog slowly; due to the slow change in temperature the frog will not notice until its too late.
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(a) (b) Kernels shown in red (mtext = 2.68,mhint = 0.62).

Fig. 6. Input data space: (a) Original (b) Scaled (note all axis scales are equal, User 1, GP1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

5.2. Operational results

5.2.1. Gaussian process models
In this sectionwe propose and contrast 3 different Gaussian Processmodels14: The firstmodel,GP1, is a pure GPmodel (as

described in Section 4) whichmodels the relationship between the input and output using aMatérn kernel. The second, GP2,
is a regressive GP model [30], the aim of which is to use the PMV model as prior information (C4; i.e. we shall incorporate
the average response of a human being a guess to which the estimates will tend in the absence of contrary information)
in which the PMV is removed from the data prior to modelling; thus this model predicts the deviation from the PMV
(i.e. Yx1:n ∼ N [µx − Y PMV

x1:n , Cx,x]). The third model, GP3, is a regressive model with offset. This model predicts the deviation
from the PMV and assumes that for each user there is an unknown fixed bias (for example, a preference may tend to be
consistently 1° higher than that predicted by the PMV (see [13])). We introduce this offset by changing the kernel from a
Matérn kernel (3) to a Matérn kernel summed with a constant, ∆ as:

R′(h, θ, ν) =
R(h, θ, ν) + ∆

1 + ∆
(13)

where the denominator ensures R′(0) = 1.
We now begin by looking at how the input space is scaled by the fitted models. Fig. 6(a) shows the original input data for

a single sample user (using GP1); the internal temperature, the internal humidity and the external temperature. The original
data shows that the internal temperature spans a lower range than the external temperature; it is unclear how humidity is
related to the temperatures as it is in a different unit (percentage). TheMaximum Likelihood Estimates (MLE) for the scaling
parameters (Eq. (6)) aremText = 2.68 and mHext = 0.62.

Fig. 6(b) shows the input data for this user after input scaling. Comparing this with Fig. 6(a) one can see that the external
temperature has in fact been expanded (by a factor of 2.68) while the Humidity has been compressed, i.e. the scales have
changed quite significantly. By expanding the external temperature scale the effect of each external input point becomes
more localised (the kernel covers less of the range). Conversely, the humidity has been compressed and the kernel is quite
wide in comparison to the range of the scaled humidity. Thus each humidity reading has a global rather than local effect on
the estimate of the function. The kernel itself is shown alone in Fig. 9; the kernel parameters being {θ = 2.91, ν = 2.54}
(Eq. (6)). The kernel has a value of 0.5 at a distance of 2° and dies away quite slowly. The results are similar for GP2 and GP3.

14 In [7] only model 1 was explored.
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(a) (b) (c)

(d) (e) (f)

(g) Humidity = 36.2%, grid shows the PMV. (h) Humidity = 36.2%, Text = 8.86 °C. (i) Text = 8.86 °C, white line shows Ŷ (x) = 0,
dashed line shows PMV = 0.

Fig. 7. The response of models GP1 (row 1), GP2 (row 2) and GP3 (row 3) for User 1: Column 1 (a, d, g) response versus internal and external temperature
(Humidity held constant), Column 2 shows the responsewrt internal temperature (humidity and external temperature held constant), and column 3 shows
the response with respect to internal temperature and internal humidity (external temperature held constant).

Next we examine the predicted response for User 1 from the three models. As the input space is three dimensional this
is presented in 2-D by holding some of the inputs constant. In Fig. 7 the fit from the three models can be observed. The first
thing to note is that the fit from GP1 is quite different from that of GP2 and GP3 (as we will see later the predictive power
of all 3 models is however comparable). GP1 deviates significantly from the PMV at high/low temperatures (this is most
evident in Fig. 7(a)) as there are insufficient samples in these regions. Given no information a GP will regress to the process
mean (∼zero). However, this should not be considered a deficiency in the model. As can be seen in Fig. 7(d) (lower panel),
the predictive variance for the model rises sharply outside [22°–26°] reflecting the lack of samples outside this range. Thus
the model readily indicates when estimates are accurate and when they are not.

Fig. 7(d)–(i) show the fits obtained from GP2 and GP3. These model the deviation from the PMV and so in the regions
where there are few samples the fit returns to the mean (in this case the PMV). As can be seen, for this user these models
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3.

Fig. 8. The figures shows the GP model fitted to the responses from a user who is mostly too hot. (a) The initial GP fit. (b) The GP fit after the first round
of outlier influence reduction (c) the GP after the second round of outlier influence reduction. (The outlier is the large red dot in the centre of the figure
with guides to the Y–Z and X–Z axis to allow perspective. The cloud of data points above the bowl occurs at approx. Yx = 2.5.) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

predict that their vote will exceed the PMV when the environment is too warm, and is approximately equal to the PMV
when the environment is too cold.

The cross-over point is the point where a user is said to be comfortable, i.e. when their vote is zero. The estimated cross-
over points are shown in Fig. 7(b), (e), (h) with a cross and in Fig. 7(c), (f), (i) with a white line. It is interesting to note
that GP1 deviates significantly from the PMV estimate (see Section 5.3 for specifics of PMV calculations) while GP2 and GP3
broadly agree. However, GP2 and GP3 disagree with the PMV when the humidity is to high (∼40%) or too low (∼25%). As
Ireland has a temperature oceanic climate, humidity is liable to change and can be a major factor for a comfortable office
environment. The fits indicate that the PMV cross-over estimate differs anywhere from 0.5° to 1.5° for this user. Overall,
these fits demonstrate that the PMV is a good average indicator but that for a particular individual their preference can be
biased in whole regions of the input space. The fits obtained using GP2 and GP3 are preferable to GP1 in the sense that in
regions where the number of samples is low the estimate regresses to a reasonable value (the PMV) and not zero. Before
examining the predictive power of the models we next examine outlier rejection.

5.2.2. Outlier influence reduction
Fig. 8 shows three panels which correspond to three rounds of variance reduction. In the first panel, on the left, we can

see the GP1 model fit to the data with respect to the internal temperature and internal humidity. This user (different from
that presented above) has been chosen as there is a large outlier; which is shown in red. The response for this outlier, Yx,
was zero at an internal temperature of 26 °C and 35% humidity. The typical response for this user at that environmental
setting is ≈2.5 and so this is an obvious outlier. The leverage exerted by this outlier is such that the response curve in this
region (≈1.5 to 2) is well below the level it should be (about 2.5). As can be seen over the three rounds of outlier influence
reduction the fit approaches the swarm of non-outlier data.

Table 2 shows how this reduction is achieved in detail by showing a sample of the values for ζ i
x over three iterations.

ζ 0
x , the initial guess, is set equal to 0.2256. The obvious outlier indicated in Fig. 8 is datapoint 29; indicated in bold in the
table. After the first iteration most of the variance estimates increase rapidly (reflecting a bad fit in general with the average
standard deviation being 0.9418). The resulting fit in Fig. 8(c) shows an improvement with the ‘bowl’ moving downwards
towards the cloud at 2.5. The leverage of point 29 has thus been reduced. For the second iteration the variance estimates
decrease formost of the points but increases for point 29. This reflects the fact that point 29 is further from the second round
fit. Thus the overall effect is that during the first iteration a realistic estimate of the variance is produced (based on the initial
guess) and then this estimate is refined in subsequent iterations. This also results in the leverage of outliers being reduced
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Fig. 9. The Kernel function for the first user (in units of internal temperature) {θ = 2.91, ν = 2.54}.

Table 2
A selection of measurement error variance estimates over three iterations.

Data point ζ 0
x ζ 1

x ζ 2
x ζ 3

x

20 0.2256 1.1008 0.5221 0.3457
21 0.2256 0.2423 0.1334 0.0661
22 0.2256 1.6108 1.0503 0.7116
23 0.2256 1.1785 0.6708 0.2487
24 0.2256 0.8381 0.1921 0.0197
25 0.2256 0.8494 0.3860 0.1777
26 0.2256 0.3589 0.3462 0.1601
27 0.2256 1.3702 0.9884 0.7569
28 0.2256 0.6706 0.0603 0.0103
29 0.2256 1.1982 1.2054 1.2276
µ 0.2256 0.9418 0.5555 0.3724

via increasing their measurement error variance estimates. Outlier rejection for models GP2 and GP3 works in an identical
manner and is not shown for brevity.

5.3. Group results

The first question we address here is the predictive performance of the GP’s in general. In order to compare the
performances we remove 5 test points from the data, train the GP’s on the remaining points, and use these to predict the
test points. This is bootstrapped over 50 runs with the training sets chosen uniformly at random each time. These results are
compared with a multivariate (MV) linear model, a robust multivariate (rMV) linear model and the PMV estimate based on
the standard Irish PMV values.15 Fig. 10(a) shows the resulting root mean squared error (RMSE) for all 78 users. In all cases
GP1 out-performs the PMV and the multivariate models thus validating this technique for thermal preference prediction.
Table 3 shows a summary of the predictive statistics for all the models. The results show that the GP models empirically
out perform the PMV significantly. The root mean squared error (RMSE) for the GP’s is in the region of 0.71 while for the
PMV it is 0.96 (averaged over all users). The standard deviation (STD) of the RMSE across users measures how variable the
prediction accuracy is from user to user. As can be seen the PMV has a higher variation (i.e. the prediction RMSE reported,
0.96, is more variable compared to the GP models). The percentage signed error (PSE) is the percentage of predictions with
the same sign as the observed value.16 The results show that the GP models predict the correct direction ∼65% of the time
while the PMV is correct∼50% of the timewhich is equivalent to a random guess.17 Between the GPmodels there is no clear
winner. GP3 has the lowest reported RMSE but the difference between the RMSE’s is not significant (as can be seen from

15 The standard PMV values for Ireland are: Text = 12.8,Hint = 50%,Winter Clothing Level 0.85 clo, Activity Level: 1.2met, Air Speed: 0.15m/s, Humidity:
50%; note that the PMV is a non-linear function but is essentially linear in this range. An online PMV calculator may be found at www.lth.se/fileadmin/eat/
Termisk_miljoe/PMV-PPD.html.
16 This is important from the control systems point of view as we often wish to know if the temperature should be either increased or decreased.
17 This may be a remnant of the fact that the control systems are seeking to achieve setpoints derived from the PMV which would ideally result in votes
hovering around zero.

www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
www.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
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(a) Results for all users, bootstrapped over 50 runs, 5 randomly chosen
samples are excluded from the training set and used for evaluation
(average RMSE in brackets).

(b) The operating points used are the standard PMVWinter values for
Ireland.

Fig. 10. Comparing the GP and PMV: (a) Preference prediction RMSE (b) Response curve of a GP trained using all user data.

Table 3
Summary of predictive accuracy of the candidate models.

Model RMSE STD PSE L

GP1 0.7117 0.29 34.10 57.3
GP2 0.7132 0.28 34.4 61.6
GP3 0.7141 0.28 34.16 54.3
MV 0.8273 0.35 38.25 –
rMV 0.8380 0.36 37.61 –
PMV 0.9600 0.41 49.61 –

the STD’s). GP2 has the highest PSE but again the difference is not significant. The Log likelihood’s show that GP2 explains
the observations better than the other models but the likelihood ratios are almost 1 and so we cannot conclude that any of
the candidate models is superior to the others. In summary using a GP which deviates from the PMV and includes an offset
neither increases or decreases prediction accuracy (it is likely that the extra complexity involved in the models offsets the
gains achieved).

The PMV is an estimate of the average human beings response. In this vein we take all the polls and fit a GP1 type model
(i.e. using the sample population) to get an estimate of the population average. Fig. 10(b) shows the resulting GP estimate. As
can be seen there is in fact good correspondence between the two approaches at 18 °C and 25 °C. However, between these
temperatures the GP estimate suggests a population preference function which changes more rapidly around the cross-
over temperature (21 °C). It would also appear that the PMV overestimates the cross-over temperature for this population
at 22 °C. Note that similar biases in the PMV have been observed in other studies such as [41].

Next we examined the cross-over temperature for groups of individuals. For this we pooled the polls fromNp individuals,
fitted a GP1 type model and noted the cross-over temperatures at the standard Irish Winter values. Np was varied from 1 to
20with 50 runs chosen randomly (so forNp = 1 therewere repeated samples). Fig. 11 shows the results of these simulations.
As can be seen the PMV is again biased. The variance falls as the number of individuals’ polls are pooled and we can expect
individuals to have a crossover point between 18 and 22 °C for small groups. However, with 20 individuals pooled the
cross-over point can still vary significantly; from 20 °C to 21.8 °C.

Table 4 shows parameter and hyperparameter estimates along with the number of samples for the control group.
Comparing the value of n to σ̂x (the variance of the process) shows that as the number of data points increases the fit becomes
smoother as expected. Note that this need not necessarily be the case; σ̂x is not just a measure of the number of responses
but also the quality of those responses. For example, a user might return many responses but with high measurement error
variance (i.e. they just click in a random location out of complacency). This would be reflected in a higher σ̂x. µ̂x is negative
for all users indicating that the room is in general too hot for the group as a whole. The estimated hyperparameters for users
2 to 4 shows surprising consistency with θ̂ ≈ 5, ν̂ ≈ 2.7, m̂2 ≈ 0.13 and m̂3 ≈ 2, as now discussed.

Next we examine if the quality of responses has changes over time (due to user fatigue with the application).
Alternatively, we may instead ask how well the samples fit with the model over time, and this information is available
in the model, specifically ζx. For this test we use the estimated noise variance of the samples, ζx, which we average across
all users and segment by the number of days since the user started using the application. Fig. 12 shows the expected noise
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Fig. 11. The cross-over values for combinations of users. The values shown are averaged over 50 runswith the users to be combined chosen independently.

Fig. 12. The estimated noise variance of the samples with the number of days the participant has used the application.

Table 4
Statistics for the control group of users.

User θ̂ ν̂ m̂Text m̂Hint σ̂x µ̂x n

1 2.53 0.85 0.39 2.71 0.12 −9.43 61
2 4.97 2.79 0.13 2.01 0.21 −8.32 29
3 4.64 2.78 0.16 2.27 0.10 −19.43 48
4 5.00 2.26 0.11 2.18 0.72 −1.52 14

variance of a sample taken in a user after using the application for x days. Also shown is a regression line which has a small
positive slope. However, for the slope we cannot reject the null hypothesis (at a 10% level) as the p-value is 0.11. On balance,
the data empirically indicates the responses degrade slightly over time.

For the NUIG dataset we present the results for one of the postgrad rooms showing the geographic distribution of
preferences for the occupants. Figs. 13 and 14 shows the mean estimate, µx and variance estimate, σ 2

x for GP1 for each
of the 26 occupants in this room. The figures shows that there is one individual on the western side (the y-axis) of the
building who is persistently too hot while overall the other participants have a mean vote of zero. The variance shows that
many of the participants in the western end of the room have a higher σ 2

x than those in the rest of the room. The western
side of this room is located above a server room, and in addition has a southern and a western facing window.

5.3.1. Global priors
To examine the distribution of the hyperparameters the models from all 25 users were collected together and the

distribution of the hyperparameter estimates from all users were examined to form global priors. These are shown in Fig. 15.
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Fig. 13. µx for the participants in a postgrad room at NUIG.

Fig. 14. σx for the participants in a postgrad room at NUIG.

While some outliers do exist (such as user 1 above) the distributions in Fig. 15 are concentrated about their respective
maxima. In addition, the distributions for each of the candidate models broadly agree with GP3 showing the greatest
concentration. Specifically the maxima (for GP1) in Fig. 15 are {θ̄ , ν̄, m̄Text , m̄Hint , σ̄x} = {4.91, 2.20, 0.63, 0.89, 0.24}. The
maxima for ∆ (this parameter is only present in GP3) is ∆̄ = {0.05}. Collectively, this suggests that the application of GP’s
to preference modelling is a CIHM as described in the paper of Cass and Steffey [22] and this is a very useful result in several
ways. First, there are physical interpretations for each parameter; θ̄ indicates that a poll taken at one point has an effective
radius of 4.9 °C (see Conclusion). The scaling between internal and external temperatures is 0.63 and the variance of the
‘preference process’ is smooth at 0.24. The variance of the GP estimates, σ̄x, is typically in the region of 1. This can be useful
as an error identification and users which have an excessive value may not be using the interface correctly or it may point
to an error in the measurement equipment. The prior for ∆̄ = {0.05} again demonstrates that the PMV is biased for most
users. Secondly, these global priors can be used as priors for a new user in order to give a reasonable fit before a significant
amount of data has been collected (as will be used later, in Section 5.4). Finally, we note that an alternative to using the
maximum likelihood approach from Eq. (6) the priors can be used to average across all possible values producing a more
stable result.

5.3.2. Combining preference functions
It is quite common that multiple people share an office space leading to the need for combined preferences (this Section

deals specifically with C5). In combining user preferences there are several factors that need to be considered. The first
is fairness; each users opinion should count equally. However, this is tempered by two other closely related factors; how
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(a) π(θ). (b) π(ν).

(c) π(mText ). (d) π(mHint ).

(e) π(σ). (f) π(∆).

Fig. 15. Global prior distributions for the hyperparameters.

well do we actually know a users opinion? what should we do about users whose responses are conflictual?18 Combining
these factors can be done quite naturally given the Gaussian Process (here we use GP1) representation of the process.
Fig. 16(a) shows the response curves for the 4 users in the control group. In addition, the value of σ̂ 2(x∗) at the internal
temperatures, x∗, are shown in the lower panel. The points at which Ŷx∗ = 0 (the cross-over points) for the four users are
{22.9°, 22.5°, 23.6°, 20.3°}, respectively. Thus the average cross-over point is 22.3 °C. However, this figure does not take
into account that our confidence about each user differs significantly as can be seen on the lower panel of Fig. 16(a). User
three has a significantly higher variance, σ̂ 2(x∗), than all the others, while user two has the lowest variance and thus we are
more confident of that response. A consistent weighting of the user responses is thus required.

At this stage it is useful to consider more rigorously the optimisation criteria. Given a particular environment we would
like to knowhow likely it is that the users are unhappy. Equivalently,we can askhow likely it is that they are happy. Estimates
are readily available from the GPmodels and an example is shownwith the aid of Fig. 16(b). This Figure shows the predictive
distributions of the responses at 23 °C. The data in this figure refers to just one operating point; the internal temperature at
23 °C (the other variables being set to the average). Comparing Fig. 16(a) and (b) it can be seen that User three, for example,
has a mean response (Ŷx∗ ) of −0.27 at 23 °C and in Fig. 16(b) it can be seen that the distribution (∼ N {Ŷx∗ , σ̂

2(x∗)}) around
this response is wider than for the other users (i.e. there is greater uncertainty). One way of combining preferences while

18 In the sense that one response might indicate that the user is too cold at 23 °C while another indicates that they are too hot; all things being equal.
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(a) The response curve from the 4 control group users with respect to
internal temperature. (The external temperature is held constant at the
average 11 °C. The internal humidity is likewise held constant at the
average, 39%. The line on the upper panel at 23 °C corresponds to the
temperature used in (b).)

(b) The distributions of the response at 23 °C for the 4 users. (Text = 11 °C,
Hint = 39%. Note that this figure shows probability distributions on their
side which is the conventional representation for a GP.

Fig. 16. Comparing the response of 4 users (a) Response curves (b) Distribution of estimates around 23 °C.

taking this uncertainty into account is to estimate the expected number of neutral votes as:

J1(x∗) =
1
4

4
i=1

Pi(Yx∗ = 0|x = x∗) (14)

where Pi(Yx∗ = 0|x = x∗) is the PDF of the response for the ith user evaluated at zero and J1(x∗) is the name given to this
combination function.

Fig. 17(a) shows the value of J1(x∗) corresponding to the response curves in Fig. 16(a). The individual contributions to this
value from the four users are also shown. As can be seen, J1(x∗), reaches a maximum at 22.8 °C compared with the 22.3 °C
derived from the average vote. Alternative strategies for combining the votes can be imagined and tailored to the preference
of the buildingmanager. Note that the choice of metric is subjective. So, for example, a manager whowishes to reweight the
functions such that each has the same average weighting can weight each user by their process variance before combining
as:

J2(x∗) =
1
4

4
i=1

1
σ̂ 2
xi

Pi(Yx∗ = 0|x = x∗) (15)

where σ̂ 2
xi is the process variance with the subscript added to the notation to denote the ith user (Eq. (11)). The effect of this

combining strategy is to give each user the same overall variance and thus influence. This influence can still be stronger in
some regions as σ̂ 2(x∗) is a function of x. Alternatively, we might be interested in minimising the absolute expected vote, a
strategy that takes into account not just the probability that a user is happy but also how unhappy they might be19:

J3(x∗) = −
1
4

4
i=1

 y=3

y=−3
|y|Pi(Yx∗ = y|x = x∗)dy. (16)

Additionally, we may wish to bias the combination towards very unhappy users by using the square of the vote as the core
of the metric as:

J4(x∗) = −
1
4

4
i=1

 y=3

y=−3
y2Pi(Yx∗ = y|x = x∗)dy. (17)

The resulting values are shown normalised for comparison in Fig. 17(b) (as we are interested in the shape and not the
amplitude). Thesemaximaoccur at {22.8, 22.9, 22.3, 22.5}°C, respectively. The cost functions in this figure arewell behaved
in terms of being used as control signals; they have a maximum and they fall away from that maximum smoothly without
discontinuities.20

19 We insert a minus here for convenience so that all combination functions are to be maximised.
20 The exception are the tails at the extremity (30 °C) which occur because of the lack of data at that point; causing Ŷ30 to return to zero as mentioned in
Section 5.2.1; note this can easily be removed using a sanity check.
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(a) The probability of a neutral response for four users and the resulting
combination under strategy J1(x∗).

(b) Four different combination strategies (y-axis is normalised,
appropriate function extrema in brackets).

Fig. 17. Comparing the combination of 4 users (a) J1(x∗) and constituent preferences (b) J1(x∗), J2(x∗), J3(x∗), and J4(x∗) (Text = 11 °C,Hint = 39%).

Fig. 18 shows a mesh plot of the combination functions with respect to internal and external temperature. While J1 and
J2 aremonotonic, smooth andwell behaved J3 and J4may cause problems for a control system as they contain local maxima
and minima (these occur around the preferred environment of individual users). In selecting the combination function care
should thus be taken that the resulting function does not default to a single users preferences.

5.4. Active learning

Up to this point we have been discussing preference functions and characteristics of the data. We now turn our attention
to efficientmeans of collecting that data, i.e. active learning. This section presents the results of the active learning algorithm
over time and attempts to give an empirical measure of the improvement over random sampling of this technique. To begin,
Fig. 19(a) illustrates two paths21 through the input space traversed in two different days; one in February and the other in
May. The day in February was more humid than that in May and surprisingly the May day was colder than February in
the morning but heated up throughout the day ending at about 12 °C outside. The aim of the active learning section is to
determine the best point during the path to take a sample (given the samples already taken).

Fig. 19(b) shows the expected return,σ 2
x∗ for the two example paths shown in Fig. 19(a).22 As canbe seen the optimal times

to sample for these two days are 11:15 am and 6 pm (for the February and May day respectively). The following intuitive
explanation can be given; for the May day, the path proceeds through well known territory but ends with a high external
temperature and high internal temperature which correspond to a region of the input space which has not previously been
sampled. Conversely, the start of the February path occurs in a region of the input space that has not previously been sampled.
It is also satisfying to note that there is a large variation in the expected return during the day (from ∼4000 to 7000). Were
we to sample at 3pm in the May day then the resulting information returned is quite low.

Active sampling is normally compared with grid sampling and random sampling. In the current setting grid sampling
is not possible as we have no control over the weather. In reality, we cannot both randomly sample and actively sample.
Fortunately, we have many users and the study was carried out for a long period. Therefore, we have a good idea of users’
preference functions and associated sampling error statistics. This allows us to use GP1 fitted on all the data to simulate
a sample of users’ preference functions under different conditions. In addition to investigating active sampling, we also
investigate the integration of prior information into the models. There are two pieces of prior information that we have
and investigate. The first is that all users share a global prior over their hyper-parameters (Section 5.3.1) and this can be
used as the starting value for the hyper-parameter estimates. The second piece of prior information is that all humans
are unhappy in extreme environments. These may be included in the GP simply as manually inserted sample points with
maximal responses, we call these the boundary points. The boundary points used are (subjectively) derived from the PPD.
It was assumed that a PPD level of 70% and above constituted an area of definite unhappiness. Thus we chose to randomly
search for points where the PPD = 70%. Fig. 20 shows several hundred such points in the input space. 33 of these are chosen
at random and their corresponding y-values are set at +3 or −3.23

21 A path is how the environment changes over the course of a day.
22 It is assumedwe know or can predict the path taken during the day.Weather and heating system prediction is however beyond the scope of this paper.
23 33 is chosen subjectively, we did not want too many points as this would slow down the algorithm and they would dominate.
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(a) J1. (b) J2.

(c) J3. (d) J4.

Fig. 18. The combination of four users’ preferences, using 4 different strategies (humidity kept constant at 39%).

(a) The path starts at 8 am (green dot) and ends at 6 pm. (The
shadow of the path is shown in yellow to help with
perspective.)

(b) The expected returns along the paths shown in Fig. 19(a).

Fig. 19. Sample paths in the input space (a) examples of how the inputs change over the day (winter and summer) (b) the expected return along those
paths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. The boundary points; each point occurs when the PPD is at 70%. The shadow of the points is shown in yellow to help with perspective. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Putting the above together we have 6 scenarios to investigate using a mix of sampling and prior information:

(i) Random sampling,
(ii) Random sampling with the global prior provided,
(iii) Random sampling with the global prior and boundary points provided,
(iv) Active sampling,
(v) Active sampling with the global prior provided, and
(vi) Active sampling with the global prior and boundary points provided.

Finally, the simulations are evaluated using the Sum Square Error (SSE) between the GP function based on all the data
actually collected and that created by the data collected in simulations (i)–(vi), above. Fig. 21 shows the results for these
three strategies for four different users. In order to account for randomconditions (such as the path taken on a particular day)
the simulations are conducted thirty times and the average is presented. As can be seen the results are mixed. At first there
seems to be little difference between the active learning (i) and random sampling (iv) results. This is surprising, but is due to
the fact that when few samples are present any sample will provide roughly the same amount of information. Including the
global prior results in an improved estimate in all cases. This result is encouraging as it demonstrates the use of the global
prior and in addition empirically suggests that it is useful for the average human being. The active learning with global
prior (v) is superior to the random sampling with global prior (ii) but only marginally, although the result holds for all the
users. Finally, inclusion of the global prior and the boundary conditions provides the best result. This shows that including
the known information greatly increases the speed at which the user function is learned. Approach (vi) shows a definite
improvement over approach (iii) (the approaches differ only in active versus random sampling). However, following the
collection of approximately 15 samples, it can be seen that approaches (vi) and (iii) start to drift upward again. The cause
of this is that the collected samples now start to differ from the boundary. This implies that the boundary points should
be discounted as we collect more samples (or even jettisoned). Putting these results together suggests the data collection
scenario vi) which is repeated as an algorithm 1 below.

6. Conclusions and future work

The aim of this paper was to show that a ubiquitous unobtrusive preference collection sample could be used to estimate
an individuals preference function. While we found that this is the case, it does require strategies to deal with several data
artefacts; outliers and a deadband. We found from talking with the participants that the feedback was generally positive
and the intrusion caused by the interface was minimal. It is interesting to note that clicking outside the validation lines was
not used (by anyone) perhaps because to use them would have required the users attention. Alternatively, an aversion by
users to a negative response (i.e. to indicate that they did not want to answer the poll) might explain this (note that this
feature was demonstrated to every user). Instead, the deadband seems to have become the location for preferences given
without thought.

Empirical evidence in this paper suggest that the preference function is a CIHM. The global priors apart from being useful
as an initial estimate of a users hyperparametersmay also be useful for compressed sensing. One can imagine a temperature
sensor only transmitting changes in temperature that are significant to the estimate of a users preference thus saving
power.

The regression technique used to process the data, i.e. a Gaussian Process, was involved (i.e. complex) but was chosen
for a reason; flexibility. The GP framework allows for active learning, taking into account prior information (global priors
and boundary conditions) as well as allowing a natural combination of users preference functions. The three different GP
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(a) User 1. (b) User 2.

(c) User 3. (d) User 4.

Fig. 21. Comparing the performance of different strategies for three users. (Results are averaged over 30 runs.)

Algorithm 1: Active learning with prior Information.
Data: Boundary points
Result: Ŷx∗ , σ̂

2(x∗)
begin

Initialise: Set hyperparameters to prior:
{θ, ν,mText , σx} = π(θ̄, ν̄, m̄Text , σ̄x)
Set samples to boundary conditions:
x1:n = {xboundary}
y1:n = {yboundary} ∈ {−3, 3}
for i = 1 → N do

Infill fn: Predict path for environment,
Use GP to estimate variance along path. (Eqn. 9)
Find time of max variance. (Sec. 4.4).

Sample: Sample at this time.
Model: Fit GP (Sec. 4.1).

Outlier rej: for j = 1 → 3 do
Re-estimate variance (Sec. 4.2).
Fit GP
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models tested showed excellent response to the datawith GP2 perhaps being preferable for aesthetic reasons (as predictions
outside the sampling region will regress to the PMV). Non-stationary GP’s, in which the kernel is allowed to vary across the
input space, are also of future interest reflecting that at different environmental settings our reaction may be different. One
particular type of non-stationary GP, the treed Gaussian process, has a finite set of kernel functionswith a boundary defining
what part of the input space is assigned each kernel. This could be interesting for preference modelling because humans
react differently to cold and hot environments [40] and a different kernel might be appropriate for each. A non-isotropic
kernel may also be of interest but as mentioned in Section 4.3 we have no reason to suspect a more complex model and so
opted not to. In the future we intend to apply active learning in a live setting but this requires a forecast of the weather and
environmental settings in the room, an involved task in itself.

Future work will concentrate on integrating the preference and control. This is envisaged to be particularly interesting
in the case of the NUIG site as the large elongated rooms contain ∼100 occupants. The elongated shape of the room allows
for different control settings for each part, to a certain extent, and so the combination function would have to consider, in
addition, the location of the participant.

In conclusion, fundamentally the approach taken above is to use a simple unobtrusive interface thus producing noisy
data and then extract the required information later using advanced statistical techniques. In addition the Gaussian
Process technique used is of interest in the general real-world sensing field as it allows several tasks beyond modelling
to be achieved. Specifically, it is envisaged that these techniques will be found useful when modelling, sampling and
understanding general human activities.
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