
Seamless Support of Low Latency Mobile
Applications with NFV-Enabled Mobile Edge-Cloud

Binxu Yang, Wei Koong Chai and George Pavlou
University College London, United Kingdom

Email: {binxu.yang.13, w.chai, g.pavlou}@ucl.ac.uk

Konstantinos V. Katsaros
Intracom Telecom, Greece

Email: konkat@intracom-telecom.com

Abstract—Emerging mobile multimedia applications, such as
augmented reality, have stringent latency requirements and high
computational cost. To address this, mobile edge-cloud (MEC)
has been proposed as an approach to bring resources closer to
users. Recently, in contrast to conventional fixed cloud locations,
the advent of network function virtualization (NFV) has, with
some added cost due to the necessary decentralization, enhanced
MEC with new flexibility in placing MEC services to any nodes
capable of virtualizing their resources. In this work, we address
the question on how to optimally place resources among NFV-
enabled nodes to support mobile multimedia applications with
low latency requirement and when to adapt the current resource
placements to address workload changes. We first show that
the placement optimization problem is NP-hard and propose an
online dynamic resource allocation scheme that consists of an
adaptive greedy heuristic algorithm and a detection mechanism
to identify the time when the system will no longer be able to
satisfy the applications’ delay requirement. Our scheme takes
into account the effect of current existing techniques (i.e., auto-
scaling and load balancing). We design and implement a realistic
NFV-enabled MEC simulated framework and show through ex-
tensive simulations that our proposal always manages to allocate
sufficient resources on time to guarantee continuous satisfaction
of the application latency requirements under changing workload
while incurring up to 40% less cost in comparison to existing
overprovisioning approaches.

I. INTRODUCTION

Over the last decade, advances in wireless access tech-
nologies (e.g., WiFi and LTE) have enabled an explosion
of resource-hungry mobile applications, challenging current
mobile devices’ processing ability. In particular, mobile mul-
timedia applications with low latency requirements (of the
order of hundreds of milliseconds (ms) [1]), such as video
streaming, gaming, augmented reality and face recognition, are
computationally expensive for today’s mobile devices resulting
in fast exhaustion of battery life and long processing delays
[2]. Mobile edge-cloud (MEC) [3] approaches (e.g., cloudlet
[4], Telco cloud [5], follow-me cloud [6]) were initially devised
to address the aforementioned issue [2], [4]. Micro-clouds are
installed at fixed locations such as access points (APs) to
which mobile users offload computationally expensive tasks
to leverage additional resources from virtual machines (VMs).
However, such solutions require deployment of micro-clouds
in a large number of fixed locations in order to achieve
low delay and incur significant operational costs [2], [7]. By
limiting the number and capacity of micro-clouds to save costs
in turn sacrifices the performance of such solutions (e.g., long

latency). Thus, there is a tradeoff between cost efficiency and
service quality (e.g., response time).

Recently, with the advent of network function virtualization
(NFV) [8] and software defined networking (SDN) [9], the
concept of NFV-enabled MEC emerged [9] whereby services
can be hosted at any conventional network node that has
virtualized resources (e.g., APs, routers, etc.). NFV was first
proposed to facilitate network function deployment for Internet
Service Providers (ISPs). It decouples network functions from
the underlying hardware by leveraging virtual resources pro-
vided by commodity servers. Here, we consider an NFV use
case for supporting both network functions and MEC services.
Using NFV to support MEC services allows ISPs to rent
their network infrastructure in the form of VMs to application
service providers (ASPs). At the same time, SDN facilitates
network configurations by decoupling the control and data
planes. The combination of NFV and SDN enables flexible
service-hosting node deployment (i.e., VMs instantiation).
This allows ISPs to flexibly instantiate and shutdown service-
hosting node strategically based on user demands, thereby
improving cost efficiency.

However, such an NFV-enabled MEC still needs to address
the aforementioned cost vs. performance tradeoff whereby
the number of NFV-enabled nodes serving as service-hosting
nodes should be kept low while service disruption due to
service elasticity is minimized. Current mitigation techniques,
such as auto-scaling and load balancing (ALB) [10], [11],
could cope with service elasticity only to the extent before
the capacity limit of service-hosting nodes is reached. Sub-
sequently, new service-hosting node locations are required to
provide more physical capacity. These locations need to be
carefully derived such that the distance between users and
resources is small and the physical capacity is enough to avoid
long network access and queueing delays at VMs respectively.
Therefore, it is challenging to dynamically place service-
hosting nodes among NFV-enabled nodes to simultaneously
achieve both cost efficiency and low latency over time.

The placement of service-hosting nodes in MEC envi-
ronments has been investigated as an offline static network
planning problem1 on how to optimally place a fixed number
of micro-clouds in the network to minimize the network access

1We refer to such an offline formulation as static placement problem
hereafter.

latency [12], [13] assuming known / predicted unchanged load.
On the other hand, work on the resource allocation in an online
MEC system has focused on the dynamic routing of user
requests to fixed clouds [12], [13], [14], [15]. Locations of
physical micro-cloud hardware are first fixed (e.g., after solv-
ing the static placement problem), and the dynamic problem
studied is the mapping of user requests to these predetermined
locations where VMs are hosted. These prior works did not
consider the flexibility afforded by the NFV-enabled MEC
where service-hosting node locations can be changed over
time.

In this work, we study the problem of online dynamic
placement of service-hosting nodes in order to minimize ISPs’
operational costs while satisfying the service-level response
time requirements. We take a longitudinal view and investigate
not only how service-hosting nodes should be instantiated
but also when this should happen while explicitly taking into
account the added help provided by ALB. We first introduce
an SDN based NFV-enabled MEC model and formulate our
dynamic problem by adopting integer programming in Section
II. In Section III, we first show that the problem formulated is
NP-hard and then, we detail our solution that consists of (1)
a capacity violation detection (CVD) mechanism to estimate
the time when ALB cannot cope with service elasticity and
(2) an online adaptive greedy (OAG) heuristic algorithm to
dynamically choose the locations of service-hosting nodes and
associated network paths based on the most current service-
hosting node deployment. In Section IV, using real mobility
traces [16] and a three-level metropolitan scale cellular net-
work [12], we present our evaluation results obtained from
a packet-level simulator. We show that our approach satisfies
the service-level response time requirement while achieving a
cost saving of up to 40% in comparison to current practices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider stateless mobile multimedia applications (e.g.,
face recognition, augmented reality, etc.) to be pre-installed
into VMs in service-hosting nodes. Mobile users send raw
files (e.g., picture frames) to VMs allocated in service-hosting
nodes for processing rather than executing application in-
stances locally in their mobile devices. These application
instances are hosted at VMs that are instantiated beforehand
at the network planning stage and VMs’ sizes are derived
according to the expected user demand for the service.

We define “service-hosting node” to be any NFV-enabled
network nodes that has virtualized resources. We depict in
Fig. 1 the three-level hierarchical wireless metropolitan area
network considered in this work . Let G = (V,E, P) denote
the network, where V is the set of NFV-enabled nodes, E
is the set of links and P is the set of paths between pair of
nodes in V . The three-level network consists of APs (denoted
by b ∈ B and B ⊂ V), aggregation nodes and metropolitan
level core network nodes. Each node v has limited virtual
resources, kv (e.g., CPU, memory) and could serve as service-
hosting nodes by allocating resources to VMs. We assume all

Internet	

SDN	controller	

	Network	link		

SDN	link		

18ms	

5ms	 5ms	

10ms	
10ms	

300Mbps	 300Mbps	

10Gbps	

10Gbps	

NFV	enabled	node		

Service-hos+ng	node	

AP	

Corer	Router	

Aggrega+on		

Core	level		

AggregaCon	level		

Access	level	

Fig. 1: Three-level Hierarchical MEC System Model.

nodes have the same capacity, kv . Each AP is connected to a
single aggregation node and all user requests from an AP are
served by a single NFV-enabled service-hosting node through
the same path, pbv ∈ Pbv , between AP b and v (v is selected to
host service). If a handover occurs, the involved user’s requests
will be routed to the new service-hosting node without service
migration since we consider stateless applications. Further, we
consider discrete time, t ∈ T . The total load incurred by
mobile users at AP, b, at time slot, t, is denoted by At

b.
The network configuration of service-hosting nodes and

NFV-enabled nodes is conducted by a centralized SDN con-
troller that has a global view of resource utilization in all
nodes and network links. It monitors the system and applies
configurations (e.g., service deployment, network path set-up
depicted as dash lines on Fig. 1).

B. Problem Statement

For the considered system model, mobile users move be-
tween APs and change request rate or workload over time.
VMs in service-hosting nodes may be overloaded, leading to
increased waiting time during request processing. However, for
interactive low latency applications, it is crucial to respond to
user requests promptly as users are sensitive to latency and
may quit their applications. From an ASP’s point of view,
losing users due to long queueing delays along the network
path and service-hosting node, leads to loss of revenue. This
also results in the decrease of ISP revenue at the same
time. Overprovisioning solves the problem of latency but it
is obviously not cost-efficient for both ASPs and ISPs. In
general, the operational cost of ISP is a function of the
number of active servers, and cost savings can be achieved
by cloud consolidation [17]. Alternatively, ALB can alleviate
overloading due to minor changes to the overall workload
but is always limited by the physical capacity of existing
NFV-enabled nodes. Hence, allocation of new NFV-enabled
nodes as service-hosting nodes will be needed in such cases
to alleviate increased delays.

From an ISP’s perspective, given time varying workload
(
∑B

b A
t
b,∀t), the question is then on how to allocate VMs

(e.g., service-hosting node) within its NFV-enabled infrastruc-
ture at different time instances for ASPs’ services so that

profit is maximized (i.e., satisfying user requests) while the
operational cost is minimized. We use integer programming to
formulate the problem with two binary decision variables, Y t

v

and Xt
pbv

, which represent respectively the location of service-
hosting node (i.e., Y t

v = 1 if at time t, v is chosen as the
location of a service-hosting node) and the path between b
and v (i.e., Xt

pbv
= 1 if pbv is chosen). We use cv to denote

the operational cost for a chosen NFV-enabled node, v.
To satisfy the latency requirement, we decompose the

service-level response time into the following:

1) Network access time – Denote by wt
b the bandwidth

consumption of flows departing from AP b. As long as
wt

b does not exceed any link capacity, BWe, we can
represent access delay and application delay requirement
in terms of number of network hops. Then, to satisfy
application’s network access latency requirement, D, we
simply need to constrain the number of hops between b
and v, dbv , to be below D, (i.e., dbv ≤ D).

2) Service processing time – We refer to the time unit a VM
serves a request. We assume that as long as there is an
available resource unit, the processing delay is bounded
and can be represented by a mean expected value, µ.

The integer programming problem is formulated as below2:

Min
∑
v∈V

cvY
t
v ,∀t ∈ T, (1)

Subject to∑
pbv∈Pbv

∑
b∈B

At
bX

t
pbv
− kvY t

v ≤ 0,∀v ∈ V,∀t ∈ T, (2)∑
b∈B

∑
v∈V

∑
pbv(e)∈Pbv(e)

wt
bX

t
pbv(e)

≤ BWe,∀e ∈ E,∀t ∈ T,

(3)∑
pbv∈Pbv

∑
v∈Nb

Xt
pbv

= 1,∀b ∈ B, ∀t ∈ T, (4)

Xt
b ∈ (0, 1),∀b ∈ B, ∀t ∈ T, (5)

Y t
v ∈ (0, 1),∀v ∈ V,∀t ∈ T, (6)

Constraint (2) guarantees the aggregated resource demands∑
p∈Pbv

∑
b∈B

At
bXpbv

from APs that are served by v is no more

than its physical capacity limit kv . This ensures a fixed service
time at all time by allocating a dedicated resource unit for each
uploading demand At

b. Constraint (3) guarantees that for all
edges, the aggregated bandwidth consumption is less than the
link capacity, where Pbv(e) denotes all paths between b and v
that traverse edge e; (4) guarantees that flows from the same
b are assigned to the single v where Nb = {v|dbv ≤ D} and
the distance is no more than D. Constraints (3)-(4) ensure the
network access latency is within D while constraints (2)-(4)
guarantee a bounded service-level response time. Constraints
(5) and (6) limit the decision variable to be either 0 or 1.

2Note that by fixing T = {t0}, the problem is reduced to a static placement
problem mentioned in Section I.

Our problem is NP-hard since a special case of the problem
without bandwidth capacity constraints can be reduced from
the capacitated set covering problem (CSCP). Since the CSCP
problem is NP-hard [18], our problem is NP-hard too.

III. DYNAMIC RESOURCE ALLOCATION APPROACH

Due to the NP-harness, our problem cannot be solved in
polynomial time for both static and dynamic versions of the
problem and thus, we turn to heuristics. Some heuristics [18]
have been proposed to solve the static CSCP by relaxing it
further into a capacitated plant location problem. However,
we highlight that such offline approach is infeasible when we
consider optimality of the system in real-time system when the
stringent latency requirement of the considered applications
does not allow for constant re-computation and re-deployment
of service-hosting nodes.

A. Approach Overview

In our solution, we take into account existing techniques
for coping with service elasticity (i.e., ALB) and find the time
point when these mitigation tools will reach their limits (e.g.,
due to increasing load) and cause the MEC system to violate
the service-level requirement of the considered application(s).
A new service-hosting node deployment must be computed
and put in place in time before service quality starts to degrade.

We propose a solution composed of (1) a capacity detection
violation mechanism that takes into account the effect of ALB
to address the question on when re-optimization is required and
(2) a fast adaptive heuristic algorithm to address the question
on how to cost efficiently adjust the current service-hosting
node deployment based on the predicted increased load. The
procedures of our approach are as follows.

1) We derive the initial optimal static planning in an offline
fashion by solving the static placement problem at time
t0 using CPLEX [19].

2) We exploit ALB to cope with service elasticity based on
the initial placement.

3) When the workload reaches a preset cloud capacity
threshold, the system triggers our capacity violation
detection based on the projected workload over a time
window ∆t = t′− t where t′ is the prediction time slot.

4) If it is detected that the ALB’s limit will be reached
within a time horizon, ∆t, our fast adaptive greedy
heuristic is invoked to derive the desired new service-
hosting nodes’ locations based on the previous place-
ment solution.

B. Auto-Scaling and Load Balancing

Auto-scaling and load balancing are two current techniques
to prevent MEC systems from constantly performing re-
optimization due to workload variations. We adopt a reactive
auto-scaling approach that is triggered once a specific capacity
threshold is reached. However, auto-scaling incurs additional
delays which could affect service-level response times. This
effect can be mitigated by setting a smaller auto-scaling
threshold to invoke the auto-scaling mechanism in advance.

Algorithm 1 Capacity Violation Detection (CVD)

Input: G(V,E), B, S(X,Y, t), At′ , v′, kv′

Output: t′ and Lv′ or no re-optimization
1: if

∑
pbv′∈Pbv′

∑
b∈B

At′

b X
t
pbv′ ≥ kv′Y t

v′ then

2: S(X̂, Ŷ , t′) = V ALB(S(X,Y, t), G(V,E), At′)
3: if

∑
pbv′∈Pbv′

∑
b∈B

At′

b X̂
t′

pbv′ ≥ kv′Y t
v′ then

4: Lv′ =
∑

pbv′∈Pbv′

∑
b∈B

At′

b X̂
t′

pbv′ − kv′Y t
v′

5: trigger OAG algorithm return t′, Lv′

6: else
7: Break
8: end if
9: end if

For load balancing, we adopt a proximity-aware approach
that considers both the residual capacity in service-hosting
nodes and the topological proximity between service-hosting
nodes and APs, so that the network latency is always bounded
by the maximum number of hops allowed, D. In this approach,
a flow from an AP to the overloaded service-hosting node
will only be redirected when the new service-hosting node v
is within the distance cover, Nb, and the residual capacity is
enough to accommodate the load At

b at time t.

C. Capacity Violation Detection (CVD)

The aforementioned techniques have their limits, after
which further increase in the request rate will incur increasing
queuing delays at service-hosting nodes. The core idea of CVD
is to identify early enough the time when such limitations
are reached to allow the system to proactively allocate new
resources. We first assume that we can reasonably predict
the workload At′ = ∪b∈BA

t′

b in advance based on existing
workload prediction techniques [10], [20]. Given current sys-
tem state, S(X,Y, t), we predict over time window ∆t the
aggregated workload

∑
pbv′∈Pbv′

∑
b∈B

At′

b X
t
pbv′ at v′ (i.e., v′ is

the service-hosting node that invokes the detection) and check
if the predicted workload results in a capacity violation at v′

(Line 1 in Algorithm 1) for the current state. If the current
state cannot accommodate future workload, we estimate the
future system state by virtually running ALB on the current
system state with the predicted workload.

After applying virtual ALB (VALB), CVD derives a new
routes X̂ for the virtual state S(X̂, Ŷ , t′) where the service-
hosting node locations Ŷ are the same as Y from S(X,Y, t)
(Line 2). We check if the resulting routing X̂ from S(X̂, Ŷ , t′)
still fails to accommodate At′ (i.e., violating the upfront
capacity limit at v′) (Line 3). If yes, it means ALB will reach
its limit and it records the excess load that cannot be served by
v′ as Lv′ . The online OAG heuristic is triggered then. It must
be stressed that the new state S(X̂, Ŷ , t′) is only estimated
without actual ALB taking place.

D. Online Adaptive Greedy (OAG) Heuristic

The idea of OAG (Algorithm 2) is to search for a new
service-hosting node location (i.e., within the distance con-
straint) that can accommodate the excess flow, Lv′ , in the

projected time but also one that can satisfy as many flows as
possible to increase potential gain via load balancing to the
new service-hosting node. Our OAG algorithm simultaneously
determines the new placement of service-hosting node(s) and
the corresponding routes. The heuristic is adaptive as it takes
into account the current system state and evolves to a new
state with the newly selected service-hosting node. Then,
OAG greedily chooses the node v that has simultaneously the
highest number of APs within its distance cover, denoted by
benefit(v) and can satisfy the excess load Lv′ . We denote
Rv′v = {b|dbv ≤ D, dbv′ ≤ D, b ∈ B} as the set of APs
within the distance cover of both v and v′ (node that invoked
CVD). We then denote the chosen node by vbmax ∈ V \v′.

The details of the OAG algorithm are described below.

1) Line 4-8 find the set of APs, Bv′ = {b|dbv′ ≤ D, b ∈
B}, within the coverage of v′.

2) For each network location, v ∈ V , line 9-19 derive the
corresponding benefit(v) (i.e., the number of APs that
could benefit from adding service-hosting node v). We
add APs that belongs to v′ but are also located within
the distance constraint of v into Rv′v .

3) Line 20-29 record the total load from APs in Rv′v , Lv .
4) For each AP in the new set bv′ ∈ Bv′ , we search v from

Nbv′ = {v|dbv′v ≤ D, v ∈ V } and find vbmax that has
the highest benefit(v) and can support excess load Lv′ .

5) If no vbmax
has been found due to Lv′ , we assign the v

that has the largest Lv as vbmax. This means no single
node location that can host all excess flows Lv′ from
v′. Then, OAG will be triggered again with a reduced
Lv′ = Lv′ − Lvbmax

to find the next location to add
(Line 28-30).

6) We direct flows in Rv′v from v′ to vbmax
and solve the

routing problem by max-min fairness [21].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We implement a packet-level MEC framework based on an
openflow module [22] of OMNeT++ [23]. We consider an
augmented reality application [24] with 1,800 mobile users
following the mobility traces of San Francisco taxi [16] within
an area of 46km2. For simplicity, we assume homogeneous
requests of the same size. Users upload street views (each
frame is of size 0.5MB [24]) captured by mobile devices and
wait for the notations (e.g., building name, available parking
places, etc.) to be returned from MEC. Following the three-
level network in Fig. 1, we set up 30 APs, 5 aggregation
nodes and 5 core network nodes. The bandwidth and additional
network delays [25] caused by background traffic are shown
in Fig. 1. Once a frame arrives at the service-hosting node,
it requires µ = 230ms for a VM with 600MHz CPU to
process [24] after which, a response packet of 4KB will be
sent to users. For this considered scenario, we aim to achieve
a response time requirement of less than 480ms [1].

We further consider two different service-hosting node sizes
[26] in this work: (Full) a service-hosting node of 21 servers

Algorithm 2 Online Adaptive Greedy (OAG)

Input: G(V,E), B,D, S(X,Y, t), v′, Lv′ , At′

Output: S(X̂, Ŷ , t′)
1: vbmax ← ∅
2: Bv′ ← ∅
3: ∀v ∈ V,Rv′v ← ∅
4: for all b ∈ B do
5: if d(b, v′) ≤ D then
6: Bv′ ← Bv′ ∪ b
7: end if
8: end for
9: for all v ∈ V do

10: for all b ∈ B do
11: if d(b, v) ≤ D then
12: benefit(v)← benefit(v) + 1
13: if bv′ ∈ Bv′ then
14: Rv′v ← Rv′v ∪ bv′

15: Lv ← Lv +At
bv′

16: end if
17: end if
18: end for
19: end for
20: for all bv′ ∈ Bv′ do
21: for all v ∈ Nbv′ and v 6= v′ do
22: if Lv ≥ Lv′ then
23: if benefit(v) ≥ benefit(vbmax) then
24: vbmax ← v
25: end if
26: end if
27: end for
28: end for
29: if vbmax == ∅ then
30: vbmax ← argmax(Lv)
31: trigger OAG with Lv′ = Lv′ − Lvbmax

32: end if
33: X̂ ←MaxMinFaireness(vbmax, Rv′vbmax

)
34: Ŷ ← Y ∪ vbmax

35: return S(X̂, Ŷ , t′)

supporting a maximum of 132 VMs and (Half) a service-
hosting node of 10 servers supporting a maximum of 66 VMs.
Each server has a 2.1GHz CPU of 18 cores. The initial node
capacity, placement and routes are derived by CPLEX solver in
an offline manner given the aforementioned CPU consumption
of each frame, initial locations of mobile users and user-to-
AP association. In addition, a maximum of four hops from
AP to service-hosting node is set (i.e., D = 4) to constrain
the network access delay. Solving the static placement problem
described above, we get two service-hosting nodes (72 and 108
VMs) at core network level for full service-hosting node and
three service-hosting nodes (60, 61, 59 VMs) at core network
level for the half service-hosting node size respectively.

Simulation duration is set to 1 hour. It starts from the afore-
mentioned initial state. We gradually increase the workload
of the network starting from 0.3FPS to 3.0FPS in steps of
0.1FPS every 400s. Whenever the VM size reaches a threshold
of 80%, VM auto-scaling is triggered with an instantiation
time of 10ms-600ms [27]. For Algorithm 2, we also set the
workload prediction time window, ∆t = 400s [10]. Moreover,
we assume the network bandwidth is sufficient so that there
are no network bottlenecks. Hence, we only consider queueing
delays incurred at service-hosting nodes.

B. Evaluation Results

For evaluation, we compare the following schemes:

TABLE I: Performance Comparison.
Full service-hosting node Half service-hosting node

QoS Max Nb Saving(%) QoS Max Nb Saving(%)
Overprovision Yes 480ms 3,3 0% Yes 472 6,6 0%

ALB No 132s 2,2 42.6% No 175s 3,3 51.5%
OAG+CVD Yes 480ms 2,3 33.6% Yes 478ms 3,6 38.4%

OAG+Threshold No 758ms 2,3 34.4% No 1.28s 3,6 41.2%
OAG+Reactive No 758ms 2,3 34.3% No 1.23s 3,6 41.2%

1) Overprovisioning – We first solve the static placement
problem and then, for each chosen location, we overpro-
vision the maximum possible physical capacity to serve
user requests. ALB are never needed in this case. We
denote this by Overprovision in Table I.

2) Simple ALB – ALB uses the initial solution from the
static placement problem. The network performs ALB
on the initial service-hosting locations when needed but
without further re-optimization. We denote this by ALB.

3) OAG with CVD – Our proposed solution, combining
Algorithm 1 and 2. We denote this by OAG+CVD.

4) OAG with threshold-based detection – This adopts
OAG but applies a threshold-based detection mecha-
nism that invokes OAG when reaching 80% of service-
hosting node’s physical capacity. We denote this by
OAG+Threshold.

5) Reactive OAG – This adopts OAG but only invokes the
OAG when the service-hosting node’s physical capacity
is full. We denote this by OAG+Reactive.

Table I shows our results with respect to satisfaction of
the response time requirement (“QoS” column), maximum
response time (“Max” column), number of resulting service-
hosting nodes at the start and end of the simulation (“Nb”
column) and the savings of allocated resources in comparison
to Overprovision (“Saving” column). Besides the costly Over-
provision approach, only our proposal, OAG+CVD, manages
to satisfy the delay requirement of the application. We show
the cumulative distribution function (CDF) in Fig. 2(a) and
Fig. 2(b) that OAG+CVD overlaps with the Overprovision
approach in both cases, which indicates the seamless transition
to the new system state without crossing the 480ms application
constraint. In contrast, OAG+Reactive and OAG+Threshold
exceed this 480ms threshold due to the late detection. We
observe that ALB results in lowest number of service-hosting
nodes, but it comes with delay penalties. When we compare
the allocated virtual resources over time against Overprovision,
ALB achieves respectively a saving of 42.6% and 51.5%
in full and half service-hosting node settings. In contrast,
our OAG+CVD leads to a more modest saving (i.e., 33.6%
and 38.4% respectively in the two cases) but achieves the
latency requirement. We also observe from Table I that all
approaches involving OAG add new service-hosting nodes
based on the initial ones. For the full size setting, the service-
hosting node number changes from 2 to 3 and for half size
setting, it increases from 3 to 6 in response to the increased
workload. Both OAG+Threshold and OAG+Reactive achieve
lower costs compared to OAG+CVD because they fail to
instantiate new service-hosting nodes on time to satisfy the

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

C
D

F

Response Time (ms)

480ms

Overlaps OAG approaches and Overprovision

Reactive and threshold-based

Overprovision
ALB

OAG+CVD
OAG+Threshold

OAG+Reactive
Threshold

(a) CDF Response Time of Different Approaches (Full Size)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

C
D

F

Response Time (ms)

480ms

Overlaps OAG approaches and Overprovision

Reactive and threshold-based

Overprovision
ALB

OAG+CVD
OAG+Threshold

OAG+Reactive
Threshold

(b) CDF Response Time of Different Approaches (Half Size)

Fig. 2: (Color Online) CDF Response Time

applications latency requirements.

V. CONCLUSIONS

We address the challenge of seamless support for delay
sensitive mobile multimedia applications within an NFV-
enhanced mobile edge-cloud (MEC) environment. Specifically,
we formulate an optimization problem for placing MEC ser-
vices at NFV-enabled nodes so that resources are optimally
allocated to satisfy the applications latency requirements while
incurring minimum costs to ISPs. Since the problem is NP-
hard, we designed an online adaptive greedy heuristic (OAG)
algorithm to find the best placement of MEC services so
that sufficient resources are always available to ensure no
latency violation. While most previous work has focused on
optimizing the system for a specific time snapshot, we are
also concerned with the system performance over time when
the workload may change significantly. To address this, we
propose a capacity violation detection (CVD) mechanism that
estimates the time when current existing mitigation tools (i.e.,
auto-scaling and load balancing) will fail to cope with service
load elasticity. Using this projected time, we can invoke our
proposed OAG to pre-emptively allocate new virtual resources
near users to ensure continuous satisfaction of the applications
requirements. Using a realistic NFV-enabled MEC simulation
framework, we evaluated our proposal against the current best
practices. Our detailed packet-level results show that only
our proposal always ensure MEC services respond to user
requests on time. Our flexible service-hosting node solution
also offers up to 40% cost saving in comparison to a costly
overprovisioning approach at a fixed location and solves the

latency violation problem when the number and capacity of
service-hosting nodes is reduced for cost saving purposes.

REFERENCES

[1] P. Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical mobile
augmented reality,” in ACM MobiSys, 2015, pp. 331–344.

[2] K. Ha et al., “The impact of mobile multimedia applications on data
center consolidation,” in IEEE Conf. on IC2E, 2013, pp. 166–176.

[3] M. ETSI, “Mobile-edge computing,” Introductory Technical White Pa-
per, Sept., 2014.

[4] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[5] J. Soares et al., “Toward a telco cloud environment for service func-
tions,” IEEE Commun. Mag., vol. 53, no. 2, pp. 98–106, 2015.

[6] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[7] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[8] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys & Tutorials, 2015.

[9] N. Bouten et al., “Towards nfv-based multimedia delivery,” in Symp. on
IEEE IM, 2015, pp. 738–741.

[10] D. Niu et al., “Quality-assured cloud bandwidth auto-scaling for video-
on-demand applications,” in IEEE INFOCOM, 2012, pp. 460–468.

[11] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for dht-
based p2p systems,” Parallel and distributed systems, IEEE Trans. on,
vol. 16, no. 4, pp. 349–361, 2005.

[12] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in IFIP Networking, 2015.

[13] Z. Xu et al., “Capacitated cloudlet placements in wireless metropolitan
area networks,” in IEEE LCN, 2015, pp. 570–578.

[14] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “Music:
Mobility-aware optimal service allocation in mobile cloud computing,”
in IEEE CLOUD, 2013, pp. 75–82.

[15] S. Wang et al., “Dynamic service migration in mobile edge-clouds,” in
IFIP Networking, 2015.

[16] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A parsi-
monious model of mobile partitioned networks with clustering,” in IEEE
Communication Systems and Networks and Workshops, 2009, pp. 1–10.

[17] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, 2012.

[18] J. Current and J. Storbeck, “Capacitated covering models,” Environment
and Planning B, vol. 15, pp. 153–164, 1988.

[19] I. I. CPLEX, “V12. 1: User manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[20] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in IEEE CLOUD,
2011, pp. 500–507.

[21] B. Radunović and J.-Y. L. Boudec, “A unified framework for max-
min and min-max fairness with applications,” IEEE/ACM Trans. on
Networking, vol. 15, no. 5, pp. 1073–1083, 2007.

[22] D. Klein and M. Jarschel, “An openflow extension for the omnet++ inet
framework,” in ICST Conf. on Simulation Tools and Techniques, 2013.

[23] A. Varga, OMNeT++ Simulator Home Page, http://www.omnetpp.org.
[24] R. LiKamWa and L. Zhong, “Starfish: Efficient concurrency support for

computer vision applications,” in ACM MobiSys, 2015, pp. 213–226.
[25] K. Wang et al., “Mobiscud: A fast moving personal cloud in the

mobile network,” in ACM Workshop on All Things Cellular: Operations,
Applications and Challenges, 2015, pp. 19–24.

[26] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for online
request admissions in mobile cloudlets,” in Conf. on IEEE LCN, 2013.

[27] A. Madhavapeddy et al., “Jitsu: Just-in-time summoning of unikernels,”
in 12th USENIX Symp. on NSDI, 2015, pp. 559–573.

