
 
 

What is driving the range extension 
of Gibbula umbilicalis (Gastropoda, 
Trochidae) in the eastern English 
Channel? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Russell Noke 

Submitted in partial fulfilment for the award of Master of Research (MRes) 

awarded by Bournemouth University. 

March 2016 

This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and due acknowledgement 
must always be made of the use of any material contained in, or derived from, this thesis.



i 
 

  

Abstract 

Russell Noke 

What is driving the range extension of Gibbula 
umbilicalis (Gastropoda, Trochidae) in the eastern 

English Channel? 
 

Until around 2000, the marine gastropod Gibbula umbilicalis (Da Costa 1778) was 
previously only present as far east as the Isle of Wight on the south coast of England. 
Since 2000 the range of Gibbula umbilicalis has extended 140km eastwards with records 
now present as far along the coast as Kent. Since the 1990s temperatures in the English 
Channel have increased faster (and to higher levels) than during any other period 
recorded. The importance of sea temperature driving the range extension of Gibbula 
umbilicalis has not been fully evaluated. Field and laboratory studies were carried out 
between March and September 2015 on populations at two long-established sites in the 
west of the Channel (Lyme Regis and Osmington) and two recently colonised (since 
2000) sites in the east (Cuckmere and Eastbourne) to determine whether: 
 

I. reproductive development and spawning was synchronised between different 
populations, and whether it was correlated to sea temperature; 

II. there was evidence of recent recruitment at the ―new‖ sites and if there was a 
difference in population structure at each location;. 

III. new populations east of the Isle of Wight can now be considered established. 
 
Reproductive development was positively correlated to sea temperature, however this 
was not synchronised between sites; populations at Lyme Regis and Osmington matured 
before Cuckmere and Eastbourne, although the differences were slight. By September, 
spawning had begun at the long-established (western) sites but not the recently colonised 
(eastern) sites. There was evidence of recruitment of a 2014 cohort at all sites. However, 
the number of juveniles observed was lower in the eastern Channel during spring (March-
May) in comparison with western sites, but increased each month from June onwards. 
The later detection of juveniles in the east is attributed to delayed spawning and 
settlement. On the evidence of continuing reproductive development and recent 
recruitment, populations at Cuckmere and Eastbourne can now be considered 
established. Their proximity to the continent exposes them to colder winters which may 
intermittently increase mortality. However, it is considered that these populations are now 
sufficiently large to withstand all but extreme events.  
 
The range extension of Gibbula umbilicalis in the eastern English Channel is attributed to 
multiple factors related to increasing temperatures. Higher summer sea temperatures are 
likely to have accelerated gonad development and spawning at the previous range limit. 
This provided juveniles more time to mature before temperatures fell during winter. 
Increased size/fitness limits winter mortality and promotes recruitment, resulting in growth 
of the range-edge populations. The larger breeding population resulted in an increase in 
larval supply, allowing the barrier at the range-limit to be penetrated and new sites 
seeded. The annual sea temperature increases will have had the same effect on the new 
arrivals settling in the eastern Channel; recruitment at levels exceeding mortality, allowing 
the populations to increase and become established. 

 



ii 

Table of Contents 

List of Figures ......................................................................................................... iii 

List of Tables .......................................................................................................... iv 

List of Appendices .................................................................................................. iv 

Acknowledgements ................................................................................................. v 

1. Climate change and its effects on the distribution of species: a review ............... 1 

1.1 Introduction ....................................................................................................... 1 

1.1.1 Boundaries and Barriers ............................................................................. 2 

1.1.2 Reproduction............................................................................................... 2 

1.1.3 Climate and Rocky Shore Habitats ............................................................. 4 

1.2 Range Extension of Gibbula umbilicalis ............................................................ 5 

1.2.1 Reproduction in Gibbula umbilicalis ............................................................ 9 

1.2.2 Spawning .................................................................................................. 10 

1.2.3 Dispersal ................................................................................................... 11 

1.2.4 Settlement ................................................................................................. 12 

1.2.5 Recruitment............................................................................................... 12 

1.3 Conclusion ...................................................................................................... 13 

1.4 Aims and Objectives ....................................................................................... 13 

1.4.1 Research Questions ................................................................................. 14 

1.4.1.1 Reproduction .......................................................................................... 14 

1.4.1.2 Population Structure and Growth ........................................................... 14 

2. Environment and Study Sites ............................................................................ 15 

2.1 Study Sites ................................................................................................... 15 

2.1.1 Lyme Regis ............................................................................................... 15 

2.1.2 Osmington Mills ........................................................................................ 16 

2.1.3 Cuckmere Haven ...................................................................................... 17 

2.1.4 Eastbourne ............................................................................................... 17 

2.2 Sea Temperature ............................................................................................ 19 

3. Reproductive Development ............................................................................... 25 

3.1 Introduction ..................................................................................................... 25 

3.2 Methods .......................................................................................................... 26 

3.3 Results ............................................................................................................ 30 

3.3.1 Gonad Development ................................................................................. 32 

3.3.2 Oocyte Growth .......................................................................................... 35 

3.3.3 Relationship between sea temperature and oocyte size ........................... 40 

3.4 Discussion ....................................................................................................... 41 



iii 

3.5 Conclusion ...................................................................................................... 47 

4. Population Recruitment and Growth ................................................................. 49 

4.1 Introduction ..................................................................................................... 49 

4.2 Methods .......................................................................................................... 51 

4.3 Results ............................................................................................................ 51 

4.4 Discussion ....................................................................................................... 57 

4.5 Conclusion ...................................................................................................... 61 

5. Final Conclusion ................................................................................................ 63 

6. Further Study .................................................................................................... 64 

References ............................................................................................................ 65 

Appendices ........................................................................................................... 79 

 

List of Figures 

Figure 1.1: Distribution of Gibbula umbilicalis around the British Isles. ................... 6 

Figure 2.2: Study site location map ....................................................................... 15 

Figure 2.3: Lyme Regis survey area ..................................................................... 18 

Figure 2.4: Osmington Mills survey area. .............................................................. 18 

Figure 2.5: Cuckmere Haven survey area ............................................................. 18 

Figure 2.6: Eastbourne survey area. ..................................................................... 18 

Figure 2.7: Sea Surface Temperatures ................................................................. 19 

Figure 2.8: Mean annual sea temperatures for Weymouth and Eastbourne ......... 20 

Figure 2.9: Spring and summer mean sea surface temperatures ......................... 21 

Figure 2.10: Monthly field sea temperature ........................................................... 23 

Figure 2.11: 2015 monthly mean sea surface temperatures. ................................ 24 

Figure 3.12: Oocyte diameters .............................................................................. 28 

Figure 3.13: External appearance of gonads in mature individuals………........... .31   

Figure 3.14: Comparison of a healthy male (left) and infested male (right)… ……31 

Figure 3.15: Heavily infested male……………………………………………… …….31  

Figure 3.16: Oocytes cream/white in colour (Lyme Regis, March). ....................... 31 

Figure 3.17: Gonad development .......................................................................... 33 

Figure 3.18: Female at reproductive stage II ......................................................... 34  

Figure 3.19: Portion of stage III ovary ................................................................... 34  

Figure 3.20: Portion of swollen stage V ovary ....................................................... 34  



iv 

Figure 3.21: Example of ovary at development stage V. ....................................... 34 

Figure 3.22: Relationship between shell size (MBD) and oocyte size. .................. 35 

Figure 3.23: Mean oocyte diameters. .................................................................... 36 

Figure 3.24: Mean oocyte diameters for March and April. ..................................... 37 

Figure 3.25: Oocyte diameter size/frequency histograms. .................................... 38 

Figure 3.26: Mean oocyte diameters for observed development stages ............... 40 

Figure 3.27: Correlation between sea temperature and oocyte diameter. ............. 41 

Figure 3.28: Purple appearance of ovary. ............................................................. 45 

Figure 3.29: Oocytes with purple appearance. ...................................................... 45 

Figure 4.30: Number of juveniles found during each survey at each site. ............. 52 

Figure 4.31: Mean MBD for juveniles (<10mm) at each site each month. ............. 53 

Figure 4.32: Monthly size-frequency histograms ................................................... 54 

Figure 4.33: Total number of individuals found at each site during each visit. ...... 55 

Figure 4.34: Proportion of juveniles found throughout the survey period .............. 56 

Figure 4.35: Comparison of mean MBD and abundance ...................................... 56 

 

List of Tables 

Table 1.1: Differences between r-selected organisms and K-selected organisms  . 3 

Table 2.2: Sea temperature sensor locations. ....................................................... 22 

Table 3.3: Female gonad development staging index. .......................................... 29 

Table 3.4: Female spawning stage index .............................................................. 30 

Table 3.5: Statistically significant differences of mean oocyte size ....................... 39 

Table 4.6: Mean number of individuals found per minute ...................................... 51 

 

List of Appendices 

Appendix A: Correlation between shell width and oocyte size . ............................ 80 

Appendix B: Raw ANOVA output from SPSS........................................................ 81 

Appendix C: Mean Oocyte Diameters (µm) for each development stage. ............. 84 



v 

Acknowledgements 

The first person I need to acknowledge before anyone else is Rachel, my wife. 

Before I started this work there were a few discussions over whether or not I could 

manage this while working full-time and knowing that our first child was due four 

months after my planned enrolment. I eventually wore her down and assured her 

that I could do it, but completely failed to consider what the impact would be on her 

all those nights I was sat at my desk asking to not be disturbed. To balance work, 

study and a completely new family life was a tough challenge, and at times I felt as 

though I was failing at all three but not once did I hear the words ―I told you so‖. 

Rachel even joined me on remote beaches while eight months pregnant (no easy 

feat for those of you familiar with ―the steps‖ at Eastbourne or the long trudge to 

the beach at Cuckmere!), and then four weeks later with our nine day old son, 

Fraser, on his very first rock pooling adventure. So, thank you Rachel for being an 

amazing wife and incredible mother!  

Roger Herbert supervised this project and was always on hand for academic 

guidance, constantly encouraging me to go the extra mile (on top of the 3800 or so 

driven to collect snails) and do the extra pieces to improve my work and do the 

results justice. I am genuinely grateful for his assistance, feedback and 

encouragement.  

I should thank friends and family for their understanding; they have seen a lot less 

of me since January. In the case of my in-laws, they saw a lot more of me and 

kindly provided me with hearty meals and a place to stay in West Sussex when I 

was making my field work trips.  

At the back of my mind throughout, as always, was my dad. He always told me to 

work hard, do my best and never quit. His words of encouragement help me when 

I need it and will always be with me.  

 



1 
 

1. Climate change and its effects on the distribution 

of species: a review 

1.1 Introduction 

The Earth‘s climate is changing and evidence strongly suggests that although 

this has occurred naturally several times throughout history, the current 

period of warming is anthropogenically driven and faster than previously 

(Walther et al. 2002; Hoegh-Guldberg and Bruno 2010). Incidences of severe 

weather, droughts, flooding, higher air and sea temperatures, the rate of ice 

cap loss and rises in sea levels are all increasing as a result of climate 

change (Liverman 2007). Earth‘s climate has a strong influence on the 

distribution of living organisms, and changes to the climate has caused and is 

predicted to continue to cause, changes in the distribution of some species 

through range expansions and contractions, as well as extinctions (Hughes 

2000; McCarty 2001; Pearson and Dawson 2003; Parmesan 2006; Williams 

et al. 2008; Chen et al. 2011). Changes to the climate may not impact some 

species directly if they are able to tolerate the new conditions. However, 

those unable to survive will need to either adapt physiologically, 

morphologically or behaviourally, or relocate to an area where conditions are 

more suitable (Wong and Candolin 2015). Any species unable to adapt or 

alter their range will face extinction (Holt 1990).  

Terrestrial, marine and fresh water habitats are all experiencing reductions in 

biodiversity and changes to the distribution of species over a wide range of 

taxa (Sagarin et al. 1999; Parmesan and Yohe 2003; Thuiller et al. 2005; 

Mora and Sale 2011). The altitude of some mountain plants has increased as 

temperatures have risen (Klanderud and Birks 2003) and phenological 

advances in birds has been well documented (Visser and Both 2005; Visser 

et al. 2006; Charmantier et al. 2008). A range of marine species at all trophic 

levels from plankton (Hays et al. 2005) to whales (Kovacs and Lydersen 

2008) and sharks (Chin et al. 2010) are affected by climate change not only 

due to changes to sea temperature and ocean chemistry but also their 
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consequences, such as the distribution of prey species (Kendall et al. 2004) 

and timings of migrations (Edwards and Richardson 2004). In the Northern 

hemisphere a general shift to the north has been observed in the 

geographical distribution of a range of marine species (Perry et al. 2005; 

Parmesan 2006).  

1.1.1 Boundaries and Barriers 

At the edge of each species‘ boundary exists a barrier responsible for 

restricting their geographic range (Sexton et al. 2009). Even in the marine 

environment, considered an open system (Caley et al. 1996), many barriers 

exist limiting a species range. Barriers can be biotic, abiotic, chemical, 

thermal or physical.  

The presence of competitors or predators in neighbouring areas can exclude 

other species (Connell 1961) while the lack of suitable habitat or food can 

make the area inhabitable (Paine 1966; Ayre et al. 2009).  

Strong tidal flows can be a barrier by restricting or preventing larval supply 

(Keith et al. 2011) to existing populations requiring external larval input 

(Gaines and Roughgarden 1985) and new areas yet to be colonised (Gaylord 

and Gaines 2000). Some predictions indicate that climate change will alter 

tidal behaviour (Short and Neckles 1999) which could create new or remove 

existing hydrodynamic barriers. Theoretically, lethal or sub-optimal 

temperatures can affect the performance of any stage in a species life-cycle, 

thus limiting reproduction, settlement and recruitment (Hutchins 1947).   

 

1.1.2 Reproduction 

Throughout the natural world a range of reproductive strategies exist, with 

much variation within the same habitat or taxonomic class. Some species 

reproduce sexually (requiring two individuals), some asexually (requiring one) 

(Agrawal 2001), and other species have capability for both, with benefits and 

drawbacks of each. Sexual reproduction increases genetic variability by 

combining the genes of two individuals; however the trade-off is a lower rate 

of reproduction because it requires two individuals compared to the one 
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required in asexual reproduction (Lloyd 1980). Species‘ reproduction can be 

one of two strategies: r-selection, common in stressful or unstable 

environments, and K-selection which is generally observed in stable 

environments (Da Rocha et al. 2015). The characteristics of organisms in 

each group are displayed in Table 1.1. Each strategy has benefits and 

limitations. The strategy any particular species displays however, is the result 

of evolutionary selection and should increase fecundity above the level it 

would be if the alternative strategy was displayed. For example, humans fall 

in the K-strategy, taking many years to reach sexual maturity and, generally, 

producing low numbers of off-spring which require a large amount of parental 

care, which can be delivered because the number of off-spring produced 

each time is low. In contrast, a species which reproduces with an r-strategy, 

common among marine invertebrates (Giangrande et al. 1994) including 

Gibbula umbilicalis, will typically be a small organism that produces a high 

number of off-spring with little or no parental care.  

Characteristics of r- and K-selected organisms 

r-organisms K-organisms 

short-lived long-lived 

small large 

weak strong or well-protected 

waste a lot of energy energy efficient 

less intelligent more intelligent 

have large litters have small litters 

reproduce at an early age reproduce at a late age 

fast maturation slow maturation 

little care for offspring much care for offspring 

strong sex drive weak sex drive 

small size at birth large size at birth 

 
Table 1.1: Differences between r-organisms and K-organisms (Cunningham et al. 2009). 

In the marine environment a range of reproductive strategies are employed; 

amongst those reproducing sexually, some species give birth to live young 

and some lay eggs that have been fertilised internally. Following 

birth/hatching some species receive no care while others might be nurtured 

for years and even remain in the same group as their parents (Vance 1973; 

Williams and Lusseau 2006).  
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Marine invertebrate species utilise a range of reproductive strategies 

including broadcast spawning, a common trait for the vast majority of benthic 

invertebrates (Thorson 1950, Crimaldi 2012). These release gametes into the 

surrounding environment, for external fertilisation in the water column 

(Thorson 1950). Male and female gamete release is not always 

simultaneous; Sponges (Porifera) have the ability to reproduce sexually and 

asexually, but when reproducing sexually only sperm cells are released into 

the water column which are filtered out by other sponges for internal egg 

fertilisation. Many marine molluscs reproduce sexually through external 

fertilisation (littorinids, whelks, chitons, archaogastropods and bivalves). 

Larger eggs with an increased target area for sperm cells are more likely to 

be fertilised than smaller eggs (Crean and Marshall 2008).  

Changes to the climate can affect reproduction (McCarty 2001) by altering 

timing and duration of spawning (Both and Visser 2001), which, if no longer 

synchronous with available food or optimal environmental conditions can 

result in failed or reduced recruitment (Crick 2004) leading to extinction of the 

species (Harley et al. 2006) or changes in geographical distribution (Orton 

1920).  

1.1.3 Climate and Rocky Shore Habitats 

Since the first measurements of sea surface temperature (SST) data in the 

early mid-19th century, mean SSTs have seen an overall increase throughout 

the English Channel (Southward et al. 1995). It is predicted that SSTs, sea 

levels and air temperatures will continue to rise as a result of climate change 

(Jones et al. 1999; Heath et al. 2012; Jevrejeva et al. 2012), which may 

trigger a range of ecological responses (Hinder et al. 2014). During the 1990s 

the rate of SST increase was greater than any other decade on record  

(Mieszkowska et al. 2006) with the mean temperature at the western end of 

the English Channel increasing by almost 1°C during that decade (Hawkins 

et al. 2003). In the context of rocky shores along the English Channel, an 

increase of 1°C over the course of a decade may seem insignificant given 

that throughout the year, SSTs in the shallow waters can range between 4°C 

to over 20°C between winter and summer (personal obs.). Moreover, at times 

of low tide when water becomes trapped in rock pools, temperatures during 
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winter may fall below 0°C (Mieszkowska et al. 2006) while water 

temperatures can exceed 30°C in temperate areas under the summer sun 

(McAllen et al. 1999).  

Changes in air temperature and desiccation are among stresses upon rocky 

shore species with the rise and fall of each tide, exposing organisms to 

freezing temperatures during winter months and higher temperatures during 

summer. Yet despite a rise of only 1°C in mean annual SST, changes to 

rocky shore communities have occurred as some warm water species have 

shown range extensions with the warming waters, while some (albeit 

comparatively fewer) cold-water species have shown a retreat (Mieszkowska 

et al. 2007; Hawkins et al. 2008). Range shifts and extensions could 

potentially alter the structure of communities and can impact on how they 

function, especially if the shift involves grazing species (Mieszkowska et al. 

2006, Hawkins et al. 2008, 2009).  

The use of mean SST data when considering geographic boundaries can be 

misleading: it is often the case that when temperature restricts a species 

range, particularly a species moving towards the poles, it is the winter 

minimum and/or the summer maximum rather than the mean which is critical 

(Hutchins 1947; Lewis 1986). Winter temperatures can affect the survival of 

larvae and juveniles which subsequently impacts recruitment (Kendall 1987), 

while summer temperatures can impact spawning if the required summer 

temperature does not coincide with gonad maturity (Hall 1964). At the leading 

edge of a northerly-advancing Lusitanian species range, temperature is an 

important factor affecting recruitment, either causing mortality during winter 

(Mieszkowska et al. 2006) or through a reduction in performance or 

competition with cold-water species (Herbert et al. 2007; 2009). 

1.2 Range Extension of Gibbula umbilicalis 

The marine gastropod Gibbula umbilicalis (Da Costa 1778) occurs from 

North-West Africa (Bode et al. 1986) to Scotland (Kendall and Lewis 1986). 

The species is present in the North Atlantic off the coasts of Portugal and 

Spain (Bode et al. 1986; Gaudèncio and Guerra 1986), along the west coast 
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of Britain (Garwood and Kendall 1985) and the English Channel (Crisp and 

Southward 1958; Hawkins et al. 2008).  

The range of Gibbula umbilicalis has extended (Figure 1.1) north along the 

west coast of Britain and eastwards along the English Channel since around 

2000. It has been thought that this is most likely in response to an increase in 

SST which began in the 1980s (Mieszkowska et al. 2006; Hawkins et al. 

2008; Herbert et al. 2009; Keith et al. 2011; Herbert et al. unpublished 

observations). Previously only found as far east as the Isle of Wight on the 

English side of the Channel (Crisp and Southward 1958; Kendall and Lewis 

1986), the species is now found as far east as Kent in the North Sea (Herbert 

et al. unpublished). The presence of Gibbula umbilicalis along the west coast 

of the British Isles has been relatively well studied and documented (Williams 

1964; Desai 1966; Garwood and Kendall 1985; Kendall and Lewis 1986). 

However to the best of knowledge no work has been published on the 

reproduction and recruitment of new populations in south-east England. 

 

Figure 1.1: Distribution of Gibbula umbilicalis around the British Isles. Yellow squares 
indicate where the species is reported to be present (National Biodiversity Network 2015). 
The authenticity of some of these records is doubtful, particularly those on the north-east 
coast of Scotland and England (Herbert – personal communication), Shetland and most of 
Orkney (Hawkins – personal communication). 
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Understanding why and how geographical distributions have changed will 

provide evidence to support future predictions of species distribution as a 

result of extensions, shifts and contractions, which are expected to increase 

as climate change continues (Hoegh-Guldberg and Bruno 2010).  

Extreme low temperatures have been known to cause the complete loss of 

entire populations of Gibbula umbilicalis on the south coast of Britain (Crisp 

1964). Cooler temperatures may not always directly reduce physiological 

performance, but they can cause changes in behaviour such as reduced 

feeding by confining animals to rock pools, which in turn will have 

physiological consequences (Williams 1964). Keith et al. (2011) determined 

minimum winter temperature tolerances of Gibbula umbilicalis at probabilities 

of 0.1 (7.36°C), 0.5 (7.67°C) and 0.9 (7.98°C). The difference in winter 

temperature required to increase the probability of Gibbula umbilicalis being 

present from 0.1 to 0.9 is only 0.62°C, and only a 0.01°C increase in the 

annual mean SST. In laboratory experiments it took between 6 and 24 hours 

at -5°C to reach 50% mortality with individuals not submerged in water for 

this duration (Southward 1958). Although air temperatures may sometimes 

fall to -5°C or below, organisms in most of the intertidal area should never be 

exposed to the air for 24 hours as tidal periods are less than 12 hours. 

Further, Gibbula umbilicalis is found in the middle to lower shore which is 

exposed to air for a shorter period at each low tide than organisms further up 

the shore.  

Crisp and Southward (1958) undertook quantitative studies on the distribution 

of a range of rocky shore species and found Gibbula umbilicalis was present 

only as far east as Bembridge (Isle of Wight) on the English side of the 

Channel, but further east as far as Calais on the French side. The areas 

where Gibbula umbilicalis was not present in France were formed by long 

sandy beaches (Crisp and Southward 1958) which are unsuitable for the 

species. Yet on the English side east of the Isle of Wight, suitable rocky 

shore habitats are available on the chalk shores along the Sussex coast. This 

suggested that factors other than lack of suitable habitat was limiting the 

range. Their research found that Gibbula umbilicalis was one of several 

species which only occurred as far east as the Isle of Wight. Their work also 



8 
 

revealed that some southern species were found only in the west of the 

English Channel, while northern species were present along the whole 

Channel but were more abundant in the east, suggesting the west favours 

southern ‗Lusitanian‘ species, and the east Boreal-Arctic species from the 

north.   

The tidal range in the central part of the English Channel is the smallest in 

the UK (Pingree and Maddock 1977). A small tidal range reduces the amount 

of available habitat for intertidal organisms by making each zone narrower. A 

reduction in habitat will suppress population size and overall propagule 

numbers, thus reducing the chance of the species successfully reaching new 

areas.  Searches carried out in the 1960s, 80s and 90s revealed that the 

species was still only present as far east as the IoW on the English side of 

the Channel (Williams 1964; Kendall and Lewis 1986; Southward et al. 

1995). In the 2000s a range extension of the species to the east of the IoW 

was observed (Hawkins et al. 2009; Herbert et al. unpublished), which 

coincided with an extension in the north of the species‘ range (Mieszkowska 

et al. 2006).  

Hiscock et al. (2004) developed a key to predict what the effect of increased 

air and sea temperatures might be on a range of marine species including 

Gibbula umbilicalis. Following this key on the life history of Gibbula 

umbilicalis, the outcome suggests that, so long as larval dispersal is not 

interrupted, the range of the species will extend at approximately the same 

rate that changes to sea and air temperatures occur and that existing 

populations will become more abundant. Dispersal barriers limiting climate-

change driven range extensions was the focus of work by Keith et al. (2011) 

to understand how climate change could affect biodiversity, as it cannot be 

assumed that a species range will always be altered in response to climate 

change. Their work found that the range of Gibbula umbilicalis had extended 

by 141km, some way short of the 243km they had expected and the same 

―under-performance‖ was observed for many other species in the study. Of 

all the species included in their work, Gibbula umbilicalis achieved the 

greatest extension of that expected (58%), while other species managed 

between nil (Chthamalus montagui) and 16% (Osilinus lineatus). The failure 



9 
 

of multiple species to reach the maximum of their predicted shift could be 

attributed to either the influence of factors not considered during design of 

the model, or a stronger or weaker than anticipated influence of factors that 

were considered.  

Given that temperatures in nearby areas not currently colonised by Gibbula 

umbilicalis are in the tolerant range and suitable habitats do exist, other 

factors are clearly restricting their range and limiting the extension. One 

explanation for this could be larval connectivity. This is an important process 

that can influence the range of a species and meta-population structures 

(Watson et al. 2010; Selkoe and Toonen 2011). Based on a larval phase 

lasting at most five days (Fretter and Graham 1994), hydrographic barriers 

restricting larval dispersal at Portland Bill in Dorset and St. Catherine‘s Point 

on the Isle of Wight (Crisp and Southward 1958) may have caused the 

observed low recruitment (Keith et al. 2011). One similarity between these 

two sites, which may or may not be significant, is that they are both the most 

southerly point of the land mass in their regions. To the east of the IoW, the 

next two notable headlands extending south of the mainland are Selsey Bill 

and Beachy Head (Figure 2.2). These features may have affected larval 

transport and recruitment in the same way as Portland Bill and St Catherine‘s 

Point. Man-made stone and concrete structures (groynes, sea walls and 

piers) are potential stepping stones to connect an established population to 

an un-colonised area between which natural habitats do not exist, so long as 

the substrate is suitable (Glasby et al. 2007). Gibbula umbilicalis has a strong 

preference for (and greater grazing rate upon) rough surfaces over smooth; 

most likely because of the protection from predators afforded by crevices and 

holes (Griffin et al. 2009) making wooden structures less suitable.  

1.2.1 Reproduction in Gibbula umbilicalis 

Gibbula umbilicalis are dioecious trochids although the sex of an individual 

cannot be determined without dissection and inspection of mature gonads 

(Underwood 1972). Sexual maturity is thought to occur once the shell width 

reaches around 8-9mm at the widest point (Williams 1964). Gametogenic 

development cycles have been linked to sea temperatures (Underwood 
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1972) which have increased along the English Channel over the last 25 years 

(Rayner et al. 2003).  

When oocytes are growing, a jelly coat forms once the oocytes reach 80-

90µm (Garwood and Kendall 1985). As well as increasing the target area for 

sperm, the jelly coat also increases the amount of time the egg can be 

suspended in the water column to reduce polyspermy and increase embryo 

survival and fecundity (Podolsky 2004; Levitan 2005).  

Like all trochids, Gibbula umbilicalis is a broadcast spawner, releasing 

gametes into the water for external fertilisation followed by a planktonic larval 

development stage (Hickman 1992; Bastías 2014). 

1.2.2 Spawning 

Sea temperatures driving reproduction could lead Gibbula umbilicalis to 

spawn when conditions were favourable and increase reproductive success. 

If the cue for spawning was less localised, such as phases of the moon as 

observed in a number of other marine invertebrates (Naylor 2010), spawning 

could occur at a time when conditions (temperatures) were not optimal for 

larvae survival and settlement. Partial spawning observed in the UK 

(Garwood and Kendall 1985) was thought to be caused by sub-optimal 

environmental conditions (Clare 1986) during the cooler period of the 1960s-

1980s (southward et al. 1995). Mediterranean populations are known to 

spawn multiple times throughout the year (Bode et al. 1986) where sea 

temperatures are warmer than around the UK, suggesting sea temperature is 

important. If the cue for spawning was linked to the lunar-phase it would be 

simultaneous along the coast, as the lunar phase would be the same to the 

east of the Isle of Wight as to the west at any one time. Conditions required 

for larval survival (such as sea temperature) may however only be optimal in 

smaller, localised areas. Oocytes are ejected singly through a gonopore on 

the right kidney opening (Clare 1986) into the sea to be fertilised, possibly as 

a response to rough seas (Grange 1976) coinciding with a peak in sea 

temperature (Gaudèncio and Guerra 1986) as observed in other trochids 

(Crothers 2001). Previous studies have found that spawning is initially well 

synchronised between individuals. Following this initial release, however, 
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spawning continues at a slower rate over a number of weeks (Garwood and 

Kendall 1985). 

1.2.3 Dispersal 

Following release of gametes, water movement determines how far and fast 

they will travel, as until fertilisation has occurred and larvae developed they 

have no control over their movement. The most critical time for the 

unfertilised cells is immediately following spawning where the likelihood of 

male and female gametes meeting is at its greatest because of the high 

concentration of cells. As time passes the gametes are dispersed and the 

concentration dilutes. The success of the dispersal stage will have an impact 

on the population structure and genetic diversity in areas where they 

eventually settle (Shanks 1983; Underwood and Fairweather 1989; Ayata et 

al. 2010). The dispersal stage is also the opportunity to advance the range 

boundary as once settled, individuals will be confined to a small area 

(Johnson et al. 2001). Tides and currents disperse fertilised gametes and 

larvae, but the direction and speed of the water can be affected by the shape 

of the coastline (Gaines and Bertness 1992). The presence of a headland 

creates an eddy which interrupts the flow of water along the coast, instead of 

transporting larvae parallel to the coast they are carried away from the shore 

off the tip of the headland. The larval phase among trochids varies between 

species, but is generally between 2 and 28 days (Kulikova and 

Omel'yanenko 2000). For Gibbula umbilicalis the length of this stage is not 

yet known with certainty, but has been suggested as lasting between four 

and ten days (Lewis 1986) five days (Fretter and Graham 1994) and seven 

days (Keith et al. 2011). As with sessile and other less-mobile rocky shore 

species, when larva reach the period in which they can settle, suitable habitat 

needs to be available (Gaines and Bertness 1992; Johnson et al. 2001). 

Temperature is important during the dispersal stage; if the water is beyond 

upper or lower limits for the survival of the larvae there will be a reduction in 

the number of potential recruits arriving in settlement areas (Hutchins 1947; 

Rubal et al. 2015).  
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1.2.4 Settlement 

Settlement can be defined as the moment an individual arrives in a new 

habitat where it will remain indefinitely (Connell 1985). Many stretches of 

coast around the UK are sandy shores and therefore not suitable for 

settlement by Gibbula umbilicalis larvae. Rocks are needed to provide shelter 

from predators, something to attach to so they are not swept away, and 

provide a source of food in the form of algae. Man-made structures (concrete 

piers, sea walls and groynes) present in what would naturally be an 

unsuitable area could provide enough habitat for a population to become 

sufficiently established so that they are able to breed and seed un-colonised 

areas along the coast. Such structures have been shown to be important in 

promoting the recovery of other marine gastropod populations that had been 

in decline (Bray et al. 2012). The connectivity provided by man-made 

structures is vital for species with a short larval phase if the distance between 

natural habitats cannot be travelled by the larvae before they perish. 

Settlement can influence community structure (Wilson 1990) and is a vital 

link between the planktonic stage and benthic stage of Gibbula umbilicalis. 

1.2.5 Recruitment 

Recruitment can be defined as the ―addition of new individuals to a 

population or to successive life-cycle stages within populations” (Caley et al. 

1996 p477) which can be through immigration or reproduction. It is essential 

to differentiate between settlement and recruitment as although organisms 

may settle initially, post-settlement mortality can occur and limit recruitment 

(Keough and Downes 1982). Movement of adult Gibbula umbilicalis is 

unlikely to account for new recruitment across sandy beaches because their 

home range is limited to rocky shores. Post-settlement mortality occurring 

before the organism has been observed reduces the number of individuals, 

and thus simply counting new recruits may not always be an accurate way to 

measure settlement as mortality rates will be unknown. 

Juvenile Gibbula umbilicalis individuals show a preference for the underside 

of smooth rocks and cobbles (Kendall and Lewis 1986) while they grow. They 

are vulnerable to a range of pressures (predation, desiccation, and extreme 
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temperatures during low tide in summer and winter) which can threaten their 

initial survival (Gosselin and Chia 1995; Mieszkowska et al. 2013) and cause 

a complete recruitment failure (Kendall 1987). Recruitment at or near the 

edge of a geographical range along the south coast of England was 

observed to be poor and recruitment failure was observed to increase from 

west to east along the English Channel during the cooler period of the early 

1980s (Kendall and Lewis 1986). This could be a result of low density 

populations, reduction in larval supply, poor habitat, or that minimum or 

maximum temperature is on the threshold of what the species can tolerate 

(Kendall and Lewis 1986). 

1.3 Conclusion 

Changes to the Earth‘s climate has resulted in changes to the geographic 

distribution of a range of species, terrestrial and aquatic. Gibbula umbilicalis 

is one example of a species which has responded to increased sea 

temperatures by exhibiting range advances eastwards along the English 

Channel since the start of the 21st century. Warmer sea temperatures are 

considered important for larval survival, supporting post-settlement survival 

and recruitment in parts of the eastern basin of the English Channel where 

the species was previously absent. Until now, to the best of our knowledge, 

no-one has studied reproduction at the new sites to understand the 

phenology and success of reproduction in comparison to populations that 

have been established long-term in the western basin of the Channel.  

1.4 Aims and Objectives 

Two studies undertaken concurrently investigate reproductive development 

and population structure of Gibbula umbilicalis at four different locations 

along the south coast of the United Kingdom; two at pre-range extension 

areas to the west of the Isle of Wight and two in post-range extension areas 

to the east. Chapter 3 aims to understand the rate and synchronicity of gonad 

and oocyte development at different locations and Chapter 4 investigates 

population structures, recruitment and density as well as whether any of the 

new populations can yet be considered established and no longer ―new‖. 
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1.4.1 Research Questions 

1.4.1.1 Reproduction  

Is gonad development synchronous at the different sites?  

This is important to understand as it will show whether breeding is occurring 

at the same time irrespective of location and/or sea temperature.  

If gonad development is not synchronous, are development rates the 

same in different populations?  

It may be that some populations develop at a faster or slower rate than 

others, which may influence the success of breeding. 

Is there a link between gonad development and sea surface 

temperature? 

An answer to this question may support the theory that sea temperature is 

important for breeding either as a cue for spawning and to increase 

recruitment. 

1.4.1.2 Population Structure and Growth 

Is there evidence of recent recruitment at all locations? 

Evidence of recent recruitment will demonstrate that previous recruitment 

was not a coincidental event in new locations.  

Are there differences in population structure between sites? 

Differences in recruitment can be detected by looking at the size of 

individuals within a population and evidence of juveniles.  

Does population density influence the size of individuals? 

It is common for individuals to be larger where their density if low (perhaps as 

a result of reduced intra-specific competition), however, any populations 

where this does not occur could be an indicator of other pressures.  

Can some of the “new” populations to east of the Isle of Wight be 

considered established yet? 

Population densities similar to older sites and evidence of continuing 

recruitment will suggest that populations in the extended range area are 

established.    
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2. Environment and Study Sites 

2.1 Study Sites 

Four sites (Figure 2.2) along the south coast of England were chosen where 

Gibbula umbilicalis is known to exist. Two sites to the west of the Isle of 

Wight (Lyme Regis and Osmington Mills) which are pre-range extension sites 

and two sites to the east (Cuckmere Haven and Eastbourne), which are new 

sites resulting from the range extension. 

 

 

Figure 2.2: Study site location map. Study Sites: 1-Lyme Regis (50º 43.476‘N, 2º 55.709‘ W), 
2-Osmington (50º 38.027‘N, 2º22.576‘W), 3-Cuckmere (50º 45.513‘N, 0º 8.777‘E), 4-
Eastbourne (50º 44.929‘N, 0º 16.152‘E). Headlands: A-Portland Bill, B-St. Catherine's Point 
(Isle of Wight), C-Beachy Head. 

  

2.1.1 Lyme Regis 

Lyme Regis is half way between Exmouth and Portland in Lyme Bay, Dorset, 

and has a south-west facing aspect. Lyme Regis is a small town popular with 

tourists during the summer, many of whom choose to visit the shore which is 
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easily accessible and often busy with people rock pooling and fossil hunting. 

There is a small stream (River Lym) which discharges fresh water into the 

sea 250m west of the survey area. The shore where searches were carried 

out (50º 43.476‘N, 2º 55.709‘W) consists of flat rocky ledges with some loose 

cobbles present as well as a small sandy beach at the upper part of the 

intertidal area. Nearby there is a harbour surrounded by a concrete and stone 

sea wall (the Cobb) and a high concrete sea wall at the base of vertical cliffs 

is present to the east of the town to prevent coastal erosion which occurs 

frequently in the area. The gradient of the shore is shallow and during a 

spring tide when there is a vertical difference of 3.80m between high and low 

water, the sea retreats approximately 250 metres to expose a rock platform 

(Top left (Figure 2.3). The level of exposure the shore is subjected to along 

with the morphology does not allow algae to completely dominate, however it 

is abundant in the upper zones and in a sheltered area next to an old sea 

wall. The rock is a Blue Lias Jurassic limestone, with a worn surface on top 

but is rough on vertical faces. Loose rocks and cobbles made of limestone 

and clay are present but not abundant.  

2.1.2 Osmington Mills 

Osmington Mills is 6km north-east across the bay from Weymouth and the 

shore faces approximately south-west and is sheltered by Portland from 

storms originating in this direction. The shore where searches were carried 

out and from which snail samples were taken is made up of a combination of 

large boulders (sandstone), cobbles (sandstone and limestone) and wave cut 

platforms. A small river discharges fresh water from the base of the cliff onto 

the beach approximately 50 metres from the survey area. The shore is not 

easily accessible as the route down is precarious and not well maintained, 

which may deter some visitors. The beach is difficult to walk over because of 

the loose nature of the substrate. The cliffs here contain Jurassic sandstone, 

clay and limestone with large boulders present.  

The survey area (50º 38.027‘N, 2º22.576‘W) experiences a 1.8m tidal range 

during spring tides with an approximately 80m retreat of the sea during low 

tide. Ledges in the intertidal zone are exposed at low tide along with large 

boulders and cobbles.  
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2.1.3 Cuckmere Haven 

Cuckmere Haven is 4km east of Seaford and is where the Cuckmere River 

and Estuary enters the sea. Cobble beaches are present either side of the 

river mouth, with the area to the west having three wooden 

structures/groynes which extend south into the sea for approximately 50 

metres. The area is popular with visitors however these mostly visit the 

beach area to the east of the river as this is the easiest part to access from 

the visitors centre. Searches were carried out in the area beneath the old 

Lifeguard Cottages (50º 45.513‘N, 0º 8.777‘E) which, at low tide comprises of 

chalk platforms and cobble banks Bottom left (Figure 2.5). Brown alga are 

abundant on the chalk platform, but becomes rare on the cobbled area, other 

than on larger boulders. At high tide the sea completely submerges some 

stretches of the shore all the way up to the concrete sea wall beneath the 

cottages.  

2.1.4 Eastbourne 

Originally Hastings was chosen as the most easterly site. On a visit prior to 

the first survey the area intended for the study was however, found to be 

closed off due to a cliff fall and Eastbourne was identified as a suitable 

substitute. The shore at Eastbourne (known as Hollywell Ledge) is 

approximately 10km east of Cuckmere Haven with a headland (Beachy 

Head) between the two sites. The intertidal area comprises smooth 

sandstone (Upper Greensand) on the upper shore and rough sandstone 

ledges further down. Above the strand-line the beach is made up of large 

cobbles and boulders, of which a few are also found scattered in the intertidal 

zone. The shore is moderately easy to access via a steep set of steps down 

the cliff. Once on the shore it is, however, slippery underfoot due to the 

algae-covered smooth rocks; the area was not observed to be busy (no more 

than 20 people were ever seen in the area during visits despite some of them 

being undertaken in the middle of a warm sunny day). The search area (50º 

44.929‘N, 0º 16.152‘E) is smooth sandstone with some rock pools and large 

boulders. The smaller loose rocks preferred by juvenile Gibbula umbilicalis 

are less common here than at other sites. 
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2.2 Sea Temperature  

Since 1980 the Northern hemisphere has been warmer than any other period 

in the last 2000 years (Philippart et al. 2011). Since 1980 mean annual sea 

temperatures in the English Channel have risen (Figure 2.7) (Rayner et al. 

2003; Met Office 2015a).  

 

Figure 2.7: Mean sea Surface Temperatures for cell grid reference 50.5N, 1.5W. *Autumn 
data represents 2010 – 2014 as 2015 data has not been published yet. Chart compiled 
based on HadISST data from the Met Office (2015a) website (Rayner et al. 2003). Winter = 
December to February, Spring = March to May, Summer = June to August, Autumn = 
September to November.   

Between 1971 and 2011 mean annual sea temperatures at Weymouth and 

Eastbourne fluctuated, with an overall increasing trend (Figure 2.8) (Cefas 

2015).  
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Figure 2.8: Mean annual sea temperatures for Weymouth and Eastbourne 1971-2011. 

Sea temperature data for two cells in the Channel (50°N, 2.5°W in the 

western basin and 50°N, 0.5°E in the eastern basin) show that between 2011 

and 2015 mean spring and summer SSTs fluctuated each year (Figure 2.9). 

The greatest anomalies below the mean spring temperature for the five year 

period occurred in 2013 (difference of 1.24°C in the western cell, 1.68°C 

eastern cell). During 2013 the lowest mean monthly temperatures for the 

period 2011-2015 occurred in April in the western cell (8.9°C) and March in 

the east (7.4°C).  
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Figure 2.9: Spring and summer mean SSTs for areas in the western and eastern basin of the 
Channel since 2011. Spring: March to May. Summer: June to August. 5YM=5-year mean. 

Sea surface temperature (SST) data were collected in the study areas to 

establish if there is a link between sea temperature, reproductive 

development and spawning. SSTs were recorded on the day of each 

collection using data obtained from the sensor closest to each field site 

(Table 2.2) published on the Channel Coast Observatory website (2015). 
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Site Sensor location Sensor location relative to site 

Lyme Regis 50.69339 -2.74997 13km ESE 
Osmington 50.62291 -2.41485  3km WSW 
Cuckmere 50.76633 0.07540  5km W 
Eastbourne 50.78339 0.41744 11km ENE 
 
Table 2.2: Sea temperature sensor locations. 

According to historical SST data (Cefas 2015) the minimum temperatures 

experienced in Weymouth and Eastbourne since the 1990s were not as low 

as they were in previous decades, especially cold winters of the early 1960s 

(Crisp 1964). In the western basin of the Channel Weymouth has only fallen 

below 6°C during three winters since 1990, while in the eastern basin, 

temperatures have frequently fallen below this level, and as low as 3°C at 

Eastbourne. Crucially, during this period, winter sea temperatures in 

Eastbourne have only occasionally fallen as low as 7°C, which is the lower 

end of the tolerable range for survival of Gibbula umbilicalis (Keith et al. 

2011). These instances may have occurred sufficiently frequently to limit 

juvenile winter mortality.      

Historical air temperatures at Eastbourne were reviewed as far back as 1990 

using Met Office (2015b) data, but only monthly means were available so it is 

not possible to know what the coldest temperatures recorded were. The 

coldest month on record during that time was December 2010 with a mean 

air temperature of -0.5°C (Met Office 2015b). Data containing the lowest 

temperature recorded in each month as far back as January 2012 are 

available from an amateur weather station in Sovereign Harbour, 

Eastbourne. In February 2012 a low temperature of -5.7°C was recorded, at 

no other time as far back as January 2012 did the temperature fall below -

5°C according to the data from this sensor (BRXNET.org 2015).  The lowest 

temperature recorded at each site was during March (8.5°C Lyme Regis and 

8°C at all other locations) with the warmest occurring during August (Lyme 

Regis and Osmington 18°C, Cuckmere 18.5°C and Eastbourne 19.1°C). 

Sites in the eastern basin had a mean temperature that was 0.25°C lower 

than the western basin during March and April. From May onwards the 

eastern basin was warmer than the west by between 0.6°C and 0.8°C. The 

largest difference between the coolest and warmest site during the same 
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month was 1.1°C which was between Lyme Regis (17°C) and Cuckmere 

(18.1°C) in July, and Lyme Regis (18°C) and Eastbourne (19.1°C) during 

August. During the cooler months Lyme Regis, the most westerly site, had 

the warmest sea temperature, but during the warmest month it was 

Eastbourne (the most easterly site) which recorded the highest temperature 

while Lyme Regis had the lowest temperature. Temperatures recorded are 

presented graphically (Figure 2.10) as well as Figure 2.11 which also 

displays the monthly means temperatures for 2011-2015 in the western and 

eastern Channel.  

 

Figure 2.10: Sea temperature data collected from each site on the day of each field visit in 
2015. 
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Figure 2.11: 2015 monthly mean SSTs for four locations in the Channel with monthly means 
for the period 2011-2015 shown.  
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3. Reproductive Development 

3.1 Introduction 

Sexual maturity in British populations of Gibbula umbilicalis is thought to 

occur when individuals are approximately 18 months old with a shell width of 

8-9mm (Williams 1964). Sexually mature females produce oocytes which 

when fully mature have a diameter up to 180µm (Garwood and Kendall 

1985). Spawning and settlement in Gibbula umbilicalis occurs annually in 

British populations (Williams 1964; Underwood 1972). This contrasts with 

populations in areas with warmer sea temperatures off the coast of Portugal 

and northern Spain where multiple spawning events occur throughout the 

year (Bode et al. 1986; Gaudèncio and Guerra 1986).  

Synchronisation of male and female gamete release is essential for 

reproduction to be successful. In Gibbula umbilicalis a large number of 

oocytes are initially released when spawning commences, with the remainder 

released over the following weeks (Underwood 1972; Garwood and Kendall 

1985). A prolonged spawning period has advantages over a shorter, single 

event by offering a form of protection against freak environmental events and 

a mismatch in synchronisation of spawning between males and females. 

Synchronisation between different populations is not important as unfertilised 

gametes are not likely to survive for the time it may take to reach another 

spawning population. It is imperative, however, that both sexes in each 

population are ready to spawn at a time that will favour survival of the larvae 

and settling juveniles.  

New populations of Gibbula umbilicalis (observed since approximately 2000) 

to the east of the Isle of Wight (IoW) on the English side of the Channel are 

thought to be a result of an increase in sea temperatures (Hawkins et al. 

2008; Herbert et al. 2009), which during the 1990s were greater than any 

other previous period on record (Houghton et al. 2001).  



26 
 

The aims of this chapter are to determine whether reproduction is 

synchronised among different populations and whether it is linked with 

temperature.  

3.2 Methods 

Between March and September 2015, reproductive development was studied 

at four sites. Two sites west of the Isle of Wight (Lyme Regis and Osmington 

Mills) have had long-established populations (Crisp and Southward 1958) 

whereas the two sites east of the Isle of Wight (Cuckmere and Eastbourne) 

have only colonised since 2000 (Herbert pers. comms.).  

Female gonad development was investigated in two ways: 

(i) Visual examination of the gonad to determine the stage of 

reproduction based on appearance, colour and size; 

(ii) Measurement of oocyte diameter over the summer months as they 

mature.  

Spawning can be detected by observing changes in the exterior appearance 

of the gonad, as well as a decrease in the density of oocytes inside.  

Samples were collected every four weeks. Twenty-five adults from each of 

the four locations were stored in sea water for between 24 and 48 hours 

before being processed in the laboratory. Individuals were selected at 

random and checked to ensure they were above 10mm, when they become 

sexually mature (Williams 1964). The animals were not fed following 

collection to allow their digestive system to empty, making the dissections 

easier. It was not possible to keep the animals at the same temperature as 

the sea during the period between collection and the laboratory work. They 

were stored in a naturally lit room without heating to allow the temperature to 

fluctuate between day and night, mimicking the temperature outside. 

Fluctuations in temperature are a daily occurrence for this species as it lives 

in the intertidal zone. All individuals removed from the shore were still alive 

when they were delivered to the laboratory. 
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Each individual had the shell maximum basal diameter (MBD) measured with 

callipers to the nearest 0.1mm in the laboratory before being assigned a 

number and placed in a labelled 25ml plastic Sterylin® tube. Once all 25 

individuals had been measured they were individually cracked open using 

mole-grips. The best result was achieved by placing the animal upright in the 

mole-grips so that the jaws compressed vertically from top to bottom. The 

shells are strong and a considerable amount of force is required; using this 

method results in minimal damage to the internal tissue. Once the shell had 

been cracked the animal was returned to the Sterylin® tube and Formalin (4% 

buffered MgCl2) added and lid replaced. Cracking the shell allows the 

formalin to penetrate more of the tissue than if the animal was simply 

dropped in un-fractured because it would close its water-tight operculum. 

This could result in some internal tissue not being preserved sufficiently. The 

gonads are located in the top part of the shell so it was vital that the 

preservative was able to reach this region.  

When ready for dissection the animals were removed from their Sterylin® 

tube, the shell separated from the internal soft tissue and the sex determined 

from visual examination of the gonad. Initially it was difficult to distinguish 

between male and females because they were similar colours when the 

gonads were not mature, therefore each specimen was viewed under the 

microscope to look for the presence of oocytes. The presence or absence of 

eggs determined whether the individual was female or male. 

Dissection of the animals was completed by holding the body of the animal 

with tweezers and slicing away a portion of ovary. The ovary tissue was then 

placed onto a clean microscope slide and sliced further to release oocytes so 

that they lay level on the glass slide. Cavity slides contained the oocytes in 

sea water to prevent desiccation and shrinkage while being viewed.  

The gonad tissue was viewed under a microscope (Keyence VHX-5000 

digital microscope fitted with a 20-200x zoom lens) using a white, high-power 

LED light (5700k) to allow the tissue to be observed with natural colouration. 

The microscope was connected to a PC for viewing images on a screen. The 

accompanying software has an array of options for improving and adjusting 
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the image as well as tools to make measurements of the tissue under the 

microscope. 

Oocyte diameters were measured on screen (Figure 3.12) and labelled with 

the survey number and tube number for later cross-referencing with the MBD 

values. To minimise issues with the data quality that would occur if oocytes of 

different shapes were measured for comparison, oocytes that were as round 

as possible were measured, but were otherwise selected at random. In cases 

where oocytes were surrounded by a jelly coat (Underwood 1972; Garwood 

and Kendall 1985), this jelly coat was not measured.  

 

Figure 3.12: Digitally measured oocyte diameters from a sample collected during August 
2015 from Osmington. 

The stage of female gonad development was assessed using an adapted 

version of the index devised by Williams (1964) which was based on an 

existing staging index for a similar species Phorcus lineatus (Desai 1959). 
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Stage Description 

Stage I  Brown in appearance, inactive/spent – difficult to distinguish sex of 
individual. 

Stage II  Gonad is light green and contains large number of small oocytes. 
Stage III  Gonad green, oocytes have grown and represent honeycomb in 

appearance. 
Stage IV  Gonad green, oocytes now grey/green in appearance and the honeycomb 

resemblance is very obvious. 
Stage V 
 
Stage VI  

Similar to stage IV, but oocytes are noticeably larger and mostly grey/green 
and ovary appears very swollen.   
The ovary is partially spent but still contains large oocytes. The external 
appearance of gonad tissue appears wrinkled. Green colouration of ovary is 
maintained and oocyte size remains large. Small oocytes beginning to 
develop for the next cycle may be present. 

 
Table 3.3: Female gonad development staging index adapted from Williams (1964). 

The gonad development stage index shows how individuals and populations 

are developing reproductively over time and can indicate whether 

development is synchronised between individuals within a population, or 

between different populations. Although it contains five stages of 

development, none of those are relevant if the animal has partially spawned. 

Stage V relates to animals capable of spawning and Stage I is for animals in 

a spent state. To allow differentiation between animals capable of spawning 

and those which have partially spawned, a sixth stage (VI) was created and 

given the definition below. 

Stage VI Green colouration of ovary is maintained and oocyte size remains large. 
Ovary contains fewer oocytes than stage V and as a result the ovary tissue 
has a wrinkly appearance. 

 

A spawning stage index (Table 3.4) was created by Williams (1964) 

consisting of three stages makes the link between the final and first stage of 

the development index. The first spawning stage matches development 

Stage V and the third spawning stage matches development stage I. 

Spawning Stage II relates to partially-spawned animals, and consideration 

could be given to merging the two indexes (Development and Spawning) 

together so that one index completes a full reproduction cycle, as in this 

study (Table 3.3). The addition of oocyte sizes to the index may make the 

staging process more objective.  
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Stage Description 

Stage I Similar to development stage V. Capable of spawning, ovary large and tightly packed 
with large oocytes. 

Stage II Half-spent. Ovary has reduced in size but still contains many large oocytes. 
Stage III Similar to development stage I. Ovary is brown in appearance and an empty, loose 

sac possibly containing a small number of oocytes. 
 
Table 3.4: Female spawning stage index. Source: Adapted from Williams 1964. 

3.3 Results 

The gonads are located at the posterior end of the body with the digestive 

gland running alongside part of the gonad. Once gonads had begun to 

mature in April the differences in appearance were much more apparent with 

females presenting as olive green and males creamy-pink (Figure 3.13), 

although some males were infested with a suspected parasitic trematode as 

observed by previous researchers (Williams 1964; Underwood 1972) which 

altered their appearance from creamy-pink to a reddish-brown (Figure 3.14). 

In one instance the appearance was bright orange and the orange 

trematodes were visible (Figure 3.15). As females were the focus of this 

study, records were not kept of the sites and months that infested males 

were observed. The oocytes appeared cream/white with a smooth surface 

texture during early surveys (Figure 3.16) turning grey from July. The oocytes 

were spherical when released from the ovary, unlike when contained inside, 

tightly packed causing irregularity in their form. 
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3.3.1 Gonad Development 

The gonad staging results are presented in Figure 3.17 with corresponding 

monthly SSTs for each site. Snails at Osmington were already at Stage III 

when surveys began in March and remained at this stage until June. Lyme 

Regis, Cuckmere and Eastbourne were all at Stage II in March (see Figure 

3.18). By April Lyme Regis and Cuckmere had progressed to Stage III and 

the ovaries contained high numbers of large white oocytes ( Figure 3.19) but 

Eastbourne, the most easterly site, remained at Stage II for another month. 

All populations remained on Stage III for May and June. Gonad stages were 

fully synchronised among all individuals at all sites each month. The 

transition from Stage III to IV occurred during the same four week period in 

all populations between 13th June and 11th July. All populations were at 

Stage IV during July but by August only those at Lyme Regis and Osmington, 

the western sites, had progressed to Stage V ( Figure 3.20). By September 

populations at Lyme Regis and Osmington were at Stage VI; the ovaries 

were no longer tightly packed as spawning had begun (Figure 3.21). 

However, although animals at Cuckmere and Eastbourne had progressed to 

Stage V, ovaries remained large and densely packed indicating spawning 

had not yet begun.  
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Figure 3.18  top left: Female at reproductive stage II (Cuckmere, March). Figure 3.19 top right: 
Portion of stage III ovary (April, Lyme Regis).  Figure 3.20 bottom left: Portion of swollen stage V 
ovary (August, Osmington). Figure 3.21 bottom right: Example of ovary at development stage VI 
(Lyme Regis, September). 
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3.3.2 Oocyte Growth 

Oocyte growth was well synchronised among each population during each 

month. Populations obtained in September that had mature oocytes and 

were at the same stage (V) of gonad development were subjected to a 2-

tailed Pearsons bivariate correlation test (output presented in Appendix A). 

This showed a weak positive correlation between oocyte size and shell MBD 

(Figure 3.22) which was not statistically significant (n=32, r=0.143, p=0.436). 

On this basis, animal size was not considered to be relevant during analysis 

of gonad development and oocyte growth which is consistent with Garwood 

and Kendall (1985).  

 

Figure 3.22: Relationship between shell size (MBD) and oocyte size. 

Full oocyte measurement results for the study are presented on the following 

page in Figure 3.23. 
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From March the Osmington population already had large oocytes (Figure 

3.24) and showed little growth over the spring and summer (138µm March, 

158µm August). Lyme Regis oocytes had a mean of 77µm in March, 

Cuckmere and Eastbourne had the smallest oocytes at 42µm and 43µm. By 

April there were noticeable increases in oocyte size at all sites except 

Osmington which remained large. Cuckmere showed an almost 150% 

increase in size between March and April.  

 

Figure 3.24: Mean oocyte diameters for March and April to show how growth rates differed 
between sites. Error bars at 95% confidence intervals. 

From May onwards the mean oocyte diameters at all sites were similar, but a 

noticeable increase had occurred at Eastbourne of almost 100% (75µm to 

149µm).  

At all sites there was a slight decrease (between 3µm and 15µm) in mean 

oocyte diameter in July from the observations in June, however during 

August all sites showed an increase again. During August oocytes at three of 

the four sites were larger than they had been in June, Lyme Regis was 

marginally (<1µm) smaller.  
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During September all sites exhibited a reduction in mean oocyte size from 

the previous month. The means were similar across all sites (148.3µm to 

152.1µm), with the smallest variance of mean (3.8µm) of the entire study.  

Oocyte size-frequencies histograms were plotted for each month at each site 

and provide a visual overview of development (Figure 3.25).  

 

Figure 3.25: Oocyte diameter size/frequency histograms for each site/month. 

A one-way ANOVA was used to test for statistically significant differences 

(Table 3.5) in mean oocyte size between sites. There were significant 

differences, however, there was no overall trend or consistency as the study 

progressed. September was the only month where no statistical differences 

were found between any site combinations. The only month where 

statistically significant differences occurred between all site pairings was 
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April, yet in May only one pair (Osmington and Eastbourne) showed a 

significant difference (p=0.05). The full output is presented in Appendix B.  

 

 
1-2 1-3 1-4 2-3 2-4 3-4 

March *** *** *** *** *** 
 April * *** *** *** *** *** 

May 
    

* 
 June 

 
* 

 
*** 

 
*** 

July * *** * 
 

*** *** 
August *** ** *** 

   September 
       

Table 3.5: Statistically significant differences of mean oocyte size identified using one-way 
ANOVA.  1 = Lyme Regis, 2 = Osmington, 3 = Cuckmere, 4 = Eastbourne. * denotes 
significance at p=0.05, ** denotes significance at p=0.01, *** denotes significance at 
p<0.001. Blank indicates no significant difference. 

Mean oocyte diameters were plotted (Figure 3.26) for each development 

stage observed to determine whether oocyte size changed between stages. 

Only progression from Stage 2 (59µm) to Stage 3 (151µm) was accompanied 

with a noticeable increase in mean oocyte diameter (92µm), however the 

range of means within this stage was 35µm. Standard deviation reduced with 

each stage progression (Appendix C).  
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Figure 3.26: Mean oocyte diameters recorded for observed development stages (II to VI). 
Mean oocyte diameters for all sites and months was combined and the mean of means 
calculated. Lowest and highest means are plotted to show the range within each stage.  

 

3.3.3 Relationship between sea temperature and oocyte size 

Using a Pearson bivariate 2-tailed test there was a positive correlation 

between monthly sea temperature and mean oocyte diameter (r=0.574, 

n=1891 p=<0.001) when comparing the monthly sea temperatures with 

oocyte diameters (Figure 3.27). 
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Figure 3.27: Relationship between sea temperature and oocyte diameter. 

 

3.4 Discussion 

The gonad staging process revealed reproductive development at different 

sites was not synchronised, and that there was a difference in rate of the 

progression between stages. However, development within each population 

was synchronised.  

Statistical analysis (one-way ANOVA) of all oocyte diameters showed that 

there were differences in mean oocyte size between some sites during 

particular months, however, these differences were not consistent and 

changed from month to month. There were differences in the rate of oocyte 

growth as well as a difference in the timing when the oocytes in each 

population reached different sizes and maturity. An example of this is the 

growth of oocytes between March and May at Cuckmere and Eastbourne, 
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where both populations were at approximately 40µm during March, yet 

during April, Cuckmere had increased in size to over 100µm but Eastbourne 

were still only at 75µm. By May, Eastbourne oocytes (149µm) were larger 

than those from Cuckmere (145µm) and all other sites (Lyme Regis 145µm, 

Osmington 143µm). The analysis of oocyte diameters alone (ANOVA) is not 

satisfactory for detecting differences in oocyte development as some 

changes (e.g. colour of ovary and oocytes, formation of oocytes into a 

honeycomb fashion) are more difficult to quantify and are not accompanied 

by a change in oocyte size.   

The oocyte measurements were similar to those of Garwood and Kendall 

(1985) who found that oocytes reached a size of 140µm to 180µm, but 

concluded that oocytes over 120µm can be considered mature. Despite 

extensive searching, there was no other literature found which contained 

information on the size of fully mature oocytes in Gibbula umbilicalis. 

Underwood (1972) looked extensively at gonad development and the only 

oocyte sizes mentioned relate to immature/developing cells. Underwood 

suggests the presence of a jelly coat around the oocyte signifies maturity. 

However, as pointed out by Garwood and Kendall (1985), this forms from 

between 70µm and 80µm, and its presence is irrelevant when attempting to 

determine whether oocytes have reached maturity. The related trochid 

Tegula euryomphala has a maximum oocyte diameter of approximately 

156µm (Bastías 2014). Bastías suggests that this size is in the middle of a 

range (50µm to 300µm) described by Hickman (1992) for all trochid species. 

This may be an erroneous observation as when reviewing Hickman's work, it 

states that "the typical mature trochean oocyte is a yolk-rich structure, of 150-

300 µm diameter" (Hickman 1992, p.249). Desai (1966) studied a similar 

species, Phorcus lineatus (as Monodonta lineata) and reported that oocytes 

reach a maximum size of between 165µm and 195µm. It should be noted 

that Phorcus lineatus is a larger species than Gibbula umbilicalis and can 

grow to over 30mm shell width (Williamson and Kendall 1981). Desai (1966) 

also states that Gibbula eggs reach a size of 120-150µm, however a specific 

species (if any) of Gibbula that this statement relates to is not given, nor is a 

source.  
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Methods used by Underwood (1971, 1972) were not repeated in this study as 

the technology now available makes the lengthy staining and sectioning 

processes unnecessary, and the task of measuring oocyte diameters can be 

completed in a matter of minutes using a digital microscope. Further, the use 

of a microtome to take a 2µm thick slice through tissue containing spherical 

oocytes between 40-180µm creates opportunity for erroneous measurements 

by taking slices of the oocyte at places anywhere other than at its widest. The 

likelihood of taking the central/widest portion of each oocyte would be low 

given that the oocytes are packed together in a honeycomb-like way. 

Mieszkowska (2005) used methods other than those involving histological 

techniques to determine reproductive cycles of Phorcus lineatus (as Osilinus 

lineatus) because of the time consuming nature of the work. Using a digital 

microscope allowed measurements to be taken with the oocytes intact and 

therefore ensured that each measurement recorded the maximum width of 

the entire oocyte rather than the width of a smaller portion of it. 

Previous studies (Underwood 1971; Garwood and Kendall 1985) suggested 

that mean oocyte diameter is not appropriate for use to monitor reproductive 

development as their work found that individuals contained a range of 

different sized oocytes. Underwood (1971) measured oocytes and observed 

that females contained oocytes of a range of sizes simultaneously, both 

mature and immature. Garwood and Kendall (1985) did not observe this 

polymodal distribution, but rather bimodal, however they point out that during 

early stages of development the larger oocytes were unspawned from the 

previous cycle. One to four months after spawning had taken place, they 

noticed that the majority of oocytes present were small and it is quite possible 

that these were new oocytes forming for the next cycle. The consistent 

occurrence of different sized oocytes within an individual was not observed in 

this study; less than 5% contained oocytes noticeably larger or smaller than 

the majority. The presence of a small number of large oocytes in the earlier 

months was attributed to unspent oocytes from the previous cycle and these 

larger oocytes were excluded from the study. Of the few individuals with 

noticeably smaller oocytes present among the larger majority, the smaller 

oocytes were not measured on the basis that these were either new oocytes 
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developing for the following cycle, or possibly failed oocytes from the present 

cycle owing to the rarity of this occurrence. External fertilisation of an earlier 

release of previously unspent oocytes would of course require simultaneous 

release of male sperm, which is unlikely. 

Growth of oocytes was well synchronised between individuals in each 

population and this is in line with observations made by Garwood and 

Kendall (1985). During July, some individuals were not dissected until they 

had been in the formalin for five days. In these individuals the female gonads 

had a purple colouration externally. This was further confirmed by checking 

some remaining tissue samples from June surveys which were not purple 

when viewed soon after immersion in formalin, but were when looked at 

again in September (Figure 3.28). However, some remaining samples 

collected in March and April were also looked at during September, yet these 

did not show the same change in colour. Some, but not all, of the oocytes 

also presented with a purple hue (Figure 3.29). The same method and 

equipment (including the same batch of formalin) was used for all samples. 

This staging process is to some extent subjective and dependent on 

experience, and may be influenced by the length of time of preservation. 

The addition of expected oocyte sizes for each of the development stages 

would be useful by making the process more objective, however not only was 

growth between stages mostly low (stage II to III being the exception), the 

standard deviation in mean oocyte size was too high to reliably associate any 

one stage with an expected oocyte size when means of each stage were 

similar.  
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Figure 3.28: Purple appearance of ovary. This sample was collected during June from 
Cuckmere but was not used in the oocyte analysis. Photograph taken in September. 

 

Figure 3.29: Oocytes with purple appearance (sample collected in July from Eastbourne). 
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The positive correlation between sea temperature and oocyte size was 

expected as it was already known that gonad development and oocyte 

growth occurs during spring when sea temperature begins to increase 

(Garwood and Kendall 1985) and these result support previous findings. The 

eastern basin of the Channel has a wider temperature range than the west; 

winter minimums are lower and summer maximums higher (Rayner et al. 

2003). It has been hypothesised (Hawkins et al. 2008; Herbert et al. 

unpublished) that the recent range extension of Gibbula umbilicalis along the 

south coast of England is due to the rise in mean sea temperature and milder 

winter temperatures. 

Possible mechanisms for this are: 

(i) Longer reproductive period and the possibility of multiple 

spawnings, increasing the probability of successful fertilisation; 

(ii) Increased larval output and higher settlement; 

(iii) Milder winters will enable greater spat survival and greater 

recruitment, leader to persistent populations. 

 

The annual heating and cooling cycle of the sea in the English Channel 

means that for several months of the year the sea is too cool and 

reproductive development is limited to one cycle each year, with spawning 

occurring at the end of summer. In areas where the seas are warmer (off the 

coasts of Portugal and Spain), brooding occurs more than once a year and 

there are multiple spawnings (Bode et al. 1986). The higher temperatures 

also reduce the risk of juvenile mortality (from a thermal perspective) 

negating the need for breeding to occur at a specific time to coincide with 

adequate temperatures for juvenile survival. 

Sea temperatures fell between August and September at all sites, 

(decreases of 1.2°C at Lyme Regis, 1.1°C at Osmington, 0.8°C at Cuckmere 

and 1.6°C at Eastbourne) however, spawning was only observed to be in 

progress in the western basin at Lyme Regis and Osmington. In some 

species (Crothers 2001) the attainment of maximum temperature can trigger 
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spawning. However temperature data obtained in this study is not of 

sufficient temporal resolution from which to draw conclusions on what the 

trigger may be; spawning may have begun up to 27 days before the 

September survey.  

Given that low winter temperatures are a risk for juveniles (Kendall and Lewis 

1986), and that the eastern basin of the Channel experiences colder winter 

sea temperatures than the west, it might be expected that those populations 

in the east would spawn earlier, hereby giving the settling juveniles as much 

time as possible to grow and increase the likelihood they will survive the first 

winter. That is on the assumption that smaller and younger juveniles are at 

more risk than larger, older individuals. However, it was western sites that 

were the first to spawn, and this suggests that the delayed spawning in the 

east leaves those populations vulnerable to recruitment failure, as delayed 

settlement may increase post-settlement mortality. At the end of summer the 

sea temperature begins to fall sooner in the west than the east, and it is 

possible that this delay, which occurs in the same region as delayed 

spawning, may promote recruitment by reducing post-settlement mortality.  

3.5 Conclusion 

This aim of this Chapter was to understand when different reproductive 

stages of Gibbula umbilicalis occur at four different sites on the south coast 

of the UK, and whether there were differences (rate of development and 

timing) between those sites. The effect of temperature on reproduction was 

also considered. Reproductive development of females was not fully 

synchronised between populations; not only did different populations reach 

different stages at different times but the duration spent at each stage 

differed between sites. Individuals at Osmington contained large oocytes 

from the first survey in March, while those at the other sites which contained 

smaller oocytes in March were observed to show rapid oocyte growth 

(though not at the same rate as each other) and by May their oocytes were 

larger than Osmington. The early development observed at Osmington, 

which saw oocyte size remain stable for the duration of the study, did not 

result in the site being the first to spawn. There was a positive correlation 



48 
 

between sea temperature and gonad development. The results of this study 

show that reproductive development and spawning timings are localised, and 

although populations in the eastern basin spawn later than those in the west, 

a delayed drop in sea temperature in the eastern basin at the end of summer 

may provide protection against post-settlement mortality.  

Until now, reproductive development and spawning in the eastern English 

Channel has not been investigated to understand when it occurs or to 

compare it with populations in the west that have been established longer. 

The results of this study show that reproduction is not simultaneous along the 

English Channel and that there is a link between sea temperature and oocyte 

development and spawning.  
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4. Population Recruitment and Growth 

4.1 Introduction 

Following the pelagic larval stage, veligers settle if suitable substrate is 

available, but not all individuals that settle will survive. Post-settlement 

mortality can, among other factors, be the result of predation, lack of food, or 

inadequate environmental conditions (temperature, salinity) (Hunt and 

Scheibling 1997). Recruitment definitions vary between species and from 

study to study, including the point in time which an individual is first 

detected/observed (Caselle and Warner 1996), has survived an initial period 

of high post-settlement mortality (Booth and Brosnan 1995), has reached 

(Walters and Juanes 1993) or is likely to reach adulthood or sexual maturity 

(Menge and Sutherland 1987) or has reached a specific size (Rodríguez et 

al. 1993) or age (Myers et al. 1997). Wave exposure has an influence on the 

morphology and distribution of many rocky shore species, including 

gastropods (Ballantine 1961; Vermeij 1973). Gastropods on shores exposed 

to higher levels of wave action are likely to have shorter, wider shells than 

individuals of the same species on sheltered shores (Frid and Fordham 

1994). Gibbula umbilicalis has a flat shell in comparison to similar species, 

and, although this is a trait for survival on an exposed shore, it is also a 

predator defence (Cotton et al. 2004). When temperatures are low Gibbula 

umbilicalis is confined to rock pools which reduces feeding activity, and as a 

consequence growth is restricted (Williams 1964).  

From around the year 2000 the range of Gibbula umbilicalis has extended 

eastwards on the English side of the Channel (Hawkins et al. 2009; National 

Biodiversity Network 2015; Herbert et al. unpublished). Previously only found 

as far east as the Isle of Wight, for the past 15 years the species has now 

been observed at Littlehampton, Seaford, Eastbourne and as far as Kent 

(Herbert personal com.). This range extension has coincided with an 

increase in mean sea surface temperature (SST) and, importantly, winter 

minimum temperatures (Mieszkowska et al. 2006, Hawkins et al. 2008, 

Herbert et al. 2009, Keith et al. 2011) (see also Chapter 2). It has been 
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suggested that temperature was the most likely cause for the previous 

absence of the species in the eastern basin of the Channel (Mieszkowska et 

al. 2006). Lack of suitable habitat (Crisp and Southward 1958; Herbert and 

Hawkins 2006), hydrographic barriers restricting larval supply to the shore 

(Crisp and Southward 1958; Herbert et al. 2009; Keith et al. 2011) or intense 

pressure predation on newly settled juveniles may have also played a role. It 

is considered that temperature, specifically the winter minimum sea 

temperature, is most critical because of the risk it poses to the survival of 

juveniles (Kendall 1987). Keith et al. (2011) estimated that a minimum 

temperature of 7.98°C is required for almost all individuals to survive the 

winter; yet a temperature of 7.4°C could cause almost complete mortality. 

However, the duration that this temperature would need to persist to have 

this effect is not given. The results of a laboratory experiment suggested that 

exposure to temperatures of -5°C for 6-24 hours will lead to over 50% 

mortality (Southward 1958). The only opportunity for the species to be 

subjected to such extreme low temperatures along the south coast of the UK 

is during low tide when exposed to cold air. Along the open coast, the sea in 

this region does not freeze although ice has been observed to form in the 

upper reaches of estuaries and harbours. Further, the duration of exposure 

varies depending on tidal activity and their position on the shore. Following 

the exceptionally cold winter of 1962-1963, Crisp (1964) failed to locate any 

living Gibbula umbilicalis on the Isle of Wight, and only one individual at 

Osmington Mills, where previous searches had recorded over 100 individuals 

per m2. At Lyme Regis "dead shells of the species littered shallow pools in 

thousands" (Crisp 1964 p182). 

To understand whether new populations of Gibbula umbilicalis might now be 

considered established, the population structure was investigated at four 

sites on the English side of the Channel (see Chapter 2 for details). The 

presence of juveniles (maximum basal shell diameter (MBD) less than 

10mm) is an indicator of recent (within the previous 12-18 months) 

successful recruitment (Williams 1964). By measuring the shell MBD it is 

possible to track the growth of juveniles (young of the year) over time to 

determine survival of the cohort and entry to the adult population. Evidence 
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of recent and frequent recruitment could show that the new populations are 

now ecologically established, and depending on density able to withstand 

pressures of occasional disturbances such as unusually cold winters which 

might otherwise cause the complete loss of populations, as observed by 

Williams (1964).  

4.2 Methods 

Following the MarClim protocol (Mieszkowska et al. 2006) which is 

comparable to the method of Kendall and Lewis (1986), five searches, each 

lasting three minutes, were carried out monthly at each site between March 

and September 2015. Any rocks that were moved during searches were 

returned and care taken not to crush any organisms. The Maximum Basal 

Diameter (MBD) of all individuals collected was measured on-site using 

digital callipers, after which the animals were returned to the shore, with the 

exception of those required for the reproduction study (Chapter 3). 

4.3 Results 

Limited data collected in late spring and early summer during 2010 (R 

Herbert unpublished data) and 2012 (R Noke unpublished data) for a single 

site in each basin provides a baseline to which populations can be compared 

(Table 4.6). These searches used the same method as the current study. 

There was a considerable increase in the number of snails found (64%) 

between 2010 and 2012 at Osmington, and a large (50%) decline at 

Cuckmere. From 2012 to 2015 there was a reverse in the trend, with 

Osmington decreasing by 53%, but Cuckmere increased 50%. 

  May-2010 Apr-2012 May-2015 

Osmington 14 23.4 10.4 

Cuckmere 11.8 6.4 8.8 
 
Table 4.6: Mean number of individuals found per minute of searching after five three-minute 
searches. Amounts are only representative of the months indicated. 

Juveniles (MBD<10mm) were found at all sites in each month (Figure 4.30) 

with the exception of Eastbourne during April where the smallest individual 

found was 10.5mm. The number of juveniles recorded each month at each 
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site varied. During March only one juvenile was found in Eastbourne and 

three in Cuckmere, but they were more common in Lyme Regis (11) and 

Osmington (41). At Eastbourne and Cuckmere there was an increase in the 

presence of juveniles as the study progressed, but in Lyme Regis and 

Osmington juvenile numbers peaked during May.  

 

Figure 4.30: Number of juveniles found during each survey at each site. 

The mean MBD of juveniles (Figure 4.31) at each site increased overall 

between March and September. Eastbourne showed the largest increase in 

juvenile mean MBD over the study at 3.4mm between March and September, 

and Cuckmere the smallest increase at 0.7mm. The largest mean MBDs for 
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juveniles were observed in August at all sites except Cuckmere, where the 

largest mean (8.7mm) was seen in September.  

 

 

Figure 4.31: Mean MBD for juveniles (<10mm) at each site each month. 

By plotting size-frequency histograms for each survey (Figure 4.32), multiple 

modes are visible during some months at some sites, and the mode of the 

younger cohorts can be seen to increase in size over time as the juveniles 

grow.    
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Figure 4.32: Monthly size-frequency histograms showing population structure and growth of 
2014 cohort and older cohorts. MBD denotes shell Maximum Basal Diameter.  

Over the duration of the study more individuals were found at Osmington 

(1114) than any of the other sites. Searches at Lyme Regis located 1083, 

Cuckmere 974 and Eastbourne 722 over the seven months. With the 

exception of September, searches at Eastbourne located the fewest 

individuals. At the start (March and April) Lyme Regis and Osmington had far 

greater numbers than Cuckmere and Eastbourne, but during May and June 

survey totals were more similar; numbers found at Lyme Regis and 

Osmington fell while those at Cuckmere and Eastbourne increased. July, 

August and September saw Cuckmere produce the greatest numbers and in 

September the number found at Eastbourne was the fourth largest out of all 
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28 searches. Osmington showed a small decrease between July and 

September while Lyme Regis fell by over a quarter. The number of 

individuals located during each survey is presented in Figure 4.32. 

 

Figure 4.33: Number of individuals found at each site during each visit. Error bars at 95% 
confidence.  

Eastbourne had the largest mean MBD (14.4mm) overall and also the fewest 

individuals (722 in total, 6.8 per minute of searching). Eastbourne also had 

the lowest number of juveniles both as a percentage of all individuals found 

there (12%) and the actual quantity of juveniles (87). Figure 4.34 shows the 

proportions of juveniles:adults for each site over the duration of the study. 

The largest individual found throughout the study (19.7mm) was at 

Eastbourne. The site with the lowest mean MBD was Cuckmere (12.6mm), 

although Osmington and Lyme Regis were only marginally larger at 12.7mm 

and 12.9mm respectively. With juveniles (MBD <10mm) removed Lyme 

Regis had the lowest mean MBD (13.9mm). Using MBD at the 90th percentile 

to reduce bias caused by the number of juveniles, and the number of 

individuals located each minute, the results (Figure 4.35) showed that the 

general trend was that smaller populations contained larger individuals. 

0

50

100

150

200

250

Mar Apr May Jun Jul Aug Sep

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
al

s 
lo

ca
te

d
 e

ac
h

 m
o

n
th

 

Lyme Regis Osmington Cuckmere Eastbourne



56 
 

 

Figure 4.34: Total number of individuals found throughout the surveys (March-September) 
and proportion of juveniles. 

 

Figure 4.35: Comparison of mean MBD at the 90th percentile and abundance (based on 
number of individuals found per minute of searching).  
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4.4 Discussion 

During the field surveys the weather was good, with each survey taking place 

in dry, calm conditions. Wet weather is understood to cause trochids to seek 

shelter under rocks (Crothers 2001) or stay submerged under water during 

low temperatures or in high winds (Little et al. 1986). Field surveys under 

different weather conditions would likely produce variable results and make it 

difficult to draw conclusions if trying to compare two areas. There is a 

relationship between age and size, however the results show that different 

populations display different growth/size characteristics. This is the result of 

differences in localised pressures such as the quality of habitat or 

intraspecific competition. Therefore, the size of an individual should only be 

used as a guide to determine age. Ideally, size-frequency distributions should 

be consulted to determine size of juveniles within any month, rather than the 

standard >10mm threshold MBD for when individuals can be considered 

mature.  

From the evidence of juvenile recruitment, size-frequencies and large 

populations at the eastern sites of Cuckmere and Eastbourne, the species is 

now considered established at these eastern localities in the Channel. This 

has only occurred because sufficient numbers of juveniles have both 

recruited and survived here. New sites may still rely on the arrival of larvae 

from other areas to maintain or increase the populations as their own 

reproductive efforts may result in their larvae being transported away. If 

connectivity between an external larval source and its destination was 

interrupted, populations dependent on this source of larvae would eventually 

disappear. The degree to which these populations rely on external larval 

input is unknown. According to the National Biodiversity Network (2015) there 

are records of Gibbula umbilicalis present, intermittently, along the east coast 

of Britain from the south-east tip in Kent up to Scotland. However, records on 

the north-east coast are probably incorrect and require verification (Herbert 

pers. com.). Lack of confirmed sightings should never be given the same 

weight as an unsuccessful search for the species. Large gaps in their actual 

distribution will exist as a result of the presence of long stretches of sandy 

shores along parts of the North Sea coast. The creation of new habitats in 
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the form of artificial structures (sea walls, groynes) may act as stepping 

stones facilitating range extensions as observed in other species. However, 

until such a time that these populations can be confirmed, whether they 

originated from the north or south will be unclear.  

The number found during the September search at Osmington (133), was not 

greatly different from the previous two searches (148 during August, 141 in 

July). If the number of juveniles found at each site is a true reflection of 

recruitment, the later detection and lower numbers of juveniles in the eastern 

cell would indicate that populations in the western cell reproduce earlier and 

achieve higher levels of recruitment.  

Eastbourne had the largest mean MBD over the study and this can be 

attributed to two factors. Firstly, searches at Eastbourne located the fewest 

juveniles and this increased the mean MBD size as the data contained a 

greater proportion of adults than other sites. Secondly, decreased 

intraspecific competition (a result of the low population) can result in 

individuals reaching a larger size than in areas where populations are 

denser. After eliminating juveniles (<10mm) from the data (for all sites) the 

mean MBD (15.3mm) at Eastbourne was still the largest of all the sites. The 

observed low number of juveniles at Eastbourne could be the result of a 

restricted larval supply limiting the numbers of individuals with the opportunity 

to settle. The presence of Beachy Head, the major headland south-west of 

Eastbourne could be restricting larval supply to the shores as headlands 

appear to create barriers for other species (Crisp and Southward 1958; 

Herbert et al. 2009; Keith et al. 2011). The substrate at Eastbourne contained 

less loose material than other sites and subsequently fewer cobbles that the 

juveniles prefer. This limited availability of suitable habitat is likely to be a 

contributing factor affecting settlement and recruitment. Further, the texture 

of the rock surface at Eastbourne is visibly smoother than at the other sites, 

with many large areas of flat chalk ledges. There is evidence that the grazing 

rate of Gibbula umbilicalis on smooth rock is only half of that of a rough 

surface (Griffin et al. 2009), which may account for lower populations. Whilst 

the roughness of the rock at the different locations was not quantified in this 

study, the stark contrast between Eastbourne and the other sites is such that 
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it was noticed upon arrival at the shore, so much so that there were initially 

some doubts as to whether the species would be present. Rock type and 

roughness can influence the settlement and mortality of the Lusitanian 

barnacle Chthamalus montagui (Herbert and Hawkins 2006) and this may 

contribute to the species distribution being mainly limited to sites west of the 

Isle of Wight where more suitable rock occurs. 

Although Lyme Regis had a low proportion of juveniles similar to Eastbourne, 

the overall number of individuals was greater at Lyme Regis than 

Eastbourne. The greater abundance at Lyme Regis can explain why the 

mean MBD was lower than Eastbourne despite juveniles at both sites 

accounting for similar proportions of the population. 

Population size-frequency distributions with missing cohorts could be the 

result of infrequent recruitment or post-recruitment mortality including 

predation. This might occur between the early juvenile stage, when they 

reside under rocks out of reach of larger predators and the larger adult stage 

where they might be less desirable by predators because of their size 

(Underwood and Fairweather 1989). Although juveniles are more abundant in 

some areas than others, they were present at all sites and are evidence that 

recruitment has been successful in the last 12-18 months. The growth of the 

young cohorts over the course of the study is shown in the size-frequency 

histogram which indicates the smaller cohorts increasing in size between 

surveys at each site (Figure 4.32). The low number of juvenile individuals, 

however, does not allow the modes or different cohorts to be statistically 

analysed reliably (Kendall and Lewis 1986). 

Temperature increases during the late 1990s are considered a driver of the 

eastward range extension. Summer temperatures were in the tolerable range 

in the eastern basin of the Channel before this period. Winter temperatures, 

considered the most important for survival of juveniles, have increased winter 

mortality is currently not as limiting to population growth. However, the 

proximity of the eastern basin to the cooler North Sea exposes populations to 

the effects of occasional cold winters and high mortality of juveniles may still 

occur. It is possible that the increased temperatures during the 1990s 



60 
 

allowed the eastern range-edge populations on the Isle of Wight to increase 

to greater levels than before, and therefore increase the likelihood of these 

populations seeding new sites with an increased volume of larvae. 

Reproductive development in eastern populations is delayed compared to 

that of populations in the western basin (Chapter 3.3.1). However, the 

differences are only marginal. Sea temperatures along the coast are also not 

synchronised (Chapter 2.2, Figure 2.9) and the fall in temperature during 

autumn occurs later in the east than in the west. The delayed fall in sea 

temperature coinciding with later juvenile settlement will offer some 

protection against winter mortality.  

Competition for food can come not only from other individuals of the same 

species, but also from other similar species; Phorcus lineatus, Littorina 

littorea and Gibbula cineraria are known to co-exist with Gibbula umbilicalis in 

the western Channel yet no similarities in food preference have been 

identified (Hawkins et al. 1989; Crothers 2003). Gibbula cineraria are usually 

found lower down the shore therefore significant interspecific competition is 

unlikely. If other grazing species with a food preference similar to that of 

Gibbula umbilicalis already dominates an area, it could be that inter-specific 

competition is preventing Gibbula umbilicalis from becoming established. The 

seagrass Zostera marina is a known food source for Gibbula umbilicalis and 

this is more common to the west of the IoW than the east (Tyler-Walters 

2008). 

The timed searches used in this study replicated previous unpublished work 

allowing the results from May to be compared to data collected in May 2010 

and April 2012. There were alternating increases and decreases of at least 

50% in the number of individuals found from one year to the next at both 

Osmington and Cuckmere, however the direction of swing was never the 

same at both sites; as Osmington increased, Cuckmere decreased and vice 

versa. The gap in time between data points in this comparison is two and 

three years, meaning the large variations are not simply a biannual cycle. 

The scale of variability is similar in both locations, indicating that the "new" 

population in Cuckmere is no more or less dynamic than Osmington which 

has been established for longer.   
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In geological terms the English Channel is still a young feature, and it could 

be that establishing an ecological balance is something which remains in 

progress (Southward et al. 1995). It is possible that the penetration of 

hydrodynamic dispersal barriers around the Isle of Wight and subsequent 

settlement and recruitment on shores on the south east coast of England has 

been supplemented by settlement as a result of spawning of populations on 

the French coast, which have been known to occur further east (Crisp and 

Southward 1958). The water in the Channel moves westwards with a falling 

tide draining into the North Atlantic, and eastwards as the tide rises again. 

The east-west movements are not equal and overall there is an eastward 

flow of water (Ayata et al. 2010). There is no north-south tidal movement of 

water between France and the UK. Wind direction, which although 

predominantly is from the south-west, can come from any direction and alter 

the flow of water in the Channel (Salomon and Breton 1993). With distances 

between French and UK shores as low as 30km, larvae could travel that 

distance in under 18 hours at a rate of only 1 knot. No literature has been 

found which has considered this scenario in the context of Gibbula 

umbilicalis. Through the use of DNA analysis it may be possible to determine 

whether the populations in the eastern basin are genetically related to UK or 

French populations. 

4.5 Conclusion 

The purpose of this study was to understand how new populations of Gibbula 

umbilicalis in the eastern basin of the English Channel compare with longer 

established sites in the western basin. The presence of juveniles (individuals 

measuring less than 10mm) at all sites is evidence of successful recruitment 

within the previous 18 months. Juveniles were detected in greater numbers 

from the beginning of the study in March in the western basin than they were 

in the east, where juveniles were not as abundant until May. The younger 

cohorts in the eastern basin consisted of smaller individuals than the west in 

any one month. The later appearance and delayed growth of the eastern 

juveniles signals that reproduction in the eastern basin occurs later than the 

west, but an accompanying delay to the end of summer fall in sea 
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temperature in the east is beneficial in reducing post-settlement mortality, 

which would most likely be greater if temperature drops occurred sooner as 

they do in the west. The presence of multiple cohorts demonstrates that the 

populations are not composed of a single generation.  

The populations at Cuckmere and Eastbourne may have represented, for a 

short time, the geographical edge of range for Gibbula umbilicalis, but the 

species is now present in locations further east along the Channel. On this 

basis, and with evidence of recent recruitment, on-going reproduction and 

population characteristics comparable to long-term established sites, the 

species should now be considered established in the eastern basin of the 

Channel on the English coast.    
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5. Final Conclusion 

The eastward range extension of Gibbula umbilicalis is likely a result of a 

combination of factors, all influenced by sea temperature; increased summer 

sea temperatures may have accelerated gonad development and spawning, 

allowing more time for settling animals to grow before winter and thus reduce 

juvenile mortality. However, although summer temperatures have previously 

been in the tolerable range, this would have not made a difference in 

locations where Gibbula umbilicalis was absent and it was the change in 

winter temperatures that facilitated the extension. Winter sea temperatures in 

the Channel are now milder than they were previously, and at the eastern 

end of the Channel this has all-but removed temperature as a barrier to 

recruitment, other than occasional cold winters associated with the proximity 

to the cooler North Sea. Milder winters increase recruitment success. 

Populations at the previous edge of range on the Isle of Wight may have 

increased in size in response to the temperature changes. Increased larval 

output by these expanding populations may have allowed the barrier to be 

penetrated and new sites seeded. Since then, recruitment at the new sites 

has succeeded to such an extent that the populations there are more resilient 

to failures, fully established and not showing the usual traits of being edge of 

range populations (failed recruitment).   
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6. Further Study 

With limited time available to collect data for this study only seven 

consecutive months could be included, and although an understanding of 

oocyte development could be gained during this period, only two of the four 

populations had begun to spawn when field work finished. A longer (at least 

12 months) repeat of this study would capture a complete reproductive cycle 

at all sites.  

Some aspects of Gibbula umbilicalis reproduction have been better studied 

than others, but one particular area of importance where a knowledge gap 

exists is that of the duration of the larval phase following spawning. A 

laboratory study could reveal how long this stage lasts and the results would 

be beneficial in trying to predict future range extensions, by being able to 

more accurately predict the distance that larvae can travel.  
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Appendix A: Results of the 2-tailed Pearson bivariate correlation to test for a significant 
correlation between shell width and oocyte size. . 

Correlations
a
 

  MBD Mean Oocyte 

MBD Pearson Correlation 1 .143 

Sig. (2-tailed)  .436 

N 32 32 

Mean Oocyte Pearson Correlation .143 1 

Sig. (2-tailed) .436  

N 32 32 

a. Month = September 
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Appendix B: Raw ANOVA output from SPSS. 

 
OOCYTE 
Tukey HSD 

 

 
 
 

Survey (I) LOCATION (J) LOCATION 

 

Mean 
Difference (I- 

J) 

 
 

Std. Error 

 
 

Sig. 

1 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

* 
-59.625 

* 
34.048 

* 
34.798 

3.526 

3.730 

3.730 

.000 

.000 

.000 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

* 
59.625 

* 
93.673 

* 
94.423 

3.526 

3.315 

3.315 

.000 

.000 

.000 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

* 
-34.048 

* 
-93.673 

.750 

3.730 

3.315 

3.532 

.000 

.000 

.997 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

* 
-34.798 

* 
-94.423 

-.750 

3.730 

3.315 

3.532 

.000 

.000 

.997 

*. The mean difference is significant at the 0.05 level. 
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Survey (I) LOCATION (J) LOCATION 

 

Mean 
Difference (I- 

J) 

 
 

Std. Error 

 
 

Sig. 

2 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

* 
-10.961 

* 
30.953 

* 
59.302 

3.872 

3.992 

4.438 

.026 

.000 

.000 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

* 
10.961 

* 
41.914 

* 
70.263 

3.872 

3.928 

4.380 

.026 

.000 

.000 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

* 
-30.953 

* 
-41.914 

* 
28.348 

3.992 

3.928 

4.486 

.000 

.000 

.000 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

* 
-59.302 

* 
-70.263 

* 
-28.348 

4.438 

4.380 

4.486 

.000 

.000 

.000 

3 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

1.976 

-2.268 

-4.056 

2.337 

2.531 

2.280 

.833 

.807 

.286 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

-1.976 

-4.244 
* 

-6.032 

2.337 

2.492 

2.237 

.833 

.324 

.037 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

2.268 

4.244 

-1.788 

2.531 

2.492 

2.439 

.807 

.324 

.884 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

4.056 
* 

6.032 

1.788 

2.280 

2.237 

2.439 

.286 

.037 

.884 

4 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

-4.088 
* 

4.938 

-2.725 

1.652 

1.652 

1.652 

.066 

.016 

.352 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

4.088 
* 

9.025 

1.363 

1.652 

1.652 

1.652 

.066 

.000 

.843 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

* 
-4.938 

* 
-9.025 

* 
-7.662 

1.652 

1.652 

1.652 

.016 

.000 

.000 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

2.725 

-1.363 
* 

7.662 

1.652 

1.652 

1.652 

.352 

.843 

.000 

5 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

* 
5.400 

* 
9.625 

* 
-4.900 

1.815 

1.815 

1.815 

.017 

.000 

.037 

*. The mean difference is significant at the 0.05 level. 
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Survey (I) LOCATION (J) LOCATION 

 

Mean 
Difference (I- 

J) 

 
 

Std. Error 

 
 

Sig. 

5 Osmington Lyme Regis 

Cuckmere 

Eastbourne 

* 
-5.400 

4.225 
* 

-10.300 

1.815 

1.815 

1.815 

.017 

.094 

.000 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

* 
-9.625 

-4.225 
* 

-14.525 

1.815 

1.815 

1.815 

.000 

.094 

.000 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

* 
4.900 

* 
10.300 

* 
14.525 

1.815 

1.815 

1.815 

.037 

.000 

.000 

6 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

* 
-7.688 

* 
-5.375 

* 
-6.563 

1.656 

1.656 

1.656 

.000 

.007 

.001 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

* 
7.688 

2.313 

1.125 

1.656 

1.656 

1.656 

.000 

.503 

.905 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

* 
5.375 

-2.313 

-1.188 

1.656 

1.656 

1.656 

.007 

.503 

.890 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

* 
6.563 

-1.125 

1.188 

1.656 

1.656 

1.656 

.001 

.905 

.890 

7 Lyme Regis Osmington 

Cuckmere 

Eastbourne 

-2.127 

-3.740 

-2.865 

1.593 

1.593 

1.593 

.541 

.090 

.276 

Osmington Lyme Regis 

Cuckmere 

Eastbourne 

2.127 

-1.613 

-.738 

1.593 

1.583 

1.583 

.541 

.739 

.966 

Cuckmere Lyme Regis 

Osmington 

Eastbourne 

3.740 

1.613 

.875 

1.593 

1.583 

1.583 

.090 

.739 

.946 

Eastbourne Lyme Regis 

Osmington 

Cuckmere 

2.865 

.738 

-.875 

1.593 

1.583 

1.583 

.276 

.966 

.946 

*. The mean difference is significant at the 0.05 level. 
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Appendix C: Mean Oocyte Diameters (µm) for each development stage. 

stage Mean N Std. Deviation Range 

2 59.2500 4 19.36276 35.00 

3 141.9167 12 14.68121 54.00 

4 148.5000 6 8.36062 21.00 

5 153.2500 4 3.86221 8.00 

6 149.5000 2 2.12132 3.00 

 

 

 


