
Position Based Balloon Angioplasty

Figure 1: The real lesion coronary artery dilated by the inflation balloon

Abstract

Balloon angioplasty is an endovascular procedure to widen nar-
rowed or obstructed blood vessels, typically to treat arterial
atherosclerosis. Simulating angioplasty procedure in the complex
vascular structures is a challenge task since the balloon and vessels
are both flexible bodies. In this paper, we proposed a position based
balloon physical model to solve nonlinear physical deformation in
the process of balloon inflation. Firstly, the balloon is discrete mod-
eled by the closed triangle mesh, and the hyperelastic membrane
material and continuum based formulation are combined to com-
pute the mechanical properties in the process of balloon inflation.
Then, an adaptive air mesh generation algorithm is proposed as a
preprocessing procedure for accelerating the coming collision pro-
cess between balloon and blood vessel according to the characteris-
tic of collision area which is relative fixed. The experiment results
show that this physical model is feasible, which could simulate the
contact and deformation process between the inflation balloon and
the diseased blood vessel wall with good robustness and in real-
time.
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1 Introduction

Cardiovascular diseases are the number one cause of death in the
world. Among them, Atherosclerosis is the most common disease,
which is much harmful to human health. This kind of cardiovas-
cular diseases are mainly caused by the cholesterol, cellular waste,
calcium and fibrous protein which are clotting and forming plaque-
s inside the vessel [Naghavi et al. 2003]. These plaques block the
blood vessels which decreasing the blood flow and oxygen delivery,
finally, results in acute death such as cardiac death or brain death
etc.

Balloon angioplasty is the most common and effective minimally
invasive vascular surgery to cure this arteriolar occlusion, and it is
the important step before intravascular stent implantation. First-
ly, the balloon-catheter reaches the lesion location in the stenosed
artery along the guidewire. Then, the outer pressure injector inflates
balloon, at the same time, the balloon dilates the artery which has
been clogged up by atheromatous plaque, or dilates the stent to ex-

pand the lumen area of stenosed artery. Through those treatments,
the blood flow of dilated artery can recover to the acceptable levels.

Balloon is an important surgical instrument in the balloon angio-
plasty, the simulation of the inflation balloon is a challenging prob-
lem. 1) The thickness of balloon membrane changed with the infla-
tion of the balloon, which means needing a physical model similar
with real balloon to simulate the mechanical properties of balloon.
2) Balloon and blood vessels both are flexible bodies, the vascu-
lar model has a large number of meshes and complex structure, it is
hard to complete the collision detection and response between them
in real-time.

To deal with above problems, we firstly introduce the continu-
um mechanics into the physical modeling of the balloon. For the
real-time performance on collision detection between two flexible
soft objects, the balloon and blood vessels, we proposed a colli-
sion mesh preprocess method. Compared with the existing balloon
physical model, we consider the mechanical properties of real bal-
loon and adds the thickness property into the plane meshes. Mean-
while, the locality of collision region is used to generate the adap-
tive collision air meshes between balloon and blood vessels, and
speed up their collision handling. The experimental results show
that our balloon model can satisfy the real-time requirement of vir-
tual balloon angioplasty, and able to apply to the virtual minimally
invasive vascular surgery training system.

2 Related Work

Balloon angioplasty is an important part of virtual invasive surgery,
but there are few studies about virtual balloon angioplasty surgery
for the training system at present. Cai Y et al. [Cai et al. 2003]
described a virtual surgery simulation system, and the inflation of
balloon is showed in this system, but it did not involve the relat-
ed technologies in detail. Later, they proposed a hand-eye coordi-
nation haptic VR system [Cai et al. 2006] to simulate the percu-
taneous transluminal coronary angioplasty. Luboz V et al.[Luboz
et al. 2014] introduced a stent and balloon simulation system, in
which the balloon is indicated as a series of overlapping particles
attaching to the guidewire, the dilation of these particles express the
dilation of balloon. This particle based method neither simulates
the dynamics processes of balloon inflation and deflation accurate-
ly, nor does it simulate the multi-contact collision between balloon
and blood vessel. When the balloon contacting with the blood ves-



sel, they adopted a serial of threshold values of inflation balloon
to trigger corresponding deformation state of the blood vessel as
the response of contact collision. This method using multi-level
of blood vessel can accelerate the collision detection, however, the
generation of different levels of blood vessel are a verbose thing.
Moreover, it can only simulate the deformation of blood vessel at
the fixed position on the generated blood vessel. Finally, this re-
sponding way of collision ignores the process of dynamics collision
interaction between balloon and blood vessel.

Physical model: Balloon is a hyperelastic membrane, there are al-
ready many medical numerical simulation analyses of balloon an-
gioplasty [Gasser and Holzapfel 2007; Zahedmanesh et al. 2010],
and finite element method(FEM) is adopted in those numerical sim-
ulation analyses to simulate and model the balloon and blood ves-
sel. This method has high precision but low simulation speed, there-
fore, it is hard to apply to the real-time simulation training system.
Terzopoulos et al. [Terzopoulos et al. 1987] firstly introduced the
simulation of deformable body into computer graphics, and they
adopted the finite difference method to simulate the deformable
body and thin plate. Later, the simulation of deformable body be-
came an active research field and many relevant simulation methods
were proposed. In this paper we mainly focus on the relevant sim-
ulation methods about membrane, thin shell and balloon.

Wu et al. [Wu et al. 2001] solved the continuum mechanics function
by FEM to simulate the nonlinear deformation of the membrane.
Based on Kirchhoff-Love thin shell theory, Cirak et al. [Cirak et al.
2002] adopted subdivision surface to simulate the thin shell struc-
ture in FEM. Wang et al. [Wang et al. 2015] adopted three prism
element to construct the surface of balloon and compute the large
deformation of balloon inflation based on FEM. These FEM-based
methods can accurately simulate the nonlinear deformation of the
membrane, but hardly achieve real-time performance. Choi and Ko
[Choi and Ko 2005] proposed thin material cloth simulation method
based on mass-spring model. This mass-spring method is hard to
simulate the required state of real model due to the stiffness of the
spring is difficult to obtain. Moreover, Grinspun et al. [Grinspun
et al. 2003] proposed the thin shell discrete model to simulate the
thin flexible structures, such as hat and paper. And Tang et al. [Tang
et al. 2015] extended strain-limiting method and proposed multi-
resolution method to real-time simulate the thin elastic materials.
The discrete thin shell model determines it is hard to simulate the
specified material. To realistically simulate the deformation of the
real material, the continuum material model is widely adopted to
simulate the behavior of the mentioned real deformable material.
Müller et al. [Müller et al. 2004] adopted the point-based method
and combined the continuum mechanics to simulate the elastic and
plastic body. Volino et al. [Volino et al. 2009] used the contin-
uum mechanics to simulate the cloth membrane. For fabrication-
oriented goals, Skouras et al. [Skouras et al. 2012] modeled the rub-
ber material balloon by the method of continuum mechanics with
constant thickness of the balloon, and they selected the material
model by fitting the experiment data. Later, they have simulated
the wrinkling of inflatable membrane by the tension field theory
[Skouras et al. 2014]. Bender et al. [Bender et al. 2014] introduced
the position-based method and combined the continuum mechan-
ics to real-time robustly simulate the deformable body and plane
cloth without thickness. Recently, Bouaziz et al. [Bouaziz et al.
2014] proposed projective dynamics method, which is similar with
the position-based method, to simulate the solid, cloth, membrane,
etc.

Collision detection: Up to now, a great number of Collision detec-
tion algorithms has been proposed. The computation of collision
detection becomes expensive with plenty of the space-mesh, and
many acceleration algorithms have been put forward to improve
the efficiency of collision detection. The spatial hashing method

proposed by Teschner et al. [Teschner et al. 2003], Tang et al.
[Tang et al. 2011] presented a separating axis tests method, Barbič
and James [Barbič and James 2010] and Zheng and James [Zheng
and James 2012] came up with a simulation space based culling
method, and Mezger et al. [Mezger et al. 2003], Schvartzman et
al. [Schvartzman et al. 2010] and Schvartzman et al. [Schvartzman
et al. 2009] put forward multi-hierarchical methods.

For the collision detection of deformable body, omitting single col-
lision always lead to entangled state between two objects which
is difficult to separate later. Bridson et al. [Bridson et al. 2002]
proposed a robust collision handling algorithm to deal with the
collision of cloth by introducing the continuous collision detec-
tion(CCD). Thereafter, many CCD optimization methods [Zhang
and Kim 2012; Wang 2014; Tang et al. 2014] have been came up.
Sometimes, the deformable bodies collide and contact with each
other forcedly which causes these objects into entangled state, such
as the the collision and extrusion between the balloon and blood
vessels. However, the CCD method cannot solve this problem well.
To address this problem, Baraff et al. [Baraff et al. 2003] used
the separate force to untangle the intersected meshes by analysing
the structure of intersection meshes, and Wicke et al. [Wicke et al.
2006] extended this method to handle the boundary of mesh. Volino
et al. [Volino and Magnenat-Thalmann 2006] introduced a contour
minimization method to untangle the intersected surfaces. Another
solution to the untangling problem is to handle the meshes before
intersection. Such a history-based method was proposed by Selle
et al. [Selle et al. 2009] to solve the force apply on the collision
pairs, but this method need to reinitialize the memory of mesh s-
tate for every time step. Müller et al. [Müller et al. 2015] handled
this problem by generating the space collision tetrahedron, and this
method can robustly simulate the collision of large mesh in real-
time with initializing once before the simulation.

Since Müller et al. [Müller et al. 2007] proposed the position based
dynamics to simulate the deformable objects, such as cloth and bal-
loon etc., recent years the position based method [Bender et al.
2014; Macklin et al. 2014; Müller et al. 2015] became a topic of
active research. This kind of solving method has been widely used
due to its efficiency and stability in the physical simulation of var-
ious objects. Therefore, based on the previous work [Tang et al.
2010] we introduce the position based method to simulate the en-
tire process of the balloon angioplasty. For the modeling of the
balloon, we adopt the position based method and combine the con-
tinuum mechanics to fast and stably simulate the nonlinear defor-
mation of the balloon in the blood vessels. Before inflation of the
balloon, we introduce an adaptive air mesh generation algorithm to
fast generate the inner tetrahedron mesh between the balloon and
blood vessels. Finally, we handle the collision between the balloon
and complex blood vessels based on the air mesh method [Müller
et al. 2015].

3 Nonlinear continuum material physical
model

Nonlinear continuum mechanics is widely adopted to accurately
simulate the deformation of various materials. The physical model
of balloon is the key in the balloon angioplasty, and the angioplasty
result will be influenced by the inflated balloon material. The bal-
loon is a kind of rubber-like membrane with the changing thickness
under inflation. Therefore, we introduce the continuum mechanical
approach to real-time simulate the nonlinear physical deformation
of the inflation balloon.



3.1 Mechanics

The balloon will be inflated several times by the injected air or flu-
id under pressure, and it also can return to its original state after
deflation. Following we will describe the mechanical property of
this large deformation. The x donates the position of the particle at
initial undeformation state , x donates the position of the particle ar
deformation state. And their mapping relation of these two states
is:

x = φ(x, t)) (1)

From this mapping, the corresponding deformation gradient is:

F =
∂x
∂x

(2)

Then the 2× 2 right Cauchy-Green tensor can be defined as:

C = FTF (3)

Therefore, the first and third invariants of the tensor are:

I1 = tr(C) (4)

I3 = det(C) (5)

We assume the simulation material does not exist transverse shear
strain and satisfy incompressible assumption, then the thickness of
current state is:

h = H

√
I−1
3 (6)

where the H is the thickness of initial undeformed state, the physi-
cal significance of I3 is the fraction of volume change.

Therefore, the deformation energy can be integrated by the strain
energy density function Ψ(C) in the deformation domain:

E =

∫
Ω

Ψ(C)dx (7)

Since the energy density function determines the physical property
of material, we need to determine the simulation material of the bal-
loon and corresponding material’s coefficient to realistically simu-
late the physical deformation of the balloon.

3.2 Hyperelastic Balloon membrane material

The medical balloon almost made by the polyurethane material, and
there are already many numerical simulation methods adopted the
Mooney-Rivlin material model to simulate the polyurethane rubber
type material [Chua et al. 2003; Eftaxiopoulos and Atkinson 2005;
Karimi et al. 2014]. Chua et al. [Chua et al. 2003] adopted the
nonlinear analysis method to determine the Mooney-Rivlin mate-
rial model to represent the material of balloon and its coefficients.
Therefore, we adopt the Mooney-Rivlin material model to simulate
our balloon, and its strain energy density function is:

Ψ = C1(I1 − 3) + C2(I2 − 3) (8)

I1 = λ2
1 + λ2

2 + λ2
3 (9)

I2 = λ−2
1 + λ−2

2 + λ−2
3 (10)

where I1 and I2 are first and second stretch invariants, the coeffi-
cients C1 and C2 are derived using test data which represents all
modes of deformation and strain ranges. The Table 1 shows the
coefficients of this material.

Table 1: Parameters of the Mooney-Rivlin Material

Material Density(kg/mm3) C1 C2

Polyurethane 1.07E-6 1.031 3.69

The λ1 and λ2 in Equation(9) and (10) are the squares of the princi-
pal ‘in-plane’ stretches, and the values of stretch are the eigenvalue
of the right Cauchy-Green tensor C:

λ2
1 =

1

2
(I1 + (I2

1 − 4I3)1/2) (11)

λ2
2 =

1

2
(I1 − (I2

1 − 4I3)1/2) (12)

λ3 is the thickness stretch which can be obtained by the incom-
pressible condition:

λ1λ2λ3 = 1 (13)

λ3 = (λ1λ2)−1 = I
−1/2
3 (14)

3.3 Discretization

We adopt the closed triangle mesh and linear Lagrangian shape
function to discrete the balloon model. For a closed balloon tri-
angle mesh model, xi donates the position of i-th vertex at unde-
formed state, xi donates the position of i-th vertex at the deformed
state. And the corresponding edge vector of undeformed state and
deformed state are eij = xj−xi and eij = xj−xi respectively. For
a initial state of the triangle, we firstly construct the material frame
matrix of this triangle as R = [u v],where u = (e12×e13)×e12

|(e12×e13)×e12|
and

v = e12
|e12|

.

The deformation gradient of a deformed triangle is F = DsD−1
m ∈

R3×2, where Ds = [e31 e32] is the deformed shape matrix, and

Dm =

[
e31

e32

]
R is the constant reference shape matrix. Therefore,

we can solve the strain energy of triangle element E(x) from the
deformation gradient by the previous equations.

E(x) =

∫
Ω

Ψ(C)dx = Ψ(C) · hA (15)

where h is the thickness of triangle element at current state, and A
is its current area. We adopt the position based energy reduction
method [Bender et al. 2014] to solve this physical model, and the
energy constraint function is C(x) = E(x) = 0. In the position
based method, the position of the particles are firstly estimated by a
time integration step, and then the constraint functions are adopted
to correct the position of particles to meet the constraint functions.
The energy gradient is used to determine the correction displace-
ment of the triangle element vertices. Then the energy gradient of
Equation(15) is:

∇xE =

∫
Ω

∂Ψ

∂x
dx =

∫
Ω

∂Ψ

∂F
∂F
∂x
dx =

∫
Ω

P(F)∂F
∂x
dx (16)

where the first Piola-Kirchhoff stress tensor P(F) is:

P(F) =
∂Ψ

∂I1

∂I1
∂F

+
∂Ψ

∂I3

∂I3
∂F

(17)



The every part of P(F) is derived in the Appendix. Therefore, The
three strain energy gradients of the vertices of the triangle element
are: [

∂E
∂x1

∂E
∂x1

]
= P(F)D−Tm · hA (18)

∂E

∂x3
= −

2∑
i=1

∂E

∂xi
(19)

4 Fast collision handling

An adaptive air mesh generation algorithm is proposed to gener-
ate the tetrahedron air meshes between balloon and blood vessel
according to the characteristic of the collision region where bal-
loon colliding with blood vessel is relatively fixed, and we real-time
simulate the collision interaction between the inflation balloon and
complex vascular system based on the air mesh collision detection
algorithm.

4.1 Adaptive air mesh generation

During the surgery simulation, when the balloon on the catheter
reaches the lesion area and inflates, its position always keeps still.
Therefore, we generate the tetrahedron air meshes adaptively to ac-
celerate the collision detection between them, and the adaptive air
mesh generation algorithm includes following three steps.

(a) Straight position

(b) Bifurcation position

Figure 2: Determine the collision area

STEP 1: According to the tubular structure of blood vessel, we
use the method of interception to obtain the possible collision re-
gion between the balloon and blood vessel. (1) When the balloon
is at the straight tube as shown in Fig.2(a). We respectively search
for the two nearest centerline control points from the two-end of the
balloonA andB, and use the sum of radius of each adjacent center-
line control point as the radius of the circular section. The nearest
two centerline control points from A are xi−1 and xi, of which the
corresponding radii are ri−1 and ri. Therefore, the circular section

radius of endpoint A is rA = ri−1 + ri, as for B is the same that
rB = ri + ri+1. Then the two circular sections at A and B could
be confirmed by the tangential direction of the catheter at A and B,
which means the possible collision region is determined between
them. (2) When the balloon is at the bifurcation of blood vessel,
as shown in Fig.2(b). It is the same as (1) that confirming the two
circular sections at A and B firstly. Then setting x

′
i+1 as the cen-

ter point C of the circular section at this bifurcation, this centerline
control point is at the bifurcation of the other child, and the radius
of this circular section is rC = 2r

′
i+1.

Figure 3: The inner triangle mesh of blood vessel

STEP 2: Obtaining the collision meshes of blood vessel between
the circular sections, as shown in Fig.3. For convenience, we use
the straight position as example, the method used at bifurcation po-
sition is the same. Firstly, we respectively compute two triangle
circles (red meshes) formed by triangle patches intersecting with
the circular section(blue annulus). Then, we compute the inside
vertices of triangles by the signed distance to each circular section.
Finally, we set the points inside the sections as the initial points, and
use the propagation method iteratively get the whole inner meshes
by the connectivity between mesh points.

STEP 3: Generating the air collision meshes between the blood
vessel and balloon meshes. We adopt the existing tetrahedral mesh
generation tool TetGen by Si [Si 2015] to generate the collision
meshes between them.

4.2 Air mesh collision detection

After generated the adaptive tetrahedral collision meshes, we adop-
t unilateral constraints as well as the optimization of tetrahedral
meshes to complete the collision process between balloon and ves-
sel. The unilateral constraints equation is:

C(x)air = det[P2 − P1,P3 − P1,P4 − P1] ≥ 0 (20)

Where P1, P2, P3 and P4 are the four vertices of tetrahedral respec-
tively. With the balloon and vessel getting closer, the volume of
the corresponding tetrahedral becomes smaller. When the volume
is minus (C(x)air < 0), the balloon is considered to collide with
blood vessel, and at this point, a positional calibration needed to be
done to make the constraints equation C(x)air ≥ 0.

When the objects undergo large relative rotations or translation-
s, the volume of tetrahedron may become 0 even if there are no
collisions between objects, which causes that the objects are un-
able to rotate or translate normally. Thus the mesh optimization
must be done to optimize the structure and quality of these tetrahe-
dron meshes. Adopting the edge-removal and multi-face removal



operations [Shewchuk 2002] to optimize tetrahedron optimization
method, and the quality measure of tetrahedron is:

qtetrahedron =
12√
2

V

l3rms
(21)

lrms =

√
l21 + l22 + l23 + l24 + l25 + l26

6
(22)

Where lrms is the root mean square of the lengths of six edges of
the tetrahedron and V is the volume of the tetrahedron.

4.3 Contact handling

Through the collision detection of air mesh, when the balloon col-
lides with blood vessel, a corresponding friction force is going to
be applied on each of them, and their contaction also brings viscous
force.

Frictional model We set the sign of the air mesh volume as the
trigger whether applying the friction or not, and for one air mesh
its four vertices consist of one balloon vertex and a triangle formed
by three blood vessel vertices. When the volume of air mesh meets
Vair ≤ 0, which means collision occurs, we calculate the tangential
displacement of the balloon vertex relative to the triangle at current
time step:

∆x⊥ = [x∗i − xi] ⊥ n (23)
where x∗i the new estimated position of vertex i at current time step,
xi the revised position at previous time step, n the normal vector of
the triangle. According to [Macklin et al. 2014] the displacemen-
t correction of static and dynamic friction caused by the friction
being applied on the balloon vertex is:

∆xba =
ωba
ωbl

{
∆x⊥ , |∆x⊥| < µsd

∆x⊥ ·min( µkd
|∆x⊥|

, 1) , otherwise
(24)

where ωba = 1
mba

the reciprocal quality of a balloon vertex on
tetrahedron, ωbl = 1

mbl1
+ 1

mbl2
+ 1

mbl3
the reciprocals sum of the

surplus blood vessel vertices, µs the static frictional coefficient, µk
the kinetic frictional coefficient and d the distance threshold.

It is the same when friction being applied on the balloon, the dis-
placement correction of three vessel vertices respectively is:

∆xbl1 = − ωbl1
ωba + ωbl

∆xba (25)

∆xbl2 = − ωbl2
ωba + ωbl

∆xba (26)

∆xbl3 = − ωbl3
ωba + ωbl

∆xba (27)

Viscous model The surfaces of balloon and blood vessel both
are wet surfaces. When they contact and collide with each oth-
er, there will produce non-negligible viscous forces. During the
collision detection, the optimization of tetrahedron makes the air
meshes between the balloon and blood vessel keep a good struc-
ture all the time, that is, the vertices on the balloon are front to
the triangle face of the blood vessel. Therefore, the viscous item
is triggered, but does not apply, when the balloon vertex moves
to evoke the volume of air mesh to meet Vair ≤ Vth1, and the
air mesh is constructed the same as described in frictional model.
Once the viscous item is triggered and the current volume of air
mesh satisfies Vth1 < Vair < Vth2, we add the volume constraint
Cair = Vair ≤ Vth1 to the tetrahedron to express its viscous force,
and in this constraint we use the positive and negative normal direc-
tion of triangle to represent the viscous force direction of each part
respectively. Finally, we cancel the viscous item constraint when
the volume of the air mesh meets Vair ≥ Vth2.

5 Implementation

5.1 Inflation of the balloon

The balloon is generally inflated by the injection air or fluid. The
simulation of the fluid and its interaction between the balloon are
pretty complex which is hard to simulate in real-time. Therefore,
we adopt the simpler method to inflate the balloon by the inner air
tetrahedron of the balloon, as shown in Fig.4, the orange nodes are
the guidewire nodes, and a guidewire node and a balloon triangle
construct an air tetrahedron. We compute all balloon triangle mesh-
es to the nearest guidewire node to generate all air tetrahedrons.

Figure 4: The inner triangle mesh of blood vessel

When inflating the balloon, the air tetrahedrons are inflating to di-
late the balloon. According to the gas flow, PV = nRT , in which
the P is the pressure, V is the volume, n is the amount of air, R
is a constant, and T is the temperature. Where we set the T as a
constant in the blood vessel. Therefore, the pressure Pi in i-th air
tetrahedron is expressed as Pi = kQi

Vi
, where the k is a constant co-

efficient, Qi is the air mass of the i-th air tetrahedron, and Vi is its
volume. When the balloon needs to inflation, the air mass of every
air tetrahedrons is increasing with a constant speed. Then the cur-
rent pressure is different from the outside pressure Pblood, and we
set the average blood pressure 10kPa in the coronary artery. Finally,
we solve the pressure constraint as Cair tet = Pi − Pblood = 0 by
the position-based method.

After setting the air tetrahedron, since its volume is always larger
than 0, then the interaction between the balloon and the guidewire
can be easily solved as the same time.

5.2 Elastic-plastic deformation of blood vessel

The blood vessel is a kind of elastic body and will become plasticity
when large deformation occur. To fast simulate this elastic-plastic
body, the shape matching method [Müller et al. 2005] is applied
to the blood vessel, and the deformation region of blood vessel is
inner collision triangle mesh obtained by the Section4.1, where the
boundary particles are unmovable in triangle mesh.

6 Experiment result and discussion

6.1 The thickness variation of the model

To verify the thickness of our physical model, we stretched a
quadratic piece of cloth of size 6m × 6m with thickness 1mm,
as shown in Fig.5. The rendering results are shown in top row,
and the bottoms are the corresponding thickness distribution of the
cloth. The initial state of the cloth is shown in Fig.5(a). And the fi-
nal transverse tensile distance of the cloth, Fig.5(d), approximately
increased by 35% compared with the initial state. In this period, the



Figure 5: The quadratic piece of cloth under stretching

Figure 6: The regular unilateral stenosed blood vessel dilated by the inflation balloon

cloth is continuously stretched from its four corners with the same
velocity, and the overall thickness of the cloth becomes thinner as
shown in Fig.5(b-d). Since tensile force is applied at four corners
of the cloth, the thickness around these four corners and diagonal
of the cloth are thinner compared with other places.

6.2 The inflation balloon in different type of blood ves-
sel

Human blood vessels have complex tree structure with many small-
er branches. Especially, the vascular stenosis and occlusion exist
in the lesion blood vessels, that makes the inner vascular struc-
ture more complicated. To verify the simulation of the balloon and
blood vessels deformation process, we designed four experiments
in different type of blood vessel. In the top three experiments, the
regular unilateral, bilateral and Y-type of stenosed blood vessels are
used to simulate the complex structure of the blood vessels. And in
the fourth experiment, the patient’s coronary artery is used to real-
istically simulate the real balloon angioplasty.

• Exp.1 The regular unilateral stenosed blood vessel.

Fig.6 shows the inflation balloon dilates the blood vessel and its

(a) frictional position delta (b) viscous position delta

Figure 7: The frictional and viscous position delta of balloon in
regular unilateral blood vessel

deflation, and Fig.7 shows the corresponding entire frictional and
viscous position correction.

The initialized balloon is inserted into the unilateral stenosis blood
vessel and reaches the stenosed region under the guidance of
guidewire as shown in Fig.6(a), at this time, the frictional and vis-
cous position delta are zero. Then, the balloon is set to inflation s-



Figure 8: The regular bilateral stenosed blood vessel dilated by the inflation balloon

tate to dilate the blood vessel, and in the following time the stenosed
region is extruded to the normal position, as show in Fig.6(b-f).
In the this period, the frictional and viscous position delta increase
gradually with the increasing contact area between the inflation bal-
loon and the blood vessel. After the blood vessel being fully ex-
tended, the balloon is deflating for its retrieve at the time of 4.505s.
Since then, the balloon is deflated to its original state as shown in
Fig.6(g-i). During this time, the frictional position delta decreases
suddenly due to the separation between the balloon and the blood
vessel. Since the viscous model works when the volume of air mesh
is between Vth1 and Vth2, the viscous position delta becomes larger
at first and then decreases. Finally, The viscous position correction
down to a certain value which is caused by the cohesion between
the bottom of the balloon and blood vessel.

• Exp.2 The regular bilateral stenosed blood vessel.

The whole processes of dilating the bilateral stenosed blood vessel
by the inflation balloon are shown in Fig.8, and Fig.9 shows the
corresponding frictional and viscous position delta.

(a) frictional position delta (b) viscous position delta

Figure 9: The frictional and viscous position delta of balloon in
regular bilateral blood vessel

The balloon is inserted and preparing for deploying at the bilateral
stenosed blood vessel at the beginning, as shown in Fig.8(a). At this
time the balloon is not contacting with the blood vessel so that the
frictional and viscous position delta are approximate to zero. Later,
the balloon continuously inflates and contacts with the stenosed re-
gion, as shown in Fig.8(b-f). At the beginning of this time, the fric-
tional position delta is relatively remarkable because the surface of
the balloon and blood vessel start to establish contact and produce
relative movement. When the blood vessel has been fully dilated,
the balloon is deflating for its retrieve at the time of 3.915s. Then,
the surface of balloon and blood vessel separate from each other, as
shown in Fig.8(g-i). During this period, the frictional position delta
is zero. And the viscous position delta becomes larger at first and
then decreases down to zero which is similar with the Exp.1.

• Exp.3 The Y-type stenosed blood vessel.

The virtual balloon angioplasty treatment for the Y-type stenosed
blood vessel is shown in Fig.10, and the corresponding frictional
and viscous position delta are shown in Fig.11.

(a) frictional position delta (b) viscous position delta

Figure 11: The frictional and viscous position delta of balloon in
regular Y-type blood vessel

The balloon-catheter is inserted into the blood vessel and reaches
the stenosis of Y-type blood vessel. Fig.10(a) shows the balloon-
catheter has reached the stenosed position at the bifurcation. And
then the balloon is inflating to dilate the stenosed position of the
blood vessel, as shown in Fig.10(b-f). During this period, the fric-
tional position delta increases and reaches the peak when the bal-
loon fully contacts with the blood vessel, and then it decreases sud-
denly due to there are few relative movement between the balloon
and blood vessel. At the time of 3.965s, the balloon is set to deflate
for retrieve. Later, the balloon is returned to its start state as shown
in Fig.10(g-i). In this time, the frictional position delta is almost
zero since the detachment of the balloon and blood vessel. The vis-
cous position delta increases firstly, then decreases, and finally it
increases due to the right-upper side of balloon still clings with the
blood vessel.

• Exp.4 The real lesion coronary artery.

In this experiment, the real lesion coronary artery is generated from
3D rotational X-ray images in DICOM dataset captured from a real
patient. The balloon angioplasty results are shown in Fig.1, and
the corresponding frictional and viscous position delta are shown
in Fig.11.

The balloon-catheter wrapped on the guidewire and inserted into
the lesion position of the blood vessel as shown in Fig.1(a). Then,
the balloon is set to the inflation state to treat the stenosed blood
vessel in Fig.1(b-e). During the inflation of the balloon, the fric-
tional position delta increases gradually and reaches the peak when
the balloon is fully deployed at the time of 2.645s, corresponding
to the Fig.1(e). At the same time, the balloon begins to deflate to its
initial state, as shown in Fig.1(f-h), which leads the frictional po-
sition delta down to zero suddenly. With the balloon deflating, the



Figure 10: The regular Y-type stenosed blood vessel dilated by the inflation balloon

(a) frictional position delta (b) viscous position delta

Figure 12: The frictional and viscous position delta of balloon in
real lesion coronary artery

viscous position delta increases firstly and then decreases which is
similar with the previous experiments.

Since the entire process of the balloon angioplasty is position based
solver, this angioplasty system is parallel solved by CUDA with the
frame rate over 40FPS. The experimental environment is listed as
following and the details of simulation models in our experiments
are shown in Table 2.

• Software environment: CUDA version 8.0;

• Hardware environment: Intel(R) Xeon(R) CPU W3530 @
2.80GHz, NVIDIA Quadro K5200 and 6GB memory.

7 Conclusion

In this paper, we present a novel position-based physical model of
balloon for simulating the nonlinear deformation during the process

Table 2: The simulation models

Models Triangle number Particle number
Quadratic cloth 5000 2601

Unilateral blood vessel 2400 1220
Bilateral blood vessel 2400 1220
Y-type blood vessel 17600 8859

The real coronary artery 30420 15215
The balloon model 1040 522

Guidewire - 24

of balloon angioplasty. Considering the material physical charac-
teristics of real balloon, hyperelastic membrane material and con-
tinuum based formulation are combined to compute the mechanical
properties in the process of balloon inflation. Considering the local-
ity of collision detection between two flexible objects, an adaptive
air mesh generation algorithm is put forward to fast generate the
collision air meshes for the collision handling. Finally, we designed
four different type experiments to validate the balloon model. The
experiments results show that the our balloon physical model could
simulate the balloon inflation in angioplasty very well in real-time.

In the future, we will continue to improve the balloon physical mod-
el and apply it into virtual angioplasty procedures training.
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MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elastic,
plastic and melting objects. In Proceedings of the 2004 ACM

SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, 141–151.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Transactions on Graphics (TOG) 24, 3, 471–
478.
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A Derivation of The first Piola-Kirchhoff
stress tensor.

In Equation(17), the every parts of first Piola-Kirchhoff stress ten-
sor P(F) are:
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A11 = F11F2
22 + F11F2

32 − F12F21F22 − F12F31F32 (32)
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31 (33)
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32 − F22F31F32 (34)
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For I1 we have:
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For I3 we have:
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