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Abstract 23 

Methanol is widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however there is 24 

necessity to understand its effect at molecular level before being used as CPA. This study was focused on 25 

the effect of methanol on sox gene and protein expression in zebrafish embryo (50% epiboly) when they 26 

were chilled for 3 h and subsequently warmed up and cultured to the hatching stages. Initial experiments 27 

were carried out to evaluate the chilling tolerance of 50% epiboly embryos showed no significant 28 

differences in hatching rates observed for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M) whilst 29 

hatching rates decreased significantly after 18 and 24 h chilling. Further to understand molecular 30 

mechanism, sox genes and protein expression were studied in embryos that had been chilled for 3 h in 31 

methanol and warmed and cultured up to the hatching stages.  Sox2 and sox3 gene expression at the 32 

hatching stage were increased significantly in embryos that had been chilled in 1 M MeOH and 33 

subsequently cultured to hatching stage when compared to controls and sox19a gene expression remained 34 

above control levels at all developmental stages tested. Whilst stable sox2 protein expression were 35 

observed between non-chilled controls and 3 h chilled embryos with or without MeOH, a surge of 36 

increase in sox19a protein expression was observed in 3 h chilled embryos in the presence of 1 M MeOH 37 

compared to non chilled controls before being levelled up to control levels by the hatching stage. 38 

Alteration in sox19a gene expression could be compensatory response in order to maintain homeostasis.   39 
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Introduction 45 

Methanol has been widely used cryoprotectant in embryos and oocytes and other reproductive tissues 46 

cryopreservation However, success of most of cryopreservation protocol usually measured by either 47 

physical appearance of cell or survival rate. It has previously been reported that chilling alters the pattern 48 

of sox gene expression in zebrafish embryos (Desai et al. 2011). Simillary effect of these CPA at 49 

molecular level is still unknown. In the present study, the effect of chilling in the presence of 50 

cryoprotectant methanol on gene and subsequent protein expression was studied in order to understand 51 

the mechanisms of the effect of cryoprotectant on embryos at molecular level during chilling.  52 

Cryoprotectants usually protect cells from chilling and freezing injury by dehydrating cells and lowering 53 

the freezing point (Plachinta et al. 2004). The use of cryoprotectant in low temperature storage has been 54 

proven to be essential in protecting cells from chilling injury (Zhang and Rawson 1995). However, most  55 

cryoprotectants are toxic especially when used at high concentrations (Zhang et al. 2012). The toxicity of 56 

cryoprotectants to cells is also dependent on their type, exposure temperature and exposure time 57 

period (Tsai and Lin 2009). Cryoprotectants can cause cellular injury by osmotic trauma (Pillai et al. 58 

2001). Cryoprotectant toxicity studies are now common practice prior to their use in cell 59 

cryopreservation. However there is very limited information on how cryoprotectants function at the 60 

molecular level and if they have a significant effect on gene or protein expression following 61 

cryopreservation. Understanding of the impact of cryoprotectants at the molecular level is important 62 

especially for reproductive materials such as embryos, oocytes, ovarian tissues. Any changes at molecular 63 

level could have lethal effect on subsequent development. Any alteration during these early stages could 64 

be replicated in long term genetic defect. Studies in mouse and rat embryos have shown that methanol 65 

(MeOH) is toxic (Lee et al. 1994) and even lethal when used at high concentrations (Andrews et al. 66 

1993). Methanol is a widely used cryoprotectant in fish embryo cryopreservation. Methanol has been 67 

found to protect cells during cryopreservation in zebrafish oocytes and embryos (Zampolla et al. 2009; 68 

Zhang and Rawson 1995) and common carp embryos (Ahammad et al. 2003). It has been found that 69 



methanol was effective in zebrafish embryo cryopreservation because it has low toxicity compare to other 70 

most commonly used cryoprotectants (Zhang and Rawson 1995) and  also be able to permit through 71 

embryo membrane rapidly (Hagedorn et al. 1997). Similar studies in medaka also demonstrated higher 72 

embryo survival rate after chilling in presence of  MeOH (Zhang et al. 2012). However, it has also been 73 

shown that methanol exposure is associated with visual impairment or blindness, affecting optic nerve 74 

and retina in rats treated with MeOH (Eells 1991). Methanol has also been demonstrated to be neurotoxic 75 

where its exposure leads to severe Central Nervous System defects in  mice at gastrulation periods 76 

(Degitz et al. 2004) and in drosophila embryos at 8-11 embryonic stages (Mellerick and Liu 2004). Rico 77 

et. al. (2006) showed that methanol also alters ecto-nucleotidases and acetylcholinesterase enzymes 78 

(important for neuromodulation in brain) in zebrafish brains. Therefore it is important that the effect of 79 

methanol is better understood  when used as a cryoprotectant.  80 

 81 

The present study investigated the effect of chilling on sox gene and protein expression in the presence of 82 

methanol. Sox genes (sox2, sox3 and sox19a) are important genes in development of nervous systems in 83 

zebrafish embryos and any changes can lead to serious abnormalities (Ferri et al. 2004). Inhibition of sox 84 

gene expression in vertebrate embryos results in premature differentiation of neural precursors and their 85 

overexpression results in inhibition of neurogenesis (Avilion et al. 2003; Crémazy et al. 2000; Graham et 86 

al. 2003; Kishi et al. 2000; Overton et al. 2002). However, a study on gene expression (mRNA level) does 87 

not provide information on protein translation as the efficacy of translation can also be affected by post 88 

transcription modulation of regulatory genes (Mattick and Makunin 2006). It has been demonstrated that 89 

small non-protein-coding RNAs (small nucleolar RNA, micro RNAs, short interfering RNAs, small 90 

double stranded RNA) also regulate gene expression, including translation in developmental processes 91 

(Mattick and Makunin 2006). Therefore, following gene expression studies, subsequent protein 92 

expression studies were also carried out to understand the effect of MeOH at the molecular level during 93 

chilling.  94 

 95 



Results 96 

Experiment 1: Impact of chilling on embryo hatching rate at 0° C for different time periods 97 

in the presence of MeOH as a cryoprotectant 98 

Before embryos being subject to molecular studies using MeOH, embryos should be able to withstand 99 

with lower temperature for certain amount of time. To determine this present experiment were carried out 100 

assess effect of chilling on 50% epiboly stage embryos in presence of different concentration of MeOH up 101 

to 24 h. A Small amount of development was observed in 50% epiboly stage embryos when they were 102 

subjected to chilling at 0°C. It was observed (Fig. 1) that up to 6 h chilling at 0°C, no significant 103 

differences in hatching rates (over 85%) were found between 3 and 6 h chilled embryos. Significant 104 

decreases in embryo hatching rates were observed in embryos that were chilled for 18 and 24 h with or 105 

without MeOH. It was also observed that there were no significant differences in hatching rates between 106 

embryos chilled in MeOH and embryos chilled in egg water. Similarly, no significant differences in 107 

hatching rates were observed in embryos that were chilled with different concentrations of methanol.  108 

Experiment 2.1: Impact of chilling and warming on sox2 gene expression in zebrafish 109 

(Danio rerio) embryos in the presence of MeOH  110 

Comparisons of different concentrations of MeOH on sox2 gene expression  111 

Sox2 gene expression (Fig 2a) in non-chilled control embryos was relatively stable throughout the tested 112 

developmental stages (from 50% epiboly stage to hatching stage). Expression of sox2 in embryos that 113 

were chilled with or without MeOH decreased significantly when compared to non-chilled control 114 

embryos and increased following warming and culturing at 27±1°C to the non-chilled control level by the 115 

hatching stage. However, sox2 gene expression in embryos chilled in 1 M MeOH was significantly 116 

increased when compared to non-chilled control embryos at hatching stage.  117 

 Comparisons of sox2 gene expression at specific stages throughout development  118 



Sox2 gene expression (Fig 2b) was stable at all tested stages. However, significant decreases were found 119 

in embryos that were chilled at 0°C with or without MeOH when compared to 0 h. In the embryos that 120 

were chilled in the presence of egg water and warmed at 27°±1°C, expression levels returned to the level 121 

at time 0 by the hatching stage. Similar patterns of expression were observed in embryos that were chilled 122 

with 0.2-,0.5- and 1 M MeOH and warmed at 27°±1°C until the hatching stage.  123 

 124 

Experiment 2.2 Impact of chilling and warming on sox3 gene expression in zebrafish (Danio rerio) 125 

embryos in the presence of MeOH  126 

Comparisons of different concentrations of MeOH on sox3 gene expression  127 

In non-chilled control embryos, sox3 (Fig 3a) gene expression was stable until the heartbeat stage before 128 

decreasing again by the hatching stage. In embryos that were chilled with egg water and 0.2 M MeOH, 129 

significant decreases of sox3 expression were observed immediately after chilling and after culturing at 130 

27±1°C at 20 somites stage when compared with non-chilled controls. The expression level returned to 131 

non-chilled control levels by hatching stage. For the embryos that were chilled with 0.5 and 1 M MeOH, 132 

no significant decreases of sox3 expression were observed until the 20 somites stage. The gene expression 133 

subsequently increased and were significantly higher than in non-chilled control embryos by the hatching 134 

stage.  135 

Comparisons of sox3 gene expression at specific stages throughout development  136 

In non-chilled control embryos, sox3 (Fig 3b) gene expression was decreased after 3 h and returned to 137 

control levels at the 20 somites stage before decreasing at the hatching stage. In the embryos that were 138 

chilled without MeOH, the levels of expression were decreased significantly immediately after chilling 139 

and then increased significantly following warming. Significant increases were observed at the hatching 140 

stage in the embryos that were chilled with MeOH.  141 



 142 

Experiment 2.3 Impact of chilling and warming on sox19a gene expression in zebrafish (Danio 143 

rerio) embryos in the presence of MeOH  144 

Comparisons of different concentrations of MeOH on sox19a gene expression  145 

In control embryos, sox19a (Fig 4a) gene expression levels remained stable throughout developmental 146 

stages. In treated embryos, significant gene expression decreases were observed in embryos that were 147 

chilled in egg water for 3 h before the expression returned to control levels by 20 somites stage. For 148 

embryos that were chilled in 0.5 M and 1 M MeOH, significant increases of sox19a gene expression were 149 

observed after 3h chilling when compared to non-chilled controls. The sox19a gene expression remained 150 

significantly above the non-chilled control levels throughout development stages. 151 

Comparisons of sox19a gene expression at specific stages throughout development  152 

In non-chilled control embryos (Fig 4b), expression of sox19a remained stable before decreasing by the 153 

20 somites stage at 27±1 °C. In the embryos that had been chilled at 0°C in egg water and cultured at 154 

27±1°C, significant decreases were observed after 3 h chilling and at the hatching stages when compared 155 

to time 0. In embryos that were chilled in different concentrations of MeOH, sox19a gene expressions 156 

increased significantly in 0.5 and 1 M chilling embryos immediately after 3 h chilling and then decreased 157 

to the time 0 level after culturing at 27±1 °C at hatching stage.  158 

 159 

Experiment 3:  Impact of chilling and warming on sox protein expression in zebrafish 160 

(Danio rerio) embryos in the presence of MeOH 161 

There is a strong relationship between gene and protein expression levels as protein is usually produced 162 

based on the information obtained from a specific gene or mRNA. However, sometimes this relationship 163 

could be masked due to various reasons: analytical variability of the measurement technology, post 164 



transcriptional mechanism affecting mRNA stability and protein degradation and timing differences 165 

between gene and protein expressions (Tan et al. 2009). Furthermore, transcript levels detected in mRNA 166 

profiling clearly do not reflect all regulatory processes in the cell, as post-transcriptional processes 167 

altering the amount of active proteins, such as synthesis, processing and modification of proteins. 168 

Therefore, in addition to monitoring gene expression at the transcriptional level, analysis of the protein is 169 

also important for the understanding of the cellular, metabolic and regulatory networks in living 170 

organisms (Nie et al. 2007).  As studies on gene expression (mRNA level) do not provide information on 171 

protein translation, further studies were carried out to assess simultaneous protein expression of sox2 and 172 

sox19a after 3 h chilling at 0°C and after warming and culturing at 27±1°C until hatching stage as altered 173 

patterns of gene expression were observed at different developmental stages.   174 

Effect of 3 h chilling on sox2 and sox19a protein expression  175 

Embryos from 50% epiboly stages were chilled with or without 1 M MeOH and protein expression was 176 

measured. Expression of sox2 protein remained stable under all treatment conditions (Fig 5b). Sox19a 177 

protein expression level remained stable in non-chilled controls and embryos chilled in egg water for 3 h 178 

at 0°C. Significant increases in sox19a protein expression were observed in the embryos that were chilled 179 

with 1 M MeOH for 3 h at 0°C.  180 

 181 

Effect of 3 h chilling and subsequent warming on sox2 and sox19a protein expression in hatching 182 

stage embryos  183 

Embryos from 50% epiboly stage were chilled with or without 1 M MeO and then replaced with egg 184 

water and embryos were cultured at 27±1°C until the hatching stage. Sox2 protein expression decreased 185 

significantly in hatching stage when compared to 50% epiboly stage. No significant differences were 186 

observed in non chilled embryos at hatching stage and embryos chilled with or without 1 M MeOH and 187 



subsequently cultured until the hatching stage. Protein expression remained stable in both chilled and non 188 

chilled embryos at the hatching stage. Protein expression of sox19a remained stable from 50% epiboly 189 

stage to the hatching stages. No significant differences were observed in sox19a protein expression in 190 

embryos that had been chilled with or without MeOH and non chilled controls.  191 

 192 

Discussion 193 

Cryoprotectant toxicity studies are necessary before they are used in any chilling storage and 194 

cryopreservation protocol in order to minimise the effect of these chemicals. Survival rate has been 195 

widely used to assess cryoprotectant toxicity in embryos (Kopeika et al. 2003) and oocytes (Plachinta et 196 

al. 2004) prior to their chilling storage or cryopreservation. Methanol has been demonstrated to be an 197 

effective cryoprotectant in zebrafish embryo chilling storage (Zhang et al. 2003) and oocytes 198 

cryopreservation (Guan et al. 2008). However, there is no information available in the literature on the 199 

effect of methanol on gene and protein expression. This information is important due to the fact that 200 

MeOH is neurotoxic (Degitz et al. 2004). Studies have shown that methanol exposure leads to severe 201 

CNS defect in mice embryos (Degitz et al. 2004)  and drosophila embryos (Mellerick and Liu 2004). 202 

Therefore the aim of the present study was to investigate the effect of MeOH on gene and protein 203 

expression of zebrafish embryos following short term chilling and subsequent culture after warming.  204 

Assessment of chilling tolerance of zebrafish embryos at 0°C  205 

Initial study was carried out to investigate chilling tolerance of 50% epiboly embryos for up to 24 h at 206 

0°C with the presence of different concentrations (0.2-,0.5- and 1 M) of MeOH.  Results from the study 207 

showed that 50% epiboly stage embryos tolerated chilling for up to 6 h with/without  MeOH (90 ± 5 % 208 

survival rate) before it was significantly decreased after 18 and 24 h at 0°C (18 and 24h results, 10±5% 209 

and 7±5% respectively). Previously, Zhang and Rawson (1995) demonstrated that over 50% of shield 210 

stage (~60% epiboly) embryos were killed when they were exposed to 0 °C for 4 h without any 211 



cryoprotectant and no embryo younger than bud stage survived 11 h exposure at 0°C. Due to the fact that 212 

zero or low survival rates were obtained for embryos chilled at 0°C after 24 h , no longer term chilling 213 

studies in the presence of MeOH were carried out with 50% epiboly stage embryos previously. Results 214 

obtained in medaka embryos (Valdez Jr et al. 2005) showed that gastrula stage embryo survival rate was 215 

not affected by 24 h chilling at 0°C in hank’s solution. In the present study, survival rate of similar stage 216 

50% epiboly was reduced to 10% following chilling in egg water for 18 and 24 h at 0°C. This is mainly 217 

due to developmental pattern of medaka embryos as it is generally slower (9 days to hatch) than zebrafish 218 

embryos (3 days to hatch).  219 

Cell membranes are generally highly permeable to methanol as Zhang et al. (2005) reported in zebrafish 220 

that methanol penetrates ovarian follicle at a rate comparable to the rate of water transport and therefore, 221 

incubation of cells in MeOH does not lead to osmotic stress.  In the present study, there were no 222 

significant differences found in embryos that had been chilled in MeOH (at all tested concentrations) and 223 

egg water at 0°C up to 24 h. This could be due to the fact that gastrula stage embryos are highly chilling 224 

sensitive and the concentrations of MeOH used in the present study was not effective in protecting 225 

embryos from chilling injury. Under the similar conditions e.g. 24 h chilling at 0 °C, chilling sensitivity of 226 

heartbeat stage embryos was reduced significantly with the introduction of 1 M MeOH in chilling media 227 

(Zhang and Rawson 1995). The mechanism by which certain cryoprotective agents protect embryos from 228 

chilling injury has not been well understood. High chilling sensitivity in early stage embryos such as 50% 229 

epiboly stage is believed to be associated with the large amount of intraembryonic lipids. Studies on 230 

partial removal of yolk on chilling sensitivity in zebrafish embryos showed that chilling injury following 231 

rapid cooling could be mitigated after partial removal of yolk at the prim-6 stage (Liu et al. 2001). A 232 

study on chilling of porcine embryos also showed that the sensitivity of porcine embryos to chilling is 233 

related to their high lipid contents, embryos become tolerant to chilling when their lipid contents were 234 

reduced (Nagashima et al. 1994). Lipid phase transition (LPT) in cell membranes are also responsible for 235 

chilling injury in mammalian sperm (Drobnis et al. 1993) and oocytes (Arav et al. 2000). At the 236 



temperature around phase transition, chilled membranes lose fluidity and become leaky, which cause 237 

damage to cells (Zeron et al. 1999).  238 

Impact of 3 h chilling and warming on sox gene expression  239 

Studies were carried out to investigate the effect of 3 h chilling and warming on sox gene expression at 240 

different embryo development stages after embryos were cultured at 27±1°C until the hatching stage. 241 

MeOH has been demonstrated to penetrate zebrafish embryo membrane (Zhang and Rawson 1998) and be 242 

neurotoxic where its exposure leads to severe CNS defect to mice CNS at gastrulation periods (Degitz et 243 

al. 2004) and in drosophila embryos (Mellerick and Liu 2004). Therefore, developmental stages were 244 

selected based on their morphology during development – 20 somites (early nervous system 245 

development), heartbeat (mid brain development – early touch reflexes) and hatching (first time exposure 246 

to external environment).  These stages are key stages to study the effect of sox genes due to the fact that 247 

these genes play important roles in nervous system development in zebrafish embryos (Dee et al. 2008; 248 

Millimaki et al. 2010; Vriz et al. 1996), any changes in these genes can have adverse effects on 249 

embryonic development.  250 

 251 

Results from the present study showed decreased gene expression when compared to RT controls for all 252 

three genes (sox2, sox3 and sox19a) in the embryos that had been chilled for 3 h at 0°C without 253 

MeOH,.Studies have shown that chilling of embryos at fast rates could cause damage to the nuclear 254 

envelope (Smith and Ane Silva E Silva 2004). In our experiments, a fast (~300 °C/min) chilling rate was 255 

used to chill embryos at 0°C for 3 h. Damage to the lamina (a part of nuclear envelope) has been reported  256 

to affect the gene expression as the lamina also functions as a structural nuclear protein and regulator of 257 

gene expression (Smith and Ane Silva E Silva 2004). It is possible that MeOH protects the lamina of the 258 

nuclear envelop during chilling and therefore reduce the chilling injury. Methanol has been reported to be 259 

an effective cryoprotectant during chilling storage of  zebrafish embryo at zero and subzero temperatures 260 

(Zhang and Rawson 1995). Methanol was also found to improve survival rate for 50% epiboly stage carp 261 



(C.carpio) embryos when they were cooled to 4 or 0°C  (Dinnyés et al. 1998). In our study, MeOH was 262 

shown to protect gene expression following chilling at 0°C for 3 h in the embryo that were chilled with 263 

different concentrations of MeOH and  the protective effect was increased with increasing concentration 264 

as alterations in gene expression were less when compare to embryos that were chilled without MeOH. 265 

Zhang et. al. (2003) also suggested that higher concentration of MeOH treatment generally provided 266 

better embryo survival rate when embryos were cooled at fast cooling rate of 300 °C/min. Further studies 267 

are needed on the molecular mechanisms of the effectiveness of MeOH in protecting fish embryos from 268 

chilling injury. 269 

 270 

Following chilling, embryos were warmed up and then cultured at 27±1°C to hatching stages, 271 

investigations were then carried out on the level of gene expression in 20 somites, heartbeat and hatching 272 

stages. Significant increase in sox19a was also found at all developmental stages had remained stable in 273 

the embryos that were chilled with 1 M MeOH. The increase in sox19a gene expression may due to the 274 

activation of compensatory mechanism. Compensatory mechanism can be activated to prevent the loss of 275 

gene transcript in order to recover gene expression during chilling (Fuller 2003).  The decrease in sox2 276 

and sox3 gene expression may therefore have been compensated by the stable higher levels of sox19a 277 

expression throughout. This could be the reason for unaffected embryo survival rates after 3 h chilling at 278 

0°C despite the decrease of sox2 and sox3 gene expression. Alteration in sox gene expression could have 279 

adverse implications on long term development of the embryos. A study in mice demonstrated that over 280 

expression of sox genes can be carcinogenic and induce large number of tumour types (Dong et al. 2004). 281 

Toxicity studies in zebrafish embryos also demonstrated that  exposure of low concentrations of 282 

Perfluorooctanesulfonate (PFOS) induced upregulation of pax8 genes (falls in the same group as sox 283 

gene) which leads to the induction of apoptosis genes in zebrafish embryos and larvae (Shi et al. 2008). 284 

More long term studies are needed in order to investigate the adverse effects of MeOH on larvae and adult 285 

fish.  286 



Subsequent impact of chilling and warming on sox2 and sox19a protein expression  287 

Transcript levels detected in mRNA profiling do not reflect all regulatory processes in the cell as post-288 

transcriptional processes altering the amount of active proteins, such as synthesis, processing and 289 

modification of proteins (Mattick and Makunin 2006). Therefore, in addition to monitor gene expression 290 

at the transcriptional level, analysis of the protein is equally important for the understanding of cellular, 291 

metabolic and regulatory networks in living organisms (Nie et al. 2007). In embryos that had been chilled 292 

for 3 h at 0°C, no significant differences in sox2 protein expression were observed in 3 h chilled embryos 293 

with or without MeOH and non chilled control despite decreased sox2 gene expression. This could be 294 

explained by the repair mechanism of sox2 gene transcript during post transcriptional processes, such as 295 

post transcription and translation modification to repair loss of sox2 gene transcript. Studies in hsp90 in 296 

parasite Giarida chilled for 20 min on ice demonstrated post transcriptional repair mechanism by mRNA 297 

trans-splicing (Nageshan et al. 2011). Degradation or fragmentation of mRNA due to chilling could be 298 

repaired by similar mechanism. During the mRNA splicing of sox2, the splicing junction carries 299 

hallmarks of classical cis-spliced introns, suggesting that regular splicing machinery may be sufficient for 300 

repair of open reading frame. A complimentary sequence in the introns regions adjacent to the splice sites 301 

may assist in positioning two pre-mRNA for processing (Nageshan et al. 2011). Damage in sox2 due to 302 

chilling, could be processed by pre-mRNA and produce protein as normal, and resulted in 303 

recovered/unaffected protein expression. Sox19a protein expression remained significantly above the 304 

control level following 3 h chilling at 0°C before decreasing to non-chilled control level at hatching stage. 305 

This protein expression pattern is similar to the pattern obtained in gene expression studies. High protein 306 

level of sox19a could be explained by compensation mechanism. To compensate, expressions of sox19a 307 

genes and subsequent proteins should be elevated in order to maintain physiological conditions and 308 

subsequent development due to their redundant function (Graham et al. 2003). 309 

It is clear from the present study that MeOH protected embryos at the molecular level during chilling and 310 

the protective effect was increased with increasing concentrations of MeOH. However after warming and 311 



culturing of embryos until hatching stage, higher concentration (eg. 1 M MeOH) also altered the pattern 312 

of gene expression. Increased gene expression may be a compensatory response in order to recover the 313 

loss of mRNA transcript during chilling. However, no significant differences were observed in protein 314 

expressions in the embryos that had been chilled at 0°C for 3 h and warmed then cultured to hatching 315 

stage when compared to non chilled controls. However the mechanisms associated with the effect of 316 

chilling and warming on gene and protein expressions require further investigation. In the present study, 3 317 

h chilling period was studied and the results do not provide information on the effect of long term chilling 318 

on embryos in the presence of MeOH. More studies are needed to assess effect of long term chilling on 319 

gene and protein expression.  320 

Materials and Methods 321 

Zebrafish maintenance and embryo selection 322 

Adult zebrafish 12-14 weeks old were maintained in 40 litre glass tanks at 27±1° C. The males and 323 

females were kept at a ratio of 1:2 and a 12 hour light/dark cycle was used. Fish were fed three times a 324 

day with TetraMin
®
 (Tetra, Germany) and once a day with freshly hatched brine shrimp (Artemia salini) 325 

(ZM systems, UK). Embryos were collected in the morning and kept in a 27±1°C  water bath until the 326 

desired stage was reached. Embryonic stages were determined using light microscopy (Leica MZ95, 327 

Germany) according to the morphology described by Kimmel (Kimmel et al. 1995). 328 

Experimental Design 329 

Experiment 1: Impact of chilling at 0° C on embryo hatching rate for different time periods 330 

in the presence of MeOH as a cryoprotectant 331 

Embryos (50% epiboly) were chilled (Lin et al. 2009b) at 0°C in crushed ice (temperature was maintain 332 

throughout by addition of ice) for up to 24 h (3-, 6-, 18- and 24- h) in the presence of  different 333 

concentrations of MeOH (0.2, 0.5 and 1M). After chilling, cryoprotectant MeOH were replaced by egg 334 



water (60 µg/mL sea salt in distilled water) and the test tubes were quickly placed into a 27±1°C water 335 

bath and embryos were then incubated at 27±1°C for up to 3 days or until they hatched. Control embryos 336 

were kept at 27±1°C and incubated for 3 days or until they hatch. . Hatching rates were then monitored 337 

and all experiments were repeated three times in triplicate (total embryo = 2025). Embryos were 338 

considered to be hatched when their chorion is missing, there were no obvious signs of malformation, and 339 

there were natural movement with functional heartbeat.  Embryos were considered unhatched if they 340 

showed no signs of cell differentiation, yolk coagulation and no tail formation or detached tail and/or if 341 

they remained in the chorion (Lahnsteiner 2009). 342 

Experiment 2:  Impact of chilling and warming on sox gene expression in zebrafish (Danio 343 

rerio) embryos in the presence of MeOH 344 

Based on the results obtained from the previous experiments, further studies were carried out on the effect 345 

of 3 h chilling on gene and protein expression in 50% epiboly embryos in the presence of MeOH. 346 

Chilling of embryos: Embryos at 50% epiboly stage were chilled at 0° C for 3 h with different 347 

concentrations of MeOH (0.2, 0.5 and 1 M) as described in earlier Section. RNA was then extracted and 348 

cDNA was produced as described below (Desai et al. 2011). cDNA was diluted to 1:2 with molecular 349 

biology grade water (Sigma, UK) for use in real time PCR. For each time point, three different biological 350 

samples (5 embryos/tube) were treated and stored. Each experiment was repeated three times.  351 

Experimental controls were kept at 27±1°C in a water bath for the equivalent time period. 352 

Warming and incubation of embryos after chilling : Embryos at 50% epiboly stages were chilled for 3 h 353 

at 0°C, they were then  warmed up and incubated at 27±1°C until  three key developmental stages – 20 354 

somites stage (hind brain development), heartbeat stage (first heart beat starts) and hatching periods (first 355 

time when actual larvae exposed to environment). For each embryonic stage, three different samples (5 356 

embryos/tube) were treated and stored for RNA extraction at -80°C and real time PCR. Each experiment 357 

was repeated three times. Experimental controls were kept at 27±1°C in water bath.   358 



Experiment 3: Impact of MeOH chilling and warming on sox2 and sox19a protein 359 

expression in zebrafish (Danio rerio) embryos 360 

Based on gene expression results from previous experiment, protein expression was studies in these time 361 

points eg. following 3 h chilling and following chilling and warming in hatching stage in presence of 362 

MeOH to see effect of cryoprotectant on protein expression of sox2 and sox19a. Embryos (75 embryos) 363 

from 50% epiboly stages were chilled for 3 h with/without 1 M MeOH and then returned to 27±1° C and 364 

incubated until they hatched. Cryoprotectant were replaced by 27 ±1 °C egg water (60 µg/mL sea salt in 365 

distilled water) following chilling before incubation. Experimental controls were kept at 27±1°C in a 366 

water bath for the equivalent time period. Samples were collected for protein extraction immediately after 367 

3 h chilling and larvae (after ~ 3 day warming) 368 

RNA extraction and DNase treatment 369 

RNA was extracted from embryo samples using RNAqueous Micro RNA Isolation Kit (Ambion, UK) 370 

according to the manufacturer‘s protocol.  This protocol also includes a DNase I treatment step. RNA was 371 

stored at -80 ° C until further use. RNA was checked for quantity and purity using Biophotometer 372 

(Eppendorf, UK) at 260 nm and 280 nm.  373 

Reverse transcription  374 

1 µg of RNA was transcribed using Precision qScript Reverse Transcription Kit (Primerdesign Ltd, UK) 375 

according to the manufacturer’s protocol. For the conventional PCR undiluted cDNA was used in 376 

subsequent steps. For real time PCR experiments, cDNA was diluted 1:2 in molecular biology grade 377 

water (Sigma, UK) and stored at -80° C. 378 

PCR Analysis 379 

The PCR reactions were consisted of NH4 PCR buffer (Bioline, UK), 200 µM dNTP (Bioline), 1.5 mM 380 

MgCl2 (Bioline), 2 U BIOTAQ™ DNA polymerase (Bioline), 0.5 µM each primer (see Table 1), 1 µg 381 



RNA template and PCR water. Standard conditions for PCR were initial denaturation at 94° C for 5 382 

minutes (1 cycle), 40 cycles of amplification contains 94° C for 30 seconds , annealing temperature (see 383 

Table 1) for 30 seconds, 72° C for 30 seconds followed by 1 cycle of additional extension step  72 °C for 384 

10 min. The PCR products were run on 2% agarose gels and stained with ethidium bromide (0.5 µg/mL, 385 

Sigma, UK). 386 

Generation of standards for real time PCR 387 

The standards for real time PCR of sox2, sox3 and sox19a along with housekeeping genes EF1-α and β 388 

actin (Lin et al. 2009a) were produced using conventional PCR as described above. The primer sequences 389 

are given in the Table 1. DNA was isolated from excised bands using the EZNA Gel extraction kit 390 

(Omega Bio-Tek through VWR, UK) according to the manufacturer’s instructions. The isolated DNA 391 

was quantified using a Biophotometer (Eppendorf, UK) at 260 nm and diluted to 2 ng/µl followed by 10-392 

fold serial dilutions to generate standards for real time PCR.  393 

Quantification of sox2, sox3 and sox19a using real time PCR 394 

Real time PCR was performed on RotorGene 6000 cycler (Corbett Research, UK) using a 72 well rotor to 395 

quantify the expression level of sox2, sox3 and sox19a. Reaction tubes contained 7.5 µl of sensimix 2X 396 

reaction buffer (contained heat activated DNA polymerase, Ultrapure dNTPs, MgCl2, SYBR® Green I), 397 

333 ηm of each primer (see Table 1) and 2 µl of cDNA sample, made up to 15 µl with PCR water. The 398 

reaction conditions were 1 cycle at 95° C for 10 min, followed by 50 cycles at 95° C for 10 sec, the 399 

appropriate annealing temperature (see Table 1) for 15 sec and at 72° C for 15 sec. Data were acquired on 400 

FAM/SYBR channel at the end of each extension step. Melt curves were also analysed to check for the 401 

absence of mispriming and amplification efficiency was calculated from a standard curve (efficiencies 402 

were in ranged from 0.8 to 1.0 and R
2 
from 0.99 to 1).  The possibility of genomic DNA amplification 403 

was eliminated by use of primers that crossed introns.  Relative gene expression levels were calculated 404 

using the two standard curve quantification method in the Rotorgene software (Pfaffl 2003).  Ef1 α and β 405 



actin were used for this study as these genes were shown to have the highest stability during chilling of 406 

zebrafish embryos (Lin et al. 2009a).  407 

 408 

Protein expression analysis 409 

Extraction of protein and quantification: Embryos (75 embryos/treatment) were washed twice with 410 

embryo medium 2 (EM2) (15 mM NaCl, 0.5 mM KCl, 0.27 mM CaCl2, 1 mM MgSO4, 0.27 mM 411 

NaHCO3, 0.15 mM KH2PO4, 0.05 mM Na2HPO4). Following washing, embryos were subjected to 412 

protease treatment (2 mg/ml, Sigma-Aldrich) for 10 min where chorion was partially digested. After 413 

digestion, loosened chorion was removed by gentle suction and friction, resulting from pipetting the 414 

embryo up and down. Embryos were then washed three times with EM2 before being transferred to a 1.5 415 

ml tube. 100 µl of protein extraction buffer (0.125 M Tris-HCl, 4% SDS, 20% glycerol) was added to 416 

each tube and samples were heated to 95°C for 10 min. Following heating, samples were vortexed and 417 

centrifuged at 13,000 x g for 10 min and protein containing supernatant was collected. Isolated proteins 418 

were quantified using QuantiPro
™

 BCA Assay Kit (Sigma-Aldrich) according to the manufacturer’s 419 

instructions. 420 

Western blot and immunostaining: Extracted protein was separated using sodium dodecyl sulphate 421 

polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were loaded on 4% stacking gel and separated 422 

on 10% resolving gel at 200 V for 40-60 min. Proteins were then transferred to PVDF membrane using 423 

the semi dry method ( BioRad, UK). Immunoblotting was carried out using Anti rabbit WesternDot 625 424 

Western Blot Kit (Invitrogen, W10132). The membrane was blocked in 10 ml of WesternDot blocking 425 

buffer for 1 hour at room temperature. Following blocking, membranes were incubated with 10 ml of 426 

primary antibody solution (dilution 1:1000) overnight at 4˚C on gel rocker. Primary antibodies sox2 427 

(Abcam, Cambridge, UK), sox19a and β-actin (Eurogentech, Belgium) were used at 1:1000 concentration 428 

diluted in PBS. The membranes were then washed 3 times for 10 min with WesternDot Wash buffer. 429 



Following washing, the membranes were incubated with 10 ml of Biotin-XX-Goat anti-rabbit solution for 430 

2 hours at room temperature. After secondary antibody incubation, the membranes were washed 3 times 431 

as before. The membranes were then incubated with 10 ml of Qdot 625 Streptavidin conjugate solution 432 

for 1 hour at room temperature before washed 3 times as previously, followed by a final wash in MilliQ 433 

water for 5 min. The membranes were soaked in 100% methanol to make it transparent and then 434 

visualised under an UV trans-illuminator with images taken. 435 

Statistical Analysis 436 

Statistical analysis was carried out using SPSS V.16 (IBM, USA) and Microsoft Excel (Microsoft corp. 437 

USA).  Densitometry analysis was carried out using ImageJ software (Maryland, USA). All protein bands 438 

were quantified and then normalised with respect to non-treated samples. Internal control β actin was 439 

used for normalisation of any variation in replicates. The one-sample Kolmogorov-Smirnov test was 440 

performed to determine whether the data for each gene/protein were normally distributed. Where the data 441 

were normally distributed, significant differences in gene/protein expression levels between fresh and 442 

chilled embryos at the same time point were calculated using the t-test. One way ANOVA was carried out 443 

followed by Tukey’s post hoc tests to identify changes of gene/protein expression levels between 444 

treatments. Where data were not normally distributed after logarithmic transformation, the Mann-Whitney 445 

U test was used instead. All gene and protein expression data were presented as mean ± SEM and p 446 

values of less than 0.05 were considered to be significant. 447 
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Figures Legends 577 

Fig 1:  578 

Effect of chilling on hatching rates in 50% epiboly stage of zebrafish embryos: Bars represent hatching 579 

rates of zebrafish embryos after chilling at 0° C for different time periods (3-24 h) in different 580 

concentrations of MeOH (0.2, 0.5 and 1 M), followed by incubation at 27±1°C for three days. Error bars 581 

represent the standard errors of the mean (SEM) (n=9).  582 

Fig. 2 (a)  583 

Effect of chilling in different concentrations of MeOH and warming on sox2 gene expression in zebrafish 584 

embryos. The Figure shows the gene expression profiles for sox2 in embryos chilled for 180 min at 0°C in 585 

the presence of methanol. Following chilling, methanol was replaced with egg water and embryos were 586 

cultured at 27±1 °C until hatching stage. Gene expressions immediately after chilling and at the 20 587 

somites, heartbeat and hatching stages were assessed using reverse transcriptase qPCR. For each time 588 

point, 5 embryos were collected in triplicate and each experiment was repeated three times. Results 589 

represent the mean expression level relative to the control at time 0 and error bars represent standard error 590 

of the mean (SEM). Asterisk (*) shows significant differences (p < 0.05) between different concentrations 591 

of MeOH and non-chilled control within the same gene (n=9). 592 

Fig: 2 (b)  593 

Effect of chilling in the presence of MeOH on sox2 gene expression in zebrafish embryos at different 594 

stages. Gene expression profiles, assessed by reverse transcriptase qPCR, are for sox2 in embryos chilled 595 

for 180 min at 0°C and then cultured at 27±1°C until hatching stage. For each time point, 5 embryos were 596 

collected in triplicate and each experiment was repeated three times. Points represent the mean expression 597 

level relative to the control at time 0 and error bars represent standard errors of the mean (SEM). 598 



Different letters show significant differences (p < 0.05) between different developmental stages of 599 

zebrafish embryos within same chilling treatment period (n=9). 600 

Fig: 3 (a)  601 

Effect of chilling and warming in different concentrations of MeOH on sox3 gene expression in zebrafish 602 

embryos. The Figure shows the gene expression profiles for sox3 in embryos chilled for 180 min at 0°C in 603 

the presence of methanol. Following chilling methanol was replaced with egg water and embryos were 604 

then cultured at 27±1 °C until the hatching stage. Gene expressions immediately after chilling and at 20 605 

somites, heartbeat and hatching stages after culturing were assessed using reverse transcriptase qPCR. For 606 

each time point, 5 embryos were collected in triplicate and each experiment was repeated three times. 607 

Results represent the mean expression level relative to the control at time 0 and error bars represent 608 

standard error of the mean (SEM). Asterisk (*) shows significant differences (p < 0.05) between different 609 

concentrations of MeOH and non chilled control within the same gene (n=9). 610 

Fig: 3 (b)  611 

Effect of chilling in the presence of MeOH on sox3 gene expression in zebrafish embryos at different 612 

stages. Gene expression profiles, assessed by reverse transcriptase qPCR, are for sox3 in embryos chilled 613 

for 180 min at 0°C and then cultured at 27±1°C until hatching stage. For each time point, 5 embryos were 614 

collected in triplicate and each experiment was repeated three times. Points represent the mean expression 615 

level relative to the control at time 0 and error bars represent standard errors of the mean (SEM). 616 

Different letters show significant differences (p < 0.05) between different developmental stages of 617 

zebrafish embryos within the same chilling treatment period (n=9). 618 

Fig: 4 (a)  619 

Effect of chilling in different concentrations of MeOH and warming on sox19a gene expression in 620 

zebrafish embryos. The Figure shows the gene expression profiles for sox19a in embryos chilled for 180 621 



min at 0°C in the presence of methanol. Following chilling methanol was replaced with egg water and 622 

embryos were then cultured at 27±1 °C until hatching stage. Gene expressions immediately after chilling 623 

and at 20 somites, heartbeat and hatching stages were assessed using reverse transcriptase qPCR. For each 624 

time point, 5 embryos were collected in triplicate and each experiment was repeated three times. Results 625 

represent the mean expression level relative to the control at time 0 and error bars represent standard 626 

errors of the mean (SEM). Asterisk (*) shows significant differences (p < 0.05) between different 627 

concentrations of MeOH and non chilled control within the same gene (n=9). 628 

Fig: 4 (b)  629 

Effect of chilling in the presence of MeOH on sox19a gene expression zebrafish embryos at different 630 

stages. Gene expression profiles, assessed by reverse transcriptase qPCR, are for sox19a in embryos 631 

chilled for 180 min at 0°C and then cultured at 27±1°C until hatching stage. For each time point, 5 632 

embryos were collected in triplicate and each experiment was repeated three times. Points represent the 633 

mean expression levels relative to the control at time 0 and error bars represent standard errors of the 634 

mean (SEM). Different letters show significant differences (p < 0.05) between different developmental 635 

stages of zebrafish embryos within the same chilling treatment period (n=9). 636 

Fig: 5  637 

Effect of 3 h chilling with or without the presence of MeOH on sox2 and sox19a protein expression in 638 

50% epiboly zebrafish embryos. Protein expression profiles are for sox2 and sox19a for embryos chilled 639 

for 180 min at 0°C assessed by Western Blot. For each time point, 75 embryos were collected in triplicate 640 

and each experiment was repeated three times. Points represent the mean expression level relative to the 641 

control at time 0 and error bars represent standard errors of the mean (SEM). Different letters show 642 

significant differences (p < 0.05) between different chilling treatments of zebrafish embryos in post 3 h 643 

50% epiboly stage (n=9). 644 

Fig: 6  645 



Effect of 3 h chilling with or without the presence of MeOH and subsequent warming and culturing on 646 

sox2 and sox19a protein expression in hatching stage zebrafish embryos. Protein expression profiles are 647 

for sox2 and sox19a in embryos chilled for 180 min at 0°C and cultured at 27±1°C assessed by Western 648 

Blot. For each time point, 75 embryos were collected in triplicate and each experiment was repeated three 649 

times. Points represent the mean expression level relative to the control at time 0 and error bars represent 650 

standard errors of the mean (SEM). Different letters show significant differences (p < 0.05) between 651 

different chilling treatments of zebrafish embryos in hatching stage (n=9).  652 

 653 

 654 

 655 

 656 

 657 

 658 



 

Table 1 Information on gene name, accession ID and primer sequences including annealing temperature and 

product size. 

Gene Name Accession ID Forward/Reverse Primers Annealing Temp.   

(°C) 

Amplicon size (bp) 

sox2    NM_213118.1 

F :CTCGGGAAACAACCAGAAAA 

R: TCGCTCTCGGACAGAAGTTT 

58 171 

sox3   NM_001001811.2 

F: ACCGAGATTAAAAGCCCCAT 

R: TTGCTGATCTCCGAGTTGTG 

56 182 

sox19a  NM_130908.1 

F: TGTCAACAGCAACAACAGCA 

R: GTTGTGCATTTTGGGGTTCT 

57 126 

EF1 - α NM_131263.1 

F: CTGGAGGCCAGCTCAAACAT 

R: ATCAAGAAGAGTAGTACCGCTAGCATTAC 

60 87 

β actin NM_181601.3 

F: CGAGCTGTCTTCCCATCCA 

R: TCACCAACGTAGCTGTCTTTCTG 

59 86 
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