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Abstract 

 

Parasites can have considerable consequences for their freshwater fish hosts, 

irrespective of whether they are intermediate or final hosts. The ecological 

consequences of infection arise from processes including parasite manipulation, where 

the parasite manipulates the host to increase their chance of transmission to the next 

host in the lifecycle, and parasite-mediated competition, where a consequence of 

infection is an alteration in the symmetry of competition between hosts and their 

uninfected conspecifics, or with other species. Whilst there is a great deal of existing 

knowledge on some of these consequences, there also remain some considerable 

knowledge gaps. This research covered the role of parasite exposure and water 

temperature on infection consequences, the foraging responses of fishes to intermediate 

hosts of the fish parasite Pomphorhynchus laevis that has an indigenous and non-

indigenous range in Great Britain, the ecological consequences of this parasite for some 

freshwater fishes across these ranges, the issue of ‘enemy release’ and ‘parasite 

acquisition’ in introduced freshwater fishes, and the ecological consequences of 

infection by some native parasites for native freshwater fish. 

 

When the freshwater fish chub (Squalius cephalus) was exposed to different levels of 

intermediate hosts (Gammarus pulex) of P. laevis under two water temperature 

treatments, ambient and warmed, it revealed this interaction had considerable 

consequences for both parasite prevalence and the infection parameters. Whilst parasite 

prevalence was substantially higher at the elevated temperature, where infections did 

develop at lower temperatures, they were associated with fewer but larger parasites 

resulting in significantly higher parasite burdens, indicating complex consequences for 

host-parasite relationships under conditions of warming.  

 

Studies into parasite manipulation have frequently used the P. laevis: G. pulex parasite-

intermediate host system for investigating how infections can result in behavioural 

modifications to the host that then results in their elevated risk of being predated by a 

fish. Here, comparative behavioural functional response experiments were used to test 
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differences in the consumption rates of three fishes exposed to either uninfected or 

infected G. pulex, testing the hypothesis that the consumption rate of infected G. pulex 

would be significantly higher. The Type II functional response curves indicated that the 

results of the experiments were contrary to this hypothesis, with subsequent behavioural 

and foraging experiments also supporting these results. These counter-intuitive 

outcomes were also contrary to most other studies that suggested a parasite would 

manipulate its intermediate host in a way that promotes its transmission to a final host 

and facilitating the continuation of its life cycle.  

 

The reasons for these outputs were discussed as likely to relate to different selection 

pressures in this host-parasite system, given this is a generalist parasite with a wide 

range of potential fish final hosts. This was revealed by studies on this parasite from 

four fish species from five rivers that demonstrated high parasite prevalence in all 

species studied and suggested that small-bodied fishes, such as bullhead Cottus gobio, 

might play important roles in the P. laevis lifecycle. These prevalences, and the 

pathological consequences of the P. laevis infections, were also consistent across their 

indigenous and non-indigenous range, suggesting parasite origin had minimal 

consequences on their virulence and on the susceptibility of hosts to infection. 

 

That parasite origin often has minimal ecological consequences for their ecological 

impacts was reinforced by work on the ‘enemy release hypothesis’ in non-native fish in 

England and Wales. This revealed very few non-native parasites had been introduced 

with their non-native fish hosts. Those that had been introduced tended to be specialist 

parasites with direct lifecycles that had little opportunity to be transmitted to native 

fishes. Instead, the acquisition of native parasites by the non-native fishes was 

frequently observed, leading to potential concerns these fish would act as reservoir hosts 

and spill-back the parasites to the native fishes.  

 

Given the low probability of parasite introduction, the ecological consequences of three 

native parasites with complex lifecycles were then tested on three native fishes, and 

revealed consistent patterns of trophic niche divergence between infected and 

uninfected population sub-groups. Whilst the actual mechanism underpinning this, such 

as parasite-mediated competition, could not be tested, these results did reveal that the 
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consequences of infection can be far-reaching for hosts and can be measured through a 

variety of methodologies. 

 

In summary, the research provided some comprehensive insights into many aspects of 

the pathological and ecological consequences of infection for some freshwater fishes 

from native/ non-native and indigenous/ non-indigenous parasites. In doing so, it has 

raised a series of new questions and hypotheses for further investigation, with the host-

parasite systems used here capable of answering these. 
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Glossary 

Throughout the thesis, various terminologies are applied. For consistency of interpretation, 

the following definitions of some of the specific terms are provided below. 

 

Complex lifecycle: The parasite lifecycle is completed using multiple hosts, including 

one or more intermediate host, in addition to a definitive host.  

Definitive host (and final host and preferred host): A host in which the parasite 

reaches maturity and, if possible, reproduces sexually.  

Direct lifecycle: Lifecycle is completed using a single host (may have a free-living 

stage). 

Host: An organism infected by a parasite, usually the focal parasite in the context of the 

study.  

Introduced species: A species, subspecies or lower taxon, introduced by human action 

outside its natural past or present distribution; includes any part, gametes, seeds, eggs, or 

propagules of such species that might survive and subsequently reproduce. 

Individual trophic niche specialisation: Where the population trophic niche consists 

of sub-groups of trophically specialised individuals that in entirety comprise the 

population niche. 

Intermediate host: A host of a parasite with a complex lifecycle that is important for 

an aspect of its development but in which sexual maturity does not occur. 

Invasive species: An introduced or translocated species that has successfully survived 

the introduction process, established a population, dispersed more widely and caused 

some ecological and/ or economic impacts 

Manipulative parasite: A parasite that alters aspects of the phenotypic traits and 

behaviours of their hosts, such as their morphology, foraging behaviour and habitat use, 
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that either increase the probability of their transmission from one host to another and/or 

ensure that their propagules are released in an appropriate location.  

Naïve host species: A native (or indigenous) species having no co-evolutionary history 

to the non-native (or non-indigenous) parasite.  

Non-manipulative parasite: A parasite which alters aspects of the phenotypic traits 

and behaviours of their hosts, such as their morphology, foraging behaviour and habitat 

use due to, for example, pathological impacts and energetic costs, and is not associated 

with the parasite manipulating the host to increase its probability of transmission. 

Non-native species: A species, subspecies or lower taxon, introduced by human action 

outside its natural past or present distribution; includes any part, gametes, seeds, eggs, or 

propagules of such species that might survive and subsequently reproduce.  

Parasite: An organism that lives and feeds on or in an organism of a different species 

causing harm to its host.  

Parasite abundance: This is the mean number of parasites found in all the individual 

infected hosts. 

Parasite-mediated competition: Infection alters the competitive dynamics between 

interacting species via density and trait effects. Where the otherwise superior competitor 

species is heavily influenced by the parasite then the process is likely to favour co-

existence.  

Parasite prevalence: The proportion of infected hosts among all the potential hosts 

examined of a single species.  

Paratenic: A host which is non-essential for the completion of a parasites lifecycle but 

which still might experience parasite infection 

Population trophic niche: Extent of the food resources exploited by a population as set 

by abiotic and biotic constraints. 
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Trophic level: the feeding positions within a food chain, such as primary producer, 

primary consumer and secondary consumer, and where a food chain is the 

representation of a succession of species that consume another.  

Trophic niche constriction: Individuals in the population sub-group consume a 

restricted range of food items that are also present in the diet of more generalist con-

specifics.  

Trophic niche divergence: Individuals in the population sub-group consume different 

food items that are not present in the diet of their conspecifics. 

Trophic vacuum: the difference in trophic levels between free-living propagules of the 

parasite and its final host which, for trophically transmitted parasites, is overcome by 

use of intermediate hosts within their lifecycle. 

Virulence: the severity of the negative consequences a parasite has for a host 
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This thesis covers a range of research issues associated with the sub-lethal consequences 

of infection by native and introduced parasites for which freshwater fish act as either the 

final or intermediate host. The research covers the role of parasite exposure and water 

temperature on infection consequences, the extent of ‘parasite manipulation’ for 

intermediate hosts by a fish parasite with an indigenous and non-indigenous range in 

Great Britain, the ecological consequences of this parasite for some freshwater fishes 

across these ranges, the issue of ‘enemy release’ and ‘parasite acquisition’ in introduced 

freshwater fish, and the ecological consequences of infection by some native parasites 

for native freshwater fish. The rationale for these research approaches are outlined in 

this Introduction, with the overall research aim and objectives, and the thesis structure, 

outlined at the end of the Chapter. 

 

1.1 Overview 

 

Freshwater fish are host to a wide range of taxonomically diverse parasites, with this 

diversity reflected in their lifecycles (Kennedy 1990; Bell and Burt 1991; Poulin and 

Morand 2000). These lifecycles can be relatively simple, where the parasites are 

transmitted directly from host to host. For other parasites, the lifecycle can be 

complex, with the final host usually being a fish or bird at a high trophic position 

whilst the parasite tends to be of low trophic position (Jansen and Bakke 1991; 

Britton et al. 2009; Macnab and Barber 2011). Thus, in order to overcome this 

discrepancy in their respective trophic positions, the parasite must navigate through 

a series of intermediate hosts before reaching their final host in which they sexually 

mature (Britton et al. 2009; Macnab and Barber 2011). In doing so, the parasite 
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overcomes the ‘trophic vacuum’ between their low trophic position and the high 

trophic position of their final hosts (Parker et al. 2015). 

 

This discrepancy between the trophic positions of many parasites and their hosts, 

which is then generally reflected in their body sizes, might suggest the consequences 

of infection for many hosts are minor. This is rarely the case. Infections potentially 

have marked consequences for the biology and ecology of the host and, therefore, 

parasites can rarely be considered as relatively passive organisms that are present in 

or on hosts, but instead should be considered as ‘...a commensal organism (that) 

must fulfil criteria that include the fact that its presence has a negative effect on its 

host’ (Begon et al. 1990). Given that parasites usually exploit aspects of their host’s 

energy resources for their own requirements, then their impacts on the host often 

have a nutritional basis (Barber et al. 2000). It is, however, unlikely that these are 

the only impacts of the infection, with pathological consequences usually apparent 

around the site of attachment to the host, often shown by tissue damage and an 

associated host reaction to that damage (Britton et al. 2011; Pegg et al. 2015). 

Pathological impacts are then often accompanied by other consequences that whilst 

generally being sub-lethal initially, might eventually result in the death of the host, 

especially through indirect mechanisms (e.g. via predation or secondary infections 

of damaged tissues). Sub-lethal impacts include physiological imbalances and 

general malaise that can affect the growth, survival and, ultimately, reproductive 

fitness of the host (Barber et al. 2000). These are also often accompanied with 

altered host behaviours, especially in intermediate hosts (Section 1.2).  
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When the term ‘parasite’ is used, it can refer to a wide diversity of organisms, 

ranging from viruses to vertebrates such as some lamprey species, especially the sea 

lamprey Petromyzon marinus that can exceed lengths of 1 m (Swink 1991). Here, 

the focus is on fish macroparasites, an artificial group of metazoan parasites, 

composed mainly of members of the Platyhelminthes (flatworms, including 

monogenean and digenean trematodes and cestodes), Nemathelminthes 

(roundworms and allies, including nematodes and acanthocephalans) and 

Arthropods (true lice and parasitic copepods) (May and Anderson 1979; Barber et 

al. 2000). The focus here is on these parasites in a freshwater context, primarily due 

to the ease of working on these in both a field and laboratory context.  

 

1.2 Parasite consequences for host populations 

 

It was outlined in Section 1.1 that parasites can have substantial consequences for 

individual fish hosts, with these then potentially having additive consequences as levels 

of biological organisation scale up to population and community levels (Hatcher et al. 

2011; 2012). These tend to be most marked in parasites with complex lifecycles, where 

individual host consequences include alterations in the symmetry of their competitive 

interactions, and their habitat utilisation and acquisition of food resources (Hatcher et 

al. 2006). These could then have substantial consequences for food web structure 

(Dobson et al. 2006). As the focus here was generally on parasites with complex 

lifecycles, then their potential consequences for their hosts (both intermediate and final) 

are discussed in this section. 
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1.2.1 Parasite lifecycles and the trophic vacuum 

It was mentioned briefly in Section 1.1 that parasites have evolved complex 

lifecycles in which they are trophically transferred up food chains in order for them 

to overcome the issues of their low trophic position versus the high trophic position 

of their final host. Recent studies have termed this difference in parasite and host 

trophic position as the ‘trophic vacuum’, given that most adult helminth parasites 

sexually reproduce in vertebrates that have high positions in food chains, with their 

free-living propagules unable to be transmitted directly to these hosts. This trophic 

vacuum is thus filled by one or more intermediate hosts (Benesh et al. 2014; Parker et 

al. 2015).  

 

This raises a number of questions over why the parasite then does not grow and develop 

further in the intermediate hosts, and instead shows suppressions of growth and 

reproduction until transmission to the final host, a process that can involve being 

transmitted through multiple intermediate hosts (Parker et al. 2015). It has been 

suggested that it relates to selection pressures associated with the increased longevity 

and higher growth that is possible by the parasite in the final host (due to their relatively 

large body size) versus intermediate hosts (that are often copepods or gammarid 

species). The selection pressure is thus for larger parasite body size and higher fecundity 

at sexual maturity that is most often only possible in the relatively large final host 

(Parker et al. 2015). Consequently, mechanisms that assist parasite transmission up the 

food chain, i.e. from intermediate hosts to final hosts, have potentially high ecological 

and evolutionary significance, such as processes of parasite manipulation (Section 

1.2.2). 
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1.2.2 Parasite manipulation 

Host manipulation is a process that assists parasites with complex lifecycles to fill the 

trophic vacuum (Section 1.2.1). It usually involves the manipulation by the parasite of 

the intermediate host that alters its behaviour sufficiently to increase the likelihood of 

that host being predated by the next host in the lifecycle (Loot et al. 2001; Britton et al. 

2009; Macnab and Barber 2011).  

 

Amphipods provide strong examples of intermediate hosts that are manipulated by their 

parasites to facilitate their predation by a fish or bird final host (Britton and Andreou 

2016). Gammarus roeseli infected with Polymorphus minutus exhibit reverse geotaxis 

(Kennedy 2006), elevating their time spent at the water surface, an area where 

uninfected conspecifics are rarely found. The reverse geotaxis increases their predation 

risk by bird final hosts (Bauer et al. 2005; Medoc et al. 2006). Infections by the 

trematode parasite Microphallus papillorobustus divides populations of Gammarus 

insensibilis into two groups: an infected group of individuals that inhabit the surface of 

salt marshes and an uninfected group of individuals that remain near the bottom (Ponton 

et al. 2005). This shift in habitat use again relates to the parasite altering the behaviour 

of the intermediate host in order to promote their predation by bird final hosts (Britton 

and Andreou 2016). Parasite manipulation has also been detected in fish intermediate 

hosts. The cestode parasite Ligula intestinalis is generally recognised as modifying the 

behaviour of its intermediate fish hosts (Loot et al. 2001; Britton and Andreou 2016). 

Where fish are infected, they are increasingly encountered in the littoral zone, 

increasing their predation risk to the final bird host (Loot et al. 2001; Britton et al. 

2009). 
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1.2.3 Parasite modifications to host phenotype 

Parasite infections can also modify the host phenotype through consequences that are 

not associated with manipulation, such as impaired traits and altered behaviours that 

result from pathological or physiological impacts (Knudsen et al. 2004) which can then 

affect other behaviours, such as foraging and prey selectivity (Pegg et al. 2015). An 

example is the common carp Cyprinus carpio when infected, as the final host, with 

Bothriocephalus acheilognathi, a non-native intestinal cestode parasite. Infections 

impair the foraging ability of hosts through reducing, for example, their consumption 

rates (Scott and Grizzle 1979; Britton et al. 2011; 2012), causing the infected 

individuals to increasingly specialise on less motile food sources, which divides their 

population trophic niche into infected and uninfected sub-groups (Pegg et al. 2015) 

(Section 1.2.5).  

 

When infection modifies the host phenotype then the modified traits can have a bimodal 

distribution in the population that results in the development of distinct sub-groups 

within the populations in which the individuals are grouped by their homogenous traits 

(Lafferty et al. 2006). Where the modified trait impacts on the habitat utilisation, 

foraging behaviours and/ or competitive abilities of the host then their diet composition 

and prey selectivity will be affected (Pegg et al. 2015). An example is provided by 

Gammarus pulex when it feeds on the isopod Asellus aquaticus. When G. pulex is 

infected by the acanthocephalan parasite Echinorhyncus truttae, it tends to kill 

significantly fewer A. aquaticus than the uninfected individuals, with smaller 

individuals also preferred (Fielding et al. 2003).  
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Infections by parasites can also be important through their effects on host foraging time 

budgets and the associated selectivity in prey items. For example, when Schistocephalus 

solidus infect three-spined sticklebacks Gasterosteus aculeatus, the fish increase their 

foraging time and invest less in anti-predator behaviours (Milinski 1985). Although they 

have also been shown to select smaller prey than their uninfected conspecifics 

(Cunningham et al. 1994; Milinski 1984). However Ranta (1995) suggested that larger 

items were taken by infected individuals compared with uninfected conspecifics, with 

this being a compensatory mechanism to overcome some of the energy costs caused by 

the parasite. Thus, irrespective of parasite manipulation, infections can markedly alter 

the host phenotype and this can have marked consequences for host ecology, such as 

through parasite mediated competition (Section 1.2.4).  

 

1.2.4 Parasite mediated competition and coexistence 

Parasite mediated competition can be extremely complex and occur within and between 

species, with the potential for important outcomes at the ecosystem level (Holt and 

Pickering 1985; Holt and Dobson 2006; Hatcher et al. 2012). In its simplest form, a 

parasite species will have a positive or negative effect on the competitive ability of its 

host with a clear and specific single outcome - most likely increased or reduced access 

to a shared resource (Kuris et al. 2008; Hatcher et al. 2012). However, more complex 

and likely scenarios have been proposed and observed (Hernandez and Sukhdeo 2008; 

Kuris et al. 2008; Hatcher and Dunn 2011; Hatcher et al. 2012).  

 

At an intraspecific level, the competitive ability of infected hosts may reduce compared 

to their uninfected conspecifics, potentially leading to intra-specific niche partitioning 

(Hatcher et al. 2012). For inter-specific competitive interactions, parasites can enhance 
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the ability of the host to compete if it is more resistant to the parasite than its 

competitors. This is most evident in introductions of non-native species, such as the 

grey squirrel (Sciurus carolinensis) and red squirrel (Sciurus vulgaris) in relation to the 

parapox virus, and signal crayfish (Pacifastacus leniusculus) and white-clawed crayfish 

(Austopotamobius pallipes) with crayfish plague (Aphanomyces astaci). In both of these 

examples, the introduced host species act as a resistant carrier, transmitting the pathogen 

to the highly susceptible native hosts, reducing the native host’s ability to compete due 

to the infection consequences (Reynolds 1988; Alderman et al. 1990; Naura and 

Robinson 1998; Daszak 2000; Tompkins et al. 2002, 2003). Conversely, parasites can 

reverse competitive interactions where one host species outcompetes another in the 

absence of a parasite, but due to lower resistance to the parasite, they develop infections 

and subsequently the competitive interaction becomes more symmetrical (Park 1948; 

Hatcher et al. 2006). Apparent competition occurs when two host species that do not 

normally compete are infected by the same parasite species that creates a link between 

them and creates an indirect competitive interaction (Hatcher et al. 2006; 2012). This 

competition is generally driven by one host species being more resistant to the parasite 

and acting as a reservoir that feedbacks greater parasite pressure on to the other host 

species (Hatcher et al. 2006). 

 

Whilst parasites are, by definition, only a negative presence for their hosts, it has been 

highlighted in many recent reviews that they are actually essential components of 

ecosystems and can be beneficial in a wider context (Hudson et al. 2006; Hatcher and 

Dunn 2011; Hatcher et al. 2012). A key component of the positive influence parasites 

can have on non-host species is through parasite mediated coexistence. This is where 

infection with a parasite supresses the interspecific competitive ability of its host 
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sufficiently to enable the host species to coexist with an otherwise inferior competitor 

species. The effect can even be as extreme as to allow a species to colonise an area 

when it would otherwise be competitively excluded by the host species. For example, 

two Caribbean Alonis lizard species are only able to coexist when the malarial parasite 

Plasmodium azurophilum reduces the competitive ability of Alonis gingivinius (Schall 

1992). Parasites can futher influence the coexistence of hosts by mediating intraguild 

predation (MacNeil et al. 2003; MacNeil and Dick 2011). MacNeil et al. (2003) showed 

that infection with an acanthocephalan parasite (Echinorhynchus truttae) limted the 

predatory impact of the non-native G. pulex on native Gammarus duebeni, reducing the 

impact of the invader and facilitating the coexistence of the two species.  In this way, 

parasite mediated coexistence can be important in maintaining species richness and 

patterns of biodiversity. 

 

1.2.5 Trophic niche specialisation 

Understanding how parasite infections can have consequences beyond the individual 

hosts can utilise evaluations that assess intra-specific trophic niche sizes and 

specialization (Britton and Andreou 2016). The trophic niche describes the overall 

dietary choices of a given population. A larger trophic niche will reflect increased 

diversity in diet composition; as the trophic niche declines in size it reflects a more 

restricted diet, i.e. specialisation. It is well known that inter-individual variation in 

trophic niche can occur within a population due to sex and age class (Shine 1989). 

However, it is increasingly recognised that more general variability in intra-specific 

trophic niches occurs, with specialization in the diet of some individuals then resulting 

in an increased population trophic niche size (Bolnick et al. 2003; Evangelista et al. 

2014). 
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The population trophic niche can thus be thought of as comprising of several sub-sets of 

smaller trophic niches, in which each sub-set is comprised of individuals exhibiting 

some differences in their traits that affect their foraging (Araujo et al. 2011). The 

ecological drivers of these population niche sub-sets cover a range of individual traits 

and ecological factors (Bolnick et al. 2003), with studies suggesting three major drivers: 

competitive interactions, predation and ecological opportunity (Araujo et al. 2011). For 

example, should intraspecific competition increase across the population then some 

increased intraspecific specialisation might be expected as individuals increasingly 

compete for the same resource (Araujo et al. 2011). Conversely, elevated interspecific 

competition can decrease intraspecific specialisation as, due to high exploitation, 

resources become limiting and individuals expand their diet (i.e. become more general) 

in order to maintain their energetic requirements (Constantini et al. 2005). This 

reduction in intraspecific specialisation is also apparent when individuals are under 

predator pressure (Eklov and Svanback 2006). Both this effect of predation and the 

respective effects of intra- and inter-specific competition are ultimately a result of a 

change in ecological opportunity, which effectively describes the potential niche 

available to an individual (Araujo et al. 2011). 

  

Whilst competitive interactions, predation and ecological opportunity have been 

recognised as the drivers of trophic niche specialization (Araujo et al. 2011; Evangelista 

et al. 2014), what is less apparent is how infection by a parasite that modifies host 

behaviour (e.g. habitat utilisation, foraging rate, time budgets) influences the population 

trophic niche (Britton and Andreou 2016). Thus, the theory of intra-specific trophic 

niches provides a framework that can be used to test how infection by a parasite 



37 
 

influences the trophic niche of the host population and any shifts that can then have 

cascading consequences for inter-specific trophic and competitive relationships. It 

should also identify whether infection leads to trophic niche constriction, where the diet 

of hosts become more specialised and thus their population trophic niche size remains 

largely unaltered. Conversely, the infected specialist individuals might be exploiting 

alternative resources due to either parasite manipulation or modification, resulting in 

trophic niche divergence that increases the population niche size (Britton and Andreou 

2016). Niche divergence has been reported in C. carpio populations infected with B. 

acheilognathi (Britton et al. 2011; Pegg et al. 2015), resulting from the mechanisms 

outlined in Section 1.2.3. 

 

1.2.6 Consequences of climate warming on host: parasite relationships 

Current predictions suggest that anthropogenic driven climate change will result in 

some substantial shifts in both temperature and precipitation patterns, with the extent of 

the shift dependent upon current and future emission levels, and the region concerned 

(Trenberth 2011; Anderson and Bows 2011; Chen et al. 2011; Kaufmann et al. 2011). In 

Great Britain, increases in air temperatures of 1.5 to 2 
o
C in the next 50 years are now 

considered inevitable, i.e. they are likely to occur even if emissions decrease (Murphy et 

al. 2009). Freshwater parasites and pathogens are strongly linked with climate and, 

consequently, warming has already significantly impacted disease spread, prevalence 

and severity across a number of systems in the last 20 years (Altizer et al. 2013).  

 

In addition to the more typical consequences that climate warming may have on 

parasites, for example facilitating range expansion or accelerating their growth rates, it 

is likely that there will be many subtle changes in the often highly complex 
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relationships that exist between host and parasite (Brooks and Hoberg 2007; Macnab 

and Barber 2011). Such subtle consequences might still have the potential to 

significantly impact the host species directly and may also result in farther reaching 

consequences for the wider ecosystem. For example, Macnab and Barber (2011) found 

that not only did the parasite S. solidus grow faster at elevated temperatures but also that 

it was able to manipulate its stickleback host to select warmer habitats, potentially 

causing their movements to areas where they might develop novel trophic links (Section 

1.2.4). Warmer temperatures also allow some parasitic organisms to complete their life 

cycles more rapidly and thus attain higher population densities (Marcogliese 2001), 

with Scott and Nokes (1984) revealing that the highest reproduction rate for 

Gyrodactylus bullatarudis occurred at higher temperatures until their thermal maxima 

was reached (30 
o
C). Similarly, for introduced Gyrodactylus salaris, population growth 

rates and their intensity of infections on Atlantic salmon Salmo salar increased as 

temperatures increased (Jansen and Blake 1991). The virulence of a parasite can also be 

directly affected by temperature, with higher virulence of Whirling disease associated 

with temperature increases, which in turn is likely to magnify the impacts of this disease 

on salmonid fishes (Rahel and Olden 2008).  

 

Due to the negative relationship between dissolved oxygen levels and temperature, 

warming will also result in decreased oxygen levels in aquatic systems, making aquatic 

animals particularly vulnerable to climate warming (Ficke et al. 2007). Furthermore, 

parasites that use ectothermic fish as hosts are not buffered by the thermoregulatory 

mechanisms that endothermic hosts possess and hence are likely to be more 

immediately susceptible to environment variation and warming (Macnab and Barber 

2012). Due to these factors, and the high global importance and value of healthy capture 
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fisheries, the effects of aspects of climate change on fish host-parasite relationships 

could be of high ecological and economic importance. 

 

1.3 Indigenous versus non-indigenous parasites 

 

1.3.1 Non-native versus non-indigenous parasites 

In this research, both non-native/ native and indigenous/ non-indigenous parasites are 

used and referred to in relation to Great Britain. To clarify, when non-native is referred 

to, it means the parasite or fish is not naturally found anywhere in Great Britain (the 

converse is true for native, i.e. the species is naturally found in at least some British 

freshwaters). When the term ‘indigenous’ is used, it refers to the part of Great Britain 

where the fish or parasite is naturally found. Where non-indigenous is used, it means the 

indigenous parasite or fish is not naturally found in that part of Great Britain. For 

example, B. acheilognathi originates from Southeast Asia and so is non-native to Great 

Britain (Britton et al. 2011), whereas Pomphorhynchus laevis is an indigenous parasite 

to some rivers in Great Britain, specifically rivers flowing eastwards that were formerly 

linked to the Rhine and Danube river deltas, enabling colonisation at the end of the last 

glacial period (Kennedy et al. 1996). This parasite is, however, not found naturally in 

western rivers in Great Britain, such as the River Severn, but it has been translocated via 

movements of fish, especially European barbel Barbus barbus (Kennedy et al. 1996), 

and thus here it is non-indigenous. Irrespective of whether the parasite is non-native and 

has been introduced, or is non-indigenous and has been translocated, the mechanisms 

and processes involved in their survival, establishment and transmission to new host 

species are likely to be very similar, and thus are treated as such here.  
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1.3.2 Introduced and translocated parasites 

A key feature of the Anthropocene is the translocation and introduction of species 

outside their native range as a direct result of human activity (Ricciardi 2007). Where 

these species become established and have a negative effect on one or more species they 

are considered invasive. The impact of these species, defined by Ricciardi et al. (2013) 

as “a measurable change in the state of an invaded ecosystem that can be attributed to 

the alien species” can vary greatly depending on a number of factors. One key factor is 

the presence of archetypes within the invaded ecosystem (Ricciardi et al. 2013; 

Kumschick et al; 2015). There are many examples where apex predators have been 

introduced to islands that had no experience with such species prior to their introduction 

and the impacts of the alien spcies can be great and alter the entire ecosystem (Wilson et 

al. 1998; Croll et al. 2005; Dunlop et al. 2015). This is of particular importance when 

considering impacts of invasive parasite species as a lack of evolutionary history may 

make hosts particularly vulnerable to heavy infections and severe pathology leading to 

death and in extreme cases host population crashes (Hansen et al. 2016) 

 

Whilst it might be considered that when a free-living species is introduced into a new 

range then its parasite fauna will also be introduced, very often the process of 

introduction filters out many of the parasites that would otherwise have been introduced 

(Blakeslee 2012), with estimates of approximately only two new parasite species being 

introduced for every introduced free-living species (Torchin et al. 2003). The hypothesis 

involved in this is termed ‘Enemy release’ and it forms an integral component of any 

study that considers how non-native parasites might influence native species, food webs 

and ecosystems. It predicts that the parasite loss experienced by introduced species 

enhances their ability to establish and invade (Keane and Crawley. 2002; Mitchell and 
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Power 2003; Hatcher and Dunn 2011). Indeed, Torchin and Mitchel (2004) suggested 

that introduced species escape at least 75 % of their parasites from their native range 

and thus will gain substantial benefits regarding their fitness and survival in the invasive 

range (Torchin et al. 2003). The enemy release hypotheses (ERH) has been used as the 

basis to explain the invasion success of a diverse range of species, including non-native 

slugs (Ross et al. 2010), mosquitoes (Aliabadi and Juliano 2002) and frogs (Marr et al. 

2008).  

 

When a non-native parasite does get introduced into a new ecosystem then as well as 

infecting their non-native host species, they have the potential to ‘spillover’ into the 

native community (cf. Chapter 5). If a non-native parasite is able to infect native hosts 

in this manner, then the consequences can be severe due to the lack of coevolution 

between the parasite and host (Taraschewski 2006; Blanchet et al. 2010). In general, 

there are strong examples of how non-native fish pathogens have resulted in severe 

outcomes, including the non-native monogenean (Nitzschia sturionis) introduced to the 

Aral Sea by the Caspian Sea sturgeon (Huso huso) that has resulted in substantial 

declines in populations of native Aral Sea sturgeon (Acipenser nudiventris) (Dogiel et 

al. 1958). Introductions of non-native monogenean parasites can result in severe 

outcomes when they spillover in to native fishes (Bauer et al. 2002; Bakke et al. 2007), 

for example, G. salaris caused very high mortalities in Atlantic salmon in over 40 

Norwegian rivers and resulted in some severe management practises to control the 

outbreak (Johnsen and Jensen 1986).  

 

In addition to the non-native free-living species introducing at least some components 

of their parasite fauna, it can also be the case that native parasites can infect non-native 
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species. Depending on the severity of infection, this could provide some ‘biotic 

resistance’ to the species, inhibiting their ability to survive and establish in their new 

environment (Mitchell and Power 2003; de Rivera et al. 2005). 

 

1.3.3 Potential trophic consequences of non-native parasites 

Whilst only a small number of non-native parasites might get introduced with their free-

living hosts, these parasites might be transmitted to native hosts (parasite spill-over) 

(Section 1.3.2). The non-native fish might then act as a reservoir of native parasites and 

cause subsequent disease outbreaks in the native hosts (parasite spillback). 

Transmission of non-native parasites to naïve hosts (including the same species as the 

introduced host but an inexperienced population that has yet to encounter the parasite) 

can then have substantial consequences at the individual level (e.g. G. salaris in S. 

salar) (Jansen and Blake 1991). What is less known, certainly compared with native 

parasites, is how these host consequences of infection by non-native parasites translate 

into population, community and food web consequences (Britton 2013).  

 

1.3.4 Ecological consequences of native parasites  

Parasites can have substantial biological and ecological consequences for individual 

hosts and their populations, irrespective of their origin (Section 1.2). In the last 10 

years, there has been an increasing focus on how the incorporation of parasites in food 

webs affects their structures and properties (Lafferty et al. 2006). ‘Infectious food webs’ 

are those food webs in which parasites have been included and they are usually 

compared to their structure and metrics when parasites are omitted. These infectious 

food webs tend to have increased chain length, linkage density, nestedness and 

connectedness (Hudson et al. 2006; Lafferty et al. 2006; 2008). As a result, food webs 
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with parasites omitted tend to be incomplete and overly simplistic. Moreover, it is 

increasingly recognised that native parasites are integral to the structuring and 

functioning of ecosystems (Hudson et al. 2006, Lafferty et al. 2008).  

 

Nevertheless, these studies have tended to focus primarily on food web topology, i.e. 

the qualitative overview of food web structure. What is less apparent is how parasites 

modify the quantitative food web. Given that native parasites can have substantial 

consequences for individual hosts that can be additive as levels of biological 

organisation scale up to population and community levels (Section 1.2) then there is 

potential for them to have considerable consequences for the quantitative food web. 

Indeed, the completion of complex parasite lifecycles, their mediation of population 

abundance, and alterations in the symmetry of competitive interactions, habitat 

utilisation and acquisition of food resources, can all have substantial consequences for 

the competitive relationships between species, the trophic niche size of the host 

population (Section 1.3) and thus food web structure overall. As these aspects might not 

be captured easily by topological analyses, then alternative approaches using more 

quantitative methods, such as stable isotope analysis, should be considered (Pegg et al. 

2015; Britton and Andreou 2016; Section 1.4). 

 

1.3.5 Pomphorhynchus laevis as a model parasite to test infection consequences 

between indigenous and non-indigenous ranges 

It was mentioned in Section 1.3.1 that the freshwater parasite P. laevis has both an 

indigenous and non-indigenous range in Great Britain and so provides opportunities to 

test differences in infection consequences between these ranges. This parasite has a 

complex lifecycle, utilising G. pulex as an intermediate host before reaching its final 
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host that could be any one of several species of freshwater fish. It is thus considered a 

generalist parasite (Figure 1.1). Although P. laevis has received a great deal of research 

attention over the last 40 years, there still remains some conflicting findings with regard 

to the extent of its host manipulation in G. pulex (Poulton and Thompson 1987; Bakker 

et al. 1997; Bollache et al. 2002; Koldonski et al. 2009; Durieux et al. 2012; Perrot-

Minnot et al. 2014; Chapter 3). Another area of research on this parasite lacking clarity 

is the extent to which it is able to utilize different fish species as final hosts. Whilst B. 

barbus and Squalius cephalus are known preferred final hosts of P. laevis (Hine and 

Kennedy 1974; Kennedy et al. 1978), adult parasites are also frequently found in 

smaller bodied, more abundant fish species with evidence of them being able to 

reproduce and complete their lifecycles in these hosts, as well as them providing a 

potential paratenic route of infection to a piscivorous host (Kennedy et al. 1978; 

Kennedy 1996; Medoc et al. 2011). Despite this, there remains limited knowledge on 

the importance and roles of these small-bodied fishes as hosts, with little consideration 

given to how this might influence population structuring, adaptive manipulation 

behaviours, and the overall ecological consequences of P. laevis for freshwater food 

webs. 

 

1.4 Stable isotope analysis to study the ecological consequences of parasite 

infections 

 

The analysis of ecological parameters that involve fish as secondary and tertiary 

consumers, such as metrics relating to food web structure and trophic niche size, has 

traditionally been completed through stomach content analysis. This method is, 

however, problematic for a number of reasons, including it being incapable of 
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determining the extent to which a fish is assimilating their energy from their putative 

food resources - either other fish or invertebrates (Paradis et al. 2008). It also often 

requires relatively large sample sizes collected over prolonged periods of time. 

Substantial increases in the understanding of trophic relationships between species and 

their putative food sources have been gained through stable isotope analyses (SIA) 

(Vander Zanden et al. 1999; Grey 2006). As the ratios of the stable isotopes of carbon 

(
13

C: 
12

C) and nitrogen (
15

N: 
14

N) vary predictably from resource to consumer (Fry 

2006), they enable reconstruction of the trophic structure and the analysis of the trophic 

niche sizes and the overall food web structure (Grey 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Lifecycle of Pomphorhynchus laevis. Free living parasite eggs hatch in the 

water and are consumed by the intermediate host Gammarus pulex where the acanthella 
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grows into an infective cystacanth. When an infected G. pulex is consumed by a suitable 

fish host the cystacanth is activated by the digestive enzymes in the gut of the fish and 

penetrates the gut wall with its characteristic spiny proboscis attaching itself irreversibly 

to the gut. Here it matures into an adult worm and reproduces, releasing eggs into the 

host which are excreted with the host’s faeces into the water, thus completing the 

lifecycle. 

 

 

The carbon values (δ
13

C) of a consumer indicate their energy source as animals that 

feed on the same food source display an isotope composition similar to each other and 

to the food they assimilate for growth (DeNiro and Epstein 1978; Fry and Sherr 1984). 

The stable nitrogen isotope (δ
15

N) typically becomes enriched by 3 to 4 % between prey 

and predator tissue and so is an indicator of consumer trophic position (Deniro and 

Epstein 1981; Minagawa and Wada 1984; Figure 1.2). This application of stable isotope 

techniques, using the predictable relationship between the isotopic composition of 

consumers and their diet, is sufficiently powerful to detect long-term (e.g. 3 to 6 

months) dietary differences between individuals of the same population (Gu et al. 1997; 

Beaudoin et al. 1999; Fry 2006), such as those that are parasitized with a specific 

parasite and those that are uninfected (Britton et al. 2012). 
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Figure 1.2. Representation of a stable isotope bi-plot showing the increase in trophic 

level with increases of approximately 3
0
/00 in δ

15
N and 1

0
/00 in δ

13
C. (Source- Chris 

Harrod).  

 

1.5 Research aim, objectives and thesis structure 

 

It has been discussed throughout this Chapter that parasites can have considerable 

consequences for their freshwater fish hosts, whether they are intermediate or final 

hosts. Whilst there is a great deal of extant knowledge on some of these consequences, 

there also remains some considerable knowledge gaps, especially in relation to the 

response of potential fish hosts to intermediate hosts subjected to parasite manipulation 

and the consequences of infections of the generalist parasite P. laevis for small bodied 

fish final hosts. There are also knowledge gaps on the extent of ‘enemy release’ for non-

native fish in Great Britain, and the quantitative consequences of infection by native 
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parasites for the trophic ecology of native fishes. Thus, the aim of this research was to 

assess aspects of the ecological consequences of infection by introduced and native fish 

parasites for their intermediate and final hosts, using Great Britain as the model region. 

The research objectives, data chapters and their rationale were: 

 

Objective 1.  

Identify the consequences for parasite virulence and host susceptibility to elevated water 

temperatures expected under climate change projections. 

 

This was completed in Chapter 2 (‘Interactions of warming and exposure affect 

susceptibility to parasite infection in a temperate fish species’). The rationale of the 

chapter was two-fold. Firstly, using P. laevis as the model parasite, it enabled testing of 

the effects of different levels of parasite exposure levels and water temperatures on the 

infection levels of a potential host. Secondly, it served as a pilot study to identify how 

controlled P. laevis infections could be produced in laboratory conditions for 

completing Objective 2. 

 

Objective 2.  

Assess fish foraging responses to intermediate gammarid hosts to test hypotheses on 

parasite manipulation.  

 

This was completed in Chapter 3 (‘Comparative functional responses of fishes reveal 

differences in the consumption rates of prey populations infected with an 

acanthocephalan parasite’). The work tested whether infected and uninfected fish final 

host species consumed higher numbers and proportions of prey populations when they 
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were infected with P. laevis and determined the underlying mechanisms involved in 

driving the behaviour of the intermediate and final hosts.  

 

Objective 3. 

Quantify the infections of P. laevis in wild fish communities across their indigenous and 

non-indigenous range through investigation of infection consequences in small-bodied 

fishes.  

 

This was completed in Chapter 4 (‘Infections of Pomphorhynchus laevis in fish final 

hosts in their indigenous and non-indigenous ranges: prevalences, pathology and 

trophic consequences’). The chapter studied five fish communities where P. laevis is 

present, three in the indigenous range and two in the non-indigenous range, and focused 

primarily on bullhead Cottus gobio, minnow Phoxinus phoxinus and stone loach 

Barbatula barbatula, as despite their high numerical presence in many rivers where P. 

laevis is present, their potential roles in the lifecycle of the parasite are often overlooked 

in favour of working on species such as brown trout Salmo trutta.  

 

Objective 4. 

Evaluate the parasite fauna associated with introduced non-native fishes in Great Britain 

to determine the extent of enemy release and parasite acquisition in these fishes.  

 

This was completed in Chapter 5 (‘Parasites of non-native freshwater fishes introduced 

into England and Wales suggest enemy release and parasite acquisition’). The work 

was constrained to England and Wales rather than Great Britain, as data were 

unavailable from Scotland. The research investigated the parasite fauna of a range of 
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non-native fish to determine whether enemy release was evident (Section 1.3.2) and the 

extent to which these introduced fish had then acquired native parasites, and the 

potential consequences of this.  

 

Objective 5. 

Assess the infection and trophic consequences of native fish parasites in native fishes to 

identify whether there is evidence that parasite infections can drive trophic niche 

specialisation in host populations.  

 

This was completed in Chapter 6 (‘Trophic consequences of infection by native 

parasites for native fishes: evidence of niche specialisation driven by parasitism?’). The 

building argument in this work was that it might be the complexity of the parasite 

lifecycle that plays the key role in determining the extent of the consequences for the 

host, rather than the origin of the host (i.e. sub-lethal consequences might be largely 

independent of whether the parasite is native/ non-native, or indigenous/ non-

indigenous). Thus here some sublethal consequences of infection by three native fish 

parasites were assessed for some native fish hosts. The focus was on trophic niche 

specialisation (Section 1.2.5). 

 

Chapter 7 was the final chapter (‘Discussion’) and provided an overview and evaluation 

of the results of each chapter to bring together the main outputs in the context of the 

wider literature base.  
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Chapter 2 

Interactions of warming and exposure affect susceptibility to parasite 

infection in a temperate fish species 

 

 

This chapter has been published as the following: 

 

Sheath, D.J., Andreou D. and Britton J.R. (2016) Interactions of warming and exposure 

affect susceptibility to parasite infection in a temperate fish species. Parasitology 1-7 
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2.1 Summary 

 

Predicting how elevated temperatures from climate change will alter host-parasite 

interactions requires understandings of how warming affects host susceptibility and 

parasite virulence. Here, the effect of elevated water temperature and parasite exposure 

level was tested on parasite prevalence, abundance and burden, and on fish growth, 

using P. laevis and its fish host S. cephalus. At 60 days post-exposure, prevalence was 

higher at the elevated temperature (22 
o
C) than ambient temperature (18 

o
C), with 

infections achieved at considerably lower levels of exposure. Whilst parasite number 

was significantly higher in infected fish at 22 
o
C, both mean parasite weight and parasite 

burden was significantly higher at 18 
o
C. There were, however, no significant 

relationships between fish growth rate and temperature, parasite exposure, and the 

infection parameters. These results reveal that whilst elevated temperature significantly 

influenced parasite infection rates, it also impacted parasite development rates, 

suggesting warming could have complex implications for parasite dynamics and host 

resistance.  
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2.2 Introduction 

 

Climate change is predicted to alter host-parasite relationships during this century, 

especially where warming combines with other anthropogenic disturbances (Rohr et al. 

2011; Paull et al. 2012; Lõhmus and Björklund 2015). In northern latitudes, where 

climatic factors are important regulators of host-parasite population dynamics and 

parasite occurrence, and transmission is regulated by seasonal temperature changes, 

shortened winter periods could alter host-parasite relationships via alterations in host 

susceptibility and parasite virulence (Hakalahti et al. 2006; Lõhmus and Björklund 

2015). Should growth rates of the hosts and parasites be altered by temperature changes 

then pathology and transmission rates could also be affected (Raffel et al. 2006; Lafferty 

2009). Consequently, predictions tend to be for warming to increase the prevalence of 

parasites at higher latitudes (e.g. Harvell et al. 2002; Marcogliese 2001; 2008), although 

there is limited empirical evidence to support this at present (Ward and Lafferty 2004; 

Bentley and Burgner 2011; Lõhmus and Björklund 2015). 

 

An understanding of how host-parasite interactions will shift under the effects of 

warming, and the consequences for host populations and their communities, is thus an 

important aspect of environmental management (Lafferty 2009; Macnab and Barber 

2012). Integral to this is developing understanding of how elevated temperatures affect 

host susceptibility to infection versus their effects on parasite virulence and life cycle 

completion rates (Harvell et al. 2002; Altizer et al. 2013). The susceptibility of hosts to 

infection could increase through, for example, thermal stress that leads to reduced 

immune-competency (Weyts et al. 1999; Nikokelainen et al. 2004) and enhanced 

consumption rates of prey that leads to increased parasite exposure via intermediate 

http://europepmc.org/abstract/MED/16768854/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0018995
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hosts (Toscano et al. 2014). Parasite fitness and transmission rates could be enhanced by 

warming through positive effects on their metabolism, resulting in higher numbers of 

transmission stages being produced, with their rate of development and growth within 

hosts also accelerated (Paull and Johnson 2011; Callaway et al. 2012). However, should 

warming result in the temperature optimum for the parasite being exceeded, then their 

decreased prevalence in host populations might result, with suggestions that increased 

parasite prevalence due to warming will only occur for a proportion of fish pathogens 

(Karvonen et al. 2010). Consequently, there is an outstanding requirement to derive 

enhanced understanding of how warming will affect host-parasite dynamics, particularly 

the decoupling of the underlying mechanisms involved, i.e. the effects of warming on 

host susceptibility versus on parasite transmission and virulence. 

 

The aim of this Chapter was thus to test how elevated temperature affected host 

susceptibility to infection under different parasite exposure levels, and how this affected 

parasite prevalence and intensity. The objectives were to quantify how temperature and 

parasite challenges affected: (i) infection outcomes (as parasite prevalence), (ii) host 

infection parameters (as parasite abundance, mean individual weight and burden); and 

(iii) host somatic growth rates. Outcomes were assessed in relation to the effects of 

temperature elevation on the host-parasite relationship and the potential mechanisms 

involved. The model parasite was P. laevis, an acanthocephalan with a complex 

lifecycle whose final hosts are a wide range of fishes (Neveda et al. 2003). The model 

final host was S. cephalus, a preferred freshwater fish host of P. laevis (Hine and 

Kennedy 1974). This parasite uses the freshwater shrimp G. pulex as its intermediate 

host. It is a conspicuous orange-yellow parasite that is visible through the transparent 

cuticle of G. pulex (Bakker et al. 1997) enabling external examination of individual live 
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G. pulex for identification of their parasite status (infected/ uninfected), the number of 

parasites it is infected by and the infectious status of those parasites (Section 1.3.5; 

Figure 1.1). Transmission to fish hosts is via consumption of infected G. pulex, with 

some evidence that the parasite manipulates the behaviour of this intermediate host to 

increase their probability of being preyed upon and so assisting their transmission to the 

final host (e.g. Franceschi et al. 2008; Dianne et al. 2011; Labaude et al. 2015).  

 

2.3 Materials and methods 

 

2.3.1 Experimental design and pre-experiment data collection 

The S. cephalus used in the experiment were all between 69 and 89 mm starting length 

(mean 80.8 ± 0.8 mm) and age 1+ years. They were sourced from an aquaculture site in 

Southern England in August 2014. Although they had not been exposed to the parasite 

during their lifetime, they were produced from broodstock that had originally been 

collected from a river where P. laevis was present naturally (River Kennet, Berkshire, 

England). On the aquaculture site, the fish were reared in outdoor ponds (approximate 

water temperatures at the time of collection: 15 to 19 
o
C), with some supplementary 

feeding with pelletized fishmeal. On arrival to the laboratory, the fish were tagged with 

passive integrated transponder tags (PIT tags) so that individual fish could be tracked 

through the experiment. Concomitantly, they were measured (fork length, nearest mm) 

and weighed (W, nearest 0.1 g). They were then allowed to recover and acclimate to 

laboratory conditions by being held in tanks held at 18 
o
C for 14 days on a 16:8 hour 

light: dark cycle. In addition, a sub-sample of 5 fish were removed from the sample on 

arrival to the laboratory. These were euthanized and dissected to check for the presence 

of P. laevis. None of these fish were infected. Infections of other parasites were very 
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light and considered part of the natural parasite fauna of the fish in Southern England. 

Recorded levels were not considered high enough to cause clinical pathology (Hoole et 

al. 2001). 

 

2.3.2 Parasite exposure 

The S. cephalus were challenged by P. laevis by exposing individuals to known 

numbers of infected G. pulex. These were collected from a local river, the Hampshire 

Avon (latitude: 50.8865, longitude: -1.7883), when water temperatures were 

approximately 18 
o
C. They were then held in laboratory conditions at 18 

o
C for 96 

hours, with infectious individuals then identified visually (Bakker et al. 1997; Bauer and 

Rigaud 2015), with a subset confirmed by dissection (N = 30, all infected). As multiple 

infections were identifiable in the G. pulex (Bakker et al. 1997), then individuals were 

only used here that were host to one parasite. Exposure of the fish to the parasite was 

done individually, with the fish transferred to 10 L tanks containing dechlorinated water 

with supplementary oxygenation provided via an air stone and pump, and at a water 

temperature of 18 
o
C. Prior to parasite exposure, the fish were held in the tanks for 24 

hours with no feeding to ensure standardised levels of hunger.  

 

Each individual fish was then exposed to a specific number of infected G. pulex from 

the following options: 0 (as a control), 5, 10, 20, 40 and 60. There were 10 fish used at 

each level of exposure. After 24 hours, the fish were removed from the tanks, with 

confirmation that all the G. pulex had been consumed. For each exposure level, the fish 

were then split randomly into 2 groups of 5 and transferred into 45 L tank aquaria at 

either 18 or 22 
o
C. These tank aquaria were arranged on a flow-through system using 

recirculated water (originally dechlorinated tap water), with a different system used for 
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each temperature. Across the two flow-through systems used, the tanks were identical in 

dimensions, the water was taken from the same original source, and the tanks contained 

identical environmental enrichment for the fish in terms of refugia (lengths of plastic 

pipe of 65 mm diameter) and cover (artificial macrophytes).  

 

2.3.3 Post-experiment data collection and analysis 

Following their exposure to P. laevis, the fish were held in their tanks for 60 days under 

a 16:8 hour light: dark regime, with feeding daily using crushed pelletized fishmeal 

(approximately 2 % mean starting body mass/ day). At the end of this period, the fish 

were removed from their tanks, euthanized, identified by scanning their PIT tag, re-

measured and weighed. They were then dissected, with intestinal examinations to 

identify individuals in which infections by P. laevis had developed. For infected fish, 

parasites were removed, counted and weighed (mg).  

 

These data enabled parasite prevalence to be assessed as the proportion of infected fish 

per temperature/ exposure treatment. The effects of temperature (T) and parasite 

exposure (PE; as the number of consumed intermediate hosts) on parasite prevalence 

were then tested using a probability of infection (PoI) model using binary logistic 

regression in: PoI = e
(a+bT+cPE) 

/ 1+ e
(a+bT+cPE)

, where a, b and c were binary logistic 

regression coefficients (Equation 2.1). This also provided the significance of both 

variables on parasite prevalence. As the tank conditions were identical across the 

individual fish, with only water temperature and levels of exposure to the parasite via 

intermediate hosts being different, then the model did not take account of the fish being 

within different tanks per temperature treatment; i.e. the individual fish were being 

treated as the replicate unit in the model. 
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The following infection parameters were then calculated from the data of the infected 

fish. Parasite abundance was determined as the total number of parasites per host and 

the total mass of parasites per host, and enabled calculation of the mean parasite weight 

per host. Parasite burden was calculated as the proportion of the body weight of each 

host comprising P. laevis (Pegg et al. 2015). Differences in these infection parameters, 

plus parasite prevalence, between temperatures were tested using generalized linear 

models (GLM), with parasite exposure level as the covariate. In all models, data on 

uninfected fish were not included as their inclusion in the models would introduce a 

bias in outputs, given the higher numbers of uninfected fish at the lower temperature/ 

levels of parasite exposure. For parasite number, a Poisson log-linear model was used as 

the data represented parasite counts. As with the binary logistic regression model, the 

data for individual fish in these models were used as the replicate units due to the 

identical conditions the fish were in, i.e. this was not considered as artificially inflating 

the number of degrees of freedom in the models that would otherwise result in pseudo-

replication. The reported model outputs then included the mean value of the infection 

parameters per temperature treatment (as estimated marginal means, with the effects of 

parasite exposure as the covariate controlled in the model) and their standard error. To 

identify if differences between these mean values were significant, linearly independent 

pairwise comparisons were used with Bonferroni adjustment for multiple comparisons. 

Differences in infection parameters were then tested between the parasite exposure 

levels using the same process, except temperature was used as the covariate in these 

models.  

 

Finally, to determine if infection influenced the growth rate of the fish, specific growth 

rate (SGR) was calculated as the change in body mass of the fish over the experimental 
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period, from [lnWt+1 – lnWt] / t] × 100, where Wt = starting weight, Wt+1= finishing 

weight, and t = number of days between Wt and Wt+1. Differences in specific growth 

rates of fish between temperatures and parasite exposure levels were then tested using 

GLMs as described above, with multiple linear regression analysis then used to test the 

influence of the infection parameters, temperature and parasite exposure on SGR. This 

provided the significance of the predictor variables and their standardized beta 

coefficients (). Variables with the highest  value had the strongest singular 

contribution to the model.  

 

2.4 Results 

 

2.4.1 Probability of infection 

At the conclusion of the 60 days after parasite exposure, there were considerable 

differences in infection levels apparent between temperatures and exposure levels 

(Figure 2.1). The logistic regression model revealed both temperature and exposure 

level had significant effects on parasite prevalence (Figure 2.1; Table 2.1). At 18 
o
C, 

infection required higher parasite exposure levels compared with 22 
o
C, with 50 % 

prevalence requiring exposure to 6 intermediate hosts at 22 
o
C, but 26 at 18 

o
C (Figure 

2.1). 

 

 

 

 



60 
 

Table 2.1. Binary logistic regression coefficients (cf. Equation 2.1), and their statistical 

significance, for the probability of infection of Squalius cephalus by Pomphorhynchus 

laevis according to temperature and parasite exposure.  

 

Figure 2.1. Relationship between parasite exposure and (i) proportion (0-1) of infected 

fish at 18 
o
C (filled circles) and 22 

o
C (open circles), and (ii) probability of infection (0 

to 1 scale) according to binary logistic regression (cf. Table 2.1; Equation 2.1) at 18 
o
C 

(solid line) and 22 
o
C (dashed line). 

Parameter Symbol in Equation 2.1 Coefficient Standard error P 

Constant a -18.97 6.21 0.02 

Temperature b 0.82 0.28 <0.01 

Parasite exposure c 0.16 0.05 <0.01 
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2.4.2 Infection parameters 

The GLM testing the effect of temperature on the parasite abundance in the infected fish 

revealed that there were significant differences in the mean numbers of parasites 

between the two treatments (Wald 
2 

= 4.23, P = 0.04), with mean parasite number 

significantly higher at 22 
o
C than 18 

o
C (P < 0.01; Figure 2.2a). The effect of exposure 

on parasite abundance also revealed significant differences in mean number (Wald 
2 

= 

20.46, P < 0.01), with significantly higher numbers of parasites per infected fish at 

exposure to 40 intermediate hosts (mean number: 7.80 ± 0.98) than at all than other 

exposure levels (mean numbers: 2.42 to 3.46; P < 0.01 in all cases; Figure 2.2b). In both 

GLMs, the effect of the covariate was also significant (P < 0.05).  

 

Temperature was not a significant predictor of parasite abundance when it was 

measured as the total parasite mass in the infected fish (Wald 
2 

= 0.01, P = 0.92; Figure 

2.2c), but parasite exposure was (Wald 
2 

= 13.10, P = 0.01). Mean total parasite mass 

was higher at 40 intermediate hosts (mean parasite mass: 24.23 ± 3.06 mg) than all 

other exposure levels (mean parasite mass range: 9.02 to 17.12 mg), although the 

differences were only significant between 40 and 60 hosts (difference 15.20 ± 4.35 mg; 

P < 0.01) (Figure 2.2d).  

 

The mean weight of individual parasites in the infected fish was significantly influenced 

by temperature (Wald 
2 

= 9.48, P < 0.01), being higher at 18 than 22 
o
C (P < 0.01; 

Figure 2.2e). The effect of parasite exposure on the mean weight of individual parasites 

was also significant (Wald 
2 

= 13.29, P < 0.01), with higher means at lower exposure 

levels (Figure 2.2f). The effect of temperature on parasite burden was significant (Wald 
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
2 

= 15.37, P < 0.01), with significantly higher burdens at 18
 
(0.23 ± 0.03 %) than 22 

o
C 

(0.06 ± 0.03 %) (P < 0.01). The effect of exposure on parasite burden was, however, not 

significant (Wald 
2 

= 7.63, P = 0.11).  

 

2.4.3 Fish growth 

Mean fish weight at the start of the experiment was 5.20 ± 0.16 g and at the end was 

7.89 ± 0.31 g. The effect of temperature and parasite exposure on fish growth (as SGR) 

was not significant in either GLM (Wald 
2 

= 0.01, P = 0.91; Wald 
2 

= 5.01, P = 0.28 

respectively). Multiple regression revealed the effects on SGR of all infection 

parameters, exposure and temperature were not significant (R
2 

= 0.11; F5,23 = 0.77, P = 

0.56), with no significant predictors (all P > 0.05).  
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Figure 2.2. Mean adjusted parasite number and mass, and mean parasite weight per fish 

(from generalised linear models) according to temperature (a, c, e), where parasite 

exposure was the model covariate, and parasite exposure (b, d, f), where temperature 

was the covariate. Error bars represent standard error. 

 



64 
 

2.5 Discussion 

 

Elevated water temperature had a significant and positive effect on parasite prevalence, 

with parasite infections developing from exposure to lower numbers of intermediate 

hosts in the warmer water. Despite these clear differences in prevalences, the effects of 

temperature and parasite exposure on the infection parameters of the individual hosts 

were relatively complex. Although elevated temperature resulted in increased parasite 

number in hosts, this involved a trade-off with their mass, with significantly smaller 

parasites present in hosts held at higher temperatures and resulting in significantly lower 

parasite burdens. These outputs on the infection parameters are a contrast to Macnab 

and Barber (2012), who revealed that elevated temperature increased the growth rates of 

the parasite S. solidus (Müller) in three-spined stickleback G. aculeatus Linnaeus. 

 

A major challenge in understanding how warming will affect host-parasite interactions 

is decoupling the individual effects of warming on the susceptibility of hosts to 

infection from the effects on parasite virulence. Here, the collection and holding of the 

parasite intermediate hosts, and the holding of the fish and their exposure to the 

parasite, was all completed at 18 
o
C, an ambient temperature representative of temperate 

freshwaters in the late summer period (Britton 2007). The exposed fish were then held 

at either this ambient temperature or an elevated temperature (+4 
o
C) for the 

experimental period. With the initial parasite exposure all being completed at ambient 

temperature, it is suggested that the effect of the sudden temperature elevation in the 

treatment altered the susceptibility of the fish hosts to infection (Hakalahti et al. 2006), 

rather than it affecting the parasite virulence (Lõhmus and Björklund 2015). The sudden 

increase in temperature for this fish meant it was not possible to decouple the effect of 
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temperature on susceptibility per se from the specific effect of the rapid temperature 

increase. Nevertheless, that the net effect of the elevated temperature increased host 

susceptibility to infection was supported by evidence from other studies that suggest it 

often results in substantial negative consequences for fish immuno-competence (Dittmar 

et al. 2014), as it potentially shifts energy allocation from immunological processes 

(Poisot et al. 2009) and/ or acts as an additional stressor that compromises the immune 

response (Cramp et al. 2014).  

 

The complex effects of both temperature and parasite exposure on the infection 

parameters within the hosts were related to either temperature impacting the 

development rate of parasites or the increased parasite number in hosts at elevated 

temperatures resulting in marked density-dependent effects, resulting in relatively high 

densities of parasites with relatively small body sizes (Luong et al. 2011). It is 

suggested that the latter explanation was more consistent with the outcomes of the 

experiment, given that these revealed fish exposed to high numbers of intermediate 

hosts at the ambient temperature resulted in low parasite numbers compared with the 

elevated temperature, but with these parasites being substantially larger, resulting in 

significantly higher parasite burdens.  

 

Notwithstanding, as elevated temperatures can have both marked effects on the 

development rates of parasites in temperate regions (Tinsley et al. 2011) and on fish 

immune function, disease resistance and fitness (Cramp et al. 2014), then it remains 

difficult to definitively decouple the effects of warming on these aspects of the infection 

dynamics from these data. It is thus recommended that these outputs serve as an initial 

assessment of the effects of warming temperatures and parasite exposure levels on these 
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host-parasite dynamics, enabling the design of subsequent experiments of greater 

complexity that should enable, for example, greater assessment of how warming affects 

the development rate of the parasite within hosts, such as their maturity (e.g. Altizer et 

al. 2013), how temperature affects the immune response of hosts (e.g. Nikokelainen et 

al. 2004), and how parasite virulence is affected by the interactions of warming with 

other environmental variables, and the influence of this on selection (e.g. Wolinska and 

King 2009). Given the ease at which it was demonstrated that fish final hosts, such as S. 

cephalus, can be infected experimentally with known numbers of P. laevis via G. pulex 

intermediate hosts, then this host-parasite model would provide a strong model host-

parasite system to answer these questions in both controlled and semi-controlled 

conditions. For example, to decouple the effects of host susceptibility from parasite 

virulence across different temperatures could utilise experiments where the fish and 

intermediate hosts are held at the different temperatures prior to exposure (unlike here, 

where they were all initially held at 18 
o
C) and then used in the experimental design 

used here. Parasites from these initial experiments could then be harvested and used to 

produce laboratory grown parasites in G. pulex that are raised across the different 

temperatures. Their subsequent exposure to the fish would then be completed in a fully-

factorial experimental design that enables quantification of differences in virulence and 

hosts susceptibility across the different generations and rearing temperatures of both G. 

pulex and the host fish. However, another factor that must be considered here is the 

effect of different temperatures on the rates of intermediate host breakdown within the 

fish host’s stomach. MacNeil et al. (2001) demonstrated that amphipods persist in the 

stromach of trout for twice as long as 9.5C as they do at 19.5C. Hence infection 

success of P. laevis may be linked to breakdown times of the intermediate host body 

and the subsequent release of the cystacanth within the final host.  
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Despite the strong effect of temperature on parasite prevalence and development, there 

were no measureable consequences for the hosts, with no differences in the specific 

growth rates of the fish between the controls, temperature and exposure treatments. 

Studies have suggested that P. laevis is a relatively benign parasite in temperate 

European fluvial fishes (Hine and Kennedy 1974), with the effects of acanthocephalan 

parasites generally being more related to the consequences of their pathology rather than 

their loading (Latham and Poulin 2002). Thus, it is suggested that the effect of elevated 

temperature on this host-parasite system was primarily in relation to altering host 

susceptibility to infection, with this then influencing parasite development and 

dynamics via density-dependent mechanisms within hosts. Consequently, the 

importance of these findings are that they indicate that warming could result in 

substantial shifts in disease progression via altered host susceptibility, but potentially 

with concomitant changes in parasite infectivity and development.  
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Chapter 3 

 

Comparative functional responses of fishes reveal differences in the 

consumption rates of prey populations infected with an 

acanthocephalan parasite 
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3.1 Summary 

 

Trophically transmitted parasites with complex lifecycles can manipulate the behaviour 

of their intermediate hosts to increase their likelihood of transmission to the final host. 

The acanthocephalan parasite P. laevis is suggested as manipulating the behaviour of its 

intermediate host G. pulex by reducing their anti-predator responses. However, 

responses of fish to this change in behaviour have not been tested. Comparative 

functional responses were used here to test the hypothesis that fish foraging on infected 

G. pulex would have higher consumption rates and foraging parameters than when 

feeding on uninfected conspecifics. It was tested using three model fishes, the preferred 

final hosts S. cephalus and B. barbus, and the naïve Carassius auratus. Contrary to the 

hypothesis, the functional response models revealed all fishes had significantly higher 

consumption rates of uninfected than infected G. pulex, especially S. cephalus and B. 

barbus. For C. auratus, significant differences were only apparent at high prey 

densities. A foraging experiment exposing S. cephalus and C. auratus to 20 G. pulex of 

varying proportions of infected and uninfected individuals revealed their consumption 

of uninfected G. pulex increased with the proportion available. For infected G. pulex, 

this pattern was also apparent for C. auratus, but was not for S. cephalus. Behavioural 

trials then revealed that predator cues from S. cephalus significantly decreased the 

activity of infected G. pulex, whereas their activity levels in the presence of cues from 

C. auratus were higher than uninfected conspecifics but similar to dechlorinated tap 

water. These outputs suggest this is a complex host-parasite relationship where a range 

of intrinsic and extrinsic factors influences the behaviour of the intermediate host and 

the foraging responses of fish final hosts. Contrary to the parasite manipulation 
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hypothesis, potential final hosts might not always select and consume more infected 

intermediate hosts. 

 

3.2 Introduction 

 

Parasite infections have varying sub-lethal effects on host species, including altering the 

symmetry of competition between infected and uninfected individuals and modifying 

the host phenotype through differences in behaviour and habitat utilisation (Barber et al. 

2000; Hatcher et al. 2006; 2012). These consequences can affect their interactions with 

prey populations, and non-host conspecifics and populations (Hatcher et al. 2012; Pegg 

et al. 2015). Thus, understanding the consequences of parasitism for hosts and the 

behavioural changes invoked in infected individuals is important for understanding their 

ecological and evolutionary relationships (Parker et al. 2003; Perrot-Minnot et al. 2007). 

 

Parasites with complex life-cycles involving trophic transmission often have marked 

phenotypic effects on their intermediate hosts that generally lead to increased 

transmission rates to the final host (Barber 2013; Lélu et al. 2013). There are several 

theories and mechanisms that underpin this aspect of the host-parasite relationship 

(Lafferty 1999). These include the behaviour modification hypothesis, where acquired 

or modified behaviours of the intermediate host assists transmission to the final host 

(Fredensborg 2014), trait mediated effects, where parasite-induced changes in the host 

phenotype can indirectly result in increased predation rates to final hosts (Dunn et al. 

2012) and parasite manipulation, where the parasite directly manipulates host behaviour 

to increase their probability of being predated upon by the final host (Poulin 2013). 

These all attempt to explain the mechanisms by which the parasite is directly or 
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indirectly increasing their probability of being transmitted to the final host (Lefevre et 

al. 2009; Amundsen et al. 2013; Dianne et al. 2014).  

 

Whilst the parasite manipulation hypothesis has received a great deal of research 

attention, (Nickol 2005; Perrot-Minnot et al. 2007), these studies have tended to focus 

on how infection suppresses the anti-predator responses and behaviours of intermediate 

hosts (Kamiya and Poulin 2012; Weinreich et al. 2013; Swartz et al. 2015). The general 

pattern is that infection alters the anti-predator responses of intermediate hosts, a 

process that should increase their vulnerability to predation and thus potentially 

increases parasite transmission to the final host (Perrot-Minnot et al. 2007; Dianne et al. 

2012). Experimental research approaches involve use of olfactory cues and/ or predator 

presence/ absence, with marked differences in responses of infected and uninfected 

individuals (e.g. Perrot-Minnot et al. 2007; Franceschi et al. 2008; Dianne et al. 2011). 

 

The acanthocephalan parasite P. laevis and its intermediate host G. pulex is frequently 

used as a model system to test for parasite manipulation, with it increasingly accepted 

that manipulation increases the probability of the parasite being transmitted to a fish 

final host (e.g. Lagrue et al. 2007; Franceschi et al. 2008; Dianne et al. 2011; Labaude et 

al. 2015). Manipulation is primarily in G. pulex behaviour (Table 3.1), including 

reversal of their anti-predator responses (e.g. Perrot-Minnot et al. 2007). Modification 

of host behaviour only occurs when the parasite reaches its infectious cystacanth stage 

(Franceschi et al. 2008), and generally results in infected individuals decreasing their 

use of refugia and being attracted to predatory cues, increasing their predation risk 

(Cézilly et al. 2000; Kaldonski et al. 2007; Franceschi et al. 2008; Dianne et al. 2011; 

Table 3.1). Nevertheless, not all studies report evidence of manipulation, with 
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variability in host behaviours and manipulation apparent between populations, age and 

sibship (Franceschi et al. 2008; 2010a,b; Table 3.1). Moreover, no studies had then 

tested the response of the fish to the manipulated behaviours of G. pulex, such as 

alterations in their foraging behaviour (e.g. increased consumption rate of infected 

individuals) and prey selectivity (e.g. higher preferences for infected individuals).  

 

Behavioural functional responses describe the resource uptake rate of a predator as a 

function of their resource density (Murray et al. 2016). As they provide strong insights 

into predator-prey relationships (Dick et al. 2014), they can be applied to testing the 

foraging responses of predatory final host species to their prey populations that 

comprise intermediate hosts, such as G. pulex infected and uninfected with P. laevis. 

They can also reveal whether there are energetic costs associated with infection of the 

final host that inhibits their foraging success, as observed in juvenile carp C. carpio 

infected with the non-native parasite B. acheilognathi (Britton et al. 2012). Comparative 

functional response approaches have been developed recently that enable testing of 

differences in functional response parameters and curves between different predator and 

prey species, especially when these involve Type II functional responses (e.g. 

Alexander et al. 2013; Barrios-O’Neill et al. 2014).  

 

Given the potential for P. laevis to manipulate the behaviour of G. pulex in the presence 

of a predator (Table 3.1), this host-parasite system was used with three model fish 

species to test the following hypotheses: (1) the consumption rate and functional 

response parameters of the fishes will be significantly higher when feeding on infected 

versus uninfected G. pulex due to parasite manipulation; (2) specific activities of 

infected G. pulex will be elevated in the presence of fish predator cues compared with 
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their activity in clean water and uninfected conspecifics, explaining the patterns in 

hypothesis 1; and (3) the consumption rate and functional response parameters of 

infected fishes will be significantly reduced compared to uninfected fishes, irrespective 

of the infection status of the prey.
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Table 3.1. Summary of behavioural manipulation of Pomphorhynchus laevis on its intermediate host Gammarus pulex. ‘Alteration’ is relative to uninfected 

individuals, where – reduced, + increased, / no change; ‘Infection’ is either natural or in the laboratory (experimental, where eggs were taken from infected 

individuals of the fish species named); ‘Prevalence’ is parasite prevalence in G. pulex; ‘Predator’ is the fish species used in the experiments; and ‘G. pulex’, 

‘P. laevis’ and ‘Fish’ is the river where they were sourced from and where Sz = Switzerland and Fr = France. *Stickleback Gasterosteus aculeatus; brown 

trout Salmo trutta; perch Perca fluviatilis; bullhead Cottus gobio; chub Squalius cephalus; dace Leuciscus leuciscus; grayling Thymallus thymallus.  

Phenotypic trait Alteration  Infection Prevalence Fish predator* G. pulex P. laevis  Fish Reference 

Photophobia - Natural 16.5 %  Wohlensee, (Sz)   Bakker et al. 1997 

 - Natural 8.8 %  Ouche (Fr)    Bauer et al. 2000 

 - Natural   Ouche (Fr)   Cezilly et al. 2000 

 - Experimental    Suzon (Fr)  Vogue (Fr)  Durieux et al. 2012 

 - Experimental    Suzon (Fr) Vogue (Fr)  Perrot-Minnot et 

al. 2014 

 - Natural   Ouche (Fr)    Tain et al. 2006 

 - Natural 0-80 %  Avon (UK)   Kennedy et al. 

1978 

Appearance + predation  Natural 16.5 % Stickleback Wohlensee (Sz)  Wohlensee (Sz) Bakker et al. 1997 

         

 / predation Natural  Brown trout Ouche (Fr)   Koldonski et al. 

2009 
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Predator cue 

avoidance 

- Natural - Perch Waldibach (Sz)  Lake Lucerne (Sz) Baldauf et al. 2007 

 - Experimental (chub)  Brown trout Suzon (Fr) Vogue (Fr) Aquaculture Diane et al. 2011 

 - Natural 30 % (drift) Bullhead    Kaldonski et al. 2007 

Visual predator 

avoidance 

/ Natural - Perch Waldibach (Sz)  Lake Lucerne (Sz) Baldauf et al. 2007 

Pairing success - Natural 10.9 %  Tille (Fr)   Bollache et al. 2001 

 - Natural 7.4 %  Tille, France   Bollache et al. 2002 

 / Natural 20 %  Tille (Fr)   Poulton and Thompson 

1987 

Competitive 

performance 

+ Natural 10.9 %  Tille (Fr)   Ballache et al. 2001 

Fecundity  - Natural  7.4 %  Tille (Fr)   Ballache et al. 2002 

 - Natural 20 %  Severn, UK   Poulton and Thompson 

1987 

Refuge use - Experimental (chub)  Brown trout Suzon (Fr) Vogue (Fr) Aquaculture Dianne et al. 2011 

 - Experimental (chub)   Chub Suzon (Fr) Vogue (Fr) Not specified Dianne et al. 2014 
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 - Natural 30 % (in drift) Bullhead Ouche (Fr)  Ouche (Fr) Kaldonski et al. 2007 

 - Experimental (chub)   Suzon (Fr) Vogue (Fr)  Perrot-Minnot et al. 

2014 

Foraging rate + Experimental (chub)    Suzon (Fr) Vogue (Fr) Aquaculture Dianne et al. 2011 

 + Experimental (chub)  Chub Suzon (Fr) Vogue (Fr) Not specified Dianne et al. 2014 

Grouping - Experimental (chub)  Brown trout Suzon (Fr) Vogue (Fr) Aquaculture Durieux et al. 2012 

 / Experimental (chub)   Suzon (Fr) Vogue (Fr)  Perrot-Minnot et al. 

2014 

Activity / Experimental (chub)  Brown trout Suzon (Fr) Vogue (Fr) Aquaculture Durieux et al. 2012 

 - Experimental (chub)   Suzon (Fr) Vogue (Fr)  Perrot-Minnot et al. 

2014 

 

Drifting + Natural 0.38 % 

benthos 

6.46 % drift 

 Ouche (Fr)   Lagrue et al. 2007 

 + Natural 84 % in drift 

33.5 % in 

benthos 

 Teme (UK)   McCahon et al. 1991 
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Vulnerability 

to predation 

+  Natural 0.38 % benthos 

6.46 % drift 

Bullhead Ouche (Fr)  Ouche (Fr) Lagrue et al. 2007 

 / Natural 0.38 % benthos 

6.46 % drift 

Frog Ouche (Fr)  Ouche (Fr) Lagrue et al. 2007 

 + Natural 30 % (in drift)  Bullhead Ouche (Fr)  Ouche (Fr) Kaldonski et al. 2007 

 +  Natural  Brown trout, Ouche (Fr)  Aquaculture Kaldonski et al. 2009 

 + Natural  Stickleback Wohlensee (Sz)  Wohlensee (Sz) Mazzi and Bakker 2003 

 + Natural 0-80 % Dace, grayling Avon (UK)  Not specified  Kennedy et al. 1978 
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3.3 Methods 

 

3.3.1 Animal collection and maintenance 

Samples of the intermediate host, G. pulex, were collected for experimental use from the 

River Avon in Hampshire, Southern England (latitude: 50.8865, longitude: -1.7883) 

when water temperatures were approximately 12 to 18 
o
C. They were then held in tank 

aquaria (10 L) in a mix of river and de-chlorinated tap water at 18 
o
C for at least 96 

hours before being used. The infected and uninfected individuals were initially 

identified visually (Bauer and Rigaud 2015), with this validated by the dissection of 30 

individuals. The infected individuals were all used at the cystacanth stage when the 

parasite is infectious to fish hosts (Section 1.3.5; Figure 1.1). The range of parasite 

prevalence in these samples was 22 to 29 %. Hereafter, where a fish or G. pulex is 

referred to as either infected or uninfected, it refers to its infection status by P. laevis. 

 

The three model fishes used to test the hypotheses were B. barbus, S. cephalus and C. 

auratus. In the Hampshire Avon, both S. cephalus and B. barbus are final hosts of P. 

laevis (e.g. Hine and Kennedy 1974a; Kennedy 1996), whereas C. auratus is not 

present. The fishes were all sourced from the same aquaculture site in Southern England 

where P. laevis was not present and so all individuals used in experiments had no 

previous direct exposure. However, the broodstock of S. cephalus and B. barbus were 

from the River Kennet, Berkshire, Southern England, where P. laevis is naturally 

present (Kennedy et al. 1989) and hence were used as experienced ‘host fishes’. To the 

best of the candidate’s knowledge, the previous generations of the C. auratus had never 

been exposed to P. laevis. As the species is, however, capable of developing P. laevis 

infections (e.g. Sures and Siddel 2001), they were used here as a ‘naïve host’. Note that 
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for B. barbus, only uninfected fish were used in the initial functional response 

experiments and the species was then not used further. This was because, compared to 

S. cephalus and C. auratus, they tended to require considerably longer time to acclimate 

to aquaria conditions and to demonstrate natural foraging behaviours (personal 

observations by candidate). 

 

All fish used were of age 1+ years and of 70 mm minimum length. On their arrival to 

laboratory aquaria, they were all initially measured (fork length, nearest mm) and 

tagged with a 12 mm passive integrated transponder (PIT) tag to enable their individual 

identification during subsequent experiments. The fish were then allowed to acclimate 

to aquaria conditions for 20 days prior to their use. Throughout their holding, they were 

maintained at a constant water temperature of 18
 o

C and on a 16:8 h light: dark cycle 

and, other than when they were being used experimentally, when they were starved to 

24 hours before use, feeding was daily using a formulated pelletized feed, based on fish-

meal.  

 

To test Hypothesis 2, S. cephalus infected with P. laevis were used. B. barbus were not 

used for reasons mentioned above. Infected C. auratus were also not used for their 

propensity for developing heavy P. laevis infections (cf. 3.4 Results) and so tended to be 

close to their end-points as outlined in the ethical review process. The infected S. 

cephalus were produced by individually exposing 30 fish to 35 infected G. pulex in 10 

L tanks for 24 hours (all were consumed). They were then held for 60 days at 18 
o
C to 

enable the infections to develop as an initial trial indicated this period was sufficient to 

produce high parasite prevalence and abundance (Chapter 2). At the conclusion of all 

experiments, all fish were euthanized (over-dose of anaesthetic, MS-222), and the body 
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cavity and intestine dissected to confirm their infection status. Where an individual S. 

cephalus had been used experimentally as an infected fish but dissection suggested that 

an infection had not developed then it was removed from the dataset via its PIT tag 

code. 

 

3.3.2 Comparative functional response experiments 

The functional responses of uninfected S. cephalus, B. barbus and C. auratus, and 

infected S. cephalus, were determined for infected and uninfected G. pulex. The 

experiments were completed in 10 L tanks of oxygenated de-chlorinated tap water at 18 

o
C. Fish were identified by their PIT tag code before being placed into tanks 

individually where they were left for 24 hours to acclimate during which time they 

received no food to standardise hunger levels.  

 

The fish were then exposed to a pre-defined, but randomly selected, number of prey 

items, where the prey item was always either infected G. pulex or uninfected G. pulex. 

Numbers of prey items were across six prey densities, 2, 4, 8, 16, 32, 64, with each 

completed using between three and five replicates (Alexander et al. 2013; Barrios-

O’Neill et al. 2014). The exception was for C. auratus, where 128 items also had to be 

used to reach the asymptote of their consumption rate (cf. 3.4 Results). In addition to the 

G. pulex, dead chironomid larvae were also tested at the same densities for the 

uninfected and infected fishes for comparative purposes. Exposure to the prey items was 

for one hour, after which the fish were removed from the tanks and the numbers of 

remaining prey items counted to enable calculation of the number consumed in that 

hour. 
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For each fish species and food item, their number of prey items consumed versus initial 

prey density were analysed for their functional response parameters of attack rate (a) 

and handling time (h) using the frair package (Pritchard 2014) in R (Team R 2014). 

Logistic regression defined the shape the shape of the relationship between prey density 

and prey consumed, allowing identification of functional response type. A Type II 

functional response was identified by decreasing prey consumption with increasing prey 

density and a significant negative first order term (Juliano 2001). Functional responses 

were then modelled using maximum likelihood estimation (MLE:Bolker 2012) with the 

Random Predator Equation (Rogers 1972), which assumes a Type II response and non-

replacement of prey: Ne = N0 (1 – exp (a (Neh-t))), where Ne is the number of prey eaten, 

N0 is the initial density of prey, a is the attack rate, h is the handling time and t is the 

total time available. In Frair, the 95 % confidence intervals were calculated with 2000 

non-parametric bootstraps for the functional response parameters, producing Type II 

curves that allow comparison of functional responses. Where the 95 % confidence 

intervals of the curves overlapped then they were interpreted as not being significantly 

different and vice-versa (Paterson et al. 2015). These enabled comparative functional 

responses to be assessed between the fish species where exposed to uninfected and 

infected G. pulex, and chironomid larvae, plus between uninfected and infected S. 

cephalus exposed to the same prey items.  

 

3.3.3 Feeding trials using uninfected and infected intermediate hosts 

Differences in the feeding rate of the model fishes in relation to the number of infected 

and uninfected G. pulex were then completed in a series of feeding trials using S. 

cephalus and C. auratus only. These were completed in the same equipment as per the 

functional response experiments, using the same design in terms of time of exposure. 
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Here, however, all trials exposed the fish to 20 G. pulex, either as all infected or 

uninfected, and in proportions of 5:15, 10:10 and 15:5 infected: uninfected, with three 

replicates each. At the end of each trial, the total number of consumed G. pulex was 

determined, along with the number of these that were infected and uninfected. 

Differences in the total number consumed were tested between the G. pulex groups 

using t-tests. The numbers of infected and uninfected G. pulex consumed versus their 

initial number were then tested using linear regression, with the 95 % confidence limits 

of the regression coefficient b stored. For each fish species, two regression tests were 

completed: number of uninfected or infected G. pulex consumed versus their initial 

numbers. Where there were overlaps in their 95 % confidence intervals of b, then the 

slopes of the regression lines were interpreted as not being significantly different, i.e. 

for that fish species, there was no significant difference in in the relationship of their 

consumption rate with starting number of infected and uninfected G. pulex (Chapter 5; 

Sheath et al. 2015). 

  

3.3.4 Trait mediated activity of Gammarus pulex 

To quantify the effect of predator presence and absence on G. pulex behaviour, this 

experiment measured the individual activity of the uninfected and infected G. pulex in 

the presence and absence of fish predator cues. The experiments measured the 

individual activity of G. pulex by placing them into a circular experimental arena of 12 

cm diameter and height 10 cm, and on which one black line was drawn across its base 

and another one was drawn around the circumference at 5 cm from the base. It was lit 

from above with a constant brightness of 350 lux. The arena was filled with water and 

an individual G. pulex of known infection status was then released. Its activity was then 

measured for three periods of 2 minutes, each separated by intervals of 2 minutes where 
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no behavioural responses were recorded. Individual activity was measured as the 

number of occasions on which the individual G. pulex crossed the line on the base (i.e. 

to measure horizontal movement) and the number of occasions it crossed the line 

around the circumference (i.e. to measure vertical movements). Individuals were used 

only once and all were dissected to confirm infection status with the cystacanth stage 

(Section 1.3.5; Figure 1.1). 

 

Conditions of predator presence and absence in the arenas were achieved via 

manipulation of the water in which the individual G. pulex were exposed to. Conditions 

of predator absence (i.e. the control) were achieved by the water in the experimental 

arena comprising only of de-chlorinated tap water (18 
o
C). Predator presence was 

achieved by using fish-conditioned water which was produced by holding an individual 

S. cephalus (121 mm fork length) (for natural host cues) or C. auratus (108 mm fork 

length) (for naïve host cues) in a 10 L aquarium for 14 days. Both fish were fed daily ad 

libitum with live unparasitised G. pulex in order to strengthen the predation signal 

(Wudkevich et al. 1997; Dianne et al. 2014). No G. pulex were fed to the fish on the day 

of the activity experiments. For each experimental combination (uninfected, infected G. 

pulex; S. cephalus predator presence, C. auratus predator presence, predator absence), 

30 replicates were completed.  

 

The initial test determined the consistency in the activity of the individual G. pulex 

between each measurement period (paired t-tests). Differences in the activity levels 

between each treatment were then tested using poisson log-linear generalized linear 

models (GLM), as the activity data represented count data. Separate models were 

calculated for horizontal and vertical activity. Model outputs were the significance of 
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treatment, infection status and their interaction on activity levels, plus the estimated 

marginal means of the number of horizontal or vertical movements made by the G. 

pulex in each treatment and their 95 % confidence intervals. The significance of 

differences in the estimated marginal means per treatment was indicated by linearly 

independent pairwise comparisons, with Bonferroni adjustment for multiple 

comparisons.  

 

3.4 Results 

 

3.4.1 Comparative functional response experiments 

The functional response analyses all reported significant, negative first order terms, 

indicating Type II functional responses (Table 3.2). For the host fishes S. cephalus and 

B. barbus, there were significant differences in their handling times between uninfected 

and infected G. pulex (Table 3.3), with the 95 % confidence limits of their Type II 

curves only overlapping at prey densities of below 20 and 6 respectively (Figure 3.1). In 

all cases, their consumption rates were higher for uninfected versus infected G. pulex 

(Figure 3.1, Table 3.3). For C. auratus, the naïve host species, there was no significant 

difference in attack rate but there was a significant difference in handling time (Table 

3.3), and in combination, this resulted in considerable overlap in their Type II curves, 

particularly at food densities of 64 and below (Figure 3.1).  

 

For S. cephalus that were infected and uninfected with P. laevis, there were no 

significant differences in their functional response parameters when they were exposed 

to infected G. pulex (Table 3.3). Although there were significant differences apparent 

for both uninfected G. pulex and chironomid larvae (Table 3.3), their Type II functional 
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response curves showed considerable overlap in the consumption rates of the uninfected 

and infected fish for all food types, suggesting that there was no overall difference in 

their consumption rates of these prey (Figure 3.2). Following the exposure in the 

experiments to the infected G. pulex, parasite prevalence was 100 % in all fishes. In the 

two host species, S. cephalus were infected at abundances of between 1 and 5 adult P. 

laevis, and B. barbus had consistent infections of only 1 adult. In the naïve host, C. 

auratus, infections of between 8 and 27 adult P. laevis developed, some of which had 

migrated straight through the intestine and become embedded in muscle tissue. In all 

cases, fishes that were only exposed to uninfected G. pulex did not develop infections.  

 

Table 3.2. First order linear coefficient results from logistic regressions for the predator 

and prey combinations. All values indicate a Type II functional response. 

Predator Prey First order term P 

Uninfected B. barbus Infected G. pulex -0.045 <0.001 

Uninfected B. barbus Uninfected G. pulex -0.032 <0.001 

Uninfected S. cephalus Chironomid larvae -0.012 <0.001 

Uninfected S. cephalus Infected G. pulex -0.052 <0.001 

Uninfected S. cephalus Uninfected G. pulex -0.037 <0.001 

Infected S. cephalus Chironomid larvae -0.012 <0.001 

Infected S. cephalus Infected G. pulex -0.056 <0.001 

Infected S. cephalus Uninfected G. pulex -0.072 <0.001 
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Table 3.3. Test results of the comparative functional responses across the different fishes and according to infection status of both fish and 

Gammarus pulex (I = infected; U = uninfected). The parameter estimates were calculated using the Random Predator Equation (Rogers 

1972), with statistically significant differences in the parameters of attack rate (a) and handling time (h) between species (α = 0.05) shown 

in bold. 

 S. cephalus: 

I vs. U G. pulex 

B. barbus: 

I vs. U G. pulex 

C. auratus: 

I vs. U G. pulex 

Uninfected G. pulex:  

I vs. U S. cephalus 

Infected G. pulex: 

I vs. U S. cephalus 

Chironomid larvae: 

I vs. U S. cephalus 

a 3.92/ 2.09 0.95/ 1.18 2.89/ 2.69 6.32/ 2.09 5.48/ 3.92 5.35/ 1.37 

Z 1.75 -0.139 -0.37 2.98 0.79 4.78 

P 0.08 0.90 0.70 <0.01 0.43 <0.01 

h 0.89/0.03 0.76/ 0.12 0.03/ 0.02 0.05/0.03 0.08/ 0.09 0.02/ 0.03 

Z 6.10 2.85 -2.91 2.65 -0.76 -0.68 

P <0.01 <0.01 <0.01 <0.01 0.45 0.50 
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Figure 3.1. Type II functional response curves for (A) Squalius cephalus, (B) Barbus 

barbus and (C) Carassius auratus fed Gammarus pulex infected with Pomphorhynchus 

laevis (solid line) and uninfected G. pulex (dashed line). Lines indicate mean functional 

response. Light grey shading represents 95 % equi-tailed confidence intervals (CI) for 

each species, with dark grey shading representing the overlap in the CIs of the species. 

Note differences on the x and y axes for clarity of presentation. 
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Figure 3.2. Type II functional response curves for Squalius cephalus infected and 

uninfected with Pomphorhynchus laevis, and exposed to (A) uninfected Gammarus 

pulex, (B) G. pulex infected with Pomphorhynchus laevis and (C) chironomid larvae. 

Lines indicate mean functional response with solid lines representing infected S. 

cephalus and dashed lines represent uninfected S. cephalus. Light grey shading 

represents 95 % equi-tailed confidence intervals (CI) for each species, with dark grey 

shading representing the overlap in the CIs of the species. Note differences on the x and 

y axes for clarity of presentation. 
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3.4.2 Feeding trials using a mixture of uninfected and infected intermediate hosts 

The feeding trials exposing S. cephalus and C. auratus to different numbers of 

uninfected and infected prey revealed that there were no significant differences in the 

mean total number of G. pulex consumed between treatments (t-test: t = 1.96, P = 0.23; t 

= -0.11, P = 0.66 respectively; Figure 3.3). For both fishes, there was a significant 

increase in the number of uninfected G. pulex consumed as the number available 

increased per treatment (S. cephalus: R
2
 = 0.80; F1,10 = 40.1, P < 0.01; C. auratus: R

2
 = 

0.38; F1,10 = 6.2, P = 0.03 respectively; Figure 3.4). This significant relationship was 

also apparent for C. auratus and infected G. pulex, (R
2
 = 0.65; F1,10 = 18.8, P < 0.01), 

but was not for S. cephalus (R
2
 = 0.11; F1,10 = 1.22, P = 0.29) (Figure 3.4).  

 

 



91 
 

 

Figure 3.3. (A) Initial number of uninfected (un) and infected (in) Gammarus pulex 

versus number of uninfected (hollow bars) and infected (solid bars) consumed by 

Squalius cephalus in the mixed feeding trial. Error bars are 95 % confidence limits. (B) 

Initial number of uninfected (un) and infected (in) Gammarus pulex versus number of 

uninfected (hollow bars) and infected (solid bars) consumed by Carassius auratus in the 
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mixed feeding trial. Error bars are 95 % confidence limits. Note differences on the y 

axis for clarity of presentation. 

 

Figure 3.4. (A) Relationship of initial number of released uninfected Gammarus pulex 

versus the consumption rate of G. pulex in the feeding trials, where clear circles: 

Squalius cephalus, filled circles: Carassius auratus, solid line: significant relationship 

for S. cephalus according to linear regression; dashed line: significant relationship for 
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C. auratus according to linear regression. (B) shows the same relationships but for the 

number and consumption rate of infected G. pulex.  

 

 

3.4.3 Trait mediated activity of Gammarus pulex 

There were no significant differences in the activity levels between the three time 

intervals of the uninfected and infected G. pulex in water with and without predator cues 

(Table 3.4). Thus, for subsequent tests, activity levels were summed for the three 

periods. The effects of treatment, infection and their interaction on G. pulex movements 

in the horizontal plane were all significant in the GLM (Table 3.5). Outputs revealed 

that horizontal movements of G. pulex were significantly reduced for infected versus 

uninfected G. pulex in each treatment (Table 3.5). Whilst the activity of infected G. 

pulex in the S. cephalus treatment was significantly reduced from the control, this was 

not apparent in the C. auratus treatment (Table 3.5). In the vertical plane, the effect of 

treatment, infection and their interaction were also all significant in the GLM (Table 

3.5). Movements of infected G. pulex were significantly reduced in the S. cephalus 

treatment compared with uninfected conspecifics and the control (Table 3.5). In the 

presence of C. auratus cues, movements of infected G. pulex were significantly 

increased versus uninfected conspecifics, but were not significantly different to those 

for both uninfected and infected conspecifics in the control (Table 3.5). 
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Table 3.4. Significance of differences (pairwise t-test) in activity levels between 

temporal replicates (time 2, 6 and 10 minutes) in Gammarus pulex infected and 

uninfected with Pomphorhynchus laevis, as movements in the horizontal and vertical 

planes. Clean: predator absence; chub: Squalius cephalus predator cue presence; 

goldfish: Carassius auratus predator cue presence. 

 

Treatment T df P 

Horizontal, clean, uninfected    

2 and 6 0.26 29 0.80 

2 and 10 0.40 29 0.69 

6 and 10 0.10 29 0.92 

Horizontal clean infected    

2 and 6 0.83 29 0.41 

2 and 10 0.46 29 0.65 

6 and 10 0.50 29 0.62 

Horizontal, chub, uninfected    

2 and 6 0.34 29 0.74 

2 and 10 0.35 29 0.73 

6 and 10 1.25 29 0.22 

Horizontal, chub, infected    

2 and 6 0.83 29 0.42 

2 and 10 0.14 29 0.89 

6 and 10 0.76 29 0.46 

Vertical, clean, uninfected    

2 and 6 1.32 29 0.20 

2 and 10 0.12 29 0.90 

6 and 10 2.00 29 0.55 

Vertical, clean, infected    

2 and 6 0.95 29 0.35 

2 and 10 0.70 29 0.49 

6 and 10 0.65 29 0.52 
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Vertical, chub, uninfected    

2 and 6 1.65 29 0.11 

2 and 10 2.70 29 0.06 

6 and 10 1.39 29 0.18 

Treatment T df P 

Vertical, chub, infected    

2 and 6 0.14 29 0.89 

2 and 10 1.46 29 0.16 

6 and 10 1.83 29 0.06 

Horizontal goldfish, uninfected    

2 and 6 0.40 29 0.69 

2and 10 0.65 29 0.52 

6 and 10 0.33 29 0.75 

Horizontal, goldfish, infected    

2 and 6 0.94 29 0.36 

2 and 10 1.67 29 0.11 

6 and 10 0.22 29 0.83 

Vertical, goldfish, uninfected    

2 and 6 0.34 29 0.74 

2 and 10 0.71 29 0.48 

6 and 10 1.09 29 0.28 

Vertical, goldfish, infected    

2 and 6  0.80 29 0.43 

2 and 10 0.56 29 0.58 

6 and 10 1.02 29 0.32 



96 

 

Table 3.5. (A) Mean activity in horizontal and vertical plane of Gammarus pulex 

uninfected (U) and infected (I) with Pomphorhynchus laevis in the control (Cn) and 

predator cue treatments using Squalius cephalus (Sc) and Carassius auratus (Ca); (B) 

Outputs of factorial Generalized linear models (GLM) for each activity plane; (C) 

Significance in the difference of the mean activity levels between treatments and 

infections according to each linearly independent pairwise comparisons with Bonferroni 

adjustment for multiple comparisons from the GLM. 

(A) 

Horizontal     

Treatment P. laevis status Mean activity Lower 95 %  Upper 95 % 

Cn U 52.7 50.1 55.3 

 I 24.0 22.3 25.8 

Sc U 54.7 52.2 57.5 

 I 16.5 15.1 18.1 

Ca U 38.4 36.3 40.7 

 I 23.9 22.3 25.8 

Vertical     

Cn U 30.1 28.2 32.1 

 I 36.4 34.3 38.6 

Sc U 17.0 15.6 18.5 

 I 10.9 9.8 12.2 

Ca U 21.6 20.0 23.4 

 I 33.7 31.7 35.8 

 (B) 

 Horizontal plane GLM Vertical plane GLM 

Model term Wald 
2
 P Wald 

2
 P 

Intercept 62456.1 < 0.01 36957.9 < 0.01 

Treatment 32.5 < 0.01 450.5 < 0.01 

Infection 874.5 < 0.01 3.7  0.05 

Interaction (Treatment x infection) 107.3 < 0.01 104.7 < 0.01 



97 

 

 

(C) 

 

Horizontal Significance of pairwise comparisons (Bonferroni adjusted for 

multiple comparisons) 

 Cn (U) Cn (I) Sc (U) Sc (I) Ca (U) 

Cn (U)      

Cn (I) < 0.01     

Sc (U) 1.0 < 0.01    

Sc (I) < 0.01 < 0.01 < 0.01   

Ca (U) < 0.01 < 0.01 < 0.01 < 0.01  

Ca (I) < 0.01 1.0 < 0.01 < 0.01 < 0.01 

 

Vertical 

     

 Cn (U) Cn (I) Sc (U) Sc (I) Ca (U) 

Cn (U) -     

Cn (I) < 0.01 -    

Sc (U) < 0.01 < 0.01 -   

Sc (I) < 0.01 < 0.01 < 0.01 -  

Ca (U) < 0.01 < 0.01 < 0.01 < 0.01 - 

Ca (I) 0.20 1.0 < 0.01 < 0.01 < 0.01 
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3.5 Discussion 

 

All fishes consumed significantly more uninfected than infected G. pulex in the 

functional response and foraging experiments, although this was only apparent for C. 

auratus at the highest prey densities. This was generally contrary to Hypothesis 1, 

developed from published behavioural manipulation studies, which predicted increased 

predation rates of infected G. pulex should result as a consequence of behavioural 

manipulation by P. laevis. The G. pulex behavioural trials then indicated that the 

activity of infected individuals was significantly reduced in water containing their 

predator cues versus clean water, and when compared with uninfected conspecifics. 

This was contrary to Hypothesis 2. In cues from the naïve host C. auratus, however, 

activity of infected G. pulex was elevated in the vertical plane compared with uninfected 

conspecifics but was similar to clean water in both planes, suggesting a negligible 

response overall. Finally, there was no difference in the consumption rates of uninfected 

and infected S. cephalus across the three prey types, contrary to Hypothesis 3. The 

associated issues related with these findings are discussed in the following sub-sections.  

 

3.5.1 Does absence of intermediate host-manipulation explain the reduced consumption 

of infected Gammarus pulex? 

The consistent demonstration that infected G. pulex were consumed at significantly 

lower rates and proportions compared to uninfected conspecifics by the two host fishes 

suggested an absence of parasite manipulated behaviours. This is despite a number of 

parasite manipulation experiments using this host-parasite model that have generally 

shown strong evidence of manipulated behaviours that ought to increase their 

susceptibility to predation (cf. Table 3.1). These differences in outcomes between the 
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functional response data here and these studies might relate to differences in the 

experimental designs of the experiments. For example, the functional response 

experiments provided only a basic environment for G. pulex with no refugia, as this 

would have impacted prey availability and thus prey density, invalidating the functional 

responses. Reduced use of refugia by infected G. pulex in the presence of fish predator 

cues has been measured experimentally, with this likely to result in increased 

probability of predation (e.g. Kaldonski et al. 2007; Dianne et al. 2011; 2014; Perrot-

Minnot et al. 2014). Thus, it is not necessarily known how the infected and uninfected 

G. pulex would react to predator cues in the absence of refugia. However, whilst 

reduced use of refugia by infected G. pulex has been demonstrated and interpreted as a 

reduction in anti-predator response, this does not automatically mean it will result in an 

increased predation rate by specific fish species. Another driver of lower consumption 

of infected G. pulex may well be fish prefence of unifected individuals. If fish are 

avaible to differentiate between infected and uninfected individuals, then they they may 

choose to avoid infected individuals to avoid parasitism. However, the current 

experimental design did not allow for testing of this.  

 

3.5.2 Drivers of variability in parasite manipulation  

Experimental evidence suggests that the extent of parasite manipulation of G. pulex can 

vary according to the ages of both G. pulex and P. laevis, and genetic variance of the 

parasites resulting from aspects such as sibship (Franceschi et al. 2008; 2010a, b). For 

example, manipulation tends to increase with P. laevis cystacanth age (Franceschi et al. 

2008), including increased photophilia (Franceschi et al. 2010a). These studies also 

highlight that the extent of manipulation varies across different origins of P. laevis. For 

example, when six different wild P. laevis populations, all derived from S. cephalus, 
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were experimentally exposed to G. pulex, variability in the extent of manipulation was 

subsequently apparent (Franceschi et al. 2010b). In our experiments, G. pulex were 

consistently collected from the same stretch of river, so avoiding confounding factors 

associated with using different source populations of P. laevis in experiments.  

 

This variability in the manipulation of G. pulex by P. laevis collected from different 

sources is potentially important (Franceschi et al. 2008; 2010a, b). It suggests that there 

could be some selection issues in this host-parasite system that are being overlooked in 

parasite manipulation studies. For example, where a final fish host species, such as C. 

gobio, is highly abundant in the source river, then the majority of P. laevis might 

complete their lifecycles in this species, rather than species such as S. cephalus and B. 

barbus that are usually present in much lower abundance. Thus, the selection pressures 

in the host-parasite system would be for manipulative behaviours that increase the 

probability of consumption by the common final host (i.e. C. gobio) and these could 

differ from behaviours that favour consumption by other fishes due to inherently 

different habitat utilisation and foraging behaviours (Andreasson 1971; Hellawell 1971; 

Noble et al. 2007a.b). This might ultimately lead to the development of some host 

specialisation in this generalist parasite (Farrell et al. 2015). Correspondingly, these 

issues potentially provide some explanation of some of the variability apparent in the 

extent of manipulation observed between studies, given many of these used P. laevis, G. 

pulex and final fish hosts from across a range of sites and rivers (e.g. Baldauf et al. 

2007; Kaldonski et al. 2009; Dianne et al. 2011; Durieux et al. 2012; Dianne et al.; 

2014; Perrot-Minnot et al. 2014; Table 3.1).  

 

3.5.3 Alternative modes of optimising parasite transmission rates to final hosts 
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The apparent lack of P. laevis manipulation in G. pulex detected in our study population 

could also be potentially explained by a lack of positive selection for manipulation due 

to the high abundance of infected G. pulex in the river. Both infected and uninfected G. 

pulex were sufficiently abundant to enable the collection of large sample sizes (total 

numbers > 8000 individuals) from relatively low sampling efforts on small areas (e.g. 9 

m
2
) of much larger gravel riffles and in which up to 29 % of individuals were infected. 

In addition, previous studies on the river revealed parasite prevalence in G. pulex of 

between 3 and 31 % through the year (Hine and Kennedy 1974b), where the fish final 

hosts included C. gobio and S. cephalus, with infections acquired in all months (Hine 

and Kennedy 1974a). Thus, given the high abundances of G. pulex and fish final hosts, 

and the relatively high parasite prevalences in both, there could be little selection 

pressure for developing manipulation of intermediate host behaviours, i.e. the potential 

final hosts are continuously exposed to infected G. pulex, irrespective of their 

behaviours in this system. Finally, Franceschi et al. (2010b) suggested that naturally 

infected G. pulex intermediate hosts were less sensitive to manipulation than naïve 

hosts, suggesting some evolved resistance to parasite manipulation and could provide at 

least a partial explanation to the patterns observed here, given that naturally infected G. 

pulex were used throughout.  

 

3.5.4 Are the lower consumption rates of infected G. pulex driven by final host 

differences in foraging behaviour? 

An alternative hypothesis to explain the difference in consumption rates of the infected 

and uninfected G. pulex, and particularly between the host and naïve final host species, 

could relate to differences in foraging styles, whereby the two host species were 

inefficient in their foraging performances compared with C. auratus due to poor prey 
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detection. However, all three species are capable of foraging on the benthos and so were 

likely to have relatively similar foraging styles and behaviours in the functional 

responses experiments, and indeed all ate at least some prey (Krause 1993; Richardson 

et al. 1995; Britton and Pegg 2011). 

 

Alternatively, the generally similar consumption rates of C. auratus of infected and 

uninfected G. pulex, at least at lower prey densities, might relate to their status as a 

naïve host. In the presence of C. auratus predator cues, the vertical movements of the 

infected G. pulex were significantly elevated compared to the uninfected, although they 

were still similar to the clean water. This suggests that rather than this being evidence 

for manipulation, the infected G. pulex were not perceiving the C. auratus cues as a 

threat, a contrast to S. cephalus cues. This seems reasonable, as no C. auratus are 

present in the river where G. pulex were collected. This would then at least partially 

explain the similar consumption rates of uninfected and infected G. pulex by C. auratus 

across most prey densities. Indeed, it might be unexpected that parasite manipulation of 

an intermediate host would occur in the presence of a new fish species as this would be 

maladaptive, given the new species could be a non-suitable final host.  

 

To summarise, previous studies indicated that P. laevis generally exhibits strong 

manipulation of its intermediate host that is hypothesised as leading to increased 

consumption of infected individuals by a range of fish final host species. The 

experiments here, however, demonstrated that in a highly simplified habitat, two 

preferred final host fishes had a strong preference for consuming uninfected G. pulex. 

Further, behavioural experimental results suggested that infection suppressed G. pulex 

activity and this might have been a causal factor in this pattern. In entirety, these outputs 
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emphasize that whilst P. laevis can manipulate the behaviour of G. pulex, this is a 

complex host-parasite relationship influenced by a range of extrinsic and intrinsic 

factors that do not necessarily result in the increased consumption of infected 

intermediate hosts by fish final hosts. It also raises questions on the use of multiple final 

fish hosts in the lifecycle, including the importance of highly abundant fish species, 

such as C. gobio, in the host-parasite dynamics and thus in selection terms, the 

importance of these fishes for developing parasite manipulation in G. pulex.  Some of 

these aspects are thus explored in Chapter 4 where the infections by P. laevis are 

investigated in three highly abundant small-bodied fishes, plus S. cephalus, across a 

number of rivers in Southern and Western England. 
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Chapter 4 

 

Infections of Pomphorhynchus laevis in fish final hosts in their 

indigenous and non-indigenous ranges: prevalences, pathology and 

trophic consequences 

 

Some of the Results from this chapter are being published in: 

 

Medoc V, Sheath DJ, Andreou D., Firmat C & Britton JR (submitted). Parasitism, 

biological invasions and network analyses: predicting shifts in food-web structure 

following introductions of free-living hosts and their parasites. Advances in Ecological 

Research. 
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4.1 Summary 

 

P. laevis is a generalist acanthocephalan parasite with a complex lifecycle. Although 

well studied in some fish final hosts, for small-bodied species of negligible fishery 

interest, such as bullhead C. gobio, minnow P. phoxinus and stone loach B. barbatula, 

there is limited information on infections and their ecological consequences, especially 

in Great Britain, where it is suggested the parasite has an indigenous and non-

indigenous range. Thus, parasite infection metrics, the severity of pathological 

consequences and the trophic consequences of infection were assessed for each fish 

species, plus, the preferred final host, chub S. cephalus, over five rivers that covered 

their indigenous and non-indigenous range. Infections were apparent in all species from 

lengths of 41 mm, with prevalences up to 96 % in C. gobio. Infection probability tended 

to increase with fish length. Pathological consequences included penetration of the 

intestine and embedding into surrounding tissues, including the muscle of the peritoneal 

cavity. Some significant impacts on condition were recorded, although these varied by 

species and river. There were general patterns of trophic niche specialisation between 

the infected and uninfected sub-groups of fish of each host population, with strong 

trophic niche constriction of hosts in some populations, but with niche divergence in 

others, suggesting strong context dependency at both population and river levels. There 

were no differences detected in host infection consequences between the parasite’s 

indigenous and non-indigenous range. Overall, these outputs suggested that these small-

bodied fishes could play important roles in the population dynamics of P. laevis, with 

infections then resulting in some important ecological consequences.  
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4.2 Introduction 

 

The life history traits of parasites, such as their mode of transmission, life-cycle 

complexity and host specificity, all influence aspects of their population dynamics 

(Barrett et al. 2008; Archie and Ezenwa 2011). These also affect the consequences for 

host populations, such as the extent of parasite manipulation (Britton and Andreou 

2016; Chapter 3). Host specificity can influence patterns of parasite gene flow between 

host species (Poulin and Keeney 2008); parasites with high host specificity might have 

limited gene flow between different host species, leading to strong differentiation 

between conspecifics infecting different hosts (Archie and Ezenwa 2011). Selection for 

host-specific parasite manipulation could even result in the development of specificity, 

even where the parasite is normally a generalist (Section 3.5). However, to understand 

patterns of parasite population dynamics and potential structuring across host ranges, 

especially within the same community, firstly requires fundamental knowledge to be 

developed on the parasite-host relationships and the host consequences of infections at 

the individual, population and community level. 

 

The consequences of parasitism for individual hosts can include manipulated 

behaviours, altered foraging performance and modified phenotypic traits (Barber et al. 

2000; Hatcher et al. 2006; 2012; Chapter 3). In modifying aspects of the host 

phenotype, there is also potential for altering their access to food resources via, for 

example, parasite mediated competition, resulting in shifts in their trophic niche 

(Krichbaum et al. 2010; Pegg et al. 2015). It has recently been postulated that these 

alterations to the host phenotype caused by both manipulative and non-manipulative 

parasites could be an important driver of trophic niche specialisation within host 
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populations (Britton and Andreou 2016; Section 1.2.5). Trophic niche specialisation is 

where the population niche comprises of a series of sub-groups of smaller niches 

formed by individuals that specialise on specific food items (Bolnick et al. 2007; 

Quevedo et al. 2009). This specialisation could thus develop from the phenotypic 

alterations that occur as sub-lethal consequences of infection (Britton et al. 2011; Pegg 

et al. 2015). This could then result in trophic niche constriction, where the infected 

individuals specialise on a subset of the prey items already being consumed by 

uninfected individuals, or trophic niche divergence, where the infected individuals 

consume alternative prey items to uninfected conspecifics due to, for example, habitat 

partitioning caused by manipulation, or altered foraging success caused by a modified 

functional trait (Britton et al. 2011; Pegg et al. 2015). This divergence would then result 

in an increased population trophic niche (Britton and Andreou 2016; Section 1.2.5).  

 

The generalist parasite P. laevis has a complex lifecycle that uses G. pulex as its 

intermediate host, but a number of different final fish host species (Figure 1.1). In Great 

Britain, its distribution is discontinuous, with a number of different strains apparently 

having developed due to its initial biogeography and subsequent spread (Kennedy et al. 

1989; O’Mahony et al. 2004). Kennedy et al. (1989) suggested that as the continental 

freshwater cyprinid fishes colonized post-glacial mainland Britain via the eastward-

flowing rivers and the Thames-Rhine link, they also brought P. laevis. They then argued 

that the more extensive distribution of P. laevis in Britain today results from: (1) the 

early formation of a marine strain that colonized the Baltic and North Sea and estuaries 

of North Sea rivers, (2) later deliberate transfers of infected B. barbus to western 

flowing English rivers from the River Thames (e.g. Antognazza et al. 2015), and (3) 

anthropogenic transfers to Ireland of infected cyprinids from England (Kennedy et al. 
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1989). This suggests that within mainland Great Britain, there will be indigenous P. 

laevis populations in eastern flowing rivers, such as the Thames catchment, and non-

indigenous populations, in more western flowing rivers that resulted from fish 

translocations, such as in the River Severn catchment. This then provides opportunities 

for testing host infection consequences in the P. laevis indigenous and non-indigenous 

ranges. In addition, studies on P. laevis infections have tended to focus on specific 

fishes that are relatively large-bodied and usually have some fishery interests, such as S. 

cephalus, A. anguilla and S. trutta (Kennedy et al. 1978; Bates and Kennedy 1991; 

Dezfuli 1991). This means that for populations of fish species which the parasite can 

infect and are present in large numbers in many British lowland rivers, such as C. gobio, 

B. barbatula and P. phoxinus, there is limited knowledge on the parasite dynamics and 

consequences, despite the possibility of these fishes playing key roles in maintaining the 

populations of this parasite and perhaps affecting selective pressures for parasite 

manipulation in G. pulex (Section 3.5).  

 

Consequently, the aim of this chapter was to investigate the pathological and ecological 

consequences of P. laevis infections for four fish species, of which three tend to be 

numerically dominant but rarely studied in Great Britain (C. gobio, B. barbatula, P. 

phoxinus). This was completed across five fish communities; three from the P. laevis 

indigenous range in the River Thames catchment, and two in their non-indigenous range 

where their presence in the two rivers was likely to be due to introductions of B. barbus 

(Kennedy et al. 1989; Antognazza et al. 2015; Table 4.1). Objectives were to: (1) assess 

parasite infection metrics and the association with fish length  for each fish species and 

river; (2) assess the severity of pathological consequences of infection by P. laevis 

across the host fishes; (3) determine the trophic consequences of P. laevis infection for 
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each fish species and river, including assessment of whether infection is a driver of 

trophic niche specialisation; and (4) determine any differences in the parasite-host 

relationship between the P. laevis indigenous and non-indigenous range.  

 

4.3 Materials and Methods 

 

4.3.1 Sample collection and initial data collection 

Five rivers were investigated for their infections of P. laevis in the fish community. All 

were lowland rivers in England where infections were known to be apparent in at least 

one fish species (Table 4.1). 

  

Table 4.1. Rivers, locations, characteristics, sampling dates and species studied for 

investigating the host-parasite dynamics of Pomphorhynchus laevis, where (NI): non-

indigenous P. laevis population; (I) indigenous P. laevis population; Cg: Cottus gobio; 

Bb: Barbatula barbatula; Pp: Phoxinus phoxinus; Sc: Squalius cephalus. Note Avon 

was the Hampshire Avon. NGR = national grid reference. 

River Location 

(NGR) 

Mean 

width (m) 

Mean 

depth (m) 

Sampling dates Species sampled 

Avon (NI) SU148095 15 1.6 May 2015 Cg, Bb, Pp 

Darent (I) TQ517605 4 1.5 Jul 2014 - Sep 2015 Cg, Bb, Pp, Sc 

Kennet (I) SU528661 3 1 June 2015 Cg, Bb, Pp 

Loddon (I) SU747680 7 1.4 June 2015 Cg, Bb, Pp 

Teme (NI) SO734558 10 1.5 October 2015 Cg, Bb, Pp 
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Fish samples were collected by electric fishing using a back-mounted Smith-Root LR-

24 Backpack (50 MHz pulsed DC at approximately 2 Amps). The exception was the 

Hampshire Avon, where the fish samples were contaminants of invertebrate kick 

samples in a sweep net, collected during sampling for infected G. pulex. With the 

exception of the River Darent, only samples of bullhead C. gobio, stone loach B. 

barbatula and minnow P. phoxinus were removed from each river on each sampling 

occasion to avoid conflict with fishery interests and to enable focus on the numerically 

dominant species in the fish communities. The River Darent was the only river where 

repeat sampling was completed, with samples collected in July 2014, January 2015, 

April 2015 and September 2015. Following sampling, fish were sorted in water-filled 

aerated containers, with a maximum of 30 individuals per species selected randomly 

and taken back to the laboratory for processing. Samples of putative food items were 

also collected from each site, focusing on G. pulex as these were the dominant macro-

invertebrate in all cases.  

 

In the laboratory, the fish were euthanized through an anaesthetic overdose (MS-222), 

with fork length (or total length if the species has no fork in the tail) and weight of each 

fish recorded. A detailed post-mortem was then conducted on each fish for specifically 

detecting infections of P. laevis using a standard protocol adapted from Hoole et al. 

(2001) (Appendix 1). Skin scrapes and internal organs were examined with aid of low 

and high power microscopy to enable parasite identification. Fish intestinal tracts were 

removed and where infections were noted then the numbers of individual P. laevis were 

counted. At the completion of this process, a sample of dorsal muscle was then taken for 

stable isotope analysis (Section 1.4). The muscle samples, along with samples from 

other fishes and the putative food resources, were then oven dried at 60 ºC until they 
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achieved constant weight, before processing and analysis at the Cornell Isotope 

Laboratory New York, USA. At this laboratory, each sample was prepared by grinding 

and then weighing approximately 0.5 mg into a tin cup, with the actual weight recorded 

accurately using a Sartorius MC5 microbalance. The samples were then analysed for 

their carbon and nitrogen isotopes using a Thermo Delta V Advantage Isotope Ratio 

Mass Spectrometer. The outputs from the spectrometer included data on the carbon and 

nitrogen stable isotope ratios that could be then be expressed relative to conventional 

standards as δ
13

C and δ
15

N, respectively (Section 1.4), where δ
13

C or δ
15

N = 

[Rsample/Rstandard-1] x 1000, and R is δ
13

C / δ
12

C or δ
15

N / δ
14

N. Standards references 

were Vienna Pee Dee Belemnite for δ
13

C and atmospheric nitrogen for δ
15

N. A standard 

of animal (mink) was run every 10 samples to calculate an overall standard deviation for 

both δ
15

N and δ
13

C to ascertain the reliability of the analyses. The overall standard 

deviation of the animal standard was not more than 0.23 ‰ for δ
15

N and 0.14 ‰ for 

δ
13

C. The initial stable isotope data outputs were then in the format of delta (δ) isotope 

ratios expressed per mille (‰).  

 

To account for any variations in the isotopic baseline between rivers that would affect 

trophic comparisons of species, 
15

N and 
13

C ratios were corrected for each species 

based on the isotopic signatures of benthic invertebrate primary consumers (Jackson and 

Britton 2014). Trophic position (TP) of the fish was calculated using the following 

equation: TPi = [(
15

Ni  -
15

Nbase )/3.4]+2, where TPi is the trophic position of the fish, 


15

Ni is the isotopic ratio of the fish, 
15

Nbase is the isotopic ratio of primary consumers, 

3.4 is the fractionation between trophic levels and 2 is the trophic position of the 

baseline organism (Post 2002). The mean 
15

N value of several individuals of G. pulex 

was used as the baseline for each river. Fish 
13

C was also corrected, based on isotopic 
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data of G. pulex in the rivers, following Olsson et al. (2009): 
13

Ccorr = (
13

Ci - 
13

Cmean)/ 

CR, where 
13

Ccorr is the corrected carbon isotope ratio of the fish, 
13

Ci is the 

uncorrected isotope ratio of the fish, 
13

Cmean is the mean invertebrate isotope ratio and 

CR is the invertebrate carbon range (
13

Cmax - 
13

Cmin).  

 

4.3.2 Histopathology 

Histopathology of the intestinal tract and, occasionally, the surrounding tissues, was 

completed to assess the pathological changes associated with P. laevis infection. These 

tissue sections were fixed in Bouin’s fixative for 24 hours before transferring to 70 % 

Industrial Methylated Spirit (Pegg et al. 2015). The tissues were trimmed, dehydrated in 

alcohol series, cleared and then embedded in paraffin wax. Transverse and longitudinal 

sections of 3 µm were dried at 50 °C, stained using Mayer's haematoxylin and eosin, 

and examined microscopically for pathological changes and described accordingly 

(Pegg et al. 2015). 

 

4.3.3 Data analysis 

For C. gobio, B. barbatula and P. phoxinus, all analyses for the River Darent samples 

(other than stable isotope analyses) were performed on the mean values taken from 

across the seasonal samples due to low sample size and low variation between seasons 

for these species. For all species and rivers, infection levels of P. laevis per fish species 

were described as their prevalence (number of infected individuals/ total number 

processed x 100) and abundance (number of P. laevis per infected individual per fish 

species). Hereafter, where an individual fish is referred to as either infected or non-

infected, it refers to the presence/ absence of P. laevis in that individual during the post-

mortem. Condition was calculated as Fulton’s condition factor (K), using the equation: 
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K = W/L
3
, where K = Fulton’s condition factor, W = the weight of the fish, and L is the 

length (Nash et al. 2006). 

 

The trophic ecology of the fish populations per river was analysed using the stable 

isotope data. Comparison of the trophic niches of the population, and the infected and 

uninfected sub-groups, were completed using standard ellipse areas (SEAc) using the 

SIBER package (Jackson et al. 2011) in the R computing program (R Development 

Core Team, 2013). This is a bivariate measure of the distribution of individuals in 

trophic space; each ellipse encloses ~ 40 % of the data and, therefore, represents the 

core dietary niche, indicating typical resource use within the analysed group of 

individuals (Jackson et al. 2011; Jackson et al. 2012). The subscript ‘c’ in SEAc 

indicated that a small sample size correction was used due to the limited number of fish 

sampled was from some populations. Where SEAc overlapped between the infected and 

uninfected fish, the percentage of overlap was calculated to indicate the extent to which 

they shared food resources. This metric of SEAc has been widely applied to describing 

the dietary niche of a wide range of species in recent years (e.g. Grey and Jackson 2012; 

Guzzo et al. 2013; Abrantes et al. 2014). Note for the River Darent, samples were 

analysed for stable isotopes from the seasonal samples collected in summer, winter and 

spring, but not autumn. Samples from the latter period were not included due to their 

likely high similarity to those collected in summer due to the relatively small time 

interval between sampling that would have given insufficient time for isotopic turnover 

to equilibrium in tissues, especially for the larger bodied S. cephalus, as turnover is a 

function of time, temperature and body mass (e.g. Vander Zanden et al. 2015).  

 

4.3.4 Statistical analysis 
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Differences in body weight and condition between infected and uninfected fish were 

assessed in general linear models, combining data from each river for each species. The 

model structure thus had weight or condition as the dependent variable, infection status 

as the independent variable, and, for weight, length as the covariate to control for its 

effect on weight (Garcia-Berthou 2001). In all cases, to correct for the inflated number 

of residual degrees of freedom that would have occurred in the model if the data of 

individual fish were used as true replicates, models were fitted with river as a random 

effect on the intercept. The significance of the difference in weight and condition 

between the groups was determined by linearly independent pairwise comparisons of 

estimated marginal means, adjusted for multiple comparisons (Bonferroni). In all these 

models, the dependent variables were all log-transformed to meet assumptions of 

normality of residuals and homoscedasticity. As infection status was binomial (0 = 

uninfected, 1 = infected), binary logistic regression was used to build probability of 

infection (PoI) models that determined PoI from the length data of each individual fish 

per species from all rivers (for C. gobio, B. barbatula and P. phoxinus) or seasons (for 

S. cephalus) using Equation 4.1: e
(a+bx)

/ 1+e
(a+bx)

, where a and b were the regression 

coefficients, and x was fish length. Other than the stable isotope analyses, all analyses 

were completed in SPSS v. 21.0.  

 

4.4 Results 

 

4.4.1 Bullhead Cottus gobio 

Parasite prevalence across the populations ranged between 50 and 96 % (mean: 71.2 % 

± 9.1 %) and abundance between 1 and 38 (mean= 5.2 ± 0.76) (Table 4.2). Combining 

these data across the populations into the binary logistic regression model revealed that 
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the influence of length on infection status of individuals was significant, with larger 

individuals having a higher probability of being infected (Table 4.3; Figure 4.1). When 

comparing infected versus uninfected fish, differences were significant in both their 

condition (GLM: F1,107 = 6.00; P = 0.02) and weight when controlled for length (GLM: 

F1,107 = 3.87; P = 0.05), with infected individuals having higher condition factors and 

weight. In the latter model, the effect of length as the covariate was also significant (P < 

0.01).  

 

The pathology of infection in the intestine itself indicated little host response, with the 

site of penetration looking unremarkable; despite penetration of the epithelium and 

intestinal wall, the surrounding tissue appeared relatively unaffected (Figure 4.2A). In 

some cases (n=8), the parasite had penetrated straight through the intestine and into 

surrounding tissues, including the muscle of the peritoneal cavity (Figure 4.3), with the 

proboscis extending through the dermis up toward the epidermis as far as the basement 

membrane (Figure 4.3B). There was then resultant inflammation, degeneration and 

localised necrosis of the muscle (Figure 4.3C, D).  

 

For the stable isotope data analysis, data for C. gobio from the Hampshire Avon were 

not compared between the uninfected and infected sub-groups due to the low proportion 

of uninfected fish in samples (Table 4.2). For the other four populations, whilst there 

was some variability in the patterns of their trophic niches, they all indicated some 

trophic niche specialisation (the infected and uninfected sub-groups of fish) (Table 4.4; 

Figure 5.5). For the fish from the River Kennet and Loddon, the trophic niches of the 

infected sub-group were substantially smaller than the uninfected, and generally sat 

within the same isotopic space (Figure 5.5). This indicated their trophic response to 
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infection was niche constriction and thus had little influence on the size of the overall 

population trophic niche. In contrast, for fish from the Rivers Teme and Darent, the 

infected sub-group had substantially larger niche sizes than the uninfected fish (Table 

4.4), with their niches also showing substantial divergence (Table 4.4; Figure 4.5). The 

consequence was an increased population trophic niche size due to the infections (Table 

4.4; Figure 4.5). 
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Table 4.2. Mean length and length ranges of all, infected (I) and uninfected (U) Cottus gobio per river, and the number sampled (n), 

parasite prevalences (‘Prevalence’) and abundances (of those infected) (‘Abundance’). 

 

 Mean length (mm) Length range (mm) n Prevalence (%)  Abundance 

River All I U All I U   Mean Range 

Teme 49.0 ± 1.2 50.6 ± 1.2 47.4 ± 2.0 37-55 44-55 37-55 20 50 3.9 ± 0.9 1-11 

Kennet 72.3 ± 2.3 74.0 ± 2.6 65.4 ± 4.2 57-99 57-99 58-82 26 81 4.1 ± 1.5 1-27 

Loddon 55.8 ± 1.6 56.5 ± 2.7 55.0 ± 1.9 41-80 41-80 46-68 28 50 2.5 ± 0.7      1-8 

Avon  58.0 ±1.4 57.8 ± 1.4 64.0 ± 0.0 48-73 48-73 64 26 96 5.8 ± 1.0 1-26 

Darent 68.1 ± 2.6 69.0 ± 3.2 65.0 ± 3.4 49-93 49-93 55-69 18 77 9.2 ± 3.3 1-38 
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Table 4.3. Binary logistic regression coefficients (Equation 4.1), and their statistical 

significance, for the probability of infection of Cottus gobio by Pomphorhynchus laevis 

according to fish length. 

Parameter Symbol in equation 4.1 Coefficient Standard error P 

Constant a -2.69 1.38 0.05 

Fish length x 0.06 0.02 0.01 
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Table 4.4. Mean stable isotope data per Cottus gobio population and their trophic niche size according to standard ellipse area (SEAc, after 

correction to trophic position and Ccorr) of the sampled population (‘Population’), and the uninfected (U) and infected (I) sub-groups, and 

the extent of the trophic niche overlap between the two sub-groups. 

River Mean 
13

C (‰)  Mean 
15

N (‰) SEAc 

 U I U I Population U I Overlap (%) 

Teme -30.0 ± 0.1 -30.5 ± 0.1 13.7 ± 0.1 13.4 ± 0.1 0.02 0.01 0.02 0.0 

Kennet -31.1 ± 0.8 -31.0 ± 0.2 13.0 ± 0.4 13.1 ± 0.1 0.04 0.10 0.02 1.7 

Loddon -29.7 ± 0.4 -30.0 ± 0.3 19.1 ± 0.2 19.3 ± 0.1 0.08 0.08 0.06 4.2 

Avon -31.4 ± 0.0 -31.4 ± 0.4 13.7 ± 0.0 12.0 ± 0.2 - - - - 

Darent -28.8 ± 0.2 -28.6 ± 0.1 16.0 ± 0.1 15.5 ± 0.1 0.02 0.01 0.02 0.0 
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Figure 4.1. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Cottus gobio by Pomphorhynchus laevis 

according to length (as 5 mm increments), where hollow circles represents the 

proportion of infected individuals in that size class and the solid line is the relationship 

between fish length and the probability of infection according to binary logistic 

regression (cf. Table 4.2).  
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Figure 4.2. Transverse gut sections showing the resulting pathology of 

Pomphorhynchus laevis infection in A) Bullhead Cottus gobio with some evidence of 

inflammation surrounding the bulb of the parasite, with leaking of necrotic cells into the 

peritoneum. Sections of the intestine beyond the immediate site of attachment remain 

relatively normal. B) Stoneloach Barbatula barbatula, showing complete penetration of 

the gut, but limited host response to infection with absence of inflammatory response. 

This may be indicative of very recent infection, or potentially differences in 

immunological and cellular responses of difference fish species. C) Minnow Phoxinus 

phoxinus showing similar reaction to B; complete penetration of all layers of the gut, 

with mechanical compression and localised loss of epithelium adjacent to the neck of 

the parasite, but very little in the way of host response. D) Chub Squalius cephalus, 

showing massive fibrogranulomatous lesion surrounding the parasite and extending 

A 
B A 

C 
D 

B A 
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through all layers of the gut. The neck, bulb and proboscis have been engulfed by host 

tissue. This comprises loose connective tissue with eosinophillic granular cells and 

lymphocytes, increasing in severity around the proboscis of the parasite. In all cases the 

worm has penetrated the gut wall with the site of penetration indicated by the black 

arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Pathology of infection with Pomphorhynchus laevis in the peritoneal muscle 

of Cottus gobio, showing: (A) P.laevis attached in body wall of ‘host species’ following 

total penetration of intestinal tract. The neck, bulb and proboscis of the parasite is 

deeply embedded within the musculature; (B) Transverse section through body wall, 

showing deep attachment of the parasite through the body muscle, extending into the 

dermis as far as the basement membrane of the epidermis, approaching full thickness 

pathology and perforation of the body (pigment cells of the fish skin can be seen in 

black); (C) Transverse section through dermis of ‘host’ showing degeneration of muscle 

(*) surrounding the neck and body of the parasite. Muscle fibre disruption, 

A B 

D D C 
** 

* 
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inflammation and myophagia were evident within these regions. Normal muscle can be 

seen beyond the site of infection (**); (D) High power magnification of proboscis 

showing spines (arrows) anchoring the parasites firmly in place.   
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Figure 4.4. Stable isotope biplots for Cottus gobio infected (grey circles) and uninfected 

(black circles) with Pomphorhynchus laevis per river, where the grey ellipses denote the 

trophic niche size of the infected sub-group and the black ellipses denote the trophic 

niche size of the uninfected sub-group, and where trophic niche size represents SEAc 

calculated from TP and Ccorr. Note differences in scales on axes. 
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4.4.2 Minnow Phoxinus phoxinus 

Parasite prevalence across the populations ranged between 29 and 43 % (mean: 35.3 ± 

3.1 %) and abundance between 1 and 9 (mean: 2.1 ± 0.2) (Table 4.5). Combining these 

data across the populations into the binary logistic regression model revealed that the 

influence of length on infection status of individuals was significant, with larger 

individuals having a significantly higher probability of being infected (Table 4.6; Figure 

4.5). When comparing infected versus uninfected fish, differences were not significant 

in their condition (GLM: F1, 136 = 3.93; P = 0.06) or weight when controlled for length 

(GLM: F1, 136 = 0.82; P = 0.37). The effect of length on weight as a covariate was 

significant in the model (P < 0.01).  

 

The pathology of infection in the intestine indicated little host response at the site of 

intestine penetration and despite penetration of epithelium and intestine wall, the 

surrounding intestine tissue appeared relatively unaffected (Figure 4.2C). The stable 

isotope data for P. phoxinus for the four populations revealed whilst there was some 

variability in the patterns of their trophic niches between the infected and uninfected 

sub-groups, they all indicated some trophic niche specialisation (Table 4.7; Figure 4.6). 

For the fish from the River Darent and Loddon, the trophic niches of the infected sub-

group were substantially smaller than the uninfected, and generally sat within the same 

isotopic space (Figure 4.6). This indicated their trophic response to infection was niche 

constriction and thus had little influence on the size of the population trophic niche. In 

contrast, for fish from the River Avon, the infected sub-group had a larger niche size 

than the uninfected fish (Table 4.7), with their niche also showing substantial 

divergence (Table 4.7; Figure 4.6). The consequence was an increased population 

trophic niche size due to the infection (Table 4.7; Figure 4.6). 
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Table 4.5. Mean length and length ranges of all, infected (I) and uninfected (U) Phoxinus phoxinus per river, and the number sampled (n), 

parasite prevalences (‘Prevalence’) and abundances (of those infected) (‘Abundance’). 

 

 Mean length (mm) Length range (mm) n Prevalence (%) Abundance 

River All I U All I U   Mean Range 

Avon 49.0 ± 2.9 59.8 ± 3.1 44.7 ± 2.9 31-68 53-68 31-60 14 28.6 1.0 ± 0.0 1 

Kennet 53.8 ± 1.2 56.3 ± 2.2 52.4 ± 1.4 44-74 47-74 44-62 30 36.7 2.91 ± 0.8 1-9 

Loddon 60.3 ± 1.1 62.5 ± 2.7 59.2 ± 1.1 47-82 47-82 47-69 40 32.5 1.5 ± 0.3 1-5 

Darent 60.2 ± 0.8 61.5 ± 0.9 59.2 ± 1.2 42-76 51-70 42-76 60 43.3 2.15 ± 0.3 1-6 
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Table 4.6. Binary logistic regression coefficients (Equation 4.1), and their statistical significance, for the probability of infection of 

Phoxinus phoxinus by Pomphorhynchus laevis according to fish length 

 

Parameter Symbol in equation 4.1 Coefficient Standard error P 

Constant a -5.21 1.85 0.05 

Fish length x 0.08 0.03 0.01 
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Table 4.7. Mean stable isotope data per Phoxinus phoxinus population and their trophic niche size according to standard ellipse area (SEAc, 

after correction to trophic position and Ccorr) of the sampled population (‘Population’), and the uninfected (U) and infected (I) sub-groups, 

and the extent of the trophic niche overlap between the two sub-groups. 

 

River Mean 
13

C (‰) Mean 
15

N (‰) SEAc 

 U I U I Population U I Overlap 

(%) 

Kennet -31.9 ± 0.3 -31.2 ± 0.1 12.3 ± 0.2 12.7 ± 0.1 0.04 0.04 0.03 1.0 

Loddon -28.5 ± 0.3 -28.4 ± 0.2 17.3 ± 0.5 17.0 ± 0.4 0.18 0.27 0.12 12.1 

Avon -30.7 ± 0.2 -30.1 ± 0.2 12.1 ± 0.2 13.5 ± 0.2 0.06 0.04 0.04 0.0 

Darent -28.8 ± 0.1 -28.8 ± 0.1 15.1 ± 0.2 15.3 ± 0.1 0.05 0.08 0.02 2.4 
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Figure 4.5. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Phoxinus phoxinus by Pomphorhynchus 

laevis according to length (as 5 mm increments), where hollow circles represents the 

proportion of infected individuals in that size class and the solid line is the relationship 

between fish length and the probability of infection according to binary logistic 

regression (cf. Table 4.6).   
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Figure 4.6. Stable isotope biplots for Phoxinus phoxinus infected (grey circles) and 

uninfected (black circles) with Pomphorhynchus laevis per river, where the grey ellipses 

denote the trophic niche size of the infected sub-group and the black ellipses denote the 

trophic niche size of the uninfected sub-group, and where trophic niche size represents 

SEAc calculated from TP and Ccorr. Note differences in scales on axes.  
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4.4.3 Stone loach Barbatula barbatula  

Parasite prevalence across the populations ranged between 50 and 80 % (mean: 68.3 % 

± 9.3 %) and abundance between 1 and 6 (mean= 2.0 ± 0.2) (Table 4.8). Combining 

these data across the populations into the binary logistic regression model revealed that 

the influence of length on infection status of individuals was not significant (Table 4.9; 

Figure 4.7). When comparing infected versus uninfected fish, differences were not 

significant in their condition (GLM: F1, 32 = 0.63; P = 0.43) or weight when controlled 

for length (GLM: F1, 32 = 1.67; P = 0.21), although length was significant as the 

covariate (P < 0.01).  

 

The pathology of infection in the intestine indicated a limited host immune response 

with a lack of cellular responses; however mechanical changes were significant with 

complete penetration of the intestine. (Figure 4.2B). Due to relatively limited sample 

sizes per river, especially of uninfected fish (Table 4.8), only stable isotope data for B. 

barbatula from the River Teme were analysed. Despite the low sample size, these data 

indicated some trophic niche specialisation (Table 4.10; Figure 4.7). The trophic niche 

of the infected sub-group was substantially larger than the uninfected and also showed 

substantial divergence, resulting in an increased population trophic niche size due to P. 

laevis infection (Table 4.10; Figure 4.7). 
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Table 4.8. Mean length and length ranges of all, infected (I) and uninfected (U) Barbatula barbatula per river, and the number sampled (n), 

parasite prevalences (‘Prevalence’) and abundances (of those infected) (‘Abundance’). 

 

 Mean length (mm) Length range (mm) n Prevalence (%) Abundance 

River All I U All I U   Mean Range 

Teme 75.1 ± 3.7 75.0 ± 6.0 75.2 ± 5.2 56-89 56-89 56-85 10 50.0 0.8 ± 0.3 1-3 

Avon 70.3 ± 9.0 76.0 ± 9.8 53.0 ± 0.0 53-90 57-90 53 4 75.0 2.0 ± 0.6 1-3 

Darent 90.4 ± 1.8 89.5 ± 2.3 93.8 ± 2.3 71-110 71-110 89-110 25 80.0 2.2 ± 0.3 1-6 
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Table 4.9. Binary logistic regression coefficients (Equation 4.1), and their statistical 

significance, for the probability of infection of Barbatula barbatula by 

Pomphorhynchus laevis according to fish length. 

 

Parameter Symbol in equation 4.1 Coefficient Standard error P 

Constant a -1.45 3.63 0.65 

Fish length x 0.02 0.04 0.58 

 

 

 

Table 4.10. Mean stable isotope data of Barbatula barbatula population in the River 

Teme and their trophic niche size according to standard ellipse area (SEAc, after 

correction to trophic position and Ccorr) of the sampled population (‘Population’), and 

the uninfected (U) and infected (I) sub-groups, and the extent of the trophic niche 

overlap between the two sub-groups. 

 

Mean 
13

C (‰) Mean 
15

N (‰) SEAc 

U I U I Population U I Overlap 

(%) 

-30.6 ± 0.1 -29.8 ± 0.2 15.5 ± 0.4 15.3 ± 0.1 0.14 0.07 0.10 1.0 
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Figure 4.7. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Barbatula barbatula by Pomphorhynchus 

laevis according to length (as 5 mm increments), where hollow circles represents the 

proportion of infected individuals in that size class.   
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Figure 4.8. Stable isotope biplot for Barbatula barbatula infected (grey circles) and 

uninfected (black circles) with Pomphorhynchus laevis, where the grey ellipses denote 

the trophic niche size of the infected sub-group and the black ellipses denote the trophic 

niche size of the uninfected sub-group, and where trophic niche size represents SEAc 

calculated from TP and Ccorr.  
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4.4.4 Chub, Squalius cephalus 

Only fish from the River Darent were assessed here, with samples of S. cephalus from 

the other rivers being unable to be collected. In the Darent population, parasite 

prevalence across the seasons ranged between 60 and 79 % (mean: 75.5 % ± 4.6 %) and 

abundance between 1 and 30 (mean: 4.8 ± 0.7) (Table 4.11). Combining these data 

across the seasons into the binary logistic regression model revealed that the influence 

of length on infection status of individuals was significant, with larger individuals 

having a higher probability of being infected (Table 4.12; Figure 4.9). When comparing 

infected versus uninfected fish, differences were not significant in their weight when 

controlled for length (GLM: F1,89 = 1.68; P = 0.20). However, infected fish did have 

significantly lower condition factors (GLM: F1,89 = 10.82; P < 0.01).  

 

The pathology of infection in the intestine of S. cephalus indicated marked differences 

to that observed in the other fishes (Figure 4.2). There was a strong host response in all 

in infected individuals, with the site of penetration and the immediate surrounding tissue 

displaying a number of changes (Figure 4.2D). A granulomatous lesion engulfed the 

neck, bulb and proboscis of the parasite, leading to encapsulation (Figure 4.2D). 

Looking in greater detail (Figure 4.10), there was loose connective tissue present, with 

eosinophillic granular cells and lymphocytes (Figure 4.10D). The epithelium, stratum 

granulosum and muscle layers were replaced by fibrogranulomatous tissue, with 

increased numbers of lymphocytes throughout all layers with a marked loss of normal 

intestine architecture (Figure 4.10C, D). The presence of a range of cell types, including 

firbroblasts and inflammatory cells, indicated a fibrogranulomatous response (Figure 

4.10D). Localised changes included flattening of the epithelium, with loss, erosion and 

necrosis of the mucosa adjacent to the neck (Figure 4.10C). The intestine was 
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essentially non-functional in these regions. Whilst these are severe changes, they 

nevertheless remained localised, with adjacent regions of intestine being unaffected 

(Figure 4.10). 

 

The stable isotope data revealed that across the seasons, there was some variability in 

the patterns of their trophic niches between the infected and uninfected sub-groups; 

however, they all suggested some degree of infection-driven trophic niche specialisation 

(Table 4.13; Figure 4.11). For the fish from the winter and spring samples, the trophic 

niches of the infected sub-group were substantially smaller than the uninfected, and 

generally sat within a similar isotopic space (Figure 4.11). This indicated their trophic 

response to infection was niche constriction and thus had little influence on the size of 

the population trophic niche. In contrast, for fish from the summer sample, the infected 

sub-group had a larger niche size than the uninfected fish (Table 4.13), with their niche 

also showing some divergence, increasing the population trophic niche size (Table 4.13; 

Figure 4.11). 
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Table 4.11. Mean length and length ranges of all, infected (I) and uninfected (U) Squalius cephalus per season, and the number sampled 

(n), parasite prevalences (‘Prevalence’) and abundances (of those infected) (‘Abundance’). 

 

 Mean length (mm) Length range (mm) n Prevalence (%) Abundance 

Season All I U All I U   Mean Range 

Autumn 2015 116.8 ± 8.3 131.0 ± 9.8 95.5 ± 10.1 66-170 80-170 66-136 15 60.0 2.2 ± 0.6 1-7 

Winter 2015 88.1 ± 11.8 94.5 ± 14.0 64.3 ± 15.6 38-211 42-211 38-92 14 78.6 2.8 ± 0.7 1-8 

Spring 2015 117.1 ± 7.5 124.7 ± 9.2 92.4 ± 4.7 64-220 64-220 78-111 30 76.7 5.3 ± 1.2 1-23 

Summer 2014 142.6 ± 9.0 149.5 ± 10.5 116.0 ± 13.5 52-253 52-253 60-181 39 79.5 6.0 ± 1.3 1-30 
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Table 4.12 Binary logistic regression coefficients (Equation 4.1), and their statistical significance, for the probability of infection of 

Squalius cephalus by Pomphorhynchus laevis according to fish length. 

 

Parameter Symbol in equation 4.1 Coefficient Standard error P 

Constant a -0.91 0.73 0.21 

Fish length x 0.02 0.01 0.01 
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Table 4.13. Mean stable isotope data per Squalius cephalus sample and their trophic niche size according to standard ellipse area (SEAc, 

after correction to trophic position and Ccorr) of the sampled population (‘Population’), and the uninfected (U) and infected (I) sub-groups, 

and the extent of the trophic niche overlap between the two sub-groups. 

 

Season Mean 
13

C (‰) Mean 
15

N (‰) SEAc 

 U I U I Population U I Overlap 

(%) 

Winter 2015 -29.1 ± 0.5 -27.9 ± 0.2 14.5 ± 0.7 13.6 ± 0.3 0.12 0.23 0.09 2.7 

Spring 2015 -28.3 ± 0.4 -28.0 ± 0.3 14.0 ± 0.3 14.0 ± 0.3 0.09 0.13 0.06 4.9 

Summer 2014 -28.4 ± 0.2 -27.9 ± 0.1 13.7 ± 0.2 13.6 ± 0.1 0.08 0.05 0.09 2.8 
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Figure 4.9. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Squalius cephalus by Pomphorhynchus 

laevis according to length (as 5 mm increments), where hollow circles represents the 

proportion of infected individuals in that size class and the solid line is the relationship 

between fish length and the probability of infection according to binary logistic 

regression (cf. Table 4.12).  
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Figure 4.10. A) Squalius cephalus infected with several adult Pomphorhynchus laevis 

worms. The worms are visible by their orange coloured proboscis and bulb which can 

be seen protruding from the gut wall. B) Low power micrograph of a single P. laevis 

showing complete penetration by the bulb and proboscis through the intestine. The 

raised collar of tissue surrounding the parasite is indicative of a host response. C) 

Histological transverse section through intestine of S. cephalus with a single adult P. 

laevis penetrating through the gut wall, with the proboscis bulb (*) providing firm 

attachment. The neck can be seen passing through all layers of the gut, allowing the 

body to extend into the gut lumen. D) Transverse section through gut of S. cephalus 

immediately surrounding the neck of the worm showing loss of normal gut architecture 

in the vicinity of the parasite. There is compression and loss of epithelium adjacent to 
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the neck of the parasite, with fibrogranulomatous tissue extending through the stratum 

compactum and replacing normal muscle layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Stable isotope biplots for Squalius cephalus infected (grey circles) and 

uninfected (black circles) with Pomphorhynchus laevis per season, where the grey 

ellipses denote the trophic niche size of the infected sub-group and the black ellipses 

Winter Spring 

Summer 
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denote the trophic niche size of the uninfected sub-group, and where trophic niche size 

represents SEAc calculated from TP and Ccorr.  
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4.5 Discussion 

 

In each river, the analysed host populations were fishes within multi-species 

communities. With the exception of three-spined stickleback G. aculeatus, for which 

fish were sampled but infections were not detected and thus were not reported here, 

infections by P. laevis were present in all analysed species. Also present in samples 

from the River Darent were species including gudgeon Gobio gobio where sample sizes 

were insufficient to warrant further analysis but where prevalences exceeded 50 % in 

summer samples. In addition, evidence from literature suggests that for species not 

analysed here for fishery reasons, such as L. leuciscus, S. trutta and B. barbus, also act 

as final hosts (Harris 1972; Kennedy et al. 1978; Dezfuli et al. 2001; Laimgruber et al. 

2005; Djikanovic 2010). Moreover, fish from 41 to 253 mm were infected, with no 

larger fish included in the study, suggesting that there was low host and size-specificity 

in this parasite across the rivers, with recent data on juvenile fish from the River Teme 

also suggesting that B. barbus as small as 20 mm standard length can develop infections 

(C. Gutmann-Roberts, personal communication). Thus, these outputs indicate the use of 

a wide range of fish final host species and across a very broad length range. 

 

Given this apparent low host and size-specificity, it is important to derive more 

understandings of aspects of the parasite population dynamics. Numerically at least, 

observations suggested that C. gobio and P. phoxinus were the dominant fishes in these 

rivers, being regularly captured in macro-invertebrate kick-samples as well as electric 

fishing, with B. barbatula also present in particularly high abundance in the River Teme 

at the time of sampling (JR Britton, personal communication). It should be noted, 

however, that the size range of these fishes and their habitat preferences make 
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population estimates difficult, with specialist point abundance electric fishing usually 

required (Carter et al. 2004) which was not possible here for logistical reasons. 

Irrespective, parasite prevalence tended to be high in these small-bodied fishes, with up 

to 96 % of all sampled C. gobio, up to 43 % of P. phoxinus and up to 80 % of B. 

barbatula being infected, with these being relatively high levels of prevalence compared 

to previous studies on these species from similar rivers and other P. laevis populations, 

although there was considerable variability in these data with prevalences recorded 

between 0 and 89 % across the species and studies (Table 4.14). This combination of 

generally high prevalence and abundance of these fishes, at least in the rivers in this 

study, suggest that these small-bodied species could play key roles in the population 

dynamics of P. laevis by providing large abundances of highly susceptible final hosts 

that will forage on prey populations that include a high proportion of intermediate hosts. 

These infected small fishes can also then also infect larger fishes through post-cyclic 

transmission via their predation (Kennedy 1999; Medoc et al. 2011), resulting in larger-

bodied species, such as adult S. cephalus, A. anguilla, pike Esox lucius and brown trout 

S. trutta becoming vulnerable to infection at size ranges when they would be least likely 

to predate upon G. pulex. Given this high numerical abundance of available final hosts, 

it could be argued that selection pressures were likely to be low for species-specific 

manipulation behaviours by the parasite on the intermediate host, as suggested in 

Section 3.5.  

 

Nevertheless, Hine and Kennedy (1974) suggested that in the River Avon, only S. 

cephalus and B. barbus were preferred hosts of P. laevis, with parasites occasionally 

maturing in S. trutta and L. leuciscus, but with the parasite not growing or maturing in 

other host species. Conversely, other studies have indicated that C. gobio are a suitable 
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final host in which P. laevis can complete its life cycle (Rumpus 1975; Kennedy 1996; 

1999, Lagrue et al. 2007) and there were also mature P. laevis found in C. gobio from 

all rivers in this study, albeit in relatively low proportion. Rumpus (1975) also reported 

mature P. laevis in very low numbers in B. barbatula from the River Avon. In 

combination, these suggest that these small fishes are likely to play at least a partial role 

in the successful completion of the parasite lifecycle in these rivers, potentially leading 

to some selective pressures for their infection via intermediate hosts, given that these 

fishes are present in relatively high numbers when compared with species such as S. 

cephalus. Plus, these fishes also facilitate completion of the P. laevis lifecycle through 

post-cyclic transmission (Kennedy 1999; Medoc et al. 2011), with these species likely 

to comprise a proportion of the diet of larger cyprinids such as B. barbus (Basic et al. 

2015). Thus, it can be argued that these small bodied, highly abundant fishes might 

actually play a major role in the maintenance of P. laevis populations in these rivers 

through providing large numbers of hosts of vulnerable size ranges to infection due to 

their frequent feeding on macro-invertebrates such as G. pulex as soon as they achieve 

gape sizes when these can be prey upon and ingested (e.g. Andersson et al. 1986; Davey 

et al. 2006). The ecological consequences of infection then become important to 

understand, such as their trophic and food web impacts. In addition, they suggest that 

there is potential for the development of specificity in this generalist parasite, such as 

via selection for host-specific parasite manipulation (Section 3.5). It is thus 

recommended that further work on this is completed in due course to understand 

whether there is the development of host-specificity between the different fishes of the 

community, and how this affects parasite population dynamics and genetic structuring 

and how this affects gene flow in their overall population.  
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Table 4.14. Summary of Pomphorhynchus laevis prevalence data in Cottus gobio, Phoxinus phoxinus and Barbatula barbatula from 

studies completed across European freshwaters. Prevalence represents parasite prevalence GB = Great Britain, Fr = France, Sl = Slovakia; 

Note that abundance has not been included due to variation in the method of calculation across the studies. 

Host species River Sampling date(s) Number (N) Prevalence (%) Source 

Cottus gobio Otter (GB) June 1994 32 50.0 Kennedy 1996 

C. gobio Ouche (Fr) Spring 2005 8 0.0 Medoc 2011 

C. gobio Vingeanne (Fr) Spring 2005 1 0.0 Medoc 2011 

C. gobio Culm (GB)  8 62.5 Kennedy 1999 

C. gobio Teme (GB) Autumn 2015 20 50.0 This study 

C. gobio Kennet (GB) Summer 2015 26 81.0 This study 

C. gobio Loddon (GB) Summer 2015 28 50.0 This study 

C. gobio Avon (GB) Spring 2015 26 96.0 This study 

Barbatula barbatula Otter (GB) June 1994 32 0.0 Kennedy 1996 

B. barbatula Ouche (Fr) Spring 2005 52 3.8 Medoc 2011 
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Host species River Sampling date(s) Number (N) Prevalence (%) Source 

B. barbatula Vingeanne (Fr) Spring 2005 3 0.0 Medoc 2011 

B. barbatula Vogue (Fr) Spring 2009 3 0.0 Medoc 2011 

B. barbatula Culm (GB)  30 27.5 Kennedy 1999 

B. barbatula Avon (GB) Spring 2015 14 28.6 This study 

B. barbatula Kennet (GB) Summer 2015 30 36.7 This study 

B. barbatula Loddon (GB) Summer 2015 40 32.5 This study 

B. barbatula Darent (GB) Spring 2015 60 43.3 This study 

Phoxinus phoxinus Ouche (Fr) Spring 2005 54 57.4 Medoc 2011 

P. phoxinus Ouche (Fr) Spring 2009 92 13.0 Medoc 2011 

P. phoxinus Vogue (Fr) Spring 2009 125 83.2 Medoc 2011 

P. phoxinus Culm (GB)  33 9.1 Kennedy 1999 

P phoxinus Lake Vihorlat (Sl) Winter 2001 129 88.9 Dudinak et al 2003 

P phoxinus Teme (GB) Autumn 2015 10 50.0 This study 

P phoxinus Avon (GB) Spring 2015 4 75.0 This study 

P phoxinus Darent (GB) Spring 2015 25 80.0 This study 
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For most of the studied fishes here, there was a significant relationship between body 

size and prevalence, with increased body size increasing the probability of infection. 

Previous studies support this pattern, with strong correlations between host length and 

parasite prevalence also reported for C. gobio and B. barbatula (Rumpus 1975). 

Nevertheless, juvenile fish data from the River Teme suggested B. barbus can develop 

infections from size ranges as low as 20 mm standard length, presumably at sizes when 

their gape size becomes sufficiently large to enable ingestion of G. pulex (C. Gutmann-

Roberts personal communication). Increased abundance and prevalence of 

acanthocephalans with increasing host size has been reported in many studies (Hine and 

Kennedy 1974; Muzzall 1980; Diamant 1989, Hassanine and Al-Jahdali 2007) and is 

considered to be a result not only of increased gape size but other factors including 

feeding preferences, habitat use and increased exposure time to infected intermediate 

hosts and/ or free living parasite stages (Hooper 1983; Diamant 1989). Correspondingly, 

the interaction between host body size and increased prevalence will vary between 

species due to species-specific ontogenetic changes that will also affect vulnerability to 

infection via determining the importance of intermediate hosts to the diet of the 

potential final host (Diamant 1989; Martins et al. 2001).  

 

The sub-lethal consequences of infections for hosts included some alterations in their 

condition and weight, and pathological consequences, including penetration of the 

epithelium and intestinal wall, although this was not accompanied by a host response 

for C. gobio and P. phoxinus. Such a lack of response could have significant 

implications for gut function, risk or peritonitis, energetics and subsequent 

establishment of other parasites, however further investigation would be needed to 

conclude whether the lack of immune response is typical in these hosts. These sub-
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lethal consequences are potentially important in infections of parasites such as P. laevis, 

as the phenotypic alterations to the traits of final hosts may be relatively subtle in 

comparison to fishes that act as intermediate hosts, such as cyprinid fishes infected with 

L. intestinalis (Loot et al. 2001; Britton et al. 2008; Chapter 6). Here, despite the 

apparent paucity of marked changes in aspects of their phenotype (at least externally), 

there were some marked differences in the trophic niches of the infected and uninfected 

sub-groups per species and river. For example, in C. gobio, there was strong niche 

constriction and specialisation evident in the Rivers Kennet and Loddon, with a similar 

pattern evident for P. phoxinus in the Darent and Loddon. In the Teme, infected C. 

gobio and B. barbatula both had trophic niches that were larger than their uninfected 

sub-groups and showed substantial divergence. Consequently, whilst there appeared to 

be some context dependency in the trophic responses at the population level, there were 

some relatively consistent patterns evident that suggested some parasite-driven trophic 

niche specialisation (Britton and Andreou 2016). In the absence of clear changes to the 

host phenotype by infection then the processes involved in this specialisation were not 

apparent. It might have related to parasite mediated competition, where the energetics 

involved in maintaining body condition in the face of pathological challenges by the 

parasite could have resulted in reduced foraging performances (Krichbaum et al. 2010; 

Pegg et al. 2015). Logistical constraints prevented further study on this here, although it 

should be noted that in Chapter 3, there were no significance differences in the 

functional response parameters between infected and uninfected S. cephalus when held 

individually and in controlled conditions, weakening the argument that parasite 

mediated competition might have been a key process in driving these differences in 

trophic niches. Irrespective, the effects of infections at a food web level included some 

substantial modifications in trophic structure, with alterations in aspects such as energy 
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pathways, suggesting a need for further investigation into these patterns and processes 

(Britton and Andreou 2016).  

 

Introduced parasites can pose a greater threat to their new hosts than co-evolved 

parasites as the hosts tend to lack anti-parasite behaviours, and strong immune 

responses, resistance and resilience to infections (Anderson et al. 2004; Rosenblum et 

al. 2010; Britton 2013). This host-switching to naïve fishes can thus result in higher 

parasite prevalences and abundances, increased pathological consequences and greater 

consequences arising from sub-lethal impacts (Taraschewski 2006; Britton et al. 2011). 

Consequently, understanding how P. laevis infections affect the host fishes between 

their indigenous and non-indigenous range was important in the context of 

understanding the individual host responses in populations that had originally been 

naïve. Comparisons of parasite prevalence and abundance per species across the rivers 

provided no evidence for higher infection levels in the non-indigenous range, with the 

highest levels for B. barbatula recorded in the River Darent, for P. phoxinus in the 

Darent and Kennet, and for C. gobio, prevalence was variable across the two ranges but 

with abundance highest in the Darent. Whilst data were only available for S. cephalus 

from the Darent, prevalence and abundances were also generally high.  

 

This lack of difference in these parasite metrics between the ranges suggested that either 

parasite pathogenicity was sufficiently high in the indigenous range to make 

comparisons with more naïve fishes superfluous, or the parasite has been present in the 

non-indigenous range for a sufficiently long period that over successive generations of 

fish host populations, some evolved responses to infection have developed. Although 

the more commonly reported pattern is for large differences in host response in a 
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parasites introduced and natural range (e.g. Ebert 2005; Kalbe and Kurtz 2006; 

Franceschi et al. 2010), a lack of difference has been shown in other studies (Kaltz and 

Shykoff 2002). Whilst there is strong evidence for local adaptation and evolution of 

host response of over time (Franceschi et al. 2010), there is also presence of innate 

immunity in many vertebrate and invertebrate species that may account for these results 

(Kalbe and Kurtz 2006). Furthermore, it has been found that generalist parasites tend to 

exhibit less local adaptation than those with a very specific host range (Lajeunesse and 

Forbes 2002), which again might account for the similarity between sites in P. laevis 

population dynamics and responses of their respective hosts.  

 

In summary, infections of P. laevis were apparent across a range of species in the fish 

communities studied, with a range of sub-lethal consequences evident, albeit with some 

context dependency between populations. Some evidence of parasite maturation was 

evident in the small-bodied fishes, suggesting they were acting as preferred final hosts. 

Consequently, the combination of their high numerical abundances and parasite 

prevalences suggest they play important roles in maintaining populations of P. laevis, 

with their sub-lethal consequences resulting in some important ecological alterations in 

the host population and wider freshwater community. The work presented here also 

suggests further work is necessary on this host-parasite model, on both the processes 

leading to parasite-driven trophic specialisation and how host-specific infections might 

drive parasite population structuring in the final fish host community. The outputs also 

suggested that differences in host responses to parasite infections might depend more on 

the pathogenicity of the parasite than on their status as native/ non-native, or 

indigenous/ non-indigenous. Consequently, these aspects will be explored next, in 
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Chapters 5 (enemy release of parasites from non-native fish) and 6 (ecological 

consequences of native fish parasites).  
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Chapter 5 

 

Parasites of non-native freshwater fishes introduced into England and 

Wales suggest enemy release and parasite acquisition 

 

This chapter is published in full as: 

 

Sheath, D.J., Williams, C.F., Reading, A.J. and Britton, J.R., 2015. Parasites of non-

native freshwater fishes introduced into England and Wales suggest enemy release and 

parasite acquisition. Biological Invasions, 17, 2235-2246. 

 

 

 

 

 

 

 

 

 

 

  



157 
 

5.1 Summary 

 

When non-native species are introduced into a new range, their parasites can also be 

introduced, with these potentially spilling-over into native hosts. However, in general, 

evidence suggests that a high proportion of their native parasites are lost during 

introduction and infections by some new parasites from the native range might occur, 

potentially resulting in parasite spill-back to native species. These processes were 

investigated here using parasite surveys and literature review on seven non-native 

freshwater fishes introduced into England and Wales. Comparison of the mean numbers 

of parasite species and genera per population for each fish species in England and Wales 

compared to their native ranges revealed less than 9 % of the native parasite fauna were 

present in their populations in England and Wales. There was no evidence suggesting 

these introduced parasites had spilled over into sympatric native fishes. The non-native 

fishes did acquire parasites following their introduction, providing potential for parasite 

spill-back to sympatric fishes, and this resulted in no significant differences in overall 

mean numbers of parasites per population between the native and introduced ranges. 

Through this acquisition, the non-native fishes also had mean numbers of parasite 

species and genera per population that were not significantly different to sympatric 

native fishes. Thus, the non-native fishes in England and Wales showed evidence of 

enemy release, but acquired new parasites following introduction (showing potential for 

spill-back), but there was no evidence of parasite spill-over into native fishes. 
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5.2 Introduction  

 

Introductions of non-native species raise concerns over the impacts they can have on 

native biodiversity, including predation pressure, increased competition and disruptions 

to ecosystem functioning (Hulme et al. 2009; Pysek et al. 2010). When free-living 

species are introduced then their parasite fauna can also be introduced (Williams et al. 

2013). These parasites could then potentially spill-over into native species, since 

resistance and tolerance of these new hosts to infection will be low (Torchin et al. 2003; 

Kelly et al. 2006). Both lethal and sub-lethal host consequences might be incurred, with 

the latter including pathological, physiological, and/or behavioural changes, with likely 

adverse consequences for growth, survival, and fitness (Tompkins et al. 2001; Hewlett 

et al. 2009; Britton 2013). However, the introduction process might filter out many of 

these parasites through, for example, only a small sub-set of free-living individuals of 

low parasite diversity being removed from the native range and/ or their parasites 

having high host specificity, with these hosts absent in the new range (Torchin et al. 

2003). Of those parasites that are introduced, consequences for the receiving ecosystem 

will vary according to factors including the complexity of their lifecycle, their ability to 

spill-over to native species, and the extent of the natural resistance and resilience to 

infection in these new hosts (Kelly et al. 2009).  

 

Interactions between introduced species and parasites have raised a number of 

hypotheses in invasion biology. The ‘Enemy Release Hypothesis’ (ERH) predicts that 

the parasite loss experienced by non-native species will enhance their ability to establish 

and invade (Section 1.3.2) (Keane and Crawley 2002; Mitchell and Power 2003; 

Hatcher and Dunn 2011). Torchin and Mitchell (2004) suggested that when a species is 
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introduced, it ‘escapes’ at least 75 % of its parasites from the native range and thus will 

gain substantial benefits regarding their fitness and survival in the invasive range 

(Torchin et al. 2003). The ERH has been used as the basis to explain the invasion 

success of a diverse range of species, including non-native slugs (Ross et al. 2010), 

mosquitoes (Aliabadi and Juliano 2002) and frogs (Marr et al. 2008). In fish, for two 

introduced fish species (Apollonia melanostoma and Proterorhinus semilunaris) in the 

North American Great Lakes, parasite diversity in both species was considerably lower 

than their native range, despite them also being present for approximately 100 years 

(Kvach and Stephien 2008). Many relevant studies have focused on invasive plants that 

show enemy release processes (e.g. Keane and Crawley 2002; Mitchell and Power 

2003; Liu and Stiling 2006), but support is also present in other taxa, including fish (e.g. 

Poulin et al. 2010).  

 

The ‘Parasite spill-over’ (PSO) hypothesis suggests that those parasites that have been 

introduced might now ‘spill-over’ to native species (Prenter et al. 2004; Kelly et al. 

2009; Britton 2013). This is a concern, as the lack of co-evolution between the parasite 

and its new host potentially results in low resistance and resilience to infection 

(Taraschewski 2006). In addition, some native parasites might be transmitted from the 

native species to the non-native species; if the non-native species is a competent host 

that acts a reservoir of infection, it can result in parasite spillback (PSB) to native 

species, increasing their disease impacts at individual and population levels (Section 

1.3.2) (Kelly et al. 2009). 

 

An issue with these hypotheses in non-plant taxa is the lack of empirical data available 

for the parasite fauna of many introduced species. Consequently, the aim here was to 
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use these hypotheses as the basis for investigating the parasite fauna of non-native 

freshwater fish and the native freshwater fish communities in which they reside. The 

rationale for using freshwaters was that drainage basins tend to act as biogeographic 

islands and thus present obstacles to natural fish migration (and so barriers to their 

parasites also) between basins (Gozlan et al. 2010). The study area was England and 

Wales, hereafter referred to as the ‘introduced range’. The study objectives were to: (1) 

compare the diversity and characteristics (internal/ external attachment; specialist/ 

generalist) of the parasite fauna of non-native fishes between freshwaters in the 

introduced range and their native ranges; and (2) assess the diversity and characteristics 

of parasites in non-native fish populations in the introduced range, and compare them to 

the diversity and characteristics of the parasites present in the native fish of the host 

communities. Specialist parasites were those where their literature suggested very high 

host specificity, whereas generalists were those of lower host specificity. These outputs 

were then discussed in relation to enemy release, parasite spillover and parasite 

spillback processes.  

 

5.3 Methods 

 

5.3.1 Non-native fish species 

The non-native fish present in the introduced range that were used in the study were 

European catfish Silurus glanis, pumpkinseed Lepomis gibbosus, topmouth gudgeon 

Pseudorasbora parva, sunbleak Leucaspius delineatus, black bullhead Ameiurus melas, 

bitterling Rhodeus amarus and fathead minnow Pimephlaes promelas. The justification 

for their use was that data on their parasite fauna were available for at least one 

population and these species are not used in aquaculture in England and Wales and so 
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any fish present in the wild were unlikely to have been previously exposed to any anti-

parasite treatments (Table 5.1). In general, their distributions in England and Wales are 

very restricted due to fish movement legislation and regulations; indeed, the A. melas 

and P. promelas populations used in the study were the only populations present in the 

countries and both have since been eradicated. By contrast, the following non-native 

fishes were omitted from the study to avoid confounding issues as their heavy use in 

aquaculture would have potentially exposed them to a range of anti-parasite treatments: 

common carp C. carpio, goldfish C. auratus, rainbow trout Oncorhynchus mykiss and 

ide Leuciscus idus. Indeed, should any of these species be sampled in the wild in 

England and Wales then there is high probability they originated from a fish-farm as 

there are, for example, few naturally recruiting populations of C. carpio and O. mykiss 

present (Fausch 2007; Britton et al. 2010). In addition, the regulations on their releases 

into the wild in the countries are comparatively light compared with the species 

included in this study, with regulations concerning C. carpio and O. mykiss broadly 

similar to some native fishes. 

 

5.3.2 Data collection 

Data on the parasite fauna of the selected non-native fish were collated from two 

sources. Firstly, data on the parasite fauna of the non-native fish in freshwaters in the 

introduced range were collated from parasite surveys completed between 2005 and 2013 

initially by the Environment Agency as part of routine monitoring of non-native species, 

parasites and disease in wild fish populations, and latterly by the author for purpose of 

this research. With the exception of R. amarus from the River Great Ouse in Eastern 

England, the waters were all lentic sites located in lowland areas below 200 m altitude; 

their precise locations cannot be revealed due to business confidentiality reasons. The 
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predominance of lentic sites in the study is because the study species are rarely recorded 

in rivers in England and Wales. After the populations were sampled by either seine 

netting or fish traps (method dependent on the species and habitat being sampled), the 

captured fish were removed from the gears, identified to species level and the non-

native fish removed and transported alive to the laboratory. At the same time, samples 

of any native fish captured were also taken to the laboratory with the maximum sample 

size taken of a total of 30 native fishes. For this study, data were only included where 

the minimum sample sizes per native fish species was 10 individuals. Once at the 

laboratory, the fish were euthanized through an anaesthetic overdose (benzocaine 

solution 5 % w/v) and a detailed post-mortem conducted for the detection of non-native 

parasites, adapted from Hoole et al. (2001) (Appendix 1). Skin scrapes and internal 

organs were examined with aid of low and high power microscopy to enable parasite 

identification. Note that the data recorded in these surveys was the presence of the 

parasites, but not their prevalence (proportion of fish per species infected with that 

parasite) or parasite abundance (number or weight of parasites per fish). As such, no 

data were tested on parasite prevalence or abundance in subsequent analyses.  

 

Secondly, data on the parasite fauna of the non-native fishes in their native ranges, and 

supplementary data for the fishes in the introduced range, were collated from literature 

using searches completed in Web of Science, and supplemented by Google Scholar, 

using Boolean logic search terms including the host fish species and terms including all 

of their hosts countries (taken from www.Fishbase.org), ‘parasite’, ‘pathogen’, ‘native’, 

‘fauna’, ‘health check’ and combinations of these. Data collated from the available 

papers were lists of parasites hosted by each fish species; in the majority of cases, data 

were not available on parasite prevalence or abundance and so are not presented here. 
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Also, in a minority of the parasite recordings, the parasite genus was provided but not 

the species (e.g. Diplostomum sp.). As such, some subsequent analyses used counts of 

parasite number based on both species and genera; where species were used, the 

assumption was used that these recordings represented one species. Also, given that 

mxyosporidia are seldom reported in studies, their data were removed from the data set 

entirely to standardise the datasets for both ranges. At the conclusion of the data 

collection from both the laboratory work and literature reviews, further reviews were 

then completed for each parasite species to determine their site of attachment (i.e. 

whether they were internal or external parasites) and host specificity (generalist/ 

specialist).  

 

5.3.3 Data analyses 

Luque and Poulin (2007) outlined that host sample size is often an important correlate 

of detected parasite species richness and so the effect of study effort should be 

controlled in parasite richness studies to eliminate spurious sampling effects. 

Consequently, our data were initially tested for the relationship between study effort and 

parasite number (species and genera), and where this was significant then the data were 

corrected by dividing the number of parasite species (and genera) in each range by the 

number of studies or populations used to collate these data.  

 

To compare parasite diversity between the ranges, and between the non-native fish and 

sympatric native fish in waters in the introduced range, the methodology was based on 

linear regression. To compare parasite diversity between the ranges, the first test 

compared the mean number of parasite species and genera per population for the non-

native fishes in their native range versus the number of these parasite species and genera 
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detected in their populations in the introduced range. The gradient of the regression line 

(b) that described the relationship of the mean parasite species/ genera per population 

between the ranges tested the null hypothesis that there were equal numbers of the 

parasite species/ genera per population in both ranges. The null hypothesis was rejected 

when b was significantly different to 1.0 and vice-versa, based on its 95 % confidence 

limits (Keith et al. 2009). The regression output also indicated if the gradient of b was 

significantly different to zero. To then compare the mean number of parasites per 

population between both ranges, irrespective of parasite origin, the same test was used, 

except the data for the introduced range used the mean number of all parasite species 

and genera recorded per population and fish species.  

 

The numbers of parasite species in the non-native fish and their sympatric native fish 

species within the invaded fish communities of the introduced range were tested using 

the same methodology as described. The null hypothesis was the sympatric native and 

non-native fish species had equal numbers of parasites per population. In this test, genus 

data were not included as the species level data were largely complete. The values for 

the native fish were calculated for the community and as such were corrected for higher 

number of native fish species present versus one non-native fish species.  

 

To compare differences in the parasite characteristics between the ranges, the species 

level data were used only, as the genera data were not appropriate for identifying 

differences in host specificity and site of attachment. For each of the three datasets 

described above, the mean numbers of internal, external, specialist and generalist 

parasite species per population were tested between the ranges and groups using Mann 
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Whitney U tests, as transformation did not normalise the data. All statistics were 

completed in SPSS v. 21. 

 

5.4 Results 

 

The number of parasite species and genera present in the non-native fish in their native 

range that were also present in these fish species in the introduced range was low, with 

only 8.5 % of the native parasite species recorded in both ranges (Table 5.1). The 

relationship between the number of parasite species/ genera and study effort was 

significant (species: R
2
 = 0.52, F1,12 = 12.79, P< 0.01; genera: R

2
 = 0.53, F1,12 = 13.41, 

P< 0.01; Table 5.1). Comparing the mean number of native parasite species and genera 

per population between the ranges using linear regression revealed that the gradient of 

both regression lines were not significantly different to zero (species: b = 0.22, P = 

0.27; genera: b = 0.26, P = 0.36; Figure 5.1a) but were significantly different to 1.0 

(species: 95% confidence intervals: -0.24 to 0.67; genera: 95 % confidence intervals -

0.40 to 0.91; Figure 5.1a), rejecting the null hypothesis. There was a significant 

difference in the mean number of specialist parasite species per population between the 

ranges (Mann Whitney U Test: Z = -2.86, P < 0.01), but not in the mean numbers of 

internal, external and generalist parasite species per population (Mann Whitney: P > 

0.05 in all cases). Of these parasites recorded in the introduced range, the following 

were new additions to the British freshwater fish parasite fauna (Kirk 2004): 

Thaparocleidus vistulensis and Ergasilus sieboldi in S. glanis (Reading et al. 2011), 

Onchoceleidus dispar from L. gibbosus (Hockley et al. 2011) and Ancyrocephalus 

pricei from A. melas. The cestode parasite Proteocephalus ocellatus was also detected 

in the intestinal tract of S. glanis; although it has previously been recorded in imported 
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fish on an aquaculture site, it was thought to have been eradicated (Andrews and Chubb 

1984). Its detection here suggests it might actually have established in England and 

Wales.  

 

When all the parasite species and genera (irrespective of their origin) that were recorded 

in the non-native fishes in both ranges were tested against study effort, the relationships 

were also significant (species: R
2
 = 0.47, F1,12 = 10.53, P< 0.01; genera: R

2
 = 0.46, F1,12 

= 10.56, P< 0.01; Table 5.2). In these data, L. delineatus were an extreme outlier due to 

their high number of parasites per population in the introduced range (6.0; Table 5.2). 

Comparing the mean number of parasite species and genera per population between the 

ranges using linear regression revealed that with L. delineatus omitted as an outlier the 

gradients of the regression lines were not significantly different to zero (species: b = 

0.21, P = 0.34; genera: (b = 0.57, P = 0.19) or 1.0 (species: 95 % confidence intervals: -

0.81 to 1.22; genera: 95 % confidence intervals -0.45 to 1.60; Figure 5.1b), with this 

also the case for both regression lines with L. delineatus included (P > 0.05). Thus, the 

null hypothesis was not rejected. There were no significant differences in the mean 

number of internal, external, specialist or generalist parasites per population between 

the ranges (Mann Whitney U Test, P >0.05 in all cases).  

 

In waters in the introduced range where the non-native fish were present, the numbers 

of parasite species were compared between the non-native and sympatric native fishes 

(Table 5.3). For L. delineatus and P. promelas, there were no comparative data for 

sympatric fish and so these were omitted from the data. The relationship between 

number of populations and parasite number was significant (R
2
 = 0.51, F1,8= 8.35; P = 

0.02) and comparing the mean number of parasite species per population between the 
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native and non-native fishes using linear regression revealed no significant difference 

between them (b = 0.51, P = 0.51) and 1.0 (95 % confidence intervals: -2.56 to 3.58) 

(Figure 5.2). There were also no significant differences in the number of internal, 

external and generalist parasites between the groups (Mann Whitney U Test, P > 0.05 in 

all cases). Too few specialist parasites were present in data to warrant their testing.  
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Table 5.1. Number of studies, and species and genera of parasites recorded in the native range of the non-native fishes, the number of these 

native parasites recorded in the ‘Introduced’ range (England and Wales), and the characteristics of these parasite species in both ranges 

(site of attachment and host specificity). 

     Parasite species characteristics (%)  

Species Range Studies Native genera Native species Internal External Specialist Generalist References 

Silurus glanis 

  

Native 20 41 54 69 31 19 81 1-8 

Introduced 6 6 6 50 50 17 83 This study 

Lepomis 

gibbosus  

Native 10 25 34 29 71 18 82 9-19 

Introduced 1 3 3 0 100 0 100 20 

Pseudorasbora 

parva  

Native 10 13 13 62 38 8 92 21-22 

Introduced 4 1 0 - - - - This study 

Leucaspius 

delineatus  

Native 12 9 11 55 45 9 91 23-28 

Introduced 1 2 2 50 50 0 100 29 

Ameiurus melas  Native  25 12 15 80 20 20 80 30-40 

Introduced 1 0 0 - - - - This study 

Rhodeus amarus  Native 16 33 42 45 55 10 90 41 

Introduced 4 4 4 75 25 0 100 This study 

Pimephales 

promelas  

Native 13 14 19 47 53 16 84 42-50 

Introduced 1 1 1 100 0 0 100 This study 
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1 Copp et al. (2009); 2 Barzegar and Jalali (2010); 3 Soylu (2005); 4 Mancheva et al. (2014) ;5 Zdarska and Nebesarova (2005); 6 Sattari et al. (2002); 7 Roohi et al. 

(2014); 8 Pazooki and Masoumian (2012); 9 Hanek and Fernando (1978); 10 Esch (1971); 11 Cone and Anderson (1977); 12 Rye and Baker (1984); 13 Piasecki and 

Falandysz (1994); 14 Hudson and Bowen (2002); 15 Grupcheva and Nedeva (2000); 16 Osborn (1911); 18 Aho et al. (1976); 18 Wilson and Ronald (1967); 19 Taylor 

et al. (1994); 20 Hockley et al. 2011; 21 Gozlan et al. (2010); 22 Zhang et al. (2007); 23 Avdul et al. (2011); 24 Skenderovic et al. (2011); 25 Molnar (1976); 26 

Kirjušina and Vismanis (2007); 27 Davydov et al. (2003); 28 Galationov (1980); 29 Beyer et al. (2005); 30 Bangham (1941); 31 Lincicome and Van Cleave (1949); 32 

Van Cleave (1921); 33 Steelman (1938); 34 Wallace (1935); 34 McAllister and Bursey (2011); 35 Seamster (1948); 36 Hugghins (1954); 37 Davidova et al. (2008); 38 

Mizelle and Cronin (1943); 39 Dronen and Underwood (1980); 40 Tkach and Mills (2011); 41 Held and Peterka (1974); 42 Wilmer and Rogers (1969); 43 Olsen 

(1986); 44 McDowell et al. (1992); 45 Radabaugh (1980); 46 Knipes and Janovy (2009); 47 Mitchell et al. (1982); 48 Samuel et al. (1976); 49 Merrit and Pratt (1964); 

50 Voth and Larson (1968).  
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Table 5.2. Number of studies, and species and genera of parasites recorded in the non-native fishes in their native range, the total number of 

parasites recorded in these fishes in England Wales (‘Introduced’), and the characteristics of the parasite species (site of attachment and 

host specificity). Refs as per table 5.1. 

     Parasite species characteristics (%)  

Species Range Studies Genera Species Internal External Specialist Generalist References 

Silurus glanis 

  

Native 20 41 54 72 28 26 74 1-8 

Introduced 6 7 7 57 43 14 86 This study 

Lepomis gibbosus  Native 10 25 34 33 67 17 83 9-19 

Introduced 1 7 7 57 43 0 100 20 

Pseudorasbora 

parva  

Native 10 13 13 54 31 8 92 21-22 

Introduced 4 2 2 100 0 0 100 This study 

Leucaspius 

delineatus  

Native 12 9 11 54 46 18 82 23-28 

Introduced 1 6 6 66 34 0 100 29 

Ameiurus melas  Native  25 12 15 80 20 20 80 30-40 

Introduced 1 1 2 0 100 50 50 This study 

Rhodeus amarus  Native 16 33 42 45 55 10 90 41 

Introduced 4 10 11 45 55 0 100 This study 

Pimephales 

promelas  

Native 13 14 19 42 58 11 89 42-50 

Introduced 1 1 1 0 100 0 100 This study 
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Table 5.3. Comparison of the numbers of parasite species of the non-native and sympatric fish present in fish communities in the UK, where N: native 

fish community, NN non-native fish populations, and the characteristics of the parasite species (site of attachment and host specificity). 

 

     Parasite species characteristics (%) 

Species Fish communities 

studied (n) 

Species group Fish species Parasite species 

recorded (n) 

Internal External Specialist Generalist 

Silurus glanis 

  

3 N 1-13 17 29 71 0 100 

 NN  6 66 34 17 83 

Lepomis 

gibbosus  

1 N 1, 9, 13 3 0 100 0 100 

 NN  7 57 43 0 100 

Pseudorasbora 

parva  

2 N 1, 9, 14 5 42 58 0 100 

 NN  2 100 0 0 100 

Ameiurus melas  1 N 2, 3, 9 7 29 71 0 100 

 NN  2 0 100 50 50 

Rhodeus amarus  3 N 3, 6, 9, 12, 13, 15 26 53 47 0 100 

 NN  11 45 55 0 100 

1 Scardinius erythropthalmus; 2 Cyprinus carpio; 3 Perca fluviatilis; 4 Barbus barbus; 5 Anguilla anguilla; 6 Abramis Brama; 7 Squalius cephalus; 8 Leuciscus leuciscus; 9 Rutilus 

rutilus; 10 Tinca tinca; 11 Carassius carassius; 12 Esox lucius; 13 Gobio gobio; 14 Gasterosteus aculeatus; 15 Gymnocephalus cernus
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Figure 5.1. (a) Comparison of the mean number of parasites per population in the native 

range of the non-native fish in Table 1 versus the mean number of these native parasites 
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recorded per population in the introduced range, and their relationships according to 

linear regression (species: R
2
 = 0.23, F1,5 = 1.50, P> 0.05); genus: R

2
 = 0.16, F1,5 = 1.01, 

P > 0.05). 

(b) Comparison of the mean number of parasites per population in the native range of 

the non-native fish in Table 1 versus their mean number of parasites recorded per 

population in The introduced range, and their relationships according to linear 

regression (species: R
2
 = 0.08, F1,4 = 0.33, P> 0.05); genus: R

2
 = 0.38, F1,4 = 2.45, P > 

0.05). 

Open circles are species data, filled circles are genus data, solid lines represent fitted 

relationships (linear regression) for the species level data and the dotted line for genus 

level data, and dashed lines represent the null hypothesis that there are equal numbers of 

parasites per population between the native ranges and the introduced range.  
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Figure 5.2. Comparison of the mean number of parasite species per population of the 

native and non-native fish when in sympatry in the introduced range, where non-native 

fish were Silurus glanis, Lepomis gibbosus, Pseudorasbora. parva, Ameiurus melas and 

Rhodeus amarus. The solid line represents the fitted relationship for data (linear 

regression; and their relationships according to linear regression (R
2
 = 0.51, F1,3= 0.28, 

P > 0.05) and the dashed line represents the null hypothesis that there are equal numbers 

of parasites per population in the non-native and native fish.  
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5.5 Discussion  

 

The study outputs suggested when the non-native fishes were introduced into England 

Wales, they had undergone aspects of enemy release as only 8.5 % of their native 

parasite fauna remained. Of those that had been introduced with the fish, the majority 

were members of the Monogenea class of parasites. The relatively high host specificity 

of these parasites has so far limited disease risks to native fish populations (e.g. Hockley 

et al. 2011; Reading et al. 2011). However, examples of serious disease outbreaks 

following the translocation of monogenean parasites, such as G. salaris (Bauer et al. 

2002; Bakke et al. 2007), highlights the importance of continued monitoring and prompt 

risk assessment to inform management (Williams et al. 2013).  

 

There was no evidence that parasite spillover had occurred in any of the studied fish 

communities in the introduced range, with no recordings of the introduced parasites in 

the sympatric native fishes. Whilst there were seven parasites recorded in both the non-

native fish and sympatric native fish communities, these were all generalist parasites 

native to England and Wales that had been acquired by the non-native fish. This does 

indicate that there was potentially some biotic resistance to these fishes (Mitchell and 

Power 2003). In the absence of parasite prevalence and abundance data, however, it 

could not be assessed whether these infections were likely to be having sufficient sub-

lethal consequences in the non-native fish to prevent their long-term survival and 

establishment. 

 

In general, the loss of natural parasite fauna is often used as an explanatory variable in 

the invasion success of many non-native species (e.g. MacLeod et al. 2010; Mitchell 
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and Power 2010; Ross et al. 2010). In evaluating enemy release, it is important to 

understand why reductions in parasite fauna are occurring and why some parasites do 

manage to survive the introduction process. Here, some (but not all) of the parasites that 

survived the introduction process into England and Wales were monogenean parasites 

with direct lifecycles and no intermediate hosts (Jimenez-Garcia et al. 2001). The 

persistence of these parasites in the introduced range was likely to have been assisted by 

their simple lifecycle, providing there were sufficient numbers of hosts available. 

Indeed, MacLeod et al. (2010) concluded that life cycle complexity and transmission 

efficiency were the more likely causes of introduced parasites failing to establish in the 

new range rather than the parasites being lost during the introduction process. 

Nevertheless, there are a number of studies that do not support the ERH (e.g. Ramalho 

et al. 2009; Lacardo et al. 2013; Poulin and Mouillot 2003). For example, Lacerda et al. 

(2013) suggested that as important as the number and diversity of parasites present in 

the non-native species are the effects of the parasites on the hosts, with parasite 

prevalence and abundance often being greater in the introduced range. As this aspect 

could not be assessed here due to the absence of data on parasite prevalence and 

abundance, it is an aspect of the parasite fauna of non-native fish in England and Wales 

that should be studied subsequently.  

 

Comparisons between the parasite fauna of the native and non-native fish in the study 

provided no evidence of parasite spill-over, perhaps due to the low number of 

introduced parasites generally that made this an unlikely process. Nevertheless, other 

studies suggest it remains an important process due to the potential for damaging 

outcomes occurring in infected native hosts (e.g. Taraschewski 2006; Prenter et al. 

2004; Liu and Stiling 2006). In some cases, spill-over occurs at relatively high levels, as 
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the majority of introduced parasites spill over into native hosts (Jimenez-Garcia 2001), 

such as the helminth parasite fauna from the non-native lizard, Tupinambis merianae, 

into the native reptile fauna (Ramalho et al. 2009). By contrast, there was greater 

evidence in the current study of native parasites infecting the non-native fishes and this 

process is generally well reported (e.g. Jimenez-Garcia 2001; Krakau et al. 2006). For 

example, the two salmonid fish species O. mykiss and S. trutta accumulate parasite 

communities in their introduced ranges at similar abundances to their host range, 

negating any beneficial consequences they might have gained from enemy release 

(Poulin and Mouillot 2003). In the current study, the acquired parasites resulted in 

similar mean parasite numbers per population in England and Wales to the native range 

of the fishes. These mean number of parasite species per population were also not 

significantly different to those in the sympatric fishes present in the invaded 

communities of England and Wales. Although some caution in these conclusions is 

warranted due to the relatively low numbers of populations that could be studied in 

England and Wales that limited the power of statistical tests. The observed patterns in 

the data, however, were also very supportive of these conclusions. 

 

The importance of parasite dynamics in the establishment and invasion processes of 

non-native species is through the advantages provided to those species in terms of their 

traits and fitness when their parasite fauna is reduced (Torchin et al. 2003). It can enable 

increased resource allocation for somatic growth and reproduction, and increase 

immune responses to infections of native parasites (Joshi and Vrieling 2005). In 

combination, these serve to increase the probability of the establishment and invasion, 

thus subsequently altering interactions in the host fish community (Keane and Crawley 

2002). Whilst fish introductions in England Wales are routinely screened for certain 
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‘notifiable’ diseases before release (at least where introduction is intentional and 

approved; Davies et al. 2013), there is arguably a requirement for increased parasite 

screening for introductions of non-native fish. However, with differing legislative, 

economic and political drivers, managing the introduction and spread of non-native 

pathogens represents a complex global challenge (Williams et al. 2013). Although few 

examples were found of non-native fish pathogens being imported directly on the seven 

non-native fishes studied here, Phillips et al. (2010) found that, whilst initially an 

invasive species may experience parasite release, those that do remain - even in low 

abundance - might re-establish, having consequences on both the non-native host and 

the wider fish community. Moreover, the detection tools used in screening are 

important. Here, only those parasites were considered that could be detected through 

routine health screening which included low and high-power microscopy (Hoole et al. 

2001). However, these are unlikely to detect intra-cellular pathogens such as 

Sphaerothecum destruens that is hosted by P. parva (Gozlan et al. 2005). This pathogen 

has proved difficult to detect in wild populations, due to its size and the absence of 

disease or gross tissue damage, but is now increasingly being detected as molecular 

methodologies improve, with this resulting in the recent detection of its presence and 

distribution in countries such as the Netherlands (Spikmans et al. 2013). This is 

important, given that this pathogen is associated with potentially substantial mortality 

rates in salmonid and cyprinid fishes (Andreou et al. 2012). In addition, it suggests that 

whilst the recorded numbers of non-native parasites were low in this study, with 

negligible spill-over, this might not cover all pathogens being hosted by the non-native 

fishes. Others might have been introduced but were not detected using the 

methodologies employed. 
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In summary, it was revealed that the introduction of these seven non-native fishes in 

England and Wales was not concomitant with the introduction of a high diversity of 

non-native parasites. Whilst there was some evidence of native parasites infecting these 

non-native fishes (and so, potentially, leading to parasite spill-back), there was 

negligible evidence of parasite spill-over from the non-native to the native fishes. 

Whilst some caution is needed on this given the case study of S. destruens in P. parva, 

overall it suggests that enemy release could provide some partial explanations for the 

survival and establishment success of some non-native fishes in England and Wales. It 

also suggests that from the perspective of the impact of a parasite on both an individual 

host and their population, it is aspects of the parasite virulence and specificity that could 

be most important, rather than its origin.  
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Chapter 6 

 

Trophic consequences of infection by native parasites for native fishes: 

evidence of niche specialisation driven by parasitism? 
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6.1 Summary 

 

The consequences of parasitism can include alterations to host pathology, physiology 

and behaviour, potentially resulting in alterations to diet that lead to the development of 

trophic niche specialisation between the infected and uninfected population sub-groups. 

To test whether parasitism by native parasites can result in trophic niche specialisation, 

three parasites with complex lifecycles were studied across three fish hosts using two 

populations per host-parasite system. For roach Rutilus rutilus infected with the cestode 

parasite L. intestinalis, trophic niche specialisation was strongly evident in parasitized 

individuals from one of the sites, with individual infected fish occupying elevated areas 

of trophic space, indicating they had higher trophic positions than uninfected con-

specifics. For three-spined stickleback G. aculeatus infected with the cestode S. solidus, 

samples collected from a site in autumn revealed some shifts in individual niches, with 

infected fish feeding significantly lower in the food web than uninfected conspecifics, 

increasing the population trophic niche size. For perch Perca fluviatilis infected with 

Triaenophorus nodulosus the population trophic niche size was substantially larger with 

the parasite in one site, but this was less apparent in the other. These findings provide 

some evidence that these native parasites result in some trophic niche specialisations of 

infected fishes, but further work is needed to explore the ecological processes that 

produce these patterns in niche divergence.  
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6.2 Introduction 

 

Parasite infections can often result in significant consequences for the biology of their 

hosts (Barber et al. 2000), involving shifts in host pathology, physiology and behaviour 

(Barnard and Behnke 1990; Barber and Huntingford 1995; Loot et al. 2008). These 

changes, affecting foraging and anti-predator behaviours, and habitat preferences, tend 

to then have adverse consequences for host condition, growth and fitness (Fenton and 

Brockhurst 2008; Horky et al. 2014). Thus, parasites have the potential to profoundly 

shape the dynamics of their host populations and communities, and alter the symmetry 

of intra- and inter-specific competitive relationships (Perrin and Christie 1996; Hudson 

et al. 2006; Luque and Poulin 2007). 

 

Ecological studies generally tend to focus on analysing parameters at the population 

level, using mean values for measured parameters in order to make comparisons 

between, for example, populations of the same species under different levels of 

disturbance. This is despite the high variation of these parameters that can be present 

within each population, i.e. high intra-specific trait variability (Bolnick et al. 2003). 

Whilst it is recognised that both sex and age will lead to trait variations in individuals 

within populations (Polis 1984; Shine 1989), it is increasingly apparent that 

considerable variation can occur within individuals of the same age and sex class. For 

example, red-ear sunfish Lepomis microlophus in a Florida lake had very high variation 

in trophic niche between individuals, as indicated by significant differences in their 

stable isotopes of δ
13

C and δ
15

N, with this resulting from individual dietary differences 

that arose from differences in habitat utilisation (Fry et al. 1999).  
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The drivers of variability in individual trophic niches can be complex and diverse, as a 

wide range of individual traits and ecological factors have the potential to lead to high 

levels of variation (Bolnick et al. 2003). Nevertheless, studies on intra-specific trophic 

specialization tend to focus on three main drivers: inter- and intra-specific competition, 

ecological opportunity and predation (Araujo et al. 2011; Evangelista et al. 2014). 

Increased intraspecific competition tends to increase individual specialization 

(Svanbäck and Bolnick 2008; Araujo et al. 2011; Svanback et al. 2011). For example, 

Evangelista et al. (2014) found that brown trout S. trutta exhibited higher variability in 

their trophic niche in streams where their population density was highest. The 

importance of variability in individual niches within a population niche was highlighted 

by Svanbäck and Bolnick (2007) and Huss et al. (2008) who studied stickleback G. 

aculeatus and perch P. fluviatilis respectively. They both revealed that as the population 

densities of the species increased, the strength of intra-specific competition increased 

and this led to higher variability in individual trophic niches that, in entirety, produced a 

larger population trophic niche than in low density populations. Conversely, increased 

interspecific competition generally reduces individual trophic specialization 

(Constantini et al. 2005; Araujo et al. 2011) likely to be due to the niche variation 

hypothesis that suggests that ecological release from other competing species leads to 

increased generalisation and, therefore, individual niches converge rather than diverge 

(Van Valen 1965).  

 

Whilst the importance of intra-specific variation in trophic niche size is increasingly 

recognised, Araujo et al. (2011) argued that whilst infection by parasites could be a 

driver of variability, studies have tended to focus only on competition, ecological 

opportunity and predation. This is important, as the consequences of parasite infection 
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for hosts that have already been outlined, such as shifts in foraging behaviour and 

habitat utilisation (Barber et al. 2000), have the potential to have substantial 

consequences for the trophic niche of the host and thus, if parasite prevalence is high in 

the population, could potentially result in greater individual variability in niche size 

(Section 1.2.5). Indeed, Britton and Andreou (2016) suggested that infections by some 

parasites could result in considerable trophic niche specialisation between the sub-

groups in a population that are infected and uninfected by specific parasites due to the 

infection-induced phenotypic modifications of hosts. Supporting evidence for how 

parasite infection could potentially modify trophic niche size was provided by Britton et 

al. (2011) who revealed that common carp C. carpio infected with the Asian tapeworm 

B. acheilognathi had significantly lower trophic positions than uninfected conspecifics, 

i.e. the infected fish had a different diet composition and so a different trophic niche 

than the uninfected fish. Pegg et al. (2015) suggested similar patterns apparent in other 

populations, with this related to the sub-lethal consequences of infection that altered 

their diet through changes in foraging behaviours (Section 1.2.5). 

 

It was discussed in Chapter 4 that there were minimal differences apparent between the 

indigenous and non-indigenous range of P. laevis in parasite prevalences and trophic 

consequences of infection for three fish species. Chapter 5 revealed that although non-

native parasites can be introduced with non-native fishes, this rarely occurs in Great 

Britain, with the acquisition of native parasites by the non-native fish being the more 

common process. Given these outcomes, here the trophic consequences of infection of 

native fishes by three native fish parasites with complex lifecycles were investigated in 

Great Britain to identify whether parasite-driven phenotypic changes result in trophic 

niche divergence between the infected and uninfected fishes that are independent of 
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parasite origin and their co-evolution with their host species. The objectives were: (1) 

for three native fish: native parasite systems, assess parasite prevalence, parasite 

abundance and differences in the mean lengths and weights of the infected versus 

uninfected conspecific fish; and (2) using the populations from objective 1, identify how 

intra-specific trophic niche size was modified by infection through assessment of 

trophic niche size of the uninfected and infected sub-groups in the population. It was 

predicted that for each focal host population, infected fish would be of lower condition 

than uninfected fish in the same population and have differences in their trophic niches 

to uninfected as a consequence of infection. Unlike Chapter 4, histopathology was not 

completed as two of the parasites occupy the body cavity of the fish and in the other, the 

histopathology of infections has already been described in the literature (cf. Section 

6.3.1). 

 

6.3 Materials and methods 

 

To determine how parasite infection modified the trophic niche of hosts, metrics 

relating to the trophic niche size of the host population was determined using the 

analysis of their stable isotopes of δ
13

C and δ
15

N (Section 1.4; 4.3). Consequently, this 

section describes the host: parasite models used and the waters from which they were 

sampled, how the samples were collected and how the subsequent data were analysed, 

including by stable isotope analysis (Section 1.4; 4.3). As the majority of samples were 

collected by the Environment Agency on behalf of the research project, the focus was 

on the collection of fish samples and this resulted in samples of macro-invertebrates 

being collected that were not suitable for including in stable isotope analyses, due to 

low sample sizes and diversity. Consequently, the focus in the chapter is on identifying 

differences in trophic niche breadths and positions between the infected and uninfected 
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fish per population, with additional analyses on their diet not completed, i.e. there was 

no complementary use of Bayesian mixing models to quantity differences in diet 

compositions (Philips et al. 2014). This had a detrimental consequence for 

understanding aspects of the trophic patterns observed and the implications of this are 

discussed further in Section 6.5. 

 

 

6.3.1 Host: parasite models 

Three host parasite models were chosen for this study, all of which included a common 

native fish species as a host to a common cestode parasite.  

 

Rutilus rutilus: Ligula intestinalis 

Roach (R. rutilus) are an abundant and widespread freshwater fish species found in a 

variety of habitats, including lakes and rivers, across Great Britain. They are a common 

intermediate host to the plerocercoid larvae of L. intestinalis, an intestinal tapeworm 

that has a three stage life cycle. This involves infection of copepods (primary 

intermediate host) cyprinid fishes such as R. rutilus (secondary intermediate host) and a 

fish-eating bird (final host). Infection with L. intestinalis can cause severe pathology in 

cyprinid fishes as they occupy space in the body cavity and can comprise over 20 % of 

the fish body mass (Figure 6.1) (Sweeting 1976; Taylor and Hoole 1989). They can then 

affect the habitat utilisation, growth, behaviour and reproduction of the hosts (Loot et al. 

2001; Loot et al. 2002; Carter et al. 2005). In particular, infected fish tend to be 

encountered in more littoral areas than uninfected conspecifics (Loot et al. 2002; Britton 

et al. 2008), this is associated with increasing the opportunity for the infected fish to be 

predated by a bird, so completing the parasite lifecycle (Loot et al. 2001).  
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Figure 6.1. The parasite load of Ligula intestinalis from an individual Rutilus rutilus 

host (this study) 

 

Gasterosteus aculeatus: Schistocephalus solidus 

The three-spined stickleback G. aculeatus is a small (< 80 mm) species of freshwater 

fish native to the UK and is found in a multitude of habitats including rivers, streams, 

ponds and brackish waters. They are the second intermediate host to the plerocercoid 

larvae of S. solidus. Similar to L. intestinalis, S. solidus has a three-stage lifecycle 

involving infection of copepods (primary host), cyprinid fishes (secondary host), and a 

fish eating bird (final host). As an intestinal tapeworm in G. aculeatus, it can cause 

severe pathology and affect anti-predator behaviours (Giles 1983), as well as inhibiting 

spawning in infected individuals (Arme and Owen 1967; Schultz et al. 2006). The 

parasite can attain large sizes relative to their hosts (Figure 6.2); up to 40 % of host 

30 mm 
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body weight can comprise of S. solidus (Hopkins and Smyth 1951). Infection thus can 

physically inhibit feeding on some prey items (Wright et al. 2006). The impact of S. 

solidus on host habitat choice and foraging behaviour is likely to be modified to 

differing extents throughout the parasite life cycle as host behavioural changes that 

make it more susceptible to avian predators are usually only encountered once S. solidus 

reaches reproductive size (Barber et al. 2004).  

 

 

 

 

 

 

 

 

 

Figure 6.2. Parasite load of Schistocephalus solidus from a single Gasterosteus 

aculeatus host 

 

Perca fluviatilis: Triaenophorus nodulosus 

European perch P. fluviatilis is a common facultative predatory fish encountered in 

many lowland fish communities in Great Britain and they are a secondary intermediate 

or final host to the plerocercoid larvae of T. nodulosus. This parasite also has a three-

stage lifecycle involving infection of copepods (primary intermediate host) and variety 

of fish species as secondary intermediate hosts. The final host is an obligate predatory 

fish, usually pike Esox lucius but also P. fluviatilis, a facultative predator. T. nodulosus 

10 mm 
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infects the liver of P. fluviatilis (Figure 6.3) and severe infections can result in acute 

liver pathology that can slow host growth rate (Brinker and Hamers 2007). The liver is 

an important glycogen store in P. fluviatilis, hence a heavy infection of T. nodulosus 

may drive a higher feeding rate in hosts as they try to maintain sufficient energy levels 

and become less reliant on their glycogen reserves (Mehner and Wieser 1994).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Parasite load of Triaenophorus nodulosus on the liver of its second 

intermediate host European perch (Perca fluviatilis).  

 

6.3.2 Study sites 

The study sites used for each host: parasite system are provided in Table 6.1. Note that 

for G. aculeatus: S. solidus, only one study site was able to be studied but was sampled 

twice (Spring [S1] and Autumn 2013 [S2]) to account for seasonal differences in 

parasite prevalence and impact. This population was then extirpated by management 

Liver infected with 

T. nodulosus 
10 mm 
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activities concerning P. parva that were independent of this project and so could not be 

studied further.  
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Table 6.1 Overview of the study sites  

 

Fish were sampled using a variety of fishing gears in order to provide a representative 

sample of fish suitable for parasitological analyses. More specifically: 

 R2, P1, P2: All fish were sampled using a seine net (length = 40 m, depth = 4.5 

m, mesh size 12 mm) (Templeton 1995). 

 R1: A 100 m section of the stream was electric fished (using an Electro-catch 

generator powered (250 kVA) unit set at 50 MHz pulsed DC at approximately 2 

Amps) between fixed stop nets, to collect all species. (Cowx and Lararque 

1991). 

 S1, S2: Fish were sampled using a combination of a 25 m micromesh seine net 

(depth = 1.5 m) and baited minnow traps (1 m x 350 mm x 350 mm with a 60 

mm diameter opening (Britton et al. 2011). 

 

6.3.3  Fish data collection and stable isotope analyses  

The fish species composition of each sample at each site on each sampling occasion was 

recorded with the samples taken back to the laboratory being for parasitological 

Site 

reference 

Site  Latitude Longitude  Host Parasite Water 

type 

R1 River Ash 51.3981 -0.4295 R. rutilus L. intestinalis Stream 

R2 Cotton Moss 53.2343 -2.3767 R. rutilus L. intestinalis Lake 

S1 Crampmoor 51.0001 -1.4499 G. aculeatus S. solidus Pond 

S2 Crampmoor 51.0001 -1.4499 G. aculeatus S. solidus Pond 

P1 Bedwell fishery 51.7534 -0.1499 P. fluviatilis T. nodulosus Lake 

P2 Limes fishery 51.5949 -0.6819 P. fluviatilis T. nodulosus Lake 
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analyses. Following Hoole et al. (2001), this comprised of 30 fish per focal host species 

where sample size made this possible, with 10 individuals of other fish also taken for all 

other species where available to examine the whole fish parasite community. These 

numbers provided representative fish samples that would provide information on their 

parasite fauna and their biological metrics. The fish were transferred to water held in 

aerated tanks before being transported to the laboratory for subsequent analysis. There, 

they were euthanized with an overdose of anaesthetic (MS-222), measured (fork length, 

nearest mm) and weighed (to 0.001 g). A parasitological survey was then completed on 

each fish (Appendix 1). During this process in P. fluviatilis, the liver was removed and 

weighed (to 0.001 g). Samples of dorsal muscle were then taken for stable isotope 

analysis (Section 4.3). This muscle sample was immediately transferred to a drying 

oven at 60 
o
C and dried to constant weight (approximately 48 hours).  

 

The samples were then processed at the Life Sciences mass Spectrometry Facility of the 

Natural Environment Research Council at East Kilbride, Scotland. The dried samples 

were ground into a homogenous powder and approximately 0.5 mg weighed out into a 

tin cup, with the actual weight recorded using a Satorius MC5 microbalance. The 

nitrogen and carbon isotopes were then analysed using a Costech elemental analyser 

coupled to a Delta V mass spectrometer (Thermo scientific, Milan, Italy). Ratios of 

15
N:

14
N and 

13
C:

12
C were expressed in parts per mille (

0
/00), relative to international 

standards (gelatine, glycine, alanine and glutamic acid of known isotopic composition in 

relation to atmospheric nitrogen in air (N) and Pee Dee Belemnite (C)). The outputs of 

the stable isotope analysis were determined as as δ
13

C and δ
15

N, as described in Section 

4.3.1. They were not corrected as each host population and site were analysed 

separately, with no direct comparisons made between them. 
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6.3.4  Data analysis and statistical analyses 

As per the fish populations infected with P. laevis (Section 4.3), the infection levels of 

each host population were described here as their prevalence (number of infected 

individuals/ total number process x 100) and abundance (number or mass of parasites 

per infected individual per fish species). Hereafter, where an individual fish is referred 

to as either infected or non-infected, it refers to the presence/ absence of the focal 

parasite in that individual during the post-mortem (Section 6.3.1). Condition was 

calculated as Fulton’s condition factor (K), using the equation: K = W/L
3
, where K = 

Fulton’s condition factor, W = the weight of the fish, and L is the length (Section 4.3). 

Differences in weight and condition between the infected and uninfected fish per 

population and the relationship between fish length and the probability of infection were 

completed as per Section 4.3. As infection status was binomial (0 = uninfected, 1 = 

infected), binary logistic regression was used to build probability of infection (PoI) 

models that determined PoI from the length data of each individual fish using Equation 

6.1: e
(a+bx)

/ 1+e
(a+bx)

, where a and b were the regression coefficients, and x was fish 

length.  

 

As with Chapter 4, the primary aim of the stable isotope analysis was to identify 

whether infection by the focal parasite had sufficiently impacted their hosts to reduce 

their ability to exploit the same food resources as uninfected conspecifics and later their 

trophic niche. Correspondingly, this was completed as described in Section 4.3, with 

calculation of standard ellipse areas in the SIBER package in R for the infected and 
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uninfected sub-groups of fish in the population. Other than the stable isotope analyses, 

all analyses were completed in SPSS v. 21.0.  
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6.4 Results 

 

6.4.1 Rutilus rutilus: Ligula intestinalis 

Site R1: River Ash 

Parasite prevalence was 33 %, and the abundance in infected individuals ranged from 1 

to 7 (mean: 3.1 ± 1.0) and weight 1.6 to 6.8 g (mean: 3.5 ± 0.7), equivalent to 9 to 26 % 

of total host body weight (Table 6.2). The binary logistic regression model revealed that 

the influence of length on infection status of individuals was not significant, although 

all fish were above 70 mm in length anyway, restricting the power of the test regarding 

length range (Table 6.1, 6.3; Figure 6.4). When comparing infected versus uninfected 

fish, significant differences were detected in their condition (GLM: F1,19 = 6.32; P = 

0.02) with infected individuals having significantly lower condition. Corrected weight 

when controlled for length did not differ significantly between the two groups (GLM: 

F1,18 = 1.43; P = 0.25) 

 

The infected R. rutilus had significantly increased values of δ
15

N compared with 

uninfected conspecifics (Wald 
2 

= 19.16, P < 0.01) (Table 6.4). There was no 

significant effect of infection on δ
13

C (Wald 
2 

= 0.13, P = 0.65). The SEAc plot 

revealed that the trophic response to infection was an elevated trophic position 

occupying different isotopic space than the uninfected group, with very little overlap 

and thus increasing size of the population trophic niche (Table 6.4, Figure 6.5). 
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Table 6.2. Mean length and length ranges of all, infected (I) and uninfected (U) fish hosts per site where R1 and R2 are the River Ash and Cotton 

Moss lake respectively and the host is Rutilus rutilus infected/uninfected with Ligula intestinalis; S1 and S2 are Crampmoor fish farm in the 

spring and autumn respectively, and the host is Gasterosteus aculeatus infected/ uninfected with Schistocephalus solidus; and P1 and P2 are 

Bedwell fishery and Limes green fishery respectively and the host is Perca fluviatilis infected/uninfected with Triaenopherous nodulosus. Also 

shown are the number of fish sampled (n), and the parasite prevalences (‘Prevalence’), abundances (of those infected) (‘Abundance’) and parasite 

mass (P mass). 

 

  Mean length (mm) Length range (mm) Prevalence 

(%) 

Abundance P mass (g) 

Site n All I U All I U  Mean Range Mean 

R1 21 119.9 ± 4.4 120.9 ± 4.9 119.4 ± 5.3 70-165 95-148 70-165 33 3.1 ± 1.0 1-7 3.5 ± 0.7 

R2 22 100.3 ± 1.5 101.8 ± 1.7 97 ± 2.5 89-119 90-119 89-108 68 1.8 ± 0.3 1-4 1.6 ± 0.2 

S1 22 43.0 ± 2.9 48.4 ± 2.8 31.4 ± 4.2 23-64 23-64 24-51 68 2.2 ± 0.5 1-7 0.2 ± 0.1 

S2 20 27.4 ± 0.5 27.0 ± 0.5 27.8 ± 0.8 23-33 25-29 23-33 57 1.7 ± 0.4 1-5 0.1 ±0.01 

P1 24 127.8 ± 4.5 179.7 ± 5.6 167.8 ± 6.6 100-210 150-210 100-196 42 1.0 ± 0.6 1-6 0.1 ± 0.01 

P2 19 133.8 ± 5.9 133.1 ± 6.8 137.3 ± 11.9 110-221 110-221 120-160 84 4.8 ± 1.0 1-12 0.1 ± 0.02 
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Table 6.3. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Rutilus rutilus by Ligula intestinalis 

according to fish length at site R1. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant A -1.16 2.89 0.69 

Fish length x <0.01 0.02 0.87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Rutilus rutilus by Ligula intestinalis 

according to length (as 10 mm increments) where solid circles represents the proportion 

of infected individuals in that size class. 
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Figure 6.5. Stable isotope biplot for Rutilus rutilus infected (grey circles) and uninfected 

(black circles) with Ligula intestinalis from the River Ash, where the grey ellipses 

denote the trophic niche size of the infected sub-group and the black ellipses denote the 

trophic niche size of the uninfected sub-group, and where trophic niche size represents 

SEAc calculated from δ
15

N and δ
13

C.  
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Table 6.4. Mean stable isotope data of hosts per site and their trophic niche size according to standard ellipse area (SEAc, after correction to 

trophic position and Ccorr) of the sampled population (‘population’), and the uninfected (U) and infected (I) sub-groups, and the extent of 

the trophic niche overlap between the two sub-groups. Where R1 and R2 are the River Ash and Cotton Moss lake respectively and the host 

is Rutilus rutilus infected/uninfected with Ligula intestinalis; S1 and S2 are Crampmoor fish farm in the spring and summer respectively, 

and the host is Gasterosteus aculeatus infected/ uninfected with Schistocephalus solidus; and P1 and P2 are Bedwell fishery and Limes 

green fishery respectively and the host is Perca fluviatilis infected/uninfected with Triaenopherous nodulosus. 

Site Mean 
13

C (‰) Mean 
15

N (‰) SEAc 

 U I U I Population U I Overlap (%) 

R1 -29.99 ± 0.3 -29.99 ± 0.2 16.56 ± 0.3 19.0 ± 0.6 4.45 3.04 2.43 7.4 

R2 -29.2 ± 0.3 -29.5 ± 0.1 16.8 ± 0.2 16.7 ± 0.2 1.31 1.37 1.10 67.0 

S1 -35.4 ± 0.4 -34.4 ± 0.7 7.7 ± 0.3 7.6 ± 0.2 5.73 3.13 6.30 78.0 

S2 -33.9 ± 0.7 -33.0 ± 0.7 7.6 ± 0.1 7.0 ± 0.1 3.08 1.53 3.09 12.2 

P1 -29.5 ± 0.1 -28.3 ± 0.4 17.1 ± 0.1 16.6 ± 0.3 1.94 0.47 3.52 23.8 

P2 -34.9 ± 0.3 -34.7 ± 0.3 18.7 ± 0.7 18.4 ± 0.3 4.35 1.73 4.95 88.2 

 



Site R2: Cotton Moss Lake 

Parasite prevalence was 68 %, and the abundance in infected individuals ranged from 1 

to 4 (mean: 1.8 ± 0.3) and weight 0.5 to 2.9 g (mean: 1.6 ± 0.2), equivalent to 4 to 16 % 

of total host body weight (Table 6.2). The binary logistic regression model revealed that 

the influence of length on infection status of individuals was not significant (Table 6.5; 

Figure 6.6). When comparing infected versus uninfected fish, differences were not 

significant in their condition (GLM: F1,20 = 0.44; P = 0.52) or corrected weight when 

controlled for length (GLM: F1,19 = 0.96; P = 0.34).  

 

There was no significant effect of L. intestinalis infection on δ
13

C (Wald 
2 

= 2.02, P 

>0.05) or δ
15

N (Wald 
2 

<0.01, P >0.05) (Table 6.4). The SEAc plot revealed that the 

trophic niche of infected fish was slightly constricted but occupied a similar isotopic 

space with a high level of overlap and therefore had little impact on the overall size of 

the population trophic niche (Table 6.4, Figure 6.7). 
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Table 6.5. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Rutilus rutilus by Ligula intestinalis 

according to fish length at site R2. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant a -12.55 2.05 0.15 

Fish length x 0.13 2.28 0.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Rutilus rutilus by Ligula intestinalis 

according to length (as 10 mm increments) where solid circles represents the proportion 

of infected individuals in that size class and the solid line is the relationship between 
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fish length and the probability of infection according to binary logistic regression (cf. 

Table 6.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Stable isotope biplot for Rutilus rutilus infected (grey circles) and uninfected 

(black circles) with Ligula intestinalis from site R2, where the grey ellipses denote the 

trophic niche size of the infected sub-group and the black ellipses denote the trophic 

niche size of the uninfected sub-group, and where trophic niche size represents SEAc 

calculated from δ
15

N and δ
13

C.  
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6.4.2 Gasterosteus aculeatus: Schistocephalus solidus 

 

S1: Crampmoor, Spring 2013 

Parasite prevalence of S. solidus in this G. aculeatus population in spring 2013 was 68 

%, and the parasite abundance in infected individuals ranged in number from 1 to 7 

(mean: 2.2 ± 0.5) and weight 0.002 to 0.08 g (mean: 0.2 ± 0.1), equivalent to 0.4 to 1.6 

% of total host body weight (Table 6.2). The binary logistic regression model revealed 

that the influence of length on infection status of individuals was significant, with larger 

individuals having a significantly higher probability of being infected (Table 6.6; Figure 

6.8). When comparing infected versus uninfected fish, differences were not significant 

in their condition (GLM: F1,20 = 0.01; P = 0.97) or corrected weight when controlled for 

length (GLM: F1,19 = 0.27; P = 0.61). 

 

Infection with S. solidus did not significantly affect δ
13

C (Wald 
2 

= 2.11, P > 0.05) or 

δ
15

N (Wald 
2 

= 3.61, P > 0.05) (Table 6.4). However, the SEAc plot revealed that the 

trophic response to infection was an expanded trophic niche, although it did broadly 

occupy the same isotopic space as the uninfected group, with high trophic overlap 

(Table 6.4, Figure 6.9). 
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Table 6.6. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Gasterosteus aculeatus by 

Schistocephalus solidus according to fish length at site S1. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant A -4.00 1.90 0.04 

Fish length X 0.12 0.05 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Gasterosteus aculeatus by Schistocephalus 

solidus according to length (as 10 mm increments) where solid circles represents the 

proportion of infected individuals in that size class and the solid line is the relationship 
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between fish length and the probability of infection according to binary logistic 

regression (cf. Table 6.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Stable isotope biplot for Gasterosteus aculeatus infected (grey circles) and 

uninfected (black circles) with Schistocephalus solidus from site S1, where the grey 

ellipses denote the trophic niche size of the infected sub-group and the black ellipses 

denote the trophic niche size of the uninfected sub-group, and where trophic niche size 

represents SEAc calculated from δ
15

N and δ
13

C.  
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S2: Crampmoor, Autumn 2013 

Parasite prevalence of S. solidus in this G. aculeatus population was 57 % in autumn 

2013, and the parasite abundance of infected individuals ranged in number from 1 to 5 

(mean: 1.7 ± 0.4) and weight 0.01 to 0.08 g (mean: 0.1 ± 0.01), equivalent to 11 to 48 % 

of total host body weight (Table 6.2). The binary logistic regression model revealed that 

the influence of length on infection status of individuals was not significant, although 

the length range of sampled fish was very limited that inhibited the comparisons made 

in the spring sample (Table 6.7; Figure 6.10). When comparing infected versus 

uninfected fish, differences were not significant in their condition (GLM: F1,18 = 2.27; P 

= 0.15) or corrected weight when controlled for length (GLM: F1,17 = 3.75; P = 0.07). 

 

Infection with S. solidus did not significantly affect δ
13

C (Wald 
2 

= 0.0.86, P > 0.05). It 

did, however, significantly lower δ
15

N (Wald 
2 

= 23.35, P < 0.01) (Table 6.4). The 

SEAc plot revealed that the result of infection was expansion of the host trophic niche 

with infected individual occupying a lower trophic position than the uninfected 

population with a small amount of overlap between the two groups resulting in a larger 

trophic niche of the whole population (Table 6.4, Figure 6.11). 
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Table 6.7. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Gasterosteus aculeatus by 

Schistocephalus solidus according to fish length at site S2. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant A 5.94 6.81 0.38 

Fish length X -0.22 0.25 0.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Gasterosteus aculeatus by Schistocephalus 
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solidus according to length (as 5 mm increments) where solid circles represents the 

proportion of infected individuals in that size class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. Stable isotope biplot for Gasterosteus aculeatus infected (grey circles) and 

uninfected (black circles) with Schistocephalus solidus from site S2, where the grey 

ellipses denote the trophic niche size of the infected sub-group and the black ellipses 

denote the trophic niche size of the uninfected sub-group, and where trophic niche size 

represents SEAc calculated from δ
15

N and δ
13

C.  
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6.4.3 Perca fluviatilis: Triaenophorus nodulosus  

 

Site P1: Bedwell fish farm 

Parasite prevalence of T. nodulosus in this P. fluviatilis population was 42 %, and the 

parasite abundance of infected individuals ranged in number from 1 to 6 (mean: 1.0 ± 

0.6) and weight 0.01 to 0.06 g (mean: 0.1 ± 0.01), equivalent to 0.7 to 2.3 % of total 

host liver weight (Table 6.2). The binary logistic regression model revealed that the 

influence of length on infection status of individuals was not significant. (Table 6.8; 

Figure 6.12). When comparing infected versus uninfected fish, there were significant 

differences in their condition (GLM: F1,22 = 5.44; P = 0.03), but with infected 

individuals having increased condition. The effect on infection on corrected weight 

when controlled for length was not significant (GLM: F1,21 = 1.01; P = 0.33). 

 

Perca fluviatilis infected with T. nodulosus had significantly increased values of δ
13

C 

compared with uninfected conspecifics (Wald 
2 

= 8.97, P < 0.01), but there was no 

significant effect on δ
15

N (Wald 
2 

= 1.14, P >0.05). The SEAc plot revealed that the 

trophic response to infection was an expanded trophic niche that greatly increased the 

size of the population trophic niche (Table 6.4, Figure 6.13). 
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 Table 6.8. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Perca fluviatilis by Triaenophorus 

nodulosus according to fish length at site P1. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant a -5.59 4.28 0.19 

Fish length x 0.03 0.02 0.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Perca fluviatilis by Triaenophorus 

nodulosus according to length (as 10 mm increments) where solid circles represents the 

proportion of infected individuals in that size class.  
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Figure 6.13. Stable isotope biplot for Perca fluviatilis infected (grey circles) and 

uninfected (black circles) with Triaenophorus nodulosus from site P1, where the grey 

ellipses denote the trophic niche size of the infected sub-group and the black ellipses 

denote the trophic niche size of the uninfected sub-group, and where trophic niche size 

represents SEAc calculated from δ
15

N and δ
13

C.  
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Site P2: Limes fishery 

Parasite prevalence of T. nodulosus in this P. fluviatilis population was 84 %, and the 

parasite abundance of infected individuals ranged in number from 1 to 12 (mean: 4.8 ± 

1.0) and weight 0.01 to 0.25 g (mean: 0.1 ± 0.02), equivalent to 1 to 60 % of total host 

liver weight (Table 6.2). The influence of length on infection status of individuals was 

not significant (Table 6.9; Figure 6.14). When comparing infected versus uninfected 

fish, differences were not significant in their condition (GLM: F1,17 = 0.02; P = 0.90) or 

for weight when controlled for length (GLM: F1,16 = 1.05; P = 0.32). 

 

At this site, infection with T. nodulosus did not have a significant effect on δ
13

C (Wald 


2 

= 0.07, P > 0.05) or δ
15

N (Wald 
2 

= 0.02, P > 0.05) (Table 6.4). The SEAc plot 

revealed that the trophic response to infection was an expanded trophic niche that 

substantially increased the size of the population trophic niche, despite their occupation 

of similar isotopic space (Table 6.4, Figure 6.15). 
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Table 6.9. Binary logistic regression coefficients (Equation 6.1), and their statistical 

significance, for the probability of infection of Perca fluviatilis by Triaenophorus 

nodulosus according to fish length at site P2. 

Parameter Symbol in equation 6.1 Coefficient Standard error P 

Constant a 2.49 3.16 0.43 

Fish length x -0.01 0.02 0.79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Probability of infection (expressed as between 0 and 100, where 100 

represents all individuals being infected) of Perca fluviatilis by Triaenophorus 

nodulosus according to length (as 10 mm increments) where solid circles represents the 

proportion of infected individuals in that size class.  
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Figure 6.15. Stable isotope biplot for Perca fluviatilis infected (grey circles) and 

uninfected (black circles) with Triaenophorus nodulosus from site P2, where the grey 

ellipses denote the trophic niche size of the infected sub-group and the black ellipses 

denote the trophic niche size of the uninfected sub-group, and where trophic niche size 

represents SEAc calculated from δ
15

N and δ
13

C.  
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6.5 Discussion 

 

In each of the host-parasite systems, at least one of the study sites showed that parasite 

infection had a substantial influence on the trophic niche size of the host population, 

with infection resulting in a larger population trophic niche than if the parasite was 

absent. For R. rutilus: L. intestinalis, this was apparent at site R1, where individual 

infected fish occupied elevated areas of trophic space, indicating they had higher trophic 

positions than uninfected con-specifics. For G. aculeatus: S. solidus, shifts in individual 

niches were apparent in S2, the sample collected in autumn, where infected fish were 

feeding significantly lower in the food web than uninfected conspecifics, increasing the 

population trophic niche size, potentially increasing interspcific resource competiton. 

For P. fluviatilis: T. nodulosus at site P1, the population trophic niche size was 

substantially larger with the parasite and whilst this shift was also alluded to in P2, the 

relatively low number of uninfected fish reduced the ability to detect this. Thus, these 

findings align strongly to the hypothesis that infection by these native parasites result in 

some trophic niche specialisations of infected fishes. Notwithstanding, at site R2, and in 

the sample of G. aculeatus: S. solidus collected in spring (S1), the infection 

consequences for the population trophic niche was low, indicating an element of context 

dependency in the mechanisms involved. However, due to the absence of robust macro-

invertebrate samples, the dietary reasons for these patterns were unable to be explored 

here and that remains a short-coming. Consequently, the potential processes 

underpinning these patterns are discussed in this section but must remain speculative.  

 

At site R1, R. rutilus infected with L. intestinalis were feeding at significantly higher 

trophic levels than uninfected conspecifics (as indicated by δ
15

N), indicating that the 



 216 

population trophic niche size was influenced by infection through it driving intra-

specific trophic specialization. Although the actual mechanism incurring this within the 

fish and within the food web could not be tested here, it seems likely through the 

influence of the parasite on the foraging behaviour and habitat utilisation of the infected 

fish. For example, Adamek et al. (1996) revealed that the diet composition of infected 

R. rutilus was significantly different to uninfected conspecifics with the infected fish 

consuming higher quality animal food items compared with the more plant based diets 

of the uninfected roach (Adamek et al. 1996). This aligns with the findings in site R1 

which showed a similar pattern, albeit at R1 the use of stable isotope analysis allowed a 

more quantitative evaluation of how this influenced trophic niche size. This change in 

foraging range and shift towards higher quality food items may be due to the physical 

cost of parasitism leading to increased nutrient demand and so consequently enhanced 

feeding motivation for taking high quality food items in the infected fish (Pascoe and 

Mattey 1977). Notwithstanding, infection by L. intestinalis also affects habitat choice, 

with Loot et al. (2001) revealing that infected R. rutilus in a small river were 

encountered more frequently in littoral habitats than uninfected counterparts. This was 

hypothesised as being the consequence of the parasite directly modifying the behaviour 

of the host in order to increase the likelihood of it being predated by a fish-eating bird 

and thus completing the parasite lifecycle (‘Parasite increased trophic transmission’; 

Loot et al. 2001; 2002; Britton et al. 2008). This shift in habitat would also be likely to 

promote a shift in diet composition due to the differences in food availability between 

the littoral and open water habitats, and this would potentially be a key driver of the 

differences observed here in the trophic niches of the two population sub-sets.  
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At site R2, however, the infected fish did not show differences in their trophic niche 

when compared to their uninfected conspecifics, despite parasite prevalence and 

abundance being similar at both sites. Although not tested, this was believed to relate to 

the habitat typologies of the two sites. Site R1, where infection strongly influenced 

intra-specific trophic specialization, was a river with a heterogeneous and highly 

complex habitat that was likely to have provided high diversity in the invertebrate 

communities that enabled the fish to diverge in their diet and trophic niche according to 

infection and the action of the parasite on host behaviour. By contrast, site R2 was a 

man-made lake used for recreational angling in which the habitat features that would 

add complexity and increase the diversity of food items available had largely been 

removed as these impeded access to angler. Consequently, this simplification of the 

habitat structure was likely to have resulted in invertebrate communities with reduced 

diversity, so limiting opportunities for trophic niche divergence between the infected 

and uninfected conspecifics. This contrast highlights the level of site specificity and 

context dependency within complex host parasite interactions.  

 

Analysis of G. aculeatus infected with S. solidus in spring 2013 (S1) revealed they were 

feeding at similar trophic levels to uninfected conspecifics (as indicated by δ
15

N). There 

was, however, some evidence of infected individuals feeding on a slightly wider range 

of resources. By contrast, analyses completed in autumn 2013 (S2) revealed G. 

aculeatus infected with S. solidus were feeding at significantly lower trophic levels than 

uninfected conspecifics (as indicated by δ
15

N), indicating that the population trophic 

niche size was being influenced by the parasite. Whilst the actual mechanism incurring 

this consequence in S2 within the fish and within the food web was unable to be tested, 

it is probable that this was through the influence of the parasite on the foraging 
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behaviour, anti-predator behaviours and habitat utilisation of the infected fish. There is 

considerable empirical evidence for these in this host-parasite system, with Barber and 

Huntingford (1995) suggesting that G. aculeatus infected with S. solidus had increased 

feeding motivation due to higher energetic demands and this modified their foraging 

behaviour. The presence of S. solidus plerocercoids in the visceral cavity restricts prey 

choice by increasing the handling time of large prey items, reducing the nutritional 

advantages of these prey items (Wright et al. 2006). This can lead to a switch in prey 

choice from larger to smaller prey items (Barber and Huntingford 1995) and so this 

could be the potential driver behind the difference in trophic level found here.  

 

The difference in output between spring (S1) and autumn (S2) was likely to have 

resulted from seasonality and the life cycle of S. solidus. Warmer temperatures 

significantly increase the growth rates of S. solidus plerocercoids (Macnab and Barber 

2012) and so the plerocercoids in late summer and autumn tend to be larger, as found 

here also. This is important, as plerocercoid size is important in determining the impact 

of S. solidus on G. aculeatus behaviour, with larger parasites having more marked 

impacts (Barber et al. 2004). It has been shown experimentally that when presented with 

a simulated avian threat, G. aculeatus hosts infected with immature S. solidus (< 50 mg) 

did not differ significantly in their response time to uninfected fish. However, G. 

aculeatus with infections of S. solidus over 50 mg, the size at which they are mature and 

ready to move their avian final stage host (Barber and Svensson 2003), were 

significantly slower to respond (Barber et al. 2004). Furthermore, uninfected G. 

aculeatus rarely left cover after disturbance; however those infected with S. solidus 

plerocercoids > 50 mg regularly left cover (Barber et al. 2004). These behavioural 

manipulations result in increased ecological opportunities for infected G. aculeatus, 
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including foraging time budgets and foraging habitats, which can all influence diet and 

so the trophic niche of the individual (Araujo et al. 2011; Evangelista et al. 2014). 

Sticklebacks infected with large S. solidus plerocercoids are, however, also physically 

restricted in their choice of prey items (Wright et al. 2006) and so the combination of 

reduced anti-predator behaviours and an increase in nutrient demand in infected fish in 

autumn could have resulted in more time feeding on items in lower trophic positions 

than the uninfected fish.  

 

At site P1, P. fluviatilis infected with T. nodulosus were utilising a significantly wider 

trophic range than uninfected conspecifics (as indicated by δ
13

C), indicating that the 

population trophic niche size was influenced by infection. It is likely this was through 

the influence of the parasite on the host physiology, cellular pathology and, in turn, 

these impacting the foraging behaviour and habitat utilisation of the infected fish. The 

parasite was encountered at high abundance within the liver and resulted in visual 

discolouration and deterioration of the remaining liver tissue. The liver is an important 

glycogen store in P. fluviatilis and so its pathology is likely to impair its function and 

lead to reduced energy storage. Therefore, a heavy infection of P. fluviatilis may drive 

P. fluviatilis to have increased energy demands and consequently increase their feeding 

rate as they try to maintain sufficient energy levels and become less reliant on their 

glycogen reserves (Mehner and Wieser 1994). This increased energy demand could be 

causing the increased trophic range found here, as P. fluviatilis infected with T. 

nodulosus attempt to meet the demand by expanding their choice of prey items. Whilst a 

similar result to P1 was suggested at P2, with P. fluviatilis infected with T. nodulosus 

utilising a wider trophic range than uninfected conspecifics (as indicated by δ
13

C), 

however this result was not significant. This might have been due to the low number of 
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uninfected P. fluviatilis available for analysis. Alternatively, it is also possible that site 

differences including food and habitat availability, as well as environmental parameters, 

affected the consequences of parasitism.  

 

In summary, across all of the host-parasite systems, there was consistent evidence that 

infection had some substantial influences on intra-specific trophic specialization and 

resulted in a larger population trophic niche than when the parasite was absent. These 

findings have potentially large implications on food web dynamics and community 

structuring and further highlight the importance of parasites in food webs. Although 

parasites are now a well-documented aspect of food web ecology (Marcogliese et al. 

1997; Byers 2009; Lafferty and Kuris 2009) there are still knowledge gaps relating to 

their role in shaping population trophic niches. Despite the generally consistent outputs 

of the present study it is clear from the variation in results between sites and seasons 

that there is a certain amount of site specificity and context dependency present in the 

effects of parasite infection on intraspecific specialisation and this has to be taken into 

consideration when drawing general conclusions and making comparisons with existing 

and future studies. These future studies will need greater focus on the processes leading 

to these patterns and should include experimental approaches as well as field 

approaches. 
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7.1 Overview 

 

The subject of parasite introductions and their subsequent consequences has received a 

great deal of research attention (e.g. Johnsen and Jensen 1988; Alderman et al. 1990; 

Kennedy 1994; Blanc 1997; Naura and Robinson 1998; Gozlan et al. 2009; Pegg et al. 

2011; Williams et al. 2013; Pegg et al. 2015). Studies often suggest that when 

introduced parasites infect new hosts then the consequences for native fauna can be 

considerable, either through disease emergence or through alterations in host biology 

and ecology that accumulate over time (Hatcher et al. 2011; 2012; Britton 2013; Britton 

and Andreou 2016). Nevertheless, processes such as enemy release suggest these 

adverse effects might be limited to a relatively low number of parasite species, with few 

non-native parasites actually being introduced with their free-living hosts (Chapter 5).  

 

Movements of fish within biogeographic regions and countries can also result in 

parasites that are indigenous to some river catchments being translocated to others 

where they are non-indigenous (Byers 2002; Chapter 4). Given that the fauna in the 

non-indigenous range might not have experienced the parasite previously then their 

effects are likely to be similar to an introduced parasite from elsewhere, i.e. the lack of 

recent experience and co-evolution between the parasite and resident fishes might result 

in poor anti-parasite behaviours, and low resistance and resilience in the naïve hosts 

(Simberloff and Spilling 1996; Ruiz et al. 1999). For both non-indigenous and non-

native parasites, understanding their potential and realised consequences in wild 

situations can be challenging, ideally requiring some knowledge of the infection 

consequences in both ranges and also information on initial host responses, whilst 

accepting that impacts are often only assessed after the host-parasite interactions have 
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been present over several generations when some resistance, resilience and adaptation 

might have already developed (Ridenhour and Nuismer 2007).  

 

Developing understandings of parasite consequences and processes for multiple host 

species within the same parasite lifecycle also poses considerable challenges with, for 

example, the lifecycle of P. laevis involving transmission to a relatively large number of 

potential final hosts via a single intermediate host species, G. pulex. Despite a large 

volume of work completed on parasite manipulation of G. pulex infected with P. laevis 

(Section 3.1, 3.2), there remains some limited understandings of how different final fish 

hosts respond to that manipulation. Work in Chapter 3 and 4 suggested it results in 

complex interactions in both controlled and wild environments. Moreover, given that 

their wild environments are being subjected to increasing global changes, such as 

climate change, which could result in some marked changes on host-parasite 

relationships (Brooks and Hoberg 2007), then these interactions could be subject to 

considerable alterations in parasite virulence and host susceptibilities, as explored in 

Chapter 2.  

 

The sub-lethal consequences of parasite infections, including changes to host biology 

and ecology via alterations to behaviour and physiology (Barber et al. 2000), have the 

potential for causing marked changes in the ecology of host populations (Hatcher and 

Dunn 2011; Hatcher et al. 2012). Processes such as parasite-mediated competition and 

parasite manipulation can result in substantial shifts in the habitat utilisation and diet of 

individual hosts, potentially incurring considerable alterations in population trophic 

niches and in food web structure (Britton 2013; Britton and Andreou 2016). 

Understanding these consequences for both native and non-native parasites, and 
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indigenous parasites in non-indigenous ranges, should provide insight into the 

ecological consequences of parasitism that can determine the relative importance of 

lifecycle complexity and parasite origin in its impact assessment. Indeed, work 

completed in Chapters 4 and 6 indicated that trophic consequences in host populations 

are apparent across a range of parasites, including in non-indigenous and indigenous 

ranges, with this explored further in Section 7.3.4. 

 

Overall, this study aimed to assess a range of foraging and trophic consequences for fish 

hosts by infections of introduced and native parasites. Initially, P. laevis and a range of 

native fishes were used as the host-parasite model (Chapters 2 to 4), followed by 

investigations into the extent of enemy release from non-native fish using Great Britain 

as the model area (Chapter 5). As this work revealed a high extent of release from their 

native parasite fauna but acquisition of a range of native parasites, Chapter 6 studied the 

trophic consequences of infection by some native parasites for some native fishes. In the 

remainder of this chapter, aspects of these results are thus explored further in order to 

highlight synergies between the different approaches, consistencies with existing 

knowledge and to emphasise the novel perspectives.  

 

7.2 Experimental studies on Pomphorhynchus laevis 

 

7.2.1 Experimental infections and temperature effects 

A primary outcome of Chapter 2 (in terms of the Ph.D. research at least) was the 

demonstration that fish held under laboratory conditions could be experimentally 

infected with P. laevis via infected G. pulex, with the conditions required to achieve 

infections revealed. This was a critical step, as it then enabled the work designed for 
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completion in Chapter 3 to proceed. In doing so, this work also indicated the effect on a 

host species of water temperature increases and differences in parasite exposure levels 

on parasite prevalence as well as the infection parameters of parasite abundance, mean 

parasite weight and parasite burden. The interaction of temperature and parasite 

exposure had considerable consequences for both parasite prevalence and the infection 

parameters; whilst prevalence was substantially higher at the elevated temperature, 

where infections did develop at lower temperatures, they were associated with fewer but 

larger parasites, resulting in significantly higher parasite burdens. Despite this, there 

was no effect of any parameter detected on host growth rates when they were tested 

against control fish. They highlighted that elevated temperatures can result in some 

complex interactions between parasite virulence and host susceptibility, and these will 

require subsequent experimental decoupling in order to derive more advanced 

understandings.  

 

These outputs were consistent with other studies in this area that also suggested 

temperature plays a significant role in parasite dynamics (Harvell et al. 2002; Tinsley et 

al. 2011; Zamora-Vilchis et al. 2012). There is, however, variability in the extent and 

direction of these effects. For example, some studies reveal warmer temperatures have a 

negative effect on parasite development and life cycle completion (Karvonen et 

al. 2010; Lohmus and Bjorklund 2015), whilst others suggest warming could be 

strongly advantageous to the parasite (Tinsley et al. 2011; Macnab and Barber 2012; 

Zamora-Vilchis et al. 2012; Lohmus and Bjorklund 2015). This demonstrates that there 

is a level of system and host-parasite context dependency in these relationships. In 

addition, it remains unclear what the impact of warming will be for non-indigenous 

parasites and in particular how warming could potentially facilitate their spread (Harvell 



 226 

et al. 2002; Tinsley et al. 2011; Zamora-Vilchis et al. 2012). For parasites introduced 

from other climatic regions, warming will also potentially enhance parasite growth and 

maturation rates, and this could also increase their virulence (Brooks and Hoburg 2007). 

Coupled with the potential for decreased host immunity with increased temperature and 

increased susceptibility to infection (Hakalahti et al. 2006; Poisot et al. 2009; Cramp et 

al. 2014; Dittmar et al. 2014), elevated water temperatures could therefore have 

considerable consequences for host-parasite relationships. 

 

7.2.2 Behavioural functional responses in the context of parasite manipulation 

Studies into parasite manipulation have frequently used the P. laevis: G. pulex parasite-

intermediate host system for investigating how infections can result in behavioural 

modifications to the host that then results in their elevated risk of being predated by a 

fish (Table 3.1). Despite many of these studies showing high consistency in their 

outcomes, primarily via reduced anti-predator responses in infected G. pulex, they often 

lack consistency in many aspects of their sample collection (Table 3.1). For example, in 

Baldauf et al. (2007), investigating responses to predator cues, the source of G. pulex 

differed from the source of the fish (P. fluviatilis) from which the cues were derived. 

This is despite some experimental evidence indicating that the extent of manipulation of 

the intermediate host can vary across different origins of P. laevis. This was highlighted 

by Franceschi et al. (2010b), who demonstrated that when P. laevis was collected from 

six different S. cephalus populations and exposed experimentally to G. pulex, there was 

considerable variation in the extent of the G. pulex manipulated behaviours that 

developed across the different source populations. The extent of manipulation can also 

vary with the ages of both parasite and the host, and through relatively subtle genetic 

variance in the parasites, such as through maternal effects and sibship (Franceschi et al. 
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2008; 2010a, b). Moreover, given that P. laevis is capable of infecting a wide range of 

final fish hosts that have a range of foraging behaviours, and these hosts can have 

varying abundances across river fish assemblages, then whilst manipulation might be 

demonstrated, it might not be clear whether the behaviour is being selected to promote 

consumption by a particular fish species or is being selected more generally. This is 

potentially important because, for example, a manipulated behaviour that promotes the 

predation of G. pulex by C. gobio might differ greatly from one promoting their 

predation by S. cephalus, given the potentially marked differences in foraging 

behaviours, patch fidelity and habitat utilisation between these fishes (Noble et al. 

2007a, b). Given that the changes in foraging behaviours of fish hosts due to 

manipulation appears not to have been tested previously, this suggested that there 

remained considerable uncertainty in many aspects relating to transmission of P. laevis 

lifecycle through the trophic vacuum.  

 

Consequently, the initial objective of Chapter 3 was to utilise comparative behavioural 

functional response experiments to test differences in the consumption rates of three 

fishes exposed to either uninfected or infected G. pulex, testing the hypothesis that the 

consumption rate of infected G. pulex would be significantly higher. The Type II 

functional response curves and their 95 % confidence intervals contrary to this 

hypothesis, especially in S. cephalus and B. barbus, which are both final hosts of P. 

laevis in the river from which the G. pulex were collected. In C. auratus, used here as a 

naïve host, consumption rates were similar for both infected and uninfected G. pulex 

until high food densities were reached, at which point the consumption rates were again 

elevated for the uninfected G. pulex. These counter-intuitive outcomes were also 

contrary to most other studies that suggested a parasite would manipulate its 
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intermediate host in a way that promotes its transmission to a final host and facilitate the 

continuation of its life cycle (e.g. Kennedy et al. 1978; Bakker et al. 1997; Bauer et al. 

2000; Cezilly et al. 2000; Baldauf et al. 2007; Diane et al. 2011; 2014). 

 

In Sections 3.5 and 4.5, a number of factors were outlined and discussed that could have 

produced these patterns in the foraging responses of the fishes to the infected and 

uninfected G. pulex. There was particular emphasis on the potential for low selection 

pressures for manipulation in the host-parasite system, given the very high abundance of 

G. pulex in many lowland rivers, their parasite prevalences throughout the year (up to 

29 % in this study) and the high abundance of potential fish final hosts present in the 

community. In combination, it could thus be argued that there would be relatively low 

selection pressure for parasite manipulation in G. pulex, given that the abundant small-

bodied fishes in the river were likely to be almost continuously exposed to infected G. 

pulex. Moreover, Chapter 2 predicted that at water temperatures of 18 
o
C, a typical 

ambient summer water temperature in Southern England (Britton 2007), 50 % 

prevalence of P. laevis was achieved when S. cephalus consumed only 26 infected 

individual G. pulex, with this threshold exposure reducing substantially at higher 

temperature, i.e. potential hosts only require exposure to a relatively low number of 

intermediate hosts in order to develop an infection. Thus, the patterns detected in the 

remainder of Chapter 3 in relation to G. pulex behaviours in the presence of difference 

predator cues might ultimately be explained by a lack of manipulated behaviours in this 

intermediate host that result from a lack of selection pressure in this aspect of the 

parasite lifecycle. This potentially represents an important novel outcome for both this 

host-parasite system and studies on parasite manipulation and the trophic vacuum more 

generally. It also suggests greater emphasis is required on the experimental design of 
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future studies (e.g. sources, ages and genetic variability of the animals used) that should 

also incorporate measurements of the response of fish hosts to the behaviours of the 

intermediate hosts.  

 

7.3 Indigenous and non-indigenous parasites in field studies 

 

7.3.1 Evidence of enemy release and parasite acquisition? 

The enemy release hypothesis is important in terms of predicting the (low) numbers of 

parasites that are likely to be introduced with a non-native host (Keane and Crawley 

2002; Mitchell and Power 2003; Hatcher and Dunn 2011). Chapter 5 revealed that very 

few parasites have been introduced into Great Britain with their non-native fish hosts, 

with this outcome consistent with other studies around the world that suggest it is a 

relatively common phenomenon associated with non-native species introductions 

(Torchin et al. 2003). Indeed, parasite acquisition was by far the more common process 

in the fishes examined in Chapter 5, with several examples of native parasites infecting 

non-native fish. These findings suggest that the risk of introducing a parasite with a 

non-native fish host is low and, moreover, even when this does occur then these are 

often highly specialised parasites that pose minimal ecological threat to native fishes, 

such as T. vistulensis in S. glanis (Reading et al. 2012) and O. dispar in L. gibbosus 

(Hockley et al. 2011). It is acknowledged that there remains a requirement for 

authorities to maintain regulatory processes and procedures to prevent non-native fish 

parasites from being introduced, given there remains some potential for disease 

emergence and associated adverse economic and ecological consequences (Williams et 

al. 2013). However, it also suggests that from an ecological perspective, greater focus 

could be given to the complexity of parasite lifecycles and parasite-driven host 
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phenotypic alterations as the driver of ecological consequences for infected fish hosts, 

rather than focusing on the origin of that parasite.  

 

7.3.2 Parasite prevalence, abundance and relationships with fish length 

In the case of P. laevis, parasite prevalence and abundance differed between sites and 

host species (Chapter 4). However, in all species and sites, prevalence was relatively 

high and reached up to 96 % in C. gobio. There were also minimal differences in 

parasite prevalences and abundances between the indigenous and non-indigenous 

ranges of P. laevis, again suggesting that the origin of the parasite was of limited 

importance to its virulence in the host populations. Whilst other studies show greater 

variability in prevalences of P. laevis (Table 3.1), there was again no consistent pattern 

between rivers across the two ranges. It was argued that the high parasite prevalences in 

small bodied, abundant fishes like C. gobio and P. phoxinus in lowland rivers in 

England was potentially important as they provide P. laevis with an alternative final 

host species to less abundant fishes such as S. cephalus and B. barbus (Section 4.5). In 

each river studied in Chapter 4, it appeared that there were multiple preferred hosts in 

the fish communities, raising further questions in relation to both the development of 

host manipulation in the intermediate host but also the development of final host 

specificity in an apparently generalist parasite.  

 

Chapter 6 indicated that there were few significant relationships between the 

probability of being infected with the three native parasites and fish length, although 

this might have been related to some low size ranges of some of the sampled fishes. For 

P. laevis in Chapter 4, there was a strong pattern of significantly higher probability of 

infection with fish length for most fish species, with this likely to be related to the gape 
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size of the fishes, i.e. once the gape size has developed sufficiently to enable that 

species to consume G. pulex then there is a relatively high probability of developing 

infections. The smallest infected fish detected here was a 41 mm C. gobio, although in 

the River Teme, one of the study rivers, B. barbus have since been found to be infected 

at standard lengths of only 20 mm (Section 4.5). That these relatively small fishes have 

P. laevis infections is important given that the most severe consequences of parasitism 

are often seen in juvenile fish (Britton and Pegg 2011), with resilience and competence 

to infection usually only being more apparent in larger fishes.  

 

7.3.3. Pathological consequences of parasite infections 

Pathological consequences were only assessed for P. laevis in Chapter 4, but these 

revealed interesting comparisons between the ‘preferred host’ of S. cephalus and the 

small bodied hosts (C. gobio, P. phoxinus, B. barbatula). In S. cephalus, infection 

caused a classic host response, whereby the proboscis and bulb of the parasite were 

encapsulated in a fibrous response at the site of penetration on the intestine, limiting the 

pathology of the infection to a localised area of tissue. In the three small-bodied fishes, 

there was little or no host response to infection, with the parasites often penetrating 

right through the intestinal wall and occasionally into surrounding tissues (e.g. muscle 

and ovary). This lack of response and subsequent penetration of the surrounding tissues 

has the potential to increase the extent of negative consequences of infection for these 

hosts relative to S. cephalus. For example, if the parasite was to penetrate right through 

the muscle of the peritoneal cavity it would allow water to enter this, which would 

likely be fatal. Sub-lethal consequences could take the form of reduced fitness as a 

result of the parasite penetrating the testis or ovaries, causing necrosis in the gonads. 

Whilst S. cephalus appeared to be investing considerable resources into their immune 
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responses, the lack of immune response in the small-bodied hosts are likely to 

ultimately result in more adverse energetic and fitness consequences. This further 

highlighted the importance of considering these small-bodied fishes as important host 

species and, in the case of pathology, it raises the question as to why they were not 

exhibiting the kind of infection responses observed in S. cephalus. 

 

7.3.4 Trophic consequences of parasite infections at the population level 

It was outlined in Section 1.2.5 that parasites potentially incur trophic consequences for 

their hosts through altering the host phenotype, resulting in the infected population sub-

group consuming different prey items to the uninfected sub-group, or specialising on 

certain items present in the diet of both sub-groups (Britton and Andreou 2016). This 

potentially results from processes such as parasite-mediated competition in which the 

altered host phenotype modifies their interactions with their prey communities, 

uninfected conspecifics and non-host species, altering their diet composition and trophic 

niche (Hatcher and Dunn 2011; Hatcher et al. 2012). Parasite driven trophic niche 

specialisation was investigated in both Chapter 4 and 6. The underlying processes were 

unable to be investigated further, such as parasite mediated competition and whether 

infection resulted in reduced consumption rates and ability to forage on certain prey 

items as per C. carpio infected with B. acheilognathi (Britton et al. 2011; 2012). 

However, the outputs of both chapters did reveal patterns of trophic niche specialisation 

in all of the studied fish host populations, with strong divergence evident in some 

populations, whilst niche constriction was more evident in others. There was some 

context dependency in the extent of the niche specialisation, with differences apparent 

from infections of P. laevis in both time (e.g. for S. cephalus in the River Darent) and 

space (e.g. for C. gobio across all rivers). Although unable to be investigated here, other 
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than through body condition with inconclusive results across the tested species, the 

possibility remains that these dietary changes might also lead to alterations in energy 

acquisition that could then manifest as a further adverse consequence of infection.  

For the three native fish parasites studied in Chapter 6, there was also considerable 

variation in some of the patterns of the trophic consequences. Where P. fluviatilis were 

infected with T. nodulosus, they occupied a substantially larger trophic niche than 

uninfected conspecifics at one site, although this was less evident at the other. Unlike P. 

laevis and T. nodulosus, where the infected fish were final hosts (or at least are capable 

of being final hosts), the other two parasite species investigated were intermediate hosts; 

both L. intestinalis and S. solidus used fish-eating birds as final hosts and utilised R. 

rutilus and G. aculeatus to navigate through the trophic vacuum (Section 1.2.1). The 

parasite infections in both of these fishes tended to fill the body cavity (personal 

observation) and this, along with potential behavioural changes via parasite 

manipulation, usually results in marked differences in habitat utilisation between the 

infected and uninfected conspecifics (Loot et al. 2001; 2002; Britton et al. 2008), 

potentially leading to resource partitioning (Milinski 1985; Loot et al. 2001). Indeed, 

evidence of parasite-driven trophic niche divergence was apparent for both parasites, 

although for S. solidus, the effects were seasonal. This again highlights the importance 

of context dependency in the ecological consequences of parasites at population levels. 

In the case of S. solidus, the habitat partitioning, and thus the resource partitioning and 

niche divergence, was likely to relate to the period when the parasites start to develop 

within the fish (Milinski 1985).  

 

7.4 Conclusions and future directions 
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7.4.1 Main findings 

The main findings of this Ph.D. research were that: 

  Effects of warming could be marked for host: parasite relationships, altering parasite 

prevalence and abundance as well as parasite development and maturation. 

  Existing parasite manipulation studies might be too simplistic and need to take 

greater cognisance of differences in manipulation between different fish final hosts 

and across different populations. Conflicting results from this research and the 

majority of the existing literature highlight the need for consistency and full 

understanding of the complexities of host manipulation. 

  Roles of small-bodied and abundant fish species in the parasite population dynamics 

of P. laevis might be more important than assumed at present, raising questions on 

host-specificity and manipulation. 

  Enemy release is evident in a number of non-native fishes introduced to England and 

Wales, and these hosts are experiencing parasite acquisition. 

  Major parasite infections appear to incur trophic niche specialisations, although the 

processes by which this might occur are not yet clear, but are likely to be related to 

phenotypic changes in aspects of the foraging behaviours and habitat utilisation of the 

hosts.  

  The biogeographic origin of the parasite might have only a minor role in determining 

its host consequences, with the ecological consequences more related to the 

complexity of the parasite lifecycle, its infection pathways and their potential to alter 

the physiology and behaviour of its host. 

 

7.4.2 Research approaches 
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Much of the research completed represented important initial steps into understanding 

aspects of the host-parasite relationship and so it was not always possible to draw 

definitive conclusions. With the exception of Chapter 5 on enemy release, all of the data 

chapters had a tendency to raise a series of questions for further study in relation to the 

ecological consequences of parasites for fish hosts in ambient and future environmental 

conditions. This was especially the case for Chapters 4 and 6 that were field based and 

so were not able to test the processes that lead to the patterns observed. Consequently, it 

is recommended that research in the following areas is completed in order to take these 

outcomes forward into future studies. 

 

7.4.3 Role of warming on host: parasite relationships 

There are a number ways in which the role of warming in the P.laevis: S. cephalus host: 

parasite relationship, and indeed that of other species, can be further investigated 

experimentally. Two very simple ways to do this are to use different temperatures and 

different host species; this could add width to the level of understanding but offers little 

in the way of clarifying exactly what impact warming could be having. Varying the 

temperature at different stages throughout the experiments should identify when 

warming impacts on parasite virulence. Similarly, developing larger sample sizes of 

infected individuals would enable more temporal perspectives to be investigated on the 

role of temperature in parasite maturation in the host, and its effect on parasite 

fecundity. A further area of interest would be to test the thermal preferences of infected 

and uninfected hosts in a similar way to the experiments performed by Macnab and 

Barber (2010), where they investigated the thermal preferences of G. aculeatus infected 

with S. solidus. For example, should the completion of the parasite lifecycle be 

shortened in warmer conditions would the host behaviour be manipulated to move 
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towards these areas of thermal elevation? This has potential implications for population 

sub-group dietary specialisation due to habitat partitioning according to temperature.  

 

 

7.4.4 Parasite manipulation 

The existing body of literature on P. laevis suggests that there is some experimental 

inconsistency in the source of parasites and the model host used. In order to draw more 

robust conclusions on host manipulation, it is recommended that parasites are taken 

from the same source as their hosts with these then used to produce generations of 

laboratory infected intermediate hosts that are used across specific host fishes in order 

to produce parasites where the potential for developing maternal and species-specific 

effects is strong. This has been successfully achieved in other models such as G. 

aculeatus and S. solidus; in doing so, it has enabled more precise outcomes to be 

produced with high repeatability and consistency (Foster and Baker 2004; Gibson 2005; 

Heins and Baker 2008; Barber 2010; Macnab and Barber 2012). Following production 

of generations of fish host-specific lineages raised at specific temperatures experiments 

can be designed that cross infect other species across different temperatures, and 

measure the consequences for manipulation of the intermediate hosts, such as testing for 

different forms of manipulation when the parasites and intermediate host is exposed to 

different fish hosts. Experimental designs can then become more complex with, for 

example, the addition of lights to create brighter patches in the experimental arena to 

assess the potential consequences of photophilia exhibited by infected G. pulex on their 

probability of predations. Similarly, the addition of refugia and its utilisation by G 

.pulex could be investigated in terms of vulnerability to predation in order to identify the 
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forms of behavioural manipulation that actually do result in increased consumption rates 

of infected G. pulex. 

 

7.4.5 Generalist, complex fish parasites in fish communities of multiple species 

In order to fully understand the generalist nature of parasites like P. laevis and the role 

of small-bodied fish hosts within their life cycle, further investigations are required. 

Firstly, a comprehensive understanding on the viability of each species as a definitive 

host is required to ascertain whether P. laevis can mature within them and thus complete 

its lifecycle. From there, field studies should continue to assess the extent to which the 

hosts are actually used in the wild and, coupling field studies with laboratory 

experiments, should also more accurately quantify the roles these fishes have as 

paratenic hosts for larger bodied fish such as S. cephalus and P. fluviatilis (Medoc et al. 

2011) Future studies should also aim to investigate whether there is genetic structuring 

in the parasite population across the different fish host species to reveal whether there is 

the development of host specificity within this generalist parasite and the role this could 

play in relation to manipulation of the intermediate host.  

 

7.5.6 Trophic niche specialisation due to parasitism 

Future research should focus on identifying the drivers of trophic niche specialisation of 

population subgroups of parasitized host communities. There are a number of potential 

drivers that require further work, with the direct effect of host manipulation on the 

trophic niche of the infected population sub-group being the most straight forward to 

study via aquaria based experiments that tests foraging behaviours and prey selectivity 

between the infected and uninfected sub-groups. These can utilise experimentally 

infected fish as was completed in Chapter 3. A further aspect to consider is the role of 
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parasite mediated competition in relation to how this modifies the competitive 

interactions of the hosts with uninfected conspecifics and other fishes in the community 

(Hatcher et al. 2011; 2012) and how this then influences the trophic niche of each 

species involved and thus food web structure. Allied to this is whether these competitive 

interactions are forming novel competitive interactions in the communities, as this could 

have important implications for energy flux through the food web. Indeed, parasites that 

manipulate their intermediate hosts in order to increase their chances of being 

trophically transmitted to the next host might also be making their hosts more 

vulnerable to predation by a non-host species. For example, salmonid fishes are 

presented with a novel feeding opportunity when crickets and grasshoppers (e.g. 

Nemobius sylvestris) are parasitized by hairworm parasites (e.g. Paragordius 

tricuspidatus). The hosts are manipulated to enter rivers in order that the lifecycles of 

the hairworm can be completed but in doing, can result in their predation by the fishes 

(Sato et al. 2008). Consequently, such novel and cross-ecosystem feeding links could be 

created via parasitism and so have important implications for food web structure.  

 

Thus, this research provided some comprehensive insights into many aspects of the 

pathological and ecological consequences of infection for some freshwater fishes from 

native/ non-native and indigenous/ non-indigenous parasites. The research also raised a 

series of new questions and hypotheses for investigation, with the approaches of Section 

7.5 being suggested as appropriate for answering and testing these.  
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Appendices 

 

Appendix 1- Post-mortem examination methodology 

 

Detailed breakdown of the parasitological checks carried out on fish in chapters 4, 5 and 

6. Adapted from:  

Hoole, D., Bucke, D., Burgess, P. and Wellby, I., 2001. Diseases of carp and other 

cyprinid fishes. Oxford: Fishing News Books.  

 

External check 

Gross examination of the external features of the fish to identify any abnormalities that 

could influence their parasite fauna, such as wounds or lesions that could be resulting in 

secondary infections. These were recorded in the laboratory notes in case so subsequent 

analysis in case they were acting as a confounding factor (note: this was never the case). 

The external parasite check comprised of a ‘skin scrape’ (a cover slip was taken and run 
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along the body of the fish, then the mucus collected was examined under a microscope 

(x 10 to x 400) to reveal any external parasites living on the skin) and10 scales from the 

lateral line (as parasites can be encountered within the lateral line canal). 

 

Detailed internal examination  

The skin and body wall musculature are cut away to reveal the internal organs. The first 

incision was made parallel to the operculum from just dorsal to the lateral line, to below 

the pectoral fin-joint and round to the mid-line of the fish. Holding the pectoral fin with 

forceps, a second incision is made along the midline of the fish to a point between the 

opercula. Pulling the pectoral fin up and away from the body exposes the pericardial 

cavity and the heart.  

 

Heart removal and examination  

The heart is removed using forceps just in front of the bulbus arteriosus, and pulling the 

whole heart gently out of the pericardial cavity. The heart is then placed on a petri dish 

with phosphate buffered saline (PBS) and examined under a low power dissecting 

microscope. The organ is then cut longitudinally to reveal the interior; this procedure is 

done at x10 magnification.  

 

After removal of the heart a ventrolateral opening in the body of the fish is made by 

using blunt ended scissors from the top of the first incision along the flank just ventral 

to the lateral line, curving the cut ventrally to the vent. Remove the resulting flap from 

the fish, making sure that all internal organs remain intact. To gain access to the kidneys 

in cyprinids, the swimbladder is gently removed.  
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Visceral organs  

The spleen, liver and kidney are examined in situ, and any parasites noted. Small pieces 

of organ (approximately 2 mm size) are taken, placed on slide with a small amount of 

saline, squashed using the coverslip and examined under a compound phase contrast 

microscope at x100 and x400 magnification.  

 

 

 

 

Intestine  

The gastro-intestinal tract is carefully removed from the body cavity and the intestine is 

opened using a longitudinal cut and examined in PBS under a low power microscope, 

noting any abnormalities and parasites.  

 

Gills  

Gills are removed intact, by cutting each end of the branchial arches. Examination of the 

gills is carried out in PBS under a low power dissection microscope, teasing out the 

connective tissue between the gill filaments and examining for parasites. Squashes of 

gill tissue are made from a number of filaments and examined at magnification x100 

and x400 in phase contrast, for parasites.  

 

Eyes and nasal cavity  

Following a general external examination of the eye in which any abnormalities, e.g. 

lens opacity, are noted, the organ is removed by slipping a pair of curved forceps under 

the eyeball, and cutting the connective tissue below and around it. The lens and humour 
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of the eye are examined in a petri dish containing PBS under a low power light 

microscope, taking care not to damage the lens during removal. Following removal of 

the nasal flaps, an examination of the nasal cavity can be made under low power 

dissection microscope, and any parasites noted.  

 

Brain  

A transverse cut is made vertically into the head of the fish, dorsal to the top of the 

operculum. The brain, which is located posterior-dorsally to the eyes, can be removed 

intact and examined for any obvious signs of disease, e.g. tumours, haemorrhaging and 

necrosis. 

 

 

 

Appendix 2 

Supplementary information for Chapter 5.  

2a) Search terms for literature search 

Silurus glanis : Afghanistan, Armenia, Azerbaijan, Georgia, Iran, Kazakhstan, Turkey, 

Turkmenistan, Uzbekistan, Albania, Austria, Belarus, Bulgaria, Czechia, Estonia, 

Germany, Greece, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, Russia, 

Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine 

 

Lepomis gibbosus: Albania, USA, Canada, America 

 

Pseudorasbora parva: China, Japan, Korea, Mongolia, Russia  

 

Leucaspius delineates: Armenia, Azerbaijan, Georgia, Iran, Kazakhstan, Turkey, 

Austria, Belarus, Bosnia Herzegovina, Bulgaria, Croatia, Czechia, Denmark, Estonia, 
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France, Germany, Greece, Hungary, Latvia, Lithuania, Moldova, Netherlands, Poland, 

Romania, Russia, Serbia, Slovakia, Slovenia, Ukraine 

 

Ameiurus melas: Canada, Mexico, USA, America    

 

Rhodeus amarus: Iran, Turkey, Albania, Austria, Belarus, Belgium, Bosnia 

Herzegovina, Bulgaria, Croatia, Czechia, France, Germany, Greece, Hungary, Italy, 

Latvia, Lithuania, Macedonia, Montenegro, Netherlands, Poland, Romania, Russia, 

Serbia, Slovakia, Slovenia, Switzerland, Ukraine.  

 

Pimephales promelas: USA, Canada, Mexico, America  

 

 

 



2b) Supplementary table 1- List of the parasites of non-native fish in their natural range 

         

Fish species Class Genus Species Range Lifecycle Host 

Specificity 

Internal/external Reference 

Siluris glanis Conoidasida Eimeria siluri Uzbekistan Simple Specialist Internal 1 

Siluris glanis Oligohymenophorea  Trichodina acuta Widespread Simple Generalist External 1 

Siluris glanis Oligohymenophorea  Trichodina nigra Widespread Simple Generalist External 1 

Siluris glanis Oligohymenophorea  Trichodinella epizootica Widespread Simple Generalist External 1 

Siluris glanis kinetoplastids  Trypanoplasma ninaekohljakimovi / Complex \ Internal 1 

Siluris glanis Acanthocephala Acanthocephalus anguillae Eurasia Complex Generalist Internal 1 

Siluris glanis Acanthocephala Acanthocephalus lucii Eurasia Complex Generalist Internal 1 

Siluris glanis Acanthocephala Acanthocephalus clavula Eurasia Complex Generalist Internal 1 

Siluris glanis Acanthocephala Leptorhynchoides plagicephalus Eurasia Complex Specialist Internal 1 

Siluris glanis Acanthocephala Pomphorhynchus laevis Eurasia Complex Generalist Internal 1 

Siluris glanis Crustacea Argulus coregoni Eurasia Simple Generalist External 1 

Siluris glanis Crustacea Argulus foliaceus Eurasia Simple Generalist External 1 

Siluris glanis Crustacea Ergasilus sieboldi Widespread Simple Generalist External 1 

Siluris glanis Crustacea Lamproglena pulchella Eurasia Simple Generalist External 1 

Siluris glanis Crustacea Pseudotracheliastes stellifer Eurasia Simple Specialist External 1 

Siluris glanis Myxosporea Myxobolus exiguus Widespread Complex Generalist Both 1 

Siluris glanis Myxosporea Myxobolus muelleri Widespread Complex Generalist Both 1 

Siluris glanis Myxosporea Sphaerospora schulmani \ Complex \ Internal 1 

Siluris glanis Nematoda Camallanus lacustris Eurasia Complex Generalist Internal 1 

Siluris glanis Nematoda Camallanus truncatus Widespread Complex Generalist Internal 1 

Siluris glanis Nematoda Cucullanus sphaerocephalus Eurasia Complex Specialist Internal 1 

Siluris glanis Nematoda Eustrongylides excisus Eurasia Complex Generalist Internal 1 

Siluris glanis Nematoda Raphidascaris acus Eurasia Complex Generalist Internal 1 

Siluris glanis Nematoda Schulmanela petruschewskii Eurasia Simple Generalist Internal 1 

Siluris glanis Cestoda Bothriocephalus acheilognathi Widespread Complex Generalist Internal 1 

Siluris glanis Cestoda Glanitaenia oculata Eurasia   Specialist   1 

Siluris glanis Cestoda Silurotaenia siluri Eurasia   Specialist Internal 1 

Siluris glanis Cestoda Triaenophorus crassus Widespread Complex Generalist Internal 1 

Siluris glanis Monogenea Thaparocleidus magnus Eurasia Simple Specialist External 1 

Siluris glanis Monogenea Thaparocleidus siluri Eurasia Simple Specialist External 1 



Siluris glanis Monogenea Thaparocleidus vistulensis Eurasia Simple Specialist External 1 

Siluris glanis Trematoda Aphanurus stossichi Eurasia Complex Specialist Internal 1 

Siluris glanis Trematoda Azygia lucii Eurasia Complex Generalist Internal 1 

Siluris glanis Trematoda Bunocotyle cingulata Eurasia Simple Generalist   1 

Siluris glanis Trematoda Bucephalus polymorphus Eurasia Complex Generalist Internal 1 

Siluris glanis Trematoda Bunodera luciopercae Eurasia Complex Generalist External 1 

Siluris glanis Trematoda Cephalogonimus retusus Widespread Complex Generalist Internal 1 

Siluris glanis Trematoda Cotylurus pileatus Widespread Complex Generalist Internal 1 

Siluris glanis Trematoda Diplostomum spathaceum Widespread Complex Generalist Internal 1 

Siluris glanis Trematoda Metagonimus yokogawai Eurasia Complex Generalist Internal 1 

Siluris glanis Trematoda Nicolla skrjabini Widespread Complex Generalist Internal 1 

Siluris glanis Trematoda Orientocreadium siluri Eurasia Complex Specialist Internal 1 

Siluris glanis Trematoda Spaerostomum bramae Eurasia   Generalist   1 

Siluris glanis Trematoda Tylodelphys clavata Eurasia Complex Generalist Internal 1 

Siluris glanis Crustacea Lernaea spp Azerbaijan Simple Generalist External 2 

Siluris glanis Monogenea Ancylodiscoides siluri  Turkey Simple Specialist External 3, 4 

Siluris glanis Monogenea Ancylodiscoides vistulensis Turkey Simple Generalist External 3, 4 

Siluris glanis Cestoda Siluritaenia siluri Turkey Complex Specialist Internal 3, 5 

Siluris glanis Nematoda Eustrongylides excisus Turkey Complex Generalist Internal 3, 6 

Siluris glanis Cestoda Proteocephalus osculatus Iran  Complex Internal 7 

Siluris glanis Cestoda Bothriocephalus spp Iran  Complex Generalist Internal 7 

Siluris glanis Trematoda Aphanurus stossichi Iran  Complex Generalist Internal 8 

Siluris glanis Trematoda Bunocotyle cingulata Iran  Complex Generalist Internal 8 

Siluris glanis Nematoda Anisakis schupakovi Iran  Complex Generalist Internal 8 

Lepomis gibbosus Bivalvia  Glochidia  sp.  N. America Complex Generalist Internal 13 

Lepomis gibbosus trematoda Ichthyocotylurus  platycephalus N. America Complex Generalist External 13 

Lepomis gibbosus trematoda Tylodelphys  clavata N. America Complex Generalist Internal 13 

Lepomis gibbosus Nematoda Schulmanela  petruschewskii N. America Complex Generalist Internal 13 

Lepomis gibbosus Acanthocephala Acanthocephalus  lucii N. America Complex Generalist Internal 13 



Lepomis gibbosus Acanthocephala Paracanthocephalus  sp. N. America Complex Generalist Internal 13 

Lepomis gibbosus Crustacea Ergasilus sieboldi  N. America Simple Generalist External 13 

Lepomis gibbosus Crustacea Caligus  lacustris N. America Simple Generalist External 13 

Lepomis gibbosus Crustacea Neoergasilus  japonicus N. America Simple Generalist External 14 

Lepomis gibbosus Crustacea Lernaea  cruciata  N. America Simple Generalist External 14 

Lepomis gibbosus trematoda Urocleidus  similis  Canada Simple Generalist External 11, 15 

Lepomis gibbosus trematoda Tetracotyle  sp Canada Complex Generalist Internal 11 

Lepomis gibbosus trematoda Uvulifer  ambloplitis Canada Complex Generalist External 11 

Lepomis gibbosus trematoda Posthodiplostomum  minimum Canada Complex Generalist Internal 11 

Lepomis gibbosus trematoda Clinostomum  marginatum Canada Complex Generalist Internal 11, 16 

Lepomis gibbosus trematoda Diplostomum  scheuringi Canada Complex Generalist Internal 11, 17 

Lepomis gibbosus trematoda Diplostomum  huronense  Canada Complex Generalist Internal 11, 18 

Lepomis gibbosus trematoda Apophallus  brevis Canada Complex Generalist Internal 11, 19 

Lepomis gibbosus Nematoda Spiroxys  sp. Canada Complex Generalist Internal 11 

Lepomis gibbosus nematoda Eustrongylides  sp. Canada Complex Generalist Internal 11 

Lepomis gibbosus Monogenea Actinocleidus gibbosus N. America Simple Specialist External 20-23 

Lepomis gibbosus Monogenea Actinocleidus recurvatus N. America Simple Specialist External 20-23 

Lepomis gibbosus Monogenea Cleidodicus robustus N. America Simple Generalist External 20-23 

Lepomis gibbosus Monogenea Urocleidus  acer N. America Simple Generalist External 20-23 

Lepomis gibbosus Monogenea Urocleidus  attenuatus N. America Simple Generalist External 20-23 

Lepomis gibbosus Monogenea Urocleidus  dispar N. America Simple Generalist External 20-23 

Lepomis gibbosus Monogenea Urocleidus  ferox N. America Simple Specialist External 20-23 

Lepomis gibbosus Copepoda Achtheres  ambloplitis N. America Simple Generalist External 20-23 

Lepomis gibbosus Copepoda Ergasilus caeruleus N. America Simple Generalist External 20-23 

Lepomis gibbosus Copepoda Ergasilus centrarchidarum N. America Simple Generalist External 20-23 

Lepomis gibbosus Mollusca Lampsilis radiata N. America Complex Generalist External 20-23 

Lepomis gibbosus Nematoda Spinitectus sp. N. America Complex Generalist Internal 20-23 

Lepomis gibbosus Myxosporidia Myxobolus  osburni N. America Complex Generalist Internal 20-23 

Lepomis gibbosus Myxosporidia Myxobolus  uvuliferis N. America Complex Generalist Internal 20-23 

Lepomis gibbosus Myxosporidia Myxobolus  magnaspherus N. America Complex   Internal 20-23 

Lepomis gibbosus Myxosporidia Myxobolus  dechtiari N. America Complex   External 20-23 



Lepomis gibbosus Myxosporidia Myxobilatis ohioensis N. America Complex   Internal 20-23 

Lepomis gibbosus Nematoda Hysterothylacium  analarum  N. America Complex Generalist Internal 20-23 

Pseusorasbora 

parva 

Trematoda Clinostomum complantatum Japan Complex generalist internal 24 

Pseusorasbora 

parva 

Trematoda Parabucephalopsis parasiluri Japan Complex generalist internal 24 

Pseusorasbora 

parva 

Trematoda Pararhynchoides ozakii Japan Complex generalist internal 24 

Pseusorasbora 

parva 

Trematoda Holostephanus metorchis Korea Complex generalist internal 24 

Pseusorasbora 

parva 

Cestoda Digramma sp. China Complex generalist internal 24 

Pseusorasbora 

parva 

Cestoda Ligula sp. China Complex generalist internal 24 

Pseusorasbora 

parva 

Acanthocephala Acanthocephalus opsariichthydis Japan Complex generalist internal 24 

Pseusorasbora 

parva 

Trematoda Echinochasmus japonicus Korea Complex generalist External 24 

Pseusorasbora 

parva 

Monogenea Gyrodactylus parvae China Simple Specialist External 24 

Pseusorasbora 

parva 

Digenea Centrocestus armatus Korea Complex generalist External 24 

Pseusorasbora 

parva 

Digenea Monorchotrema taihokui Taiwan Complex generalist External 24 

Pseusorasbora 

parva 

Digenea Clonorchis sinensis Widespread Complex generalist Both 24 

Leucaspius 

delineatus 

Trematoda Posthodiplostomum cuticula Poland Complex generalist Internal 25-29 

Leucaspius 

delineatus 

Trematoda Dactylogyrus  sp.  Bosnia Simple generalist External 25-29 

Leucaspius 

delineatus 

Monogenea Dactylogyrus  minor Hungary Simple Specialist External 25-29 

Leucaspius 

delineatus 

Monogenea Dactylogyrus  fraternis Hungary Simple Specialist  External 25-29 

Leucaspius 

delineatus 

Oligoohymenophorea  Apiosoma sp.  Latvia Simple generalist External 25-29 



Leucaspius 

delineatus 

Sporozoa Eimeria sp.  Latvia Complex generalist   25-29 

Leucaspius 

delineatus 

Myxosporea Myxobolus ellipsoides Latvia Complex generalist Internal 25-29 

Leucaspius 

delineatus 

Nematoda Rhabdochona denudata Latvia Complex generalist Internal 25-29 

Leucaspius 

delineatus 

Maxillopoda Argulus foliaceus Latvia Simple generalist External 25-29 

Leucaspius 

delineatus 

Maxillopoda Ergasilus sieboldi Latvia Simple generalist External 25-29 

Leucaspius 

delineatus 

Cestoda Ligula intestinalis Ukraine Complex generalist Internal 25-29 

Leucaspius 

delineatus 

Trematoda Mesostephanus  appendiculatus  Georgia Complex generalist Internal 28 

Ameirus melas Cestoda Proteocephalus  ambloplitis N. America Complex Generalist Internal 30-37 

Ameirus melas Copepoda Ergasilus  versicolor N. America Simple Generalist External 30-37 

Ameirus melas Cestoda Corallobothrium  fimbriatum N. America Complex Specialist Internal 30-37 

Ameirus melas Nematoda Spiroxys sp. N. America Complex Generalist Internal 30-37 

Ameirus melas Acanthocephala Leptorhynchoides thecatus N. America Complex Generalist Internal 30-37 

Ameirus melas Monogenea Gyrodactylus  fairporti N. America Simple Generalist External 30-37 

Ameirus melas Trematoda Phyllodistomum caudatum N. America Complex Generalist Internal 30-37 

Ameirus melas Trematoda Sellacotyle mustelae N. America Complex Generalist Internal 30-37 

Ameirus melas Cestoda Corallotaenia parva N. America Complex Specialist Internal 30-37 

Ameirus melas Trematoda Cleidodiscus pricei N. America Simple Generalist Internal 30-37 

Ameirus melas Trematoda Cleidodiscus sp. N. America Simple Generalist Internal 30-37 

Ameirus melas Trematoda Hysteromorpha tribola N. America Complex Generalist Internal 30-37 

Ameirus melas Monogenea Cleidodiscus  mirabilis N. America Simple Generalist External 38 

Ameirus melas Digenea Pseudomagnivitellinum  ictalurum N. America Simple specialist Internal 39 

Ameirus melas Digenea Alloglossidium  fonti N. America Simple specialist Internal 40 

Rhodeus amarus Monogenea Dactylogyrus bicornis Europe Simple Specialist External 41 

Rhodeus amarus Monogenea Dactylogyrus rarissimus Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Dactylogyrus suecicus Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Dactylogyrus yinwenyingae Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Gyrodactylus laevis  Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Gyrodactylus rhodei Europe Simple Specialist External 41 



Rhodeus amarus Monogenea Gyrodactylus vimbi Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Paradiplozoon homoion Europe Simple Generalist External 41 

Rhodeus amarus Monogenea Digenea  sp. 1 Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Digenea  sp. 2 Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Digenea  spp. Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Bucephalus polymorphus Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Rhipidocotyle illense Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Sphaerostomum bramae Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Sphaerostomum globiporum Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Paryphostomum radiatum Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Petasiger sp. Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Tylodelphys clavata Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Posthodiplostomum brevicaudatum Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Posthodiplostomum cuticola Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Apharyngostrigea cornu Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Ichthyocotylurus platycephalus Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Ichthyocotylurus variegatus Europe Complex Generalist Internal 41 

Rhodeus amarus Monogenea Holostephanus spp. Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Clinostomum complanatum Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Metorchis xanthosomus Europe Complex Generalist Both 41 

Rhodeus amarus Monogenea Apophallus muehlingi Europe Complex Generalist External 41 

Rhodeus amarus Cestoda Cestoda sp. Europe Complex Generalist Internal 41 

Rhodeus amarus Cestoda Ligula intestinalis Europe Complex Generalist Internal 41 

Rhodeus amarus Cestoda Neogryporhynchus cheilancristrotus Europe Complex Generalist Internal 41 

Rhodeus amarus Nematoda Nematoda sp. Europe Complex Generalist Internal 41 

Rhodeus amarus Nematoda Pseudocapillaria tomentosa Europe Simple Generalist Internal 41 

Rhodeus amarus Nematoda Philometra sp. Europe Complex Generalist Internal 41 

Rhodeus amarus Nematoda Cosmocerca sp. Europe Simple Generalist External 41 

Rhodeus amarus Mollusca Anodonta sp. Europe Complex Generalist External 41 

Rhodeus amarus Mollusca Unio sp. Europe Complex Generalist External 41 

Rhodeus amarus Annelida Piscicola geometra Europe Simple Generalist External 41 

Rhodeus amarus Crustacea Crustacea  sp. Europe Simple Generalist External 41 



Rhodeus amarus Crustacea Ergasilus sieboldi Europe Simple Generalist External 41 

Rhodeus amarus Crustacea Lernaea cyprinacea Europe Simple Generalist Both 41 

Rhodeus amarus Crustacea Caligus sp. Europe Simple Generalist External 41 

Rhodeus amarus Crustacea Argulus foliaceus Europe Simple Generalist External 41 

Pimephlaes 

promelas 

Cestoda Ligula intestinalis widespread Complex generalist Internal 42-44 

Pimephlaes 

promelas 

Trematoda Uvulifer  ambloplitis Americas Complex generalist Internal 42-44 

Pimephlaes 

promelas 

Copepoda Ergasilus cyprinaceus N. America Simple generalist External 42-44 

Pimephlaes 

promelas 

Oligohymenophorea  Trichodina sp. N. America Simple generalist External 42-44 

Pimephlaes 

promelas 

Myxosporea Myxosoma funduli N. America   generalist External 42-44 

Pimephlaes 

promelas 

Monogenea Dactylogyrus bychowski N. America Simple generalist External 42-44 

Pimephlaes 

promelas 

Monogenea Gyrodactylus hoffmani N. America Simple   External 42-44 

Pimephlaes 

promelas 

Trematoda Gyrodactylus sp. N. America Simple generalist External 42-44 

Pimephlaes 

promelas 

Trematoda Neascus sp. N. America Complex generalist Internal 42-44 

Pimephlaes 

promelas 

Trematoda Neascus sp. N. America Complex generalist Internal 42-44 

Pimephlaes 

promelas 

Trematoda Ornithodiplostomum  ptychocheilus N. America Complex specialist Internal 45 

Pimephlaes 

promelas 

Trematoda Dactylogyrus spp. N. America Simple generalist Internal 46 

Pimephlaes 

promelas 

Trematoda Posthodiplostomum  minimum N. America Complex generalist Internal 47 

Pimephlaes 

promelas 

Acanthocephala Neoechinorhynchus  rutili N. America Complex generalist Internal 48, 49 

Pimephlaes 

promelas 

Trematoda Crassiphiala  bulboglossa N. America Complex generalist External 50 

Pimephlaes 

promelas 

Trematoda Neascus  pyriformis N. America Complex generalist External 50 

Pimephlaes 

promelas 

Trematoda Centrovarium  lobotes N. America Complex generalist Internal 50 
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Pimephlaes 

promelas 

Cestoda Proteocephalus spp. N. America Complex generalist Internal 50 

Pimephlaes 

promelas 

crustacea Ergasilus confusus N. America Simple generalist External 50 

Pimephlaes 

promelas 

crustacea Ergasilus spp. N. America Simple generalist External 50 

Pimephlaes 

promelas 

crustacea Lernaea cyprinacea N. America Simple generalist External 50 



 

 

 

 

1 Copp et al. (2009); 2 Barzegar & Jalali (2010); 3 Soylu (2005); 4 Mancheva et al. (2014) ;5 Zdarska and Nebesarova (2005); 6 Sattari et al. (2002); 7 Roohi et al. 

(2014); 8 Pazooki and Masoumian (2012); 9 Hanek and Fernando (1978); 10 Esch (1971); 11 Cone and Anderson (1977); 12 Rye and Baker (1984); 13 Piasecki and 

Falandysz (1994); 14 Hudson and Bowen (2002); 15 Grupcheva and Nedeva (2000); 16 Osborn (1911); 18 Aho et al. (1976); 18 Wilson and Ronald (1967); 19 Taylor 

et al. (1994); 20 Hockley et al. 2011; 21 Gozlan et al. (2010);  22 Zhang et al. (2007); 23 Avdul et al. (2011); 24 Skenderovic et al. (2011); 25 Molnar (1976); 26 

Kirjušina and Vismanis (2007); 27 Davydov et al. (2003); 28 Galationov (1980); 29 Beyer et al. (2005); 30 Bangham (1941); 31 Lincicome and Van Cleave (1949); 32 

Van Cleave (1921); 33 Steelman (1938); 34 Wallace (1935); 34 McAllister and Bursey (2011); 35 Seamster (1948); 36 Hugghins (1954); 37 Davidova et al. (2008); 38 

Mizelle and Cronin (1943); 39 Dronen and Underwood (1980); 40 Tkach and Mills (2011); 41 Held and Peterka (1974); 42 Wilmer and Rogers (1969); 43 Olsen 

(1986); 44 McDowell et al. (1992); 45 Radabaugh (1980); 46 Knipes and Janovy (2009); 47 Mitchell et al. (1982); 48 Samuel et al. (1976); 49 Merrit and Pratt (1964); 

50 Voth and Larson (1968).  
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2c) 

Supplementary table 2 list of parasite species detected in native fishes where the non-native fish were 

present. The non-native fish species in the first column enables cross-referencing of these parasite 

lists with the data presented in table 5.3. 

      Non-native fish 

species Genus Species Lifecycle 

Host 

Specificity Internal/external 

Siluris glanis Echinostomatidae 

 

Complex generalist internal 

Siluris glanis Dactylogyrus 

 

Simple generalist external 

Siluris glanis Trichodina 

 

Simple Generalist External 

Siluris glanis Diplostomum 

 

Complex generalist internal 

Siluris glanis Tylodelphys 

 

Complex Generalist Internal 

Siluris glanis Skijabillanus scardinii 

   Siluris glanis Bothriocephalus 

 

Complex Generalist Internal 

Siluris glanis contracaecum 

 

Complex Generalist Internal 

Siluris glanis 

     Siluris glanis Ichthyophthirius multifiliis simple generalist External 

Siluris glanis Trichodina 

 

Simple Generalist External 

Siluris glanis 

     Siluris glanis Epistylis sp. Simple Generalist External 

Siluris glanis Argulus foliaceus Simple Generalist External 

Siluris glanis Trypanosoma 

 

Complex Generalist Internal 

Siluris glanis Trichodina 

 

Simple Generalist External 

Siluris glanis Icthyoboda necator 

   Siluris glanis Echinostamatidae 

 

Complex Generalist External 

Siluris glanis Piscola geometra Simple Generalist External 

Siluris glanis Dactylogyrus 

 

Simple generalist external 

Siluris glanis Diplozoidae 

 

Simple Generalist External 

Siluris glanis Khawia sinensis Complex Generalist internal 
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Lepomis 

gibbosus Argulus  sp. simple generalist external 

Lepomis 

gibbosus Dactylogyrus sp. simple generalist external 

Lepomis 

gibbosus Diplozoan sp. simple generalist external 

Pseusorasbora 

parva Trichodina 

 

Simple Generalist External 

Pseusorasbora 

parva Dactylogyrus 

 

Simple Generalist External 

Pseusorasbora 

parva Diplostomum 

 

Complex Generalist Internal 

Pseusorasbora 

parva Argulus foliaceus Simple Generalist External 

Pseusorasbora 

parva Schistocephalus solidus Complex Generalist internal 

Ameirus melas Diplozoan 

 

paradoxeum simple generalist External 

Ameirus melas Dactylogyrus sp. simple generalist External 

Ameirus melas Ergasilus  briani simple generalist External 

Ameirus melas Neoergasilus  japonicus simple generalist External 

Ameirus melas Argulus  foliaceus simple generalist External 

Ameirus melas Contracaecum 

 

complex generalist internal 

Ameirus melas Ligula  intestinalis complex generalist internal 

Rhodeus amarus Tylodelphis 

 

Complex Generalist Internal 

Rhodeus amarus Anguillocola crassus Complex Generalist Internal 

Rhodeus amarus Acanthocephalus lucii Complex Generalist Internal 

Rhodeus amarus Camallanus lacustris Complex Generalist Internal 

Rhodeus amarus Bunodera luciopercae Complex Generalist external 

Rhodeus amarus Apiosoma 

 

Simple generalist External 

Rhodeus amarus Trichodina 

 

Simple Generalist External 
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Rhodeus amarus Paraergasilus longidigitus Simple generalist External 

Rhodeus amarus Raphidascaris  acus Complex Generalist Internal 

Rhodeus amarus Triaenophorous nodulosus Complex generalist Internal 

Rhodeus amarus Neoechinorhynchus rutili Complex generalist Internal 

Rhodeus amarus Acanthocephalus lucii Complex generalist Internal 

Rhodeus amarus Piscicola  geometra Simple Generalist External 

Rhodeus amarus Tetraonchus  monenteron Simple generalist External 

Rhodeus amarus Allocredium  isoporum 

   Rhodeus amarus Crepidostomum sp. Complex generalist Internal 

Rhodeus amarus Philometra sp. Complex Generalist Internal 

Rhodeus amarus Echinochasmus 

 

Complex Generalist Internal 

Rhodeus amarus Glochidia 

 

Complex Generalist External 

Rhodeus amarus Trichodina 

 

Simple Generalist External 

Rhodeus amarus black spot 

 

Complex Generalist External 

Rhodeus amarus Trypanosoma 

 

Complex Generalist Internal 

Rhodeus amarus Myxobolus 

 

Complex Generalist Both 

Rhodeus amarus Philometra  sp. Complex Generalist Internal 

Rhodeus amarus Hysteromorpha  tribola Complex Generalist Internal 

Rhodeus amarus Tylodelphys 

 

Complex Generalist Internal 

Rhodeus amarus Caryophyllaeus  laticeps Complex Generalist Internal 

Rhodeus amarus myxidium 

    Rhodeus amarus Diplostomum 

 

Complex Generalist Internal 
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2d) 

Supplementary table 3- List of the parasites of non-native fish in the UK for table 3 

   

        

Fish species Class Genus Species 

Life 

cycle 

Host 

Specificity Internal/external Reference 

Siluris glanis Digenea Diplostomum sp. Complex Generalist Internal This study 

Siluris glanis Maxillopoda Ergasilus sieboldi Simple Generalist External This study 

Siluris glanis Cestoda Proteocephalus  osculatus Complex Generalist Internal This study 

Siluris glanis Kinetoplastida Trypanosoma sp. Complex Generalist Internal This study 

Siluris glanis Nematoda Camallanus  lacustris Complex Generalist Internal This study 

Siluris glanis Monogenea Thaparocleidus vistulensis Simple Specialist External This study 

Lepomis gibbosus Nematoda Contracaecum  rudolphii Complex Generalist Internal 

Hockley et al 

2011 

Lepomis gibbosus Monogenea Onchocleidus  dispar Simple Generalist Internal 

Hockley et al 

2011 

Lepomis gibbosus Nematoda Nematode sp.     Internal 

Hockley et al 

2011 

Lepomis gibbosus Acanthocephala Acanthocephalus sp.     Internal 

Hockley et al 

2011 

Lepomis gibbosus Bivalvia Glochidia sp.     External 

Hockley et al 

2011 

Lepomis gibbosus Oligoohymenophorea  Trichodina sp.     External 

Hockley et al 

2011 

Lepomis gibbosus Oligoohymenophorea  Apiosoma sp.     External 

Hockley et al 

2011 

Ameirus melas Mongenea Ancyrocephalus pricei Simple Specific External This study 

Ameirus melas Maxillopoda Argulus sp Simple Generalist External This study 

Rhodeus amarus Digenea Diplostomum sp. Complex Generalist Internal This study 
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Rhodeus amarus Digenea Tylodelphis clavata Complex Generalist Internal This study 

Rhodeus amarus Nematoda Anguillocola crassus Complex Generalist Internal This study 

Rhodeus amarus Monogenea Ichthyocotylurus variegatus Complex Generalist Internal This study 

Rhodeus amarus Nematoda Raphidascaris sp. Complex Generalist Internal This study 

Rhodeus amarus Digenea Paracoenogonimus ovatus Complex Generalist External This study 

Rhodeus amarus Trematoda Echinochasmus spp. Complex Generalist External This study 

Rhodeus amarus Myxosporea Myxosporidean  sp.   Generalist Internal This study 

Rhodeus amarus Oligoohymenophorea  Ichthyophthirius multifiliis Simple Generalist External This study 

Rhodeus amarus Digenea Bucephalus  polymorphus Complex Generalist External This study 

Rhodeus amarus Digenea Rhipidocotyle campanula Complex Generalist External This study 

Rhodeus amarus Digenea Neascus  sp. Complex Generalist External This study 

Pimephlaes promelas Oligoohymenophorea  Trichodina sp. Simple Generalist External This study 

 

 


