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Abstract
Aims The Oxalate-Carbonate Pathway (OCP) is a bio-
geochemical process that transfers atmospheric CO2

into the geologic reservoir as CaCO3; however, until
now all investigations on this process have focused on
species with limited food benefits. This study evaluates

a potential OCP associated with Brosimum alicastrum,
a Neotropical species with agroforestry potential (ca.
70–200 kg-nuts yr−1), in the calcareous soils of Haiti
and Mexico.
Methods / results Enzymatic analysis demonstrated sig-
nificant concentrations of calcium oxalate (5.97 %
D.W.) were associated with B. alicastrum tissue in all
sample sites. The presence of oxalotrophism was also
confirmed with microbiological analyses in both coun-
tries. High concentrations of total calcium (>7 g kg−1)
and lithogenic carbonate obscured the localised
alkalinisation and identification of secondary carbonate
associatedwith the OCP atmost sample sites, exceptMa
Rouge, Haiti. Soils adjacent to subjects in Ma Rouge
demonstrated an increase in pH (0.63) and CaCO3 con-
centration (5.9 %) that, when coupled with root-like
secondary carbonate deposits in Mexico, implies that
the OCP does also occur in calcareous soils.
Conclusions Therefore this study confirms that the OCP
also occurs in calcareous soils, adjacent to B. alicastrum,
and could play a fundamental and un-accounted role in
the global calcium-carbon coupled cycle.

Keywords Oxalate-Carbonate Pathway (OCP) .
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Introduction

Soils play a major role in the cycling of carbon (C) and
understanding the processes that regulate C migration
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Study locations Merida, Yucatán Peninsula, Mexico: Oxtapacab
(20.77111°N / 89.50417 °W), San Jose Tzal (20.824167 °N /
89.66111 °W), Tzucacab (20.07083 °N / 89.05055 °W) and Haiti:
Anse-à-Pitres (18.04306 °N / 71.75833 °W), Anse-Rouge
(19.63333 °N / 73.05000 °W).

Highlights
1) Calcium oxalate identified in all analysedBrosimum alicastrum.
2) CaOx crystals probably help its younger form augment incident
UV-radiation in light-limited environments.
3) Ma Rouge, a Haitian sampling site, demonstrated signs of early
onset oxalotrophy.
4) Root-like secondary carbonate deposits were discovered in
Mexico.
5) Evidence suggests that Brosimum alicastrum is oxalogenic and
that oxalogenesis can occur in calcareous environments.
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from one reservoir to the next is of globally recognised
significance. The Oxalate-Carbonate Pathway (OCP;
Fig. 1) is a biogeochemical cycle that results in the
transfer of atmospheric carbon dioxide (CO2

Atm) into
the geologic C reservoir within soils, as calcium carbon-
ate (CaCO3). The process probably plays an important
role in the regulation of CO2

Atm within the global C
cycle (Cailleau et al. 2005; Cailleau et al. 2014) when
the source of calcium (Ca) is provided by silicate rocks.
OCP has several key components, involving; calcium
oxalate (CaOx; CaC2O4 • n H2O) producing plants,
fungi, phytophagous invertebrates, and oxalotrophic
bacteria (Cailleau et al. 2004, 2011; Cailleau et al.
2014; Garvie 2006). The first stage commences when
CO2

Atm is fixed by RuBisCo during photosynthesis,
forming biomass and oxalic acid (H2C2O4; Fig 2).
Oxalic acid can then be converted into insoluble CaOx
crystals (Ksp ≈ 10−8.5; Certini et al. 2000; Monje and
Baran 2002; Palak et al. 2012) by plants within
specialised cells called crystal idioblasts (Faheed et al.
2013; Franceschi and Nakata 2005; Nakata 2002, 2003).
These CaOx crystals are subsequently released during
herbivory and decomposition, creating a CaOx pool
adjacent to the producing species, in its rhizosphere
(Cailleau et al. 2011; Jayasuriya 1955), stomachs of
endopedonic species (Bassalik 1913), or within phyto-
abrasions (Cailleau et al. 2004; Verrecchia et al. 2006).
Consequently, this pool of CaOx can then be catabolised
by bacteria, labelled oxalotrophic through either the
common glycolate- (Bravo et al. 2013; Chandra and
Shethna 1977; Tamer and Aragno 1980) or less com-
mon serine-pathway (Sahin 2003), precipitating C as
CaCO3 and creating a distinct local alkalinisation of
acidic soils (Cromack et al. 1977; Fig. 3). Therefore,
an active OCP has the ability to biominerally transfer
CO2

Atm within the geologic reserve.
Although there have been numerous studies on the

OCP, analysis has typically focused on tree species in

Fig. 1 A simplified model of the Oxalate-Carbonate Pathway
(OCP), a process that transfers carbon dioxide from atmosphere
to secondary calcium carbonate. As described by Cailleau et al.
(2014), the process commences when a calcium oxalate producing
species (Tree) organically sequesters carbon during photosynthesis
(Corg), converting it into oxalic acid and then calcium oxalate.
Once released from organic material during decomposition or as
exudes, calcium oxalate is subsequently catabolised by
oxalotrophic bacteria (Bact.), converting one mol as carbonate and
releasing another as respired carbon dioxide. Fungi also assist in
the process by either breaking down oxalic rich matter and depos-
iting calcium oxalate for catabolism by bacteria, or by fungal
oxalotrophy

1.)

2.)

3.)

4.)
Fig. 2 Oxalic acid production and subsequent precipitation of
calcium oxalate from glucose. 1.) Glucose is first oxidated to form
pyruvate. 2.) Then pyruvate is carboxylated to produce oxaloace-
tate. 3.) The subsequent hydrolysis of oxaloacetate forms oxalate
and acetate. 4.) Where Ca2+ can then react with oxalic acid to form
calcium oxalate as either mono- or di-hydrate crystals (Verrecchia
1990; Verrecchia et al. 2006)
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acidic soil environments. At current, investigations
have confirmed 24 species are associated with active
OCPs (Braissant et al. 2002; Cailleau et al. 2004;
Cailleau et al. 2014; Ferro 2012; Garvie 2003,
2006; Monje and Baran 2002), typically utilising the
emblematic localised alkalinisation of acidic soils as a
geochemical proxy for oxalogenesis. The most heavi-
ly investigated OCP is associated with Milicia excelsa
Welw. (Moraceae) in ferralitic soils of Africa (Aragno
et al. 2010; Braissant et al. 2004; Braissant et al.
2002; Cailleau et al. 2005; Cailleau et al. 2004;
Martin et al. 2012). For which, Cailleau et al.
(2011) demonstrated a potential sequestration of ca.
1 t C as CaCO3 throughout a model individual’s
lifetime. Later work identified a further two species
within the Moraceae family (Cailleau et al. 2014),
associated with an OCP, while earlier work has dem-
onstrated CaOx production in several other species
within the family (Wu and Kuo Huang 1997), includ-
ing the food-producing genus Brosimum (Scholz et al.
2007). However, most studies on the OCP have fo-
cused on species without agroforestry potential and
there has currently been no investigations into a po-
tential OCP associated with the Moraceae genus
Brosimum.

Brosimum alicastrum Swartz, Moraceae (B.
alicastrum) is a large Neotropical, ever-green,
canopy-emergent tree species utilised in Central
America for agroforestry purposes and conservation
marketing operations. It is common throughout the
dry and wet semi-evergreen forests of the Caribbean,
Central America, and Northern-South America
(Ortiz et al. 1995; Yates and Ramirez-Sosa 2004).
The species has a height range of around 20–40 m,
increasing with precipitation, and a common Diam-
eter at Breast Height (DBH) of 1–1.5 m, increasing
North–south (Peters 1983, 1989). It is a species
shown to be drought resistant (Brewer et al. 2003;
Querejeta et al. 2006), growing well in Leptosols of
different biomes, while producing nutritious nuts
(Peters and Pardo-tejeda 1982). These natural prod-
ucts can be processed to form a range of foods,

medicines and excellent fodder for almost all large
gregarious mammals, (Gillespie et al. 2004; Rico-
gray et al. 1991). The species starts seed production
after reaching sexual maturity (i.e. 5–7-yr) and,
thereafter, an individual can produce around 70–
200 kg-seeds yr−1 (±30 kg) throughout its 150–
200-yr life cycle (Gillespie et al. 2004; Ortiz et al.
1995; Peters 1983, 1989). Furthermore, recent work
by Woda and Martinez (2013) has shown that
B. alicastrum’s seeds have an established, economic
harvest return of US $ 650 ha yr−1 in Honduras,
almost doubling that of maize (US $ 326 ha yr−1);
thus, highlighting the potential of B. alicastrum as
an effective agroforestry crop.

If B. alicastrum was found to be in association
with an active OCP, it would represent an ideal
agroforestry crop with biomineral C fixation capabil-
ities. However, currently the OCP has only been
identified in acidic soils, free from inherited carbon-
ate (Cailleau et al. 2014), unlike the predominate
habitat of B. alicastrum (Peters and Pardo-tejeda
1982). The presence of carbonate in calcareous soils
increases the complexity of identifying an OCP
(Cailleau et al. 2014), but shouldn’t prevent its iden-
tification through the analysis of the process’ constit-
uents and geochemical proxies. Therefore, the aim of
this work is to ascertain if B. alicastrum is associated
with an active oxalate-carbonate pathway in the cal-
careous soils of Haiti and Mexico, via the following
questions:

1) Does B. alicastrum produce CaOx, and if so, is
there geochemical evidence of an active OCP adja-
cent to the species in calcareous soils?

2) Are there oxalotrophic bacterial communities in
calcareous soils adjacent to subject B. alicastrum
in both Haiti and Mexico?

3) What is the C fixation potential of a model
B. alicastrum agroforestry system in calcareous
soils?

Materials & methods

Site settings

Calcareous sample sites were selected with notable en-
vironmental and biogeographical similarities in Anse-à-

Fig. 3 Oxalotrophic catabolism of calcium oxalate by bacteria (in
Verrecchia et al. 2006, from Harder et al. 1974)
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Pitres (A, B - Banane, C - Bony, D – Ma Rouge) and
Anse Rouge (E), Haiti and, the Yucatán Peninsula (F -
Tzucacab, G - Oxtapacab, H – San Jose Tzal), Mexico
(Fig. 4). The Yucatán sites sit atop a partially emergent
carbonate platform of low-lying, Tertiary limestone
karst and were typically characterised as either Calcic
or Calcaric Leptosols or Cambisols in Oxtapacab and
San Joze Tazal, or Luvisols in Tzucacab (Ramos 1975;
Shang and Tiessen 2003; WRB 2015) that receive an
annual rainfall of approximately 1,100 mm yr−1

(Giddings and Soto 2003). Mexico provided mature
trees in contrast with Haiti, where only recent planta-
tions were available for sampling. Anse-à-Pitres and
Anse Rouge also sit atop Tertiary limestone karst, with
thin eroded soils that were predominately classified as
Calcaric or Calcic Cambisols, although several sites in
Ma Rouge presented a non-calcareous nature (just be-
low classification of Calcaric ≤2 % CaCO3; WRB
2015). Accurate climatic data on the two regions is
sparse, but both regions are subject to an annual

hurricane season of fluctuating strength (Whigham and
Lynch 1998;Whigham et al. 2003), which just preceded
sampling for this investigation (2013).

Sampling

A sample of 50 subject B. alicastrum of varying size and
maturity were selected from both study countries (20
Mexican, 30 Haitian) using stratified-random tech-
niques. Two samples were taken from each subject, an
experimental sample from adjacent to the subject and a
control sample, exogenous of the subject’s zone of
lateral edaphic influence (3.5–25 m depending on sub-
ject height). To analyse the bulk differences between
adjacent and control sites, all soil profiles were taken to
their shallow bedrock (10–40 cm) and bulked.

Samples ofB. alicastrum tissue were taken from each
subject for biogeochemical analyses. 3 Foliar and 3
branch samples were taken from the lowest branches
of each subject, mid-branch, ensuring uniformity

Fig. 4 Sample sites in Haiti and Mexico (Esri 2014)
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amongst samples in both countries. Root and bark sam-
ples were only taken from Mexican subjects to restrict
the damage to the younger trees in Haiti. Subject loca-
tions were recorded using GPS systems (Opteka GPS &
Garmin GPS 76) and measurements of DBH, soil sam-
ple depth, and height, were obtained using 30 m tape
and, where necessary, in conjunction with a clinometer
(Sokkia No. 8047).

Sample preparation

All soil and plant samples, except those for bacterial
analyses, were air-dried in the field to prevent decom-
position and decay, and then transported to Bourne-
mouth for laboratory analyses via courier. Bournemouth
samples were autoclaved (Astell Swiftlock Secure-
touch +; 121 °C for 30 mins) on arrival as part of the
plant health licence (Food, Environment and Rural Af-
fairs) for importing foreign soils and plant material into
the UK. Soil samples were then sieved to fine earth
fraction (<2 mm) for chemical analysis, while plant
samples were homogenised using a rotor mill and stain-
less steel-bore mill kit (Retsch MM200). Field-moist
samples from each study site, except Anse Rouge, were
sent urgently to a laboratory in the Yucatan for bacterial
analysis and stored at 4 °C prior to examination. Live
samples from Haiti were delayed in Mexican customs
for a month, but were also held at 4 °C.

Calcium oxalate analysis

Microscopy

The presence of CaOx in B. alicastrum tissue was first
identified using optical and Scanning Electron Micros-
copy (SEM). Samples were prepared for optical micros-
copy using techniques adapted from Ilarslan et al.
(2001). Various tissues from both countries were sub-
merged in Carnoy Fluid (3:1 ethyl alcohol: acetic acid)
and left in Petri dishes for 24 h, then re-submerged in
ethyl alcohol for 1.5 h. Samples were then coated in
2.5 % sodium hypochlorite and rested for 4 h before
mounting with glycerine-gelatine. Slides were observed
with an Olympus BX51 compound microscope, using
both dark and light field microscopy, and images were
captured with an Olympus DP70 Digital Microscope
Camera (Olympus Inc.).

SEM and Energy Dispersive X-ray Spectroscopic
(SEM/EDS) techniques adapted from Garvie (2003)

were used to image and detect the composition of ob-
served crystals. Homogenised plant tissue was applied
to alloy stubs using adhesive stickers and AuPd sputter
coated (B-7341 Agar Auto Sputter Coater) for 40–60 s.
Samples were subsequently analysed in high vacuum
using a Jeol JSM-6010 Plus/LV SEM, with an INCAX-
s igh t 8129 EDS sys tem (ETAS Inc . ) , and
InTouchScreen software. All EDS readings represent a
percentage of the analysed substance’s atomic weight
and were recorded in K-band. Furthermore, surficial
measurements are considered semi-quantitative as these
measurements are applied to 3-dimensional objects.

Enzymatic oxalate analysis

Calcium oxalate concentrations of each B. alicastrum
sample were quantified using a commercial Enzymatic
Oxalate Kit (EOK; Trinity Biotech Plc; Cailleau et al.
2014; Certini et al. 2000). The EOK functions through
the oxidation of oxalate by the enzyme (oxalate oxidase)
into CO2 and hydrogen peroxide, which is subsequently
oxidized by peroxidase, 3-methyl-2-benzthiazlinone hy-
drazine (MBTH) and 3-dimethylamino benzoic acid
(DMAB) into an indamine dye with a maximum absor-
bance of 590 nm. Sub-samples of 0.1 g were taken from
each plant tissue sample and placed into 30 mL tubes,
combined with 5 mL 1 M hydrochloric acid (HCl)
extractant and shaken for 16 h at 150 revs min−1 (Bibby
Stuart Orbital Shaker SO1). The extractants were then
centrifuged at 3,000 revs min−1 for 5 mins (Heraeus
Instruments Megafuge 1.0) and 1 mL supernatant trans-
ferred into new 30 mL tubes. This was subsequently
combined with 4 mL Ultra-Pure H2O (Millipore™;
18.2 mΩ at 25 °C) and 0.4 mL 2 M sodium hydroxide
(NaOH) for pH correction (pH 5–7) and, thereafter, the
manufacturer’s instructions were followed. Absorbance
was then measured at 590 nm using a Carey 50 UV/vis
spectrophotometer (Varian Inc.) after 20 min had
elapsed to allow full colour development. Certain soil
samples were also measured with the same techniques,
adjusting the extraction procedure for the lower concen-
trations of oxalate. The kits reported the oxalate concen-
tration in mg kg−1 which was then adjusted by multi-
plying the concentrations by the difference in M.W.
(1.66) between whewellite (CaOx monohydrate;
CaC2O4.H2O M.W.: 142.112 g M−1) and oxalate
(C2O4

−2 M.W.: 88.019 g M−1) to give CaOx
monohydrate concentrations of each sample.
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Total carbon analysis

Total C was ascertained using dry combustion tech-
niques adapted from Wright and Bailey (2001),
analysing the tissue of randomly selected B. alicastrum
subjects from each sampling location. Briefly, triplicates
of 1–2mg of homogenised sample were placed into a tin
capsule (Barry and Pinkard 2013; Schutz et al. 2009)
and combusted at 1,600 °C in a thermal elemental
analyser (Thermo Finnegan FlashEA 1112),
standardising peak integration by combusting 2.5-Bis
(5–tert-butyl-benzoxazol-2-yl) thiophene (BBOT).

Analysis of edaphic variables associated with the OCP

Loss on ignition

Organic matter content (% OM) of each soil sample was
calculated through loss on ignition (Cailleau et al.
2014). 1 g of oven dried (105 °C; Memmert UN 55)
soil was furnaced (Carbolite model OAF 11 / 1) at
450 °C for 12 h and the percentage mass loss on ignition
calculated.

Soil pH

pHH2O was measured using techniques adapted from
Cailleau et al. (2005). 4 g of soil was combined with
10 mL of distilled water (d H2O), reposed for 16 h and
measured in triplicate with a pH meter (Hach H135
Mini-lab Pro).

ICP-OES

The elemental composition of all soil samples was
ascertained using a Vista-Pro CCD Simultaneous
Inductively Coupled Plasma-Optical Emission Spec-
trometer (ICP-OES; Varian inc.) and different ex-
traction methods. Exchangeable concentrations
(Caexch and Pexch) were extracted using 1 M ammo-
nium nitrate (NH4NO3) extraction technique adapted
from MAFF (1986). 0.5 g of soil was combined with
10 mL 1 M NH4NO3 in 30 mL polypropylene tubes
and shaken for 33 min at 250 revs min−1, the re-
posed solution was then filtered (Whatman No. 42)
and analysed on the ICP-OES. Total concentrations
(CaTot) were extracted using nitric acid (HNO3) di-
gestion in a microwave (Anton Parr Multiwave
3000). 0.1 g of soil from each sample was digested

with 6 mL 70 % HNO3 (Fisher Scientific Primar
Plus Trace Metal grade) at 200 °C / 20 Bar
(800 W), for 30 mins. The microwaved solutions
were then filtered (No. 42) and diluted (50 mL) with
Ultra-pure H2O. Quality Control was ensured
through the analysis of process blanks and CRM
samples (NWRI/INRE TH-2; extraction efficiency
Ca = 100 .00 %, RSD = 3 .98 ; P = 87 .18 %,
RSD = 5.59).

Soil carbonate

Calcium carbonate concentration was evaluated with a
back titration (Cailleau et al. 2014). Briefly, 1 g of soil
was combined with 0.25 M Sulphuric acid (H2SO4) and
then back-titrated with 0.5 M NaOH until a pH 7 was
attained. It was not possible to confirm pure presence of
CaCO3 using XRD and although a potential error in-
duced by the presence of magnesium carbonate
(MaCO3) is small enough to preclude (Cailleau et al.
2005), CaCO3 concentrations are reported as (Ca1-x, Mg

x) CO3 % D.W..

Identification of oxalotrophy

Oxalotrophic bacterial analysis was completed on each
study site, except Anse Rouge, utilising techniques
adapted from Braissant et al. (2004). For each study site,
2 g of field moist sample was placed into a 50 mL
centrifuge tube and vortexed for 1 min with 20 mL of
1 % sodium hexametaphosphate ([NaPO3]6), before
reposing for a further 20 mins at room temperature.
Serial dilutions (10−2 a 10−4) were made with 0.9 %
sodium chloride (NaCl) solution and then propagated on
petri dishes with two layers of media (Aragno and
Schlegel 1992). The first layer was a Schegel medium
(7 g L−1), while the second layer consisted of Schegel
med ium wi th 4 g L− 1 CaOx monohydra te
(CaC2O4.H2O), diluted to 10−2 or 10−4. Dishes were
then incubated at 30 °C for 10–15 days and counted
for colonies, every 72 h after the 3rd day of incubation.

Inverse modelling of a potential OCP

The quantity of CO2
Atm captured during OCP bio-

induced CaCO3 precipitation associated with an ideal
oxalotrophic system was evaluated through the inverse
modelling of observed variables and previous literature
values (Benjamin et al. 2001; Cairns et al. 1997; Cairns
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et al. 2003; Gill and Jackson 2000; Peters 1989), using
inverse modelling equations given in the Supplementary
information. The model estimates a potential maximum
biomineral CaCO3 precipitation and organic C seques-
tration associated with a B. alicastrum OCP by inverse
modelling the biochemical characteristics ascertained
with the aforementioned methods.

Statistical analysis

Statistical analysis was utilised to evaluate the potential
oxalogenesis of B. alicastrum. All data was tested for
homoscedasticity (Levene’s test, p > 0.05) and then
analysed with partial correlation. Two-way ANOVAs
or independent t-tests were applied using IBM SPSS
Statistics Version 21, testing the differences between
adjacent and control samples, in both countries.

Results

Calcium oxalate analysis

Microscopy

Optical microscopy revealed crystal deposits throughout
B. alicastrum OM. Prismatic crystals were typically
associated with the vascular structure of OM, while
druse crystal deposits were associated with the lamina
of B. alicastrum foliar tissue, from both Haiti and Mex-
ico (Fig. 5). Crystals were present in all forms of sam-
pled B. alicastrum tissue (leaf, branch, bark, and root),
even in the youngest measured subjects (<0.5 yrs), while
in-situ SEM/EDS analyses detected Ca, C, and oxygen
in the crystals. Their composition and crystallographic
habiti (Verrecchia et al. 1993) confirmed their CaOx
monohydrate nature (Fig. 5).

A 

C 

1 

2 

B

D

Fig. 5 Calcium oxalate crystals observed and imaged in
Brosimum alicastrum tissue using optical and scanning electron
microscopy. a Druse / sand CaOx crystals (1) associated with the
lamina, and prismatic CaOx crystals (2) associated with the vas-
cular system of foliar tissue from a Haitian subject. b Prismatic and

druse CaOx crystals in foliar tissue from a Mexican subject. c
Prismatic CaOx crystal isolated from the rhytidome of a Mexican
subject. d Prismatic CaOx crystal isolated from a Mexican sub-
ject’s root tissue all of which are prismatic habiti common in
whewellite

Plant Soil (2017) 412:465–479 471



Enzymatic oxalate analysis

Enzymatic oxalate kit analyses quantified the presence
of CaOx monohydrate in B. alicastrum tissue (Fig. 6).
Highest concentrations of CaOx were discovered in
Haitian leaf matter, while concentrations decreased with
age, between the younger Haitian (mean = 97.26 g kg−1)
and mature Mexican subjects (mean = 42.66 g kg−1,
t[19] = 4.385, p = 0.001). High mean concentrations of
CaOx were also found in B. alicastrum bark (72.79 g
kg−1) and root (57.86 g kg−1) material from Mexico,
with the lowest concentrations found in branch material
of both countries (mean = 38.30 g kg−1). CaOx

production did not correlate with CaExch (r2 = 0.208,
n = 50) or PExch (r2 = 0.004, n = 50).

Analysis of edaphic variables associated with the OCP

The effect of B. alicastrum on emblematic edaphic
variables associated with the OCP was tested using
two-way ANOVAs. The presence of B. alicastrum had
a negligible effect on all edaphic variables related to the
OCP, at all sites combined ([Ca1-x, Mg x] CO3

F[1,3] = 0.545, p = 0.462, Ca
Tot F[1, 3] = 0.189, p = 0.665

& pH F[1, 3] = 0.07, p = 0.787), except Ma Rouge, Haiti.
Ma Rouge displayed the lowest background concentra-
tions of CaTot (mean = 6.74 g kg−1) and, although the
subjects at Ma Rouge were very young (0.5–2 yrs), the
adjacent samples demonstrated clear germinal indications
of oxalotrophy (Table 1), namely: (i) a distinct localised
alkalinisation, (ii) an increase in concentrations of CaTot,
(iii; Ca1-x, Mg x) CO3 concentration (Fig. 7; Cailleau et al.
2014), and (iv) PExch, which is unrelated to the OCP, but
can be an indicator of CaOx production and release, which
subsequently liberates inorganic-bound P (Cannon et al.
1995). Therewas also an increase in CaExch (mean increase
2.73 g kg−1) in the adjacent Ma Rouge sites, but not others
(F[1, 3] = 0.002, p = 0.962), indicative of localised Ca
cycling by the trees (Jobbágy and Jackson 2001).

Oxalotrophic microbial analysis

Oxalotrophy was detected in cultures from all sampling
locations, in both Haiti and Mexico. All samples, except
one experimental sample and four control Haitian sam-
ples, tested positive for oxalotroph colonies. Haitian
study sites displayed a lower frequency of positive
colonies than Mexican sites which could be due to the
delay in customs; thus, making a direct comparison
between the two impossible.

Sampling observations

Multiple mechanisms for the release of B. alicastrum pro-
duced CaOx were identified in association with subjects in
both countries, for instance: phytophagous invertebrate
predation (termite) and mycological decomposition
(Fig. 8). Secondary carbonate deposits, confirmed through
effervescence with 2 M HCl, were found in association
with the largest subjects in Mexico. These carbonate de-
posits were typically concentric, located mid-soil profile,
in-between the root network of the subjects, and were

A

B

Fig. 6 Box plot graphs displaying oxalate concentrations
(% D.W.) of subject Brosimum alicastrum leaf and branch tissue
at Haitian sampling sites (a), and leaf, bark, root and branch tissue
at Mexican sampling sites (b)
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different in colour, texture and friability from the lithogenic
carbonate, crumbling easily upon extraction (Fig. 8).

Carbon capture potential

The calculated values given in Tables 2 and 3 represent
an ideal model of oxalotrophy, CaOx production, organ-
ic C sequestration, and also decomposition. Whereby,
all CaOx and C captured by B. alicastrum as either
organic C sequestration or CaCO3 precipitation, is
stored within the associated C reserve. CaOx concentra-
tions (% D.W.) are calculated from the CaOx concen-
trations ascertained with the enzymatic oxalate analysis
multiplied by the molecular weight of CaOx
monohydrate (whewellite; CaC2O4.H2O M.W.:
142.112 g M−1), the most abundant form of CaOx in
plants (Aragno et al. 2010).

Discussion

Calcium oxalate and B. alicastrum

The present study has demonstrated that CaOx is ubiq-
uitous throughout all forms of analysed B. alicastrum
tissues, and that production commences at a young age
for the species (<0.5 yrs). CaOx concentrations in sub-
ject tissue regularly exceeded 5 % D.W. (Libert and
Franceschi 1987) and the mean oxalate concentration
for all sampled tissues in both Haiti and Mexico was
5.97 % D.W. (59.71 g kg−1, n = 140). Furthermore,
inverse modelling of the species’ biochemical analysis
revealed that B. alicastrum deposits significant quanti-
ties of CaOx into its surrounding edaphic ecosystem on
an averaged, annual basis throughout its lifetime. The
quantities of oxalate within its tissue are proportionally

Table 1 Independent samples t-tests comparing the means of edaphic variables related to the oxalate-carbonate pathway, in the adjacent and
control profiles at the Ma Rouge sampling site

Variable Adjacent Control t P Eta2

Mean SD Mean SD

pH 7.94 0.24 7.31 0.17 5.38 0.00 0.74

CaTot (g kg−1) 42.79 31.00 6.74 1.91 2.84 0.04 0.45

(Ca1-x, Mg x) CO3 (% D.W.) 11.05 4.60 5.15 4.46 2.26 0.48 0.34

PExch x 10−3 (g kg−1) 8.09 3.37 1.63 1.40 4.34 0.00 0.65

A B

C

Fig. 7 Box plot graphs
displaying soil variables
associated with the OCP from
adjacent and control (3.5 m
distance) samples at Ma Rouge
Haiti, which displayed the lowest
background concentrations of
total Ca, in the following order:
(a) soil pH values, (b) total
calcium concentration and (c)
calcium carbonate concentration,
the purity of which was not
ascertained
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magnified by the species large biomass; thus, creating a
potent source of potential OCP C storage if planted in an
acidic soil environment free from a lithogenic carbonate
source.

The primary phyto-function of CaOx production in
B. alicastrum remains unclear. Contrary to previ-
ous studies, this investigation found no significant
relationship between B. alicastrum’s CaOx produc-
tion and CaExch (Austenfeld and Leder 1978;
Rasmussen and Smith 1961; Volk et al. 2002) or PExch

(Cannon et al. 1995; Knight et al. 1992) concentra-
tions in most sites, providing weak evidence that
CaOx production is utilised for the phyto-regulation
of CaExch or release of PExch from inorganic-pools.
Equally, the use of B. alicastrum tissue for fodder and
the non-raphide morphology or size of crystals (Sakai
et al. 1984; Salinas et al. 2001) indicate that the

species does not use CaOx production as an herbiv-
ory deterrent. However, the concentrated production
of druse crystals in the lamina of B. alicastrum foliar
tissue could distribute UV light to chloroplasts, in-
creasing incident UV absorbency in understory en-
v i ronments , as or ig ina l ly hypothes i sed by
Franceschi (2001) and later demonstrated experi-
mentally by Kuo-Huang et al. (2007) in Peperomia
glabella. This hypothesis explains the observed de-
crease in subject foliar CaOx concentration with
age, while also explaining B. alicastrum’s high sur-
vival rates under dense canopy (>80 %; Laborde and
Corrales-Ferrayola 2012). Therefore, a role for
B. alicastrum CaOx druse crystal production in the
maximisation of incident UV light is hypothesised.

During this investigation, the root network of
B. alicastrum was of particular interest. B. alicsatrum
has a root network that is mainly concentrated in the
upper soil and bedrock layers (Querejeta et al. 2006).
The EOK analyses indicated thatB. alicastrum root tissue
contains a significant concentration of CaOx, which,
when coupled with the Cairns et al. (1997) root / shoot
ratio (0.26) andGill and Jackson (2000) root turnover rate
(0.1 yr−1), predict that B. alicastrum deposits significant
quantities of CaOx directly into its rhizosphere through
the continuous decomposition and regeneration of root
OM. Furthermore, investigations have demonstrated that
B. alicastrum roots have strong associations with mycor-
rhizal fungi (Allen et al. 2003; Allen et al. 2005) that,
Bravo et al. (2013) demonstrated act as highways for the
dispersal of oxalotrophic bacteria to oxalate, creating an
ideal mutualistic habitat for oxalotrophy.

A B

C D

Fig. 8 Photographic
observations from sampling. a
Evidence of phytophagous
invertebrate predation. b
Mycological degradation of
CaOx rich tissue in the
rhizosphere adjacent to aMexican
subject. c Idiosyncratic carbonate
mineral deposit, concentric and
root-like in structure, located
within the root network of a
Mexican subject. d Concentric
carbonate-rich mineral deposit at
1 m distance from a Mexican
subject

Table 2 Mean calcium oxalate and carbon contents of
B. alicastrum tissue from both countries used in the inverse
modelling of the carbon capture ability of an ideal individual or
hectare population

Tissue type Mean calcium
oxalate content
(% D.W.)

Mean total
carbon (% D.W.)

Leaf 7.54 35.68

Branch 3.91 41.63

Bark 7.28 45.70

Root 5.79 41.34

Mean tissue 5.97 39.98
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OCP and carbonate soils

All the constituents of an active OCP in ferralitic
soils have now been identified by this investigation
in calcareous ecosystems adjacent to B. alicastrum
in both Haiti and Mexico. These constituents in-
clude: an oxalate producing species (B. alica
strum), phytophagous invertebrate predation and
mycological decomposition of CaOx rich tissue, sig-
nificant oxalotrophic bacterial communities, and
secondary CaCO3. Furthermore a calcareous sample
site in Haiti, Ma Rouge, has demonstrated clear,
emblematic, early indications of oxalotrophy adja-
cent to subjects (Table 2) even though the subjects
are still very young (0.5–2 yrs). This was contrary to
our hypothesis that the trees would be too young to
have affected their local edaphic ecosystem; but, at
the time of sampling, the Ma Rouge trees had al-
ready grown to 1.4–1.8 m in height and were pro-
ducing significant quantities of CaOx, which was
also detectable in the soils adjacent to them (5–
25 g kg−1). As demonstrated by Bravo et al.
(2011), this soil CaOx pool can be catabolised
quickly upon entry into the edaphic ecosystem when
in the presence of oxalotrophs. Which, when
coupled with positive identification of oxalotrophy
in soils found adjacent to B. alicastrum in Ma
Rouge, strongly suggests that, like suggested by
Verrecchia et al. (1993), an OCP can occur in cal-
careous environments and secondary carbonate de-
posits found in association with the root networks in
Mexico are generated through an active OCP.

Although there was evidence of oxalotrophy in Ma
Rouge, typical edaphic variables associated with the OCP
were suppressed in most sites. This could be because of
the higher concentrations of Ca (CaExch &CaTot) masking
the typical indicators of an OCP. Ma Rouge displayed the
lowest concentrations of Ca (CaExch & CaTot) or CaCO3

(2 sites below the calcaric threshold) of any site samples.
The site was also the only site to present evidence of
CaExch cycling by the plants (Jobbágy and Jackson 2001).
However, the passive cycling of Ca could not explain the
observed increase in CaCO3 content of adjacent samples.
On the contrary, there was a larger increase in adjacent
concentrations of CaTot, relative to CaExch, which, as a
plant nutrient would be actively cycled by plants. This
increase is most likely linked to the CaCO3 increase
adjacent to the species, as will be the localised
alkalinisation. A significant saturation of exchange com-
plex by Ca (>4.47 g kg−1) of a deprotonated alkaline soil
would typically suppress the localised alkalinisation as-
sociated with an OCP in ferralitic environments; but, the
observed increase in CaCO3would further increase pH as
seen in Ma Rouge. Although the presence of lithogenic
CaCO3 makes it difficult to discern secondary CaCO3

deposits and thereby, identify an active OCP (Cailleau
et al. 2014), the root-like position, colour, shape, texture
and friability of secondary CaCO3 deposits in Mexico
were all suggestive of an OCP associated with
B. alicastrum. Therefore, Ca and C cycling of the OCP
in calcareous environments needs to be studied in more
detail to identify alternate indicators of the process in
alkaline soils.

In calcareous environments, plants under stress
from high CaExch concentrations, typically increase
CaOx production as a Ca detoxification mecha-
nism (Austenfeld and Leder 1978; Molano-Flores
2001; Rasmussen and Smith 1961; Volk et al.
2002; Webb 1999). This increased production of
CaOx would theoretically lead to a larger pool
available for oxalotrophy relative to a ferralitic
environment, subsequently increasing the C cy-
cling of the process. However, an identifiable C
sequestration of a calcareous OCP must be ruled
out because CO2 is concomitantly released into the
soil matrix when Ca2+ is liberated during the

Table 3 Estimates for the carbon capture ability of an ideal B. alicastrum individual and hectare plantation of 400 individuals

Predictions Total calcium
oxalate
output (kg)

Potential biomineral
precipitation of captured
CO2

ATM as CaCO3 (kg)

Potential organic carbon
sequestration of CO2

Atm

as biomass (kg)

Potential
total CO2

capture (kg)

Annual CO2

capture (kg yr−1

MLE−1)

Individual 1590 479 39,633 40,112 267

1 ha plantation (400 individuals) 636,000 191,600 15,853,200 16,048,800 106,800
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dissolution of CaCO3 in calcareous environments
(Fig. 9). This means that a calcareous OCP system
cannot truly be considered a C sink, but instead a
C capturer, as the allochthonous, non-carbonate
origin of the Ca2+ precipitated as CaCO3 cannot
be confirmed in this complex system. Instead, this
work has confirmed that B. alicastrum is an
oxalogenic species which is known to have signif-
icant agroforestry potential (Woda and Martinez
2013) and if planted in a location free from
lithogenic CaCO3, would act as an efficient agro-
forestry and C capture tool.

Conclusion

Calcium oxalate production takes place throughout
B. alicastrum tissue and the compound likely plays
an important role in the species’ adolescent form,
maximising photosynthesis, through the augmentation
of incident UV radiation in the lamina, in light-
limited environments. This research has also identi-
fied oxalotrophic bacterial communities in soils from
Haiti and Mexico, providing further evidence
for previous suggestions that oxalotrophism is glob-
ally diverse. Furthermore, this study has provided
experimental evidence for the hypothesis of
Verrecchia et al. (1993) that, the OCP can occur in
calcareous environments. Thus, when planted in soils
free from lithogenic carbonate, B. alicastrum would
represent a valuable C sequestration and agroforestry
crop which would have the ability to biominerally
sequester C via an active OCP, while providing food
for Neotropical communities in countries such as
Haiti, Mexico or Belize. Further investigation is
now required to:

1. Analyse B. alicastrum in acidic soil environments,
2. Assess the isotopic signatures of discovered carbon-

ate deposits,
3. Assess the origin of Ca sources in calcareous OCP

systems,

4. Identify more oxalogenic species with significant
agroforestry potential, to facilitate integration of this
biogeochemical C management solution into cur-
rent agroforestry systems.
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